
Open|SpeedShop Quick Start Guide
n osshwc, osshwctime: HWC Experiments
osshwc[time] “<command> < args>” [default | <PAPI_event> | <PAPI threshold> | <PAPI_
event><PAPI threshold>]
Sequential job example:
osshwc[time] “smg2000 –n 50 50 50”
Parallel job example:
osshwc[time] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: event (PAPI_TOT_CYC), threshold (10000)
<PAPI_event>: PAPI event name
<PAPI threshold>: PAPI integer threshold

n osshwcsamp: HWC Experiment
osshwcsamp “<command>< args>” [default |<PAPI_event_list>|<sampling_rate>]
Sequential job example: osshwcsamp “smg2000”
Parallel job example:
osshwcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: events(PAPI_TOT_CYC and PAPI_FP_OPS), sampling_rate is 100
<PAPI_event_list>: Comma separated PAPI event list
<sampling_rate>:Integer value sampling rate

n ossio, ossiot: I/O Experiments
ossio[t] “<command> < args>” [default | f_t_list]
Sequential job example:
ossio[t] “smg2000 –n 50 50 50”
Parallel job example:
ossio[t] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
default: trace all I/O functions
< f_t_list>: Comma-separated list of I/O functions to trace, one or more of the following: close, creat,
creat64, dup, dup2, lseek, lseek64, open, open64, pipe, pread, pread64, pwrite, pwrite64, read,
readv, write, and writev

n ossmpi, ossmpit: MPI Experiments
ossmpi[t] “<mpirun><mpiargs><command><args>” [default | f_t_list]
Parallel job example: ossmpi[t] “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments: default: trace all MPI functions
<f_t_list>: Comma-separated list of MPI functions to trace, consisting of zero or more of:
MPI_Allgather, …. MPI_Waitsome and/or zero or more of the MPI group categories:

MPI Category				 Argument
All MPI Functions 				 all
Collective Communicators 			 collective_com
Persistent Communicators 			 persistent_com
Synchronous Point to Point 			 synchronous_p2p
Asynchronous Point to Point 			 asynchronous_p2p
Process Topologies 				 process_topologies
Groups Contexts Communicators 		 graphs_contexts_comms
Environment 					 environment
Datatypes 					 datatypes

n ossfpe: FP Exception Experiment
ossfpe “<command> < args>” [default | f_t_list]
Sequential job example: ossfpe “smg2000 –n 50 50 50”
Parallel job example: ossfpe “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments: default: trace all floating-point exceptions
<f_t_list>: Comma-separated list of exceptions to trace, consisting of one or more of: inexact_result,
division_by_zero, underflow, overflow, invalid_operation

Open|SpeedShop (O|SS) is an open source, multi-platform Linux performance tool for analysis of applica-
tions running on both single-node and large-scale IA64, IA32, EM64T, AMD64, IBM Power PC clusters, Cray
XT/XE and IBM Blue Gene platforms. O|SS gathers and displays several types of information to aid in solving
performance problems, including: program counter sampling for a quick overview of the applications
performance, call path profiling to add caller/callee context and locate critical time consuming paths, access
to the machine hardware counter information, input/output tracing for finding I/O performance problems,
MPI function call tracing for MPI load imbalance detection, and floating point exception tracing. O|SS offers a
command-line interface (CLI), a graphical user interface (GUI) and a python scripting API user interface.

 n ACCESS INFORMATION
The O|SS Website: http://www.openspeedshop.org
O|SS Documentation: http://www.openspeedshop.org/wp/documentation
O|SS Users Guide: http://www.openspeedshop.org/docs/users_guide/

To use O|SS, check with your system administrator to see if a module, dotkit, or softenv file for O|SS exists on
your system. O|SS can be installed in user directories as no root access is needed. Visit the O|SS website and
click on Build Information for install instructions.

Help email: oss-questions@openspeedshop.org
O|SS Forum: http://www.openspeedshop.org/forums

 n WHAT OPEN|SPEEDSHOP PRODUCES
O|SS monitors a running application from start to finish and gathers performance data (and symbolic infor-
mation describing the application), saves it to a SQLite database file and generates a report. The symbolic
information allows the performance data to be viewed on another system without needing the application
to be present.

 n PERFORMANCE INFORMATION TYPES
O|SS provides the following options, called experiments, to do specific analyses.

