
NFT Reference Manual - 1

UCRL-WEB-201529

NFT Reference Manual

NFT Reference Manual - 2

Table of Contents

Preface 4
Introduction 5
How to Run NFT 6

Basic Execution 6
Basic NFT Features 7
Basic Examples 10

NFT Pathname Syntax 12
NFT Commands Summarized 14

General and Storage-Defaulted Commands 14
Environment-Variable Settings 15
Synchronous and Asynchronous Command Modes 16
Local, Immediate, and Job Commands 17

Local (Client) Commands 17
Server Commands 17

Immediate Commands 17
Job Commands 17

Input and Output Files 19
NFT Output (Log) Files 19

Using LOG and CLOG 19
NFT Logging Techniques and Examples 19

NFT Input Files 21
File Input by Redirection 21
File Input Using SOURCE 21
Logging Jointly with Input Files 22

Job Status and Reporting 23
NFT Job Numbers and Classes 23

Using Job Numbers 23
Job Class Hierarchy 24

Job Reporting with RPT 25
Scope 25
Format and Examples 26

Diagnostic Verbosity 27
NFT Sessions 29

Grouping Jobs by Session 29
One Client, Multiple Sessions 29
Multiple Clients, Multiple Sessions 31

Using NFT in Scripts 32
NFT Command Dictionary 33

Command Syntax Advice 33
ABT (Abort Incomplete Jobs) 34
ASYNC (Run Jobs in Parallel) 35
BLOCK (Block or Delay Next Command) 36
CD (Change Working Directory) 37

NFT Reference Manual - 3

CDUP (Change Working Directory Up) 38
CHGRP (Change Groups) 39
CHKROUTING (Report Routing Availability) 41
CHMOD (Change Permissions) 42
CHOWN (Change Owners) 43
CLOBBER (Enable File Overwriting) 44
CLOG (Close Log File) 45
CLOSE (Restore Remote Host) 45
CLR (Clear Completed Job Reports) 46
CP (Copy/Transfer Files) 48
DELETE (Remove Files) 50
DIR (List Directory Contents, Long) 52
DUALCOPY (Store Dual Copies of Files) 54
ENDGR (End Asynchronous Group) 55
GET (Retrieve Stored Files) 56
GROUP (Begin Asynchronous Group) 58
HELP (Describe NFT Commands) 59
LCD (Change Local Working Directory) 60
LN (Create a Link) 61
LOG (Open Log File) 62
LS (List Directory Contents, Short) 63
MKDIR (Make Directories) 65
NOCLOBBER (Disable File Overwriting) 66
NODUALCOPY (Undo Dual Copy) 66
NOROUTING (Disable Routing) 67
NOTERM (Disable Terminal Output) 68
OPEN (Change Remote Host) 69
PUT (Store Local Files) 71
PWD (Print Working Directory) 73
QUIT (Terminate NFT Client) 74
RENAME (Change File Name) 75
RMDIR (Remove Directories) 76
ROUTING (Use Login Node Jumbo Frames) 77
RPT (Report Job Status) 78
SESSION (Change NFT Sessions) 80
SETCOS (Change Storage Class of Service) 81
SOURCE (Use Command File) 82
STATUS (Report Environment Variables) 83
SYNC (Run Jobs in Series) 84
TERM (Enable Terminal Output) 85
TIME (Report Current Time) 85
VERBOSE (Control State-Change Reports) 86

Disclaimer 88
Keyword Index 89
Alphabetical List of Keywords 91
Date and Revisions 93

NFT Reference Manual - 4

Preface

Scope: The NFT Reference Manual describes in detail the syntax, commands, and special features
of the NFT (Network File Transport) file-transfer utility. NFT moves files between
machines with the help of a dedicated server that provides persistent, passwordless
transfers with elaborate job tracking. Extra support for file transfers to or from LC's
archival storage system (including jumbo-frame routing where available) is also provided.

For a clear comparison of NFT's features with those of FTP and SCP, and for a concise,
task-oriented summary of how to use NFT for ordinary file transfers, see the EZOUTPUT
(URL: https://computing.llnl.gov/LCdocs/ezoutput) basic file transfer and print guide.

For an overview of archival storage features at LC (open and secure), including access
issues, solutions to common storage problems, and NFT's role in using storage, see the
EZSTORAGE (URL: https://computing.llnl.gov/LCdocs/ezstorage) basic file storage
guide.

Availability: NFT runs on LC's open and secure AIX (IBM) and Linux/CHAOS production machines.

Note that besides the open and secure archival storage systems, only those machines that
support NFT clients also accept incoming file transfers using NFT. Other hosts (such as
FIS) do not accept NFT transfers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open e-
mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

OCF: https://computing.llnl.gov/LCdocs/nft/nft.pdf

SCF: http://www.llnl.gov/LCdocs/nft/nft_scf.pdf

https://computing.llnl.gov/LCdocs/ezoutput
https://computing.llnl.gov/LCdocs/ezstorage
http://www.llnl.gov/LCdocs/nft/nft.pdf

NFT Reference Manual - 5

Introduction

NFT (Network File Transport) is a file-transfer utility developed at LC and tailored to local needs. NFT
features persistent, passwordless file transfer among worker machines and to the storage system in both the
open and secure environments (with automatic routing of storage transfers through fast, jumbo-frame network
connections where available). To monitor and confirm file transfers, NFT provides extensive job-tracking aids.
It also supports command files and easy use in batch jobs.

