
STAT: the Stack Trace Analysis Tool Quick Start
Guide

Gregory L. Lee

Dorian C. Arnold

Dong H. Ahn

Bronis R. de Supinski

Matthew P. LeGendre

Barton P. Miller

Martin Schulz

STAT: the Stack Trace Analysis Tool Quick Start Guide
by Gregory L. Lee

by Dorian C. Arnold

by Dong H. Ahn

by Bronis R. de Supinski

by Matthew P. LeGendre

by Barton P. Miller

by Martin Schulz

Table of Contents
Disclaimer ...v

Auspice ...v
License ..v

1. When To Use ...1
2. Using the STAT GUI ...3

iii

iv

Disclaimer

Auspice
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

License
Copyright (c) 2007-2014, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

Written by Gregory Lee [lee218@llnl.gov], Dorian Arnold, Matthew LeGendre,
Dong Ahn, Bronis de Supinski, Barton Miller, and Martin Schulz.

LLNL-CODE-624152.

All rights reserved.

This file is part of STAT. For details, see
http://www.paradyn.org/STAT/STAT.html. Please also read
STAT/LICENSE.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the disclaimer (as noted below) in the documentation
and/or other materials provided with the distribution.

Neither the name of the LLNS/LLNL nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Depart-
ment of Energy (DOE). This work was produced at Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Secu-
rity, LLC nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services
by trade name, trademark, manufacturer or otherwise does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC. The views

v

Disclaimer

and opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.

vi

Chapter 1. When To Use

STAT is most effective for diagnosing parallel applications that are hung (i.e.,
deadlock or livelock), however, its analysis can also be useful for debugging other
errors. The outputted, merged stack traces indicate where in the code all of the
processes are at a given point in time, giving the user insight into where the bug
may be. The merged traces also form process equivalence classes, which can be
used to select a subset of tasks to feed into a full-featured parallel debugger such
as DDT or TotalView for root cause analysis.

1

Chapter 1. When To Use

2

Chapter 2. Using the STAT GUI

After launching the GUI via the stat-gui command you will first need to attach to
the application via the Attach button. This will bring up the attach dialog (Figure
2-1). You will need to select the job launcher (i.e., mpirun, srun, or equivalent pro-
cess). STAT will list processes owned by you on the localhost. If your job launcher
process is on a remote host, you will need to enter that hostname in the remote
host text entry box. Contact your local system administrator if you are not sure
where to find your job launcher process. Once the appropriate process has been
selected, click on the Attach in the lower right hand corner. STAT will then launch
its daemons and gather an initial stack trace.

Figure 2-1. Use the attach dialog to select the job launcher process to attach to.

Once STAT has displayed the initial merged stack trace, in the form of a prefix
tree, first you may want to look for common buggy patterns. This can be accom-
plished by using the analysis buttons in the toolbar across the top of the window.
This includes operations to look for outliers such as processes with the shortest
or longest stack trace or for the stack trace that was exhibited by the least or most
processes. Note that these buttons are "traversal" buttons and they all initially
operate on the full prefix tree. For example, the first click of the [Shortest] Path
button will display the shortest path and subsequent clicks will display the next
shortest path. Oftentimes bugs in parallel applications are triggered by a single or
small subset of outliers in which case the [Least] Tasks button can quickly iden-
tify the outliers. Another common behavior is for a small subset of processes to
be hung and the rest of the processes to be blocked in an MPI barrier or collective.
In this case, the hung subset of tasks may have a shorter call path than the tasks
in blocking in MPI, since the MPI implementation will usually be several frames
deep. In this case, the [Shortest] Path can be useful.

3

Chapter 2. Using the STAT GUI

Figure 2-2. A screenshot of the STAT GUI.

Alternatively, you may wish to manually search through the stack traces. There
are several buttons to aid in this process too. The [Traverse] Eq C will traverse
the prefix tree, with each click traversing the down to the next point where there
is a branch in equivalence classeses. There is also a Search button to search for
specific MPI ranks, for stack frames with specified text, or for tasks running on
specified nodes. Finally, left or right clicking on a node in the prefix tree gives
you the option to expand or collapse the prefix tree. Note also that you can zoom
in and out of the prefix tree using the options in the View menu or by using the
scroll button on your mouse. You can also hold the left mouse button to "grab"
the whitespace in the displayed prefix tree and move the focus around.

Another helpful button is the Cut button, which allows you to cut the tree at
frames below a specified programming model’s implementation. For example,
[Cut] MPI will cut any frames below an MPI function call, thus allowing
you to focus on application code as opposed to the MPI implementation
stack frames. You can define your own programming model on the fly via
the Add Model button. Default programming models are defined in the
installation $prefix/etc/STAT/STATview_models.conf file or in the user
$HOME/.STATview_models.conf file. Programming models are specified as
regular expressions, using Python’s re module syntax, and the re.search
function is used in favor of re.match.

By default, the initial sample will gather stack traces at the granularity of func-
tion names. You can gather an additional sample with more detail, by clicking on
the Sample button and selecting the function and line radio button. Note this
typically requires that the code be compiled with the -g flag to get the appro-
priate debug information. After clicking OK a new prefix tree will be generated.
By gathering stack traces with line number information, you may now associate
stack traces back to the source code using the View Source button after clicking
on a node in the prefix tree (Figure 2-3).

4

Chapter 2. Using the STAT GUI

Figure 2-3. A screenshot of the source view window.

STAT was not intended to be a full-featured debugger, so you may ultimately
need to employ another debugger such as DDT or TotalView for root cause anal-
ysis. STAT includes an interface to launch either of these debuggers (where avail-
able) on a subset of the MPI tasks based on the equivalence classes that STAT
identifies. This interface can be accessed through the [Identify] Eq C button in
the upper right hand corner of the window. In order to allow the other debuggers
to attach, STAT will first detach itself from the application. Pinpointing a bug may
require several iterations of running STAT on the entire application and running
a full-featured debugger on a subset. After detaching a full-featured debugger,
you can quickly attach to your application again with the ReAttach button.

5

Chapter 2. Using the STAT GUI

6

	STAT: the Stack Trace Analysis Tool Quick Start Guide
	Table of Contents
	Disclaimer
	Auspice
	License

	Chapter 1. When To Use
	Chapter 2. Using the STAT GUI