Experiment	 Description
pcsamp	 Periodic sampling the program counters gives a low-overhead view of where the time is being 	
		 spent in the user application.

usertime	 Periodic sampling the call path allows the user to view inclusive and exclusive time spent in 	
		 application routines. It also allows the user to see which routines called which routines. Several 	
		 views are available, including the “hot” path.

hwc	 Hardware events (including clock cycles, graduated instructions, i- and d-cache and TLB misses, 	
		 floating-point operations) are counted at the machine instruction, source line and function 	
		 levels.

hwcsamp	 Similar to hwc, except that sampling is based on time, not PAPI event overflows. Also, up to six 	
		 events may be sampled during the same experiment.

hwctime	 Similar to hwc, except that call path sampling is also included.

io	 Accumulated wall-clock durations of I/O system calls: read, readv, write, writev, open, close, 	
		 dup, pipe, creat and others.

iot	 Similar to io, except that more information is gathered, such as bytes moved, file names, etc.

mpi	 Captures the time spent in and the number of times each MPI function is called. Trace format 	
		 option displays the data for each call, showing its start and end times.

mpit	 Records each MPI function call event with specific data for display using a GUI or a command 	
		 line interface (CLI).

mpiotf	 Write MPI calls trace to Open Trace Format (OTF) files to allow viewing with Vampir or
		 converting to formats of other tools.

fpe	 Find where each floating-point exception occurred. A trace collects each with its exception type 	
		 and the call stack contents. These measurements are exact, not statistical.

 n SUGGESTED WORKFLOW
We recommend an O|SS workflow consisting of two phases. First, gathering the performance data using the
convenience scripts. Then using the GUI or CLI to view the data.

 n CONVENIENCE SCRIPTS
Users are encouraged to use the convenience scripts that hide some of the underlying options for running
experiments. The full command syntax can be found in the User’s Guide. The script names correspond to the
experiment types and are: osspcsamp, ossusertime, osshwc, osshwcsamp, osshwctime, ossio, ossiot,
ossmpi, ossmpit, ossmpiotf, ossfpe plus an osscompare script.
Note: Make sure to set OPENSS RAWDATA DIR (SEE KEY ENVIRONMENT VARIABLES section for info).

When running Open|SpeedShop, use the same syntax that is used to run the application/executable outside
of O|SS, but enclosed in quotes; e.g.,
Using an MPI with mpirun: osspcsamp “mpirun -np 512 ./smg2000”
Using SLURM/srun: osspcsamp “srun -N 64 -n 512 ./smg2000 -n 5 5 5”

 n REPORT AND DATABASE CREATION
Running the pcsamp experiment on the sequential program named mexe: osspcsamp mexe
results in a default report and the creation of a SQLite database file mexe-pcsamp.openss in the current
directory; the report:

CPU time		 % CPU Time		 Function
11.650 		 48.990			 f3 (mexe: m.c, 24)
 7.960		 33.478			 f2 (mexe: m.c,15)
 4.150		 17.451			 f1 (mexe: m.c,6)
 0.020		 0.084			 work(mexe:m.c,33)

To access alternative views in the GUI: openss –f mexe-pcsamp.openss loads the database file. Then use
the GUI toolbar to select desired views; or, using the CLI: openss –cli –f mexe-pcsamp.openss to load the
database file. Then use the expview command options for desired views.

 n CONVENIENCE SCRIPT DESCRIPTION
n osscompare: Compare Database Files
osscompare “<db_file1>, < db_file2>[,<db_file>…]”
Example: osscompare “smg-run1.openss,smg-run2.openss”
Additional arguments for comparison metric:
time: compare by exclusive CPU time
percent: compare by % of CPU time

n osspcsamp: Program Counter Experiment
osspcsamp “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
osspcsamp “smg2000 –n 50 50 50”
Parallel job example:
osspcsamp “mpirun –np 128 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 100
<sampling rate>: integer value sampling rate

n ossusertime: Call Path Experiment
ossusertime “<command> < args>” [high | low | default | <sampling rate>]
Sequential job example:
ossusertime “smg2000 –n 50 50 50”
Parallel job example:
ossusertime “mpirun –np 64 smg2000 –n 50 50 50”
Additional arguments:
high: twice the default sampling rate (samples per second)
low: half the default sampling rate
default: default sampling rate is 35
<sampling rate>: integer value sampling rate

Oct. 2011

 n KEY ENVIRONMENT VARIABLES
n OPENSS_ENABLE_MPI_PCONTROL
Activates the MPI_Pcontrol function recognition, otherwise MPI_Pcontrol function calls will be ignored by
O|SS.