This document is the comprehensive reference manual for NFT. Consult EZOUTPUT (URL: https://
computing.llnl.gov/LCdocs/ezoutput) for a concise, task-oriented, introductory treatment of NFT that compares
it with FTP. Consult EZSTORAGE (URL: https://computing.llnl.gov/LCdocs/ezstorage) for an overview
of LC's archival storage system and of NFT's role in managing stored files (alternatives to NFT for storage
management are also explained). The FTP Reference Manual (URL: https://computing.llnl.gov/LCdocs/ftp)
tells how standard FTP features, including storage access, are implemented among LC production machines. If
your file-transfer needs specifically involve placing many files into or retrieving them from a remote archive
(TAR-format library) file, consult the HTAR Reference Manual (URL: https://computing.llnl.gov/LCdocs/
htar) for another LC-designed, locally deployed tool tailored to efficiently managing large archives in storage
or on any preauthenticated FTP server. If you prefer a visual interface to NFT (where you select files and target
directories with CTRL-CLICK using your mouse, for example), then execute HOPPER on any LC production
machine and select NFT from HOPPER's CONNECT menu.

https://computing.llnl.gov/LCdocs/ezoutput
https://computing.llnl.gov/LCdocs/ezstorage
https://computing.llnl.gov/LCdocs/ftp
https://computing.llnl.gov/LCdocs/htar

NFT Reference Manual - 6

How to Run NFT

Basic Execution

To run NFT on any LC machine where it resides, type

nft [options]
 where NFT's possible execute-line options are:

-i ignores any .nftrc file. By default, as soon as it starts to execute, your NFT client reads the
file .nftrc (if any) in your home directory and immediately processes any NFT commands
it finds there, echoing their normal responses (if any) to your terminal. This run-control
file typically contains requests for nondefault environment-variable settings (keyword:
environment-variables (page 15)) or for automatic logging of your NFT messages
(keyword: log-files (page 19)).

-n outputs a newline character after each NFT prompt (omitted by default). This is intended to
facilitate the handling of PERL scripts, but it is not recommended for ordinary interactive
use.

NFT prompts for more input with the string nft> and you terminate your NFT client by typing QUIT (or,
less elegantly, CTRL-C). Even after you have stopped running your NFT client, however, the NFT server
will persistently execute any jobs (file-transfer requests) that have not yet completed (you can only kill your
incomplete NFT jobs by using NFT's ABT command).

NFT Reference Manual - 7

Basic NFT Features

DAEMONS.
Although NFT uses its own special server to schedule file-transfer requests and to persistently track them, it
uses the standard FTP daemons on the sending and receiving machines to actually carry out your file transfers.
Hence, some NFT commands (such as CHGRP or LN) may fail on some machines because the local FTP
daemons do not support them there.

BINARY TRANSFER.
All NFT file transfers use the FTP binary (image) mode. You cannot change to ASCII mode with any NFT
command.

PASSWORDS.
The NFT server preauthenticates your access to the machines where NFT works. Hence, all NFT file transfers
are passwordless.

LIMITS.
The longest pathname that NFT accepts is 1023 characters. (Remember also that many UNIX utilities limit
names to 16 characters.) The largest file that you can store using NFT is 10 Tbyte (use HTAR (URL: https://
computing.llnl.gov/LCdocs/htar) to store and manage very large numbers of related files).

SYNTAX.
To specify the donor and target locations of files to transfer, NFT primarily uses a prefix or sentinel notation,
somewhat like that used by SCP, rather than the login-based approach that FTP requires. For details on and
examples of this prefix file-specification syntax, see the Syntax section below, keyword: syntax (page 12).
See the OPEN (page 69) command for a way to make NFT somewhat mimic the FTP login approach.

SPECIAL CHARACTERS.
Several characters have special roles when used with NFT:

semicolon (;) NFT recognizes the semicolon (;) as a command separator on its execute line or in
response to any NFT prompt (e.g., CLOBBER;PWD).

filters (? * [a-b])

The standard UNIX file filter (wild card) characters (? for single characters, * for any
string, and [a-b] for end points of a specified range) are all accepted within file names by
most NFT commands and can be used literally only if quoted (exceptions, where the result
would be ambiguous, are noted in the description of specific NFT commands below).

filelists ({a,b,c})

NFT accepts these as a list of itemized file names a, b, and c.

other nonalphanumerics

- # ~
cannot appear as the first character in any file name, but can be used in other positions.
, : }
must be quoted if they appear in any file name (e.g., 'a:b'), because each otherwise has a
special meaning for NFT.

https://computing.llnl.gov/LCdocs/htar

NFT Reference Manual - 8

quotes (' ") Quotes have two special roles for NFT:

Quoted
commands

Matched quotes surrounding commands only on NFT's execute line allow
promptless execution (e.g., see the Input Files (page 21) section).
NFT rejects quotes around any commands after its prompt as a syntax
error.

Quoted
file names

Matched quotes surrounding any file name in an NFT command (e.g.,
PUT 'a:b') can protect imbedded special characters in the name, allowing
them to behave as ordinary alphanumeric characters. But note that this
quote protection has two important limits:
(1) Quotes do not protect - # ~ in the first-character position.
(2) Quotes protect file-filter characters from NFT but not from
subsequent special handling by many FTP daemons, who treat them as
filters anyway.

COMMANDS.
To request and monitor file transfers, NFT uses interactive commands and environment-variable settings quite
like FTP. However, some commands (e.g., GET) have specialized, storage-only roles for NFT that differ from
their FTP roles. For details on the NFT commands, see the Command Summary (keyword: command-summary
(page 14)) or the much longer Command Dictionary (keyword: commands (page 33)). When NFT's
interactive commands have multiple, nonexclusive suboptions, you must concatenate all your chosen suboptions
with a single hypen (-) sentinel, not flag each with its own sentinel as UNIX usually allows. Thus, for example,
the correct form is

dir -FPt

FILES.
To handle special situations, NFT can accept its input from files and send its output to files. For usage
instructions, see the section on NFT Files (keyword: files (page 19)).

TRANSFER RATES.
To take advantage of the significantly faster file transfers (to or from storage only) that jumbo-frame network
connections enable, NFT automatically routes compute-node transfers to/from storage through the login nodes
on many LC clusters. For more details, for the implications for LC's parallel file systems, and for ways to check
or disable this routing, see NFT's ROUTING command (page 77) below.

NFT Reference Manual - 9

JOB TRACKING.
NFT goes far beyond SCP or FTP in the elaborateness of its job tracking. Relevant features include uniquely
numbering each job; commands to report job status before, during, and even after completion; user control of
NFT's interactive messages about job progress; and ways to create and monitor "sessions" of related jobs. For
details, consult the Job Status and Reporting section (keyword: job-status (page 23)).

CLASSES OF SERVICE (STORED COPIES).
See the SETCOS section of the HPSS Manual (URL: https://computing.llnl.gov/LCdocs/hpss/index.jsp?
show=s1.2.1) for a detailed discussion of HPSS "class of service" policy. STATUS (page 83) reports the
current COS requested, and you can report an already stored file's class of service by using the -h suboption
of NFT's DIR command (page 52). NFT handles new and previously stored files differently, however, in
regard to COS values.

ERROR MESSAGES.
Most NFT messages about user errors (as illustrated in the example (page 10) dialog subsection below) are
sequentially numbered along with other NFT responses and begin with the string "error":

 n.0 error explanation

If you transfer many files at once, NFT explicitly distinguishes between "no clobber failures" (overwrites
that you prevented) and other failures when it reports errors. Note that, if HPSS storage is down for planned
maintenance, then attempts to store files using NFT yield a different error message with this special format:

 [SCF|OCF] HPSS Storage is down for maintenance.
 *** Try again later.

Scripts that execute NFT should check for this special "three-star" error message and avoid needlessly
resubmitting NFT jobs (storage requests) once it has been detected.

GRAPHICAL INTERFACE.
If you prefer a graphical interface to (mouse-oriented controller for) NFT, execute HOPPER on any LC
production machine and select NFT from HOPPER's CONNECT menu.

https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s1.2.1

NFT Reference Manual - 10

Basic Examples

This annotated example shows typical file transfers using NFT.

GOAL: To transfer several files among (open) LC machines using NFT without logging on to all of
the machines.

STRATEGY: (1) Start NFT.
(2) For convenience, change the working directory on YANA to /p/lscratchb/jfk (you could
use pathnames later and skip this step).
(3) Transfer (outward copy) local file t1 to /p/lscratchb/jfk/t2 on YANA.
(4) Transfer (inward copy) file /p/lscratchb/jfk/t3 from YANA to local file t4.
(5) Without logging on to either YANA or ATLAS, transfer (copy) /p/lscratchb/jfk/t3 from
YANA to /usr/tmp/t6 on ATLAS.
(6) Use storage-default command PUT to transfer file t1 from the client machine (where NFT
runs) to storage.llnl.gov as file t2. Note that NO hosts are specified in this command because
everything is defaulted.
(7) Try to retrieve file t8 from storage to local file t4 using the storage-default GET command.
Because NFT's default environment is NOCLOBBER, this attempt fails because t4 already
exists as a result of step (4) above. You could use the CLOBBER option next, to allow this
overwrite, or...
(8) Use GET to retrieve t8 from storage with no name change (and hence no overwriting of
t4).

nft ---(1)
nft>cd yana:/p/lscratchb/jfk ---(2)
 remote host yana: wd is /p/lscratchb/jfk
nft>cp :t1 yana:t2 ---(3)
 1.0. 95 bytes received in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/t1 to /p/lscratchb/jfk/t2
 1 entry copied /g/g0/jfk/t1

nft>cp yana:t3 :t4 ---(4)
 2.0. 98 bytes received in 0.1 seconds
 (1.1 Kbytes.s) from /p/lscratchb/jfk/t3 to /g/g0/jfk/t4
 1 entry copied /p/lscratchb/jfk/t3

nft>cp yana:t3 atlas:/usr/tmp/t6 ---(5)
 3.0. 98 bytes received in 0.4 seconds
 (0.2 Kbytes/s) from /p/lscratchb/jfk/t3 to /usr/tmp/t6
 1 entry copied /p/lscratchb/jfk/t3

nft>put t1 t2 ---(6)
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes.s) from /g/g0/jfk/t1 to ~/t2
 1 entry copied /g/g0/jfk/t1

NFT Reference Manual - 11

nft>get t8 t4 ---(7)
 5.0. error. Cannot clobber existing
 sink /g/g0/jfk/t4

nft>get t8 ---(8)
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t8 to /g/g0/jfk/t8
 1 entry copied ~/t8
nft>quit

NFT Reference Manual - 12

NFT Pathname Syntax
Because NFT sessions (unlike FTP sessions) do NOT begin with you logging on to a specific remote host,

you normally use NFT's pathname syntax to indicate each host (donor and receiver) involved in each NFT
command. This section explains that syntax. (NFT does offer an OPEN (page 69) command that somewhat
mimics FTP, but its use is atypical.)

An NFT pathname has three parts (some of which may be empty):

 PARTS: prefix body tail
 EXAMPLE: atlas:~jfk /dir1/dir2/ code3*.c

The latter two parts follow the usual UNIX rules for specifying directories, trees of directories, files, and
sets of files. File-filter wildcards (such as * and ?) and the special dot directories (. and ..) are allowed in the
standard ways.

The first part of the pathname (the prefix) is unique to NFT (though similar to the SCP style). This is where
you indicate the location (host) for the directories and files that you want NFT to transfer. There are 12 possible
alternative locations, generated by a 3-by-4 matrix of prefix choices, as the left side of this chart reveals:

NFT-Specific Syntax | Usual UNIX Syntax
 |
 Prefix | Body Tail
 ------ | ---- ----
Any Any | Zero Zero
One One | or or
of then of | More More
These: These: | Directories Files
 | (. .. ok) or
 | Filters
: / |
host: ~ |
mt ~user |
 mt |
[mt="empty," NO
characters here]

where (1st column)

: (colon) indicates the local host (the machine on which you are running the NFT client). For
example :test3 indicates that file test3 is in the current working directory on the local host.

host: indicates the specific (usually remote) host named. For example, atlas:test3 locates test3
in the current working directory on ATLAS, while yana:/usr/tmp/test3 locates test3 in the
directory /usr/tmp on YANA. Only hosts that have NFT clients themselves are allowed
here.

mt (empty position, no flag) indicates NFT's default host, which is the LC archival storage
system (storage.llnl.gov). WARNING: This is a significant difference from FTP (e.g.,
test3 locates file test3 in the current working directory on STORAGE, not on the local host
where you are running NFT.

NFT Reference Manual - 13

and where (2nd column)

/ (slash) indicates the machine's root directory. For example, :/test3 locates test3 in the root
directory on the local machine (:).

~ (tilde) indicates the user's home directory (must be followed by / unless it is last in the
pathname). For example, :~/test3 locates test3 in the user's home directory on the local
machine (:).