n OPENSS_RAWDATA_DIR
Used on cluster systems where a /tmp file system is unique on each node. It specifies the location of a shared
file system path which is required for O|SS to save the “raw” data files on distributed systems.
OPENSS_RAWDATA_DIR=”shared file system path”
Example: export OPENSS_RAWDATA_DIR=/lustre4/fsys/userid

n OPENSS_DB_DIR
Specifies the path to where O|SS will build the database file. On a file system without file locking enabled,
the SQLite component cannot create the database file. This variable is used to specify a path to a file system
with locking enabled for the database file creation. This usually occurs on lustre file systems that don’t have
locking enabled.
OPENSS_DB_DIR=”file system path”
Example: export OPENSS_DB_DIR=/opt/filesys/userid

n OPENSS_MPI_IMPLEMENTATION
Specifies the MPI implementation in use by the application; only needed for the mpi, mpit, and mpiotf
experiments. These are the currently supported MPI implementations: openmpi, lampi, mpich, mpich2,
mpt, lam, mvapich, mvapich2. For Cray, IBM, Intel MPI implementations, use mpich2.
OPENSS_MPI_IMPLEMENTATION=”MPI impl. name”
Example: export OPENSS_MPI_IMPLEMENTATION=openmpi

In most cases, O|SS can auto-detect the MPI in use.

 n INTERACTIVE COMMAND LINE USAGE
n Simple Usage to Create, Run, View Data
The CLI can be used to run experiments interactively. To invoke O|SS in interactive mode use: openss –cli
An experiment can be created, run and viewed with three simple commands, e.g.:
expcreate –f “mexe 2000” pcsamp
expgo
expview

n CLI Commands for Other Views
These interactive CLI commands may be used to view the performance data in alternative ways once an
experiment has been run and the database file exists. The command: openss –cli –f <database-filename>
loads the performance experiment. Then, the following commands may be used to view the performance
information:

help or help commands : display CLI help text
expview : show the default view
expview –v statements : time-consuming statements
expview –v linkedobjects : time spent in libraries
expview –v calltrees,fullstack : all call paths
expview –m loadbalance : see load balance across ranks/threads/processes
expview –r <rank_num> : see data for specific rank(s)
expcompare –r 1 –r 2 –m time : compare rank 1 to rank 2 for metric equal time
list –v metrics : see optional performance data metrics
list –v src : see source files associated with experiment
list –v obj : see object files associated with experiment
list –v ranks : see ranks associated with experiment
list –v hosts : see machines associated with experiment
expview –m <metric from above> : see metric specified
expview –v calltrees,fullstack <experiment type> <number> : see expensive call paths.
For example: expview –v calltrees,fullstack usertime2
shows the top two call paths in execution time.
expview <experiment-name><number> shows the top time-consuming functions. For example:
expview pcsamp2 : shows the two functions taking the most time.
expview –v statements <experiment-name><number> shows the top time-consuming

statements. For example: expview –v statements pcsamp2 :shows the two statements taking the most
time.

For more information about the Command Line Interface commands please visit:
http://www.openspeedshop.org/docs/cli_doc

 n GRAPHICAL USER INTERFACE USAGE
The GUI can be used to run experiments or to view and/or compare previously created performance database
files. The two main commands used to invoke the GUI are:
 openss: Open the GUI in wizard mode.
 openss –f database_file.openss: open a previously created file. These commonly used commands are 	
	 described in the sections below.

n GUI WIZARD PANELS
When openss is used with no arguments, the first GUI wizard view shows three options: “Create New Data,”
“View a Previously Created Database File,” or “Compare Two Database Files.” If the first option is chosen,
the second page of the wizard, “Generate New Performance Data,” is shown. The view shows the first page
of questions that a novice user can use to guide the creation and execution of an experiment. Subsequent
wizard pages further define the experiment to be run, including selection of the application. Answer the
wizard questions to create an experiment. On the first wizard page, the second and third options bring up
dialog panels to choose the experiments to view or compare.

n GUI Source Panel
The Source Panel displays the source used in creating the program that was run during the O|SS experiment.
The source is annotated with performance information gathered while the experiment was run. Users can
focus the source panel to the point of the performance bottleneck by clicking on the performance informa-
tion displayed in the Statistics Panel. In order to see per statement statistics, build the application to be
monitored with -g enabled.

n GUI Statistics Panel
The GUI can also be used to directly view performance data from a previous experiment by opening its
database file. For example: openss –f smg2000.pcsamp.openss

The GUI Statistics Panel view relates the performance data to the corresponding application source code.
Clicking on an entry in the performance data panel focuses the source panel on the function or statement
corresponding to the performance item.