~user indicates the home directory of the person with login name user (must be followed by /
unless it is last in the pathname). For example, :~jfk/test3 locates test3 in the home
directory of user jfk on the local machine (:).

mt (empty position, no flag) indicates the current working directory. For example, test3
locates file test3 in the (default) current working directory on the (default) host
STORAGE.

This comparative example shows the 12 alternative locations for dd/ff that this NFT syntax can specify:

NFT Syntax Location of dd/ff
---------- -----------------
:/dd/ff local host, root
:~/dd/ff user's home
:~kk/dd/ff kk's home
:dd/ff current working dir.
hh:/dd/ff host hh, root
hh:~/dd/ff user's home
hh:~kk/dd/ff kk's home
hh:dd/ff current working dir.
/dd/ff storage, root
~/dd/ff user's home
~kk/dd/ff kk's home
dd/ff current working dir.

Some NFT commands (such as PUT and GET) are dedicated by default to file transfers with STORAGE
(see keyword: storage-defaulted (page 14)). Because of this special role, the storage-defaulted commands
do not require, or even allow, use of the NFT prefix syntax to specify file locations. Storage-defaulted NFT
commands take standard UNIX pathnames as arguments, but the host on which any file resides is specified
solely by the command's definition (usually by the file's position in the argument list), never by using an NFT
locational prefix as shown here.

NFT Reference Manual - 14

NFT Commands Summarized

NFT commands fall into several different, overlapping groups, based on their scope of operation, their file-
transfer roles, and how they are processed during execution.

General and Storage-Defaulted Commands

Most NFT commands are general in scope and apply to any (secure) hosts that NFT serves, including (but
not limited to) STORAGE. DIR (to list files) and CP (to copy or transfer them between machines) are examples
of general NFT commands.

Some NFT commands are dedicated by default, however, to transferring files to or from STORAGE (such
as PUT) or manipulating stored files (such as LN). The storage-defaulted commands exist because STORAGE
is the primary file-transfer target for many NFT users and many NFT executions. These special NFT commands

• do not accept (or need) the NFT prefix syntax to specify the location of files to be processed (locations are
specified by argument position, as with FTP), and

• can only be used for nonSTORAGE file transfers if you precede their use with an OPEN (page 69)
command. NFT's OPEN somewhat mimics FTP's OPEN, but unlike FTP it is not required for most NFT
file-transfer operations (and is never required for storage-only operations). Even when you use OPEN,
some commands are still limited to storage-only use (as the table below shows).

This table lists the NFT commands by their default scope. Each command has a detailed explanation in the
command dictionary later in this manual, keyword: commands (page 33).

General NFT
Commands(*)

Storage-Defaulted
Commands(+)

cp, delete, ren get
dir, ls, pwd put
cd, cdup, lcd ln
mkdir, rmdir chown
abt, rpt, clr
block, group, endgr
open, close
help, quit, source, time
chmod, chgrp
source, time

(*)For additional commands (mostly toggles) that control the NFT file-transfer environment, see the next
section.
(+)Using OPEN (page 69) lets you "generalize" GET and PUT to other remote hosts, but most hosts other
than STORAGE do not allow LN remotely. CHOWN can never be generalized to any host except STORAGE
(even after you use OPEN).

NFT Reference Manual - 15

Environment-Variable Settings

NFT provides several (pairs of) commands that do not directly perform file transfers or directory changes
but rather let you control the file-transfer environment by toggling between alternative states. For each
pair, one environment setting is NFT's default, as indicated in the table below (and the most noteworthy
default, NOCLOBBER, prevents NFT from overwriting any file with a transferred file of the same name).
The STATUS command reports the current settings. Two related environment commands also listed here
support many-way choices (not just two-way toggles) among verbosity levels and NFT session numbers. Each
command has a detailed explanation in the command dictionary later in this manual, keyword: commands (page
33).

NFT Environment Variables Toggle Commands
Specify how multiple commands execute sync (default, serially)

async
Resolve file-name conflicts (overwriting) noclobber (default, no

overwrite)
clobber

Display NFT output messages term (default, show)
noterm

Log all NFT input and output clog (default, no log)
log filename

Use login-node jumbo frames routing (default, routes)
norouting

Store multiples of mission critical files nodualcopy (default)
dualcopy

Specify HPSS class of service setcos nnn
Specify verbosity of output verbose mask
Change NFT session session nn|new
Report current NFT environment status

NFT Reference Manual - 16

Synchronous and Asynchronous Command Modes

The SYNC and ASYNC pair of commands overtly toggles NFT between two modes of executing multiple
requests or "jobs," but other ways to change command-execution modes also exist.

By default, NFT commands (and jobs) execute serially (in SYNC or synchronous mode). While commands
such as DIR and CD generally use so few resources as to execute (almost) at once, actual file transfers (copies
with CP) may be delayed by resource unavailability on the server or client machines. Because it is obviously
desirable to make or change directories before starting file transfers that depend on those moves (for example),
serial (SYNC) execution is generally quite appropriate.

NFT supports three exceptions to or exemptions from SYNC mode, however, in increasing order of scope:

(1) GET/PUT:
When you use the storage-defaulted commands GET and PUT with file filters (* or ?) or with file lists, NFT
always processes the resulting multiple file-transfer requests in parallel (asynchronously), regardless of the
current SYNC/ASYNC mode setting.

(2) GROUP/ENDGR:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel (asynchronously
among themselves) by preceding them with GROUP and following them with ENDGR. To force all subsequent
commands to wait until everything within such a GROUP has excuted, use BLOCK after ENDGR and before
the next command. For example, the following NFT command sequence first creates directory TEST3, then
ASYNCHRONOUSLY copies three files into that directory (since arrival order is often unimportant), then, and
only after all three have arrrived (BLOCK), issues a report (RPT).

 mkdir test3
 cd test3
 group
 cp yana:file1 :file1
 cp atlas:file2 :file2
 cp lucy:file3 :file3
 endgr
 block
 rpt -a

(3) ASYNC:
Note: The ASYNC command should be used with caution. Results may not be as expected. The most
general way to allow parallel NFT jobs is to use the ASYNC command. ASYNC cancels the default SYNC
mode and makes NFT execute ALL subsequent commands in parallel (asynchronously), as soon as resources
for them are available. BLOCK has no effect in ASYNC mode.

When you run NFT asynchronously, jobs are scheduled based on availability of the system resources
needed to perform them. They may not all start or run immediately. The point of this scheduling is to prevent
overloading the NFT server and its network connections.

Most NFT jobs, such as directory listings, directory creation, or reports, require few resources and receive
immediate attention. Load balancing really becomes an issue only when you transfer files between machines.
Here the NFT scheduling algorithm is quite complex, but it is based on these factors:

NFT Reference Manual - 17

• The number of current transfers from the donating host.

• The number of current transfers by the requesting user.

• The size of the file(s) being transferred.

• The supply of resources (e.g., disk space) at the source and sink of each file transfer.

Local, Immediate, and Job Commands
NFT distinguishes between those commands executed locally, by your NFT client, and those executed

remotely, by the NFT server. Furthermore, among the server commands, NFT distinguishes between those
commands executed immediately and those ("job" commands) queued for persistent, numbered, monitored
execution.

Local (Client) Commands

Local (client) commands are those that are executed completely by the NFT client that you run. Because the
client, not the server, executes them, local commands have no NFT job numbers assigned to them. The NFT
local commands are:

async block* clobber clog
close+ dualcopy endgr* group
help log noclobber nodualcopy
norouting noterm open+ pwd
quit routing setcos source
status sync term time

 (*)These commands do require communication with the server and use job numbers, but the numbers are
never seen by the user and no BEGIN, DONE, ERROR, or ACCEPTED messages are returned for them.
(+)The NEXT job (server-executed) command actually and pesistently makes the connection requested by an
OPEN or CLOSE local command that precedes it.

Server Commands

Immediate Commands

NFT immediate commands execute as soon as the NFT server receives them. They are not placed on the
standard job-execution queues as the regular job commands (next section) are. Any job subsequently submitted
to the server is affected by the previous immediate commands, but jobs submitted prior to an immediate
command will never be affected by it. The immediate server commands are:

abt clr rpt
session verbose

Job Commands

NFT job commands are server-executed commands each assigned a unique job number that you may use to
get information about the job or to abort the job later. These commands are automatically retried by the NFT

NFT Reference Manual - 18

server when a temporary failure occurs because of network, host, or communication problems. The NFT job
commands are:

cd cdup cp
chgrp chkrouting chmod
chown delete dir
get lcd ln
ls mkdir put
rename rmdir

NFT Reference Manual - 19

Input and Output Files

NFT Output (Log) Files

Using LOG and CLOG

NFT allows you to begin at any time recording in a log file all your input to and output messages from the
program as it runs. To start a log file, use the NFT command

 log pathname
where pathname is usually just the name of a file (e.g., nftlog) that you want NFT to create in the current
working directory (where NFT was started) on the machine where you are running the NFT client. If you supply
an absolute pathname (such as ~/projects/nftlog or /usr/tmp/testdir5/log5) then NFT creates the log file in the
other directory that you specify.

Logging of all NFT input and output continues until you issue the CLOG (close log) command or until you
QUIT your current NFT session, whichever comes first.

Issuing a second LOG command with a different pathname will: (1) create a second, independent log file,
(2) stop recording messages in the first log file, and (3) start recording (subsequent) messages in the second log
file. Issuing a second LOG command with the same pathname will insert an updated time stamp (comment) in
the open log file and then simply append all new messages to the old ones. If a file named pathname already
exists when you first issue a LOG command, NFT opens it, appends a current time stamp, and places all your
new messages at the end of that file. Thus, you can jump between multiple log files during an NFT session,
channeling messages to one and then another, just by using LOG with each file's name whenever you want to
change files.

NFT Logging Techniques and Examples

NFT does not collect a large buffer of messages before logging them; instead, messages are flushed to the
log file after every carriage return. Logging starts immediately, and the first line recorded in your log file (after
a comment-line date stamp) will be the LOG pathname command that requested the file. CLOG will be the last
line recorded. As long as you do not change the (default) TERM mode setting with a NOTERM command, all
your input and output will continue to display at your terminal while logging occurs.

Every line in an NFT log file is annotated by a prefix that indicates its origin (for easy analysis later). These
log-file prefixes are:

indicates a comment (usually the date-time stamp at the start).

usr) indicates input from you at the terminal, for example,

 usr) get test3

NFT Reference Manual - 20

src) indicates input from a command file that you had NFT process by issuing the SOURCE
command. For example,

 src) get test3

came from a command file, not the keyboard (see below, keyword source-usage (page
21), for details).

) indicates output from NFT, such as a prompt or response to a command. For example,

) 48.0 95 bytes received in 1.8 seconds (0.1 Kbyte/s) test3

would be a typical logged response to the GET command shown above.

A sample of a short but typical NFT log file looks like this:
#

NFT log --- Fri Dec 19 13:42:49 2006
#
usr) log nftlog2
) nft>
usr) cd atlas:/usr/tmp
) remote host atlas: wd is /usr/tmp
) nft>
usr) cp :t1 atlas:t2
) 1.0. 95 bytes received in 0.1 seconds
) (0.7 Kbytes/s) from /g/g0/jfk/t1 to /usr/tmp/t2
) 1 entry copied /g/g0/jfk/t1
) nft>
usr) get t6
) 2.0. 95 bytes received in 1.8 seconds
) (0.1 Kbytes/s) from ~/t6 to /g/g0/jfk/t6
) 1 entry copied from ~/t6
) nft>
usr) clog

NFT Reference Manual - 21

NFT Input Files

File Input by Redirection

NFT accepts input from a command file on its execute line if you use the standard UNIX input redirection
symbol (<), as shown here:

 nft < commandfile
Here commandfile can be a simple name of a file in the current directory (e.g., infile3), a pathname relative to
that directory (such as projects/infile3), or an absolute pathname (e.g., /usr/tmp/projects/infile3).