The Statistics Panel toolbar icons allow alternative views of the performance data, and also built-in analysis
views, e.g., load balance and outlier detection using cluster analysis. To aid in the selection of alternative
views, a toolbar with icons corresponding to the views is provided. The icons are colored coded: where light
blue icons relate to information about the experiment, purple for general display options, green for optional
view types, and dark blue for analysis view options.

I: Information	 Show the metadata information such as the experiment type, processes, ranks,
			 threads, hosts and other info.

U: Update		 Update the display with performance information from the database file.

CL: Clear Auxiliary	 If the user has chosen to view a time segment or to view a specific function’s data, 	
Information		 clear those settings so the next view selection shows data for the entire program 	
shows		 again.

D: Default 		 Show default performance results. First use View and Display Choice buttons to 	
			 select whether data corresponds to functions, statements, or linked objects then 	
			 click D-icon.

S, down arrow: 	 Show performance results for the source statements for the selected function. 	
Statement results	 Highlight a function before clicking this icon.
per Function

C+: Call Path Full 	 Show all call paths, including duplicates, in their entirety.
Stacks

C+, down arrow: 	 Show all call paths for the selected function only. Highlight a function before clicking	
Call Path Full		 this icon. All call paths will be shown in their entirety.
Stacks Per Function	

HC: Hot Call Path 	 Show the call path in the application that took the most time.

B: Butterfly View 	 Show a butterfly view: the callers and callees of the selected function. Highlight a 	
			 function before clicking this icon.

TS: Time Segment 	 Show a portion of the performance data results in a selected time segment.
Selection

OV: Optional View 	 Select which performance metrics to show in the new performance data report.
Selection		

LB: Load Balance 	 Show the load balance view: min, max and average performance values. Only used	
View		 with threaded or multi-process applications.

CA: Comparative 	 Show the result of a cluster analysis algorithm run against the threaded or multi-	
Analysis View		 process performance analysis results. The purpose is to find outlying threads or 	
			 processes and report groups of like performing threads, processes or ranks.

CC: Custom 		 Allow the user to create custom views of performance analysis results.
Comparison View 	

n GUI Manage Processes Panel
The Manage Processes panel allows focusing on a specific rank, process, or thread or to create process groups
and view a group’s corresponding data.

n GUI General Panel Info
Each view has a set of panel manipulation icons to split the panel vertically or horizontally or remove the
panel from the GUI. The icon toolbar found on far right of GUI panels is shown below.

 n CONDITIONAL DATA GATHERING
Gather performance data for code sections by bracketing your code with MPI. Pcontrol calls. MPI.Pcontrol (1)
enables gathering. MPI-Pcontrol (0) disables. OPENSS_ENABLE_MPI_PCONTROL must be set.

 n BLUE GENE AND CRAY XT/XE USAGE
On the Cray-XT/XE platform, support of applications created with -dynamic is through the default workflow.
That is, use the convenience scripts to gather the performance data and the GUI and CLI to view it. Please
use the target runtime environment (module/dotkit) files while gathering and the host/frontend module/
dotkit files to view the data. Dynamic support is not yet available on the Blue Gene platform. On platforms
where dynamic shared library support is limited, the O|SS performance information gathering code must be
statically linked into the user application. O|SS provides an osslink script to add into the application make
files to help minimize the impact of the application link step.

n Makefile Modification Example
Duplicate and edit this general makefile target:
$(TARGET): $(OBJ)
 $(F90) -o $@ $(FFLAGS) $(OBJ) $(LDFLAGS)
To create a pcsamp experiment: (changes in bold)
oss-pcsamp: $(OBJ)
 osslink -c pcsamp $(F90) -o $(TARGET)-pcsamp $(FFLAGS) $(OBJ) $(LDFLAGS)

n Running ossutil to Create O|SS Database File
Set OPENSS_RAWDATA_DIR prior to application execution.
After the application completes use this command to create the O|SS database file:
ossutil <raw data directory path>.
After the above step, the database file may be viewed like any other O|SS database file.

For more information, please visit
http://www.openspeedshop.org/docs/users_guide/