The command file should contain just the same NFT commands (and arguments) that you might type at
your terminal, one per line. Running NFT with a redirected input file alters its usual interactive behavior.
NFT executes the commands in the file silently, without echoing them. After all commands have started, NFT
automatically ends and you get the usual operating-system prompt. It passes status messages ("remote wd is
xxx") to your terminal at once, but any job-numbered transaction messages (about files sent or received) that
happen to arrive after the NFT client ends are lost (this could be all of them).

Superficially similar to file input by redirection on NFT's execute line is placing a quoted string of
(semicolon-delimited) commands on NFT's execute line, as shown here:

 nft "clobber;time;pwd;put test4"
This actually behaves more like file input using SOURCE (next section); however, the quoted commands are
not echoed, but the normal status and job-numbered transaction messages are echoed, and afterward NFT does
not end but simply prompts for more input (unless the last quoted command is QUIT).

File Input Using SOURCE

NFT also accepts input from a command file during any interactive session if you use the SOURCE
command in response to its nft> prompt:

 source commandfile
With SOURCE, as with file redirection, commandfile can be an absolute pathname such as /usr/tmp/projects/
infile3, as well as a relative pathname or a local file's name. And again (as with file redirection) with SOURCE,
status messages continue to appear at your terminal while the commands in the file execute, but you will see no
command echoes and only those job-numbered transaction reports (about files sent or received) that happen to
arrive before your NFT client ends (and it could end quickly if the last command in your file is QUIT).

Usually the commands in a SOURCE command file are just what you might type at your terminal, one
per line. But you can construct condensed and annotated command files by using # as a comment sentinel,
semicolon as a command separator, and backslash (\) as a line-continuation flag. Thus, the following two
examples are equivalent command files for use with SOURCE.

 clobber
 put test4
 get test6

 #shows special characters
 clobber;put test4;get tes\
 t6

NFT Reference Manual - 22

Logging Jointly with Input Files

You can log NFT output with the LOG and CLOG commands (keyword: log-files (page 19)) while also
providing input from a command file, but the captured results will be different than if you log a normal terminal
session.

If, while logging NFT output, you use SOURCE to issue commands from a file, both the SOURCEd
commands and the system's status messages will be included in the log file, even though the commands would
never appear at your terminal. Each is prefixed by src) in the log, but job-numbered transaction reports will only
appear in the log file if they would have arrived at the terminal while your NFT client was still running (so often
they are missing).

If you use input redirection on the NFT execute line, you can include LOG and CLOG among the
commands in the input file to record what happens. However, while your input commands (e.g., PUT test3)
and status messages will appear in the log file, only those job-numbered transaction reports that happen to
arrive before your client ends are captured in the log. If the redirected command file also contains a SOURCE
command within it (to include yet another command file), then each SOURCEd input line will appear prefixed
by src) in the log file.

NFT Reference Manual - 23

Job Status and Reporting

NFT Job Numbers and Classes

Using Job Numbers

Executing NFT begins a session (namely, session 0), and every NFT request (or job) in that session has a
unique integer job number, starting with 1 and increasing sequentially. The NFT server remembers your past
jobs for up to 4 days depending on NFT traffic (unless you flush their records with CLR or a session has more
than 499 job statuses), and during this interval it will not reuse the numbers of remembered jobs. So frequent
NFT users may find job numbers incremented by 1 from their most recent job rather than starting at 1.

You can use each job's unique number to get information on its status in case it does not compelete
immediately (or at all). For example, to request the status of the job numbered 13, use NFT's RPT option:

 User: rpt 13
 Rtne: 13.0 error. Cannot clobber existing sink
 /g/g0/abc/test4

See the RPT section (keyword: job-reporting (page 25)) for details on other ways to request status
reports.

For the special situation where you have jobs in multiple NFT sessions, with multiple job-numbering
sequences, see the Sessions section below (keyword: sessions (page 29)).

NFT Reference Manual - 24

Job Class Hierarchy

NFT classifies all jobs into 8 states (or job classes), shown here in their nested hierarchy:

 Class Member Jobs
 ----- -----------
 all all jobs that NFT remembers,
 regardless of state(*)

 incomplete jobs waiting to run or not
 finished running
 held jobs in the scheduling queue
 active jobs currently running

 complete successfully or unsuccessfully
 completed jobs

 okay successfully completed jobs
 error unsuccessfully completed jobs
 aborted jobs terminated by the user

(*)If you use multiple NFT "sessions," a special practice described in the Sessions section below (keyword:
sessions (page 29)), then ALL includes only jobs in the currently selected session, NOT in all the sessions
that you have created.

You can use NFT's RPT option to request status information for a whole class of jobs as well as for a
specific job number (see the next section, keyword: job-reporting (page 25)). The NFT server remembers
which class your jobs are in for about 4 days, but if you submit many jobs and want to monitor only the newest
and most interesting ones, you can flush or "clear" NFT job-status records (by job number or for a whole class
of jobs) using the CLR option.

NFT Reference Manual - 25

Job Reporting with RPT

You can at any time review the status of your NFT requests or jobs by using the RPT (report) option. Two
related options let you clear NFT status records no longer of interest (CLR) or abort jobs found to be still
incomplete (ABT). The NFT STATUS option reports on your environment-variable settings, not on your file-
transfer jobs.

Scope

RPT by default reports the status of your most recent job (in the currently selected NFT session). But you
can specify as RPT's argument a specific job number (n) or a range of numbers (n-m, using a hyphen, not a
comma, as separator) to get reports on just the jobs that you select. The Using Job Numbers section above gives
an example (keyword: job-numbers (page 23)).

In addition, RPT (with CLR and ABT) understands the 8 classes of NFT jobs described above (keyword:
job-classes (page 24)). Using a one-letter code for each job class, you can request status information on all your
jobs that belong to the class you select:

Job Class RPT ABT CLR
all -a
incomplete -i -i
held -h -h
active -x -x
complete -c -c
okay -o -o
error -e -e
aborted -k -k

 Note that while you can report (RPT) on any class of job, you can only abort (ABT) incomplete jobs (held or
active) and you can only clear (CLR) the status records of completed jobs (okay, error, or aborted). See the next
section for a sample report (keyword: rpt-examples (page 26)).

Besides the job number(s) or job class(es) you select, three other factors are relevant to the scope of RPT
status reports:

(1) RECORD PERSISTENCE.
The NFT server remembers your jobs, their numbers, and their status for up to 4 days before purging its records.
So frequent NFT users will get reports on all members of a job class throughout this time range, not just on the
jobs started with their currently running NFT client. If this is a problem, use CLR to overtly delete the old(er)
records that are no longer of interest.

(2) SESSIONS.
Most NFT uses have only one NFT session, and RPT reports on the jobs (job class members) in that session.
If you start multiple sessions, RPT reports only on the jobs in your currently selected sesion, ignoring all your
jobs in other sessions. This can give you more control of your status reports or lead to confusion, depending on
your awareness of the sessions you have started. For details on the effect of multiple sessions, see the Sessions
section below (keyword: sessions (page 29)).

NFT Reference Manual - 26

(3) VERBOSITY.
The NFT VERBOSE option (keyword: verbose-levels (page 27)) lets you specify which state changes NFT
reports interactively as it runs (e.g., when jobs begin as well as when they end). VERBOSE does not, however,
affect which jobs (or job class members) NFT includes in RPT status reports, nor the amount of detail provided
on each job's status line. Thus, VERBOSE does not change RPT's scope at all, although it does change general
NFT dialog.

Format and Examples

Most RPT status reports consist of one line per job reported, with the format
 jnumFrnum. status info

 Example:
 12.0. done. ~/nfttest/test4

where

jnum is the unique integer number NFT assigned to this job.

F is a flag that indicates either a primary job (.) or a secondary job (/). A primary, user-
submitted job such as GET * may generate many secondary jobs, one for each file
retrieved.

rnum is NFT's retry count, which always starts at 0.

status is a standard status-reporting term (begin, done, error, start, accept).

info characterizes your specific job, for example, by giving the pathname of the file retrieved or
of the directory listed.

To illustrate a typical RPT job-status report on a class of jobs, assume that you have started an NFT client
and issued these commands:

 cd nfttest
 dir
 get test4
 clobber
 get test4

Then, if you request a status report on all of these jobs by using
 rpt -a

NFT's response might look like this:

 11.0. done. ~/nfttest
 12.0. done. ~/nfttest
 13.0. error. Cannot clobber existing sink
 /g/g0/abc/test4
 14.0. done. /g/g0/abc/test4

Note that your CLOBBER command, which does not involve any information transfer between machines, is
not treated as a numbered job by NFT and so is omitted from RPT's status report. Invoking RPT's -v ("verbose")
option inserts on each reported line the command (action) used as well as the usual status information. For
example:

 14.0. done. get /g/g0/abc/test4

NFT Reference Manual - 27

Diagnostic Verbosity

NFT jobs pass through several states from submittal to completion, and you can control how finely
NFT reports on these changes of state by using its VERBOSE option. By default, NFT passes along transfer
statistics from the FTP daemon that actually moves files at NFT's request, as well as sending error and abort
diagnostic messages if a job completes unsuccessfully. But there are other state changes, too, and you can
request messages about any or all of them by using the appropriate argument for VERBOSE. (VERBOSE does
not change the scope of jobs covered in status reports from RPT (page 78), which has its own verbose -v
option, nor the environment-variable setting reports from STATUS.)

Each possible state change for an NFT job corresponds to one bit in a (32-bit) mask that VERBOSE sets.
You request diagnostic messages about a state change by setting its bit in the mask, and you set each bit by
using the decimal value shown in the table below. To request a combination of reports, ADD the corresponding
decimal values and use the sum as the argument for VERBOSE (for example, the default combination of
diagnostic messages corresponds to the sum 4+8+64=76).

State
Change

Decimal
Value

Diagnostic
Meaning

Begin 1 Client has submitted job
Done 2 Job has completed successfully
Error(*) 4 Job has failed (unsuccessfully completed)
Abort(*) 8 Job was killed by user
Accepted 16 Job was received by server
Reserved -- --
Transfer
stats(*)

64 FTP transfer amount and rate

Start 128 Server has started job execution
Progress
errors

256 Immediately reports in-progress errors in
secondary jobs

Reserved -- --
 (*)Default verbosity (combination 76)

To see how changing the VERBOSE value changes the grain size of state-change reports during NFT
dialogs, compare this default-value exchange (VERBOSE 76)

 User: get test4
 Rtne: 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 nft>

with this maximum-value exchange for the same job (VERBOSE 479):

 User: get test4
 Rtne: 14.0. accept.
 14.0. begin ~/test4
 14.0. start ~/test4
 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4

NFT Reference Manual - 28

 14.0. 1 entry copied ~/test4
 14.0. done. /tmp/jfk/test4
 nft>

NFT Reference Manual - 29

NFT Sessions

Grouping Jobs by Session

Whenever you start an NFT client you start some NFT "session," with a unique (integer) session identifier.
(This is true even when you use quoted execute-line commands or input from a file, although the absence of a
prompt or echo can hide NFT's use of a session here.) By default your session is 0. The NFT server associates
the current session identifier with every job you submit during that session as part of its persistent job tracking
and execution. As a result, sessions provide another dimension along which you can group jobs, independent
of their job class (keyword: job-classes (page 24)), for monitoring and analyzing their status. An NFT session
is a logical set of jobs sharing the same session number. It is not the same as an NFT client (one client can use
several sessions), nor a sequence of jobs (some session jobs may be asynchronous and mixed with other-session
jobs), nor a time block (two sessions may overlap in time).

This diagram shows the relationship between NFT job classes (used by the RPT job-status report option)
and job sessions:

 RPT
 ______________all___________
 incomplete complete
 held active ok error abort

 SESSION |
 session 0|
 jobs|
 | jobs
 session 1|
 jobs|
 |
 ... |

The diagram also suggests the prime reasons for invoking multiple sessions:

• To subdivide the jobs in a class (all complete jobs, all error jobs, etc.) between sessions for separate status
monitoring where you need such detail or extra control.

• To allow separate RPT reports, not intermixed, on two (or more) sets of secondary jobs. Thus running a
large GET * request in one session and a large PUT * request in another session would let you generate
separate RPT reports on the many subordinate file transfers of each without interference with the other.

• To let you recover and inspect the RPT status reports on all the jobs in each session (perhaps including
jobs from several classes) independently of one another, even after your NFT client ends.

One Client, Multiple Sessions

TECHNIQUES.
You can start a new session at any time while running NFT by typing

 session n
where n is an integer from 1 to 99 inclusive. This command closes your former NFT session (session 0 is the
default) and opens a new one, in which the new session number n is associated with all your subsequent NFT

NFT Reference Manual - 30

commands. NFT numbers the jobs in each session with an increasing sequence of integers that ignores all other
sessions (so, e.g., each session may have an unrelated job numbered 13).

You can reopen a former session by using its session number in this same command (e.g., SESSION 0
reopens that session and closes session 1 if issued while you are in session 1). Reopening a session lets you
check on its jobs with RPT or start more jobs associated with it.

NFT gives no overt confirmation when you close one session and open another (just the usual prompt for
input). And RPT status reports do not reveal which session they cover. So to discover which session is now
open (or to confirm a requested change of session) use NFT's STATUS command, which reports the current
session number along with other NFT environment settings.

Because NFT remembers your session numbers for up to 4 days and because picking a session number
already in use reopens that session rather than creates a new one, you may sometimes want NFT to open a new
session by automatically picking a number for it that is guaranteed to be unused. To guarantee a fresh session
number, use

 session new
to which NFT responds with the message

 New Session: n
where n is the next unused (by you) session number available. As before, your previous session is now closed
and the nth session is now open.

EFFECTS.
NFT sessions group together jobs, not log messages or environment variable settings.

RPT scope RPT reports on the status of only those NFT jobs associated with the session open when
you issue the RPT command. To report on jobs in other sessions, you must first reopen the
session of interest, then type RPT. RPT does not accept session-number arguments and its
reports do not state which session number they cover (use STATUS). Remember also that
you may have several jobs with the same job number, one in each of several independent
sessions.

LOG scope If you start recording your NFT interactions with LOG logfile, then logfile will continue
to collect messages in an unbroken sequence even if you open new sessions or reopen old
ones. You can change log files if you wish (keyword: log-files (page 19)), but changing
sessions does NOT automatically change or close log files, and you cannot permanently
assign separate log files to separate sessions. Sessions divide NFT jobs while log files
divide NFT messages.

environment-variable scope

Environment-variable settings (e.g., SYNC/ASYNC or NOCLOBBER/CLOBBER) persist
independently of NFT session changes. You cannot permanently assign some settings
to one session and different settings to another. Thus you cannot simply declare one
NOCLOBBER GET session and another CLOBBER PUT session, for example, because
each time you set that variable all (incomplete) jobs in all sessions will be affected. Only
by using separate NFT clients (not multiple sessions with one client) can you have two
sets of environment-variable settings for two sets of jobs at once. See the next section for
details.

NFT Reference Manual - 31

Multiple Clients, Multiple Sessions

You can run several NFT clients at once (each in its own window, for example), but to do so you must
compensate for the way NFT manages sessions when the same user runs more than one client.

 Client 0 Client 1
 -------- --------
 Default: session 0 "steals"
 session 0
 To regain,
 you type: session 0 session 1

By default, your first NFT client (e.g., client 0) opens session 0. Executing a second NFT client (e.g., client
1) automatically transfers that open session to the second client. One result of this "session theft" affects output
messages, all of which are diverted from the first to the second NFT client. Another result affects subsequent
input (commands) to the first client. Attempts to execute more commands (other than SESSION) yield a fatal
error, terminating the NFT client:

 ***Panic. Another application instance
 has opened this session.

You can overcome this session theft and use both NFT clients with the help of NFT's SESSION command,
used either interactively or in batch runs:

INTERACTIVELY.
Issue SESSION 1 to the second client (client 1) to open a new, independent session for it. Then issue
SESSION 0 to the first client (client 0) to reopen or recover the lost session. Now both NFT clients will
separately accept and process input, keep logs, and report job status with RPT. They will also maintain different
NFT environment variable settings (e.g., NOCLOBBER for one, CLOBBER for the other) if you wish. In fact,
only by using such separate NFT clients, each associated with a different NFT session, can you have two sets of
environment-variable settings for two sets of NFT jobs at once.

BATCH RUNS.
The above technique is not very practical if you want to execute several batch scripts at the same time, each
involving NFT, yet keep their NFT transactions separately recorded. Instead, invoke SESSION NEW when you
first run NFT in each script, for example,

nft "session new;log nftlog;status;clobber;put abc;quit"
This requests (and reports to your log file) a previously unused session number, so that your file-transfer
records end up segregated in that uniquely identified session. You can then reopen that same session (with
the SESSION n command) to accumulate records for every subsequent NFT execution in the same script, or
repeatedly use SESSION NEW for each NFT run.

Multiple clients, each with their own session, are usually used to divide NFT job streams so they can
be processed or recorded differently. But, if this is not your goal, you can pass NFT sessions back and forth
repeatedly between clients at any time simply by typing SESSION n to cause the current client to open and feed
its jobs into the nth session. NFT numbers jobs sequentially by session, NOT by client, so exchanging sessions
between clients in this way will allow both clients to contribute jobs, with one sequence of job numbers, to
one accumulating status record (per session) that RPT will report. See the Grouping Jobs by Session section
(keyword: session-scope (page 29)) for more details on how NFT sessions and job-status reports interact.

NFT Reference Manual - 32

Using NFT in Scripts
Certain techniques and features scattered among various places in this manual are especially helpful if

you want to execute NFT within a script (for use as a batch job, for example) and then feed NFT a series of
(normally interactive) commands. This section summarizes these techniques for easy comparison, roughly in
order of increasing complexity, and offers cross reference links when details are available elsewhere.

QUOTED COMMANDS.
Perhaps the easiest way to pass a series of commands to NFT noninteractively within a script is to (1) separate
the commands with semincolons and (2) quote the entire command sequence on NFT's execute line. For
example,

 nft "clobber;cd dir3;put test3;quit"
enables overwriting, changes storage directories to DIR3, saves file TEST3, and terminates NFT. You must
include QUIT at the end of such quoted command sequences to prevent NFT from prompting interactively after
it executes the other commands. For technical details, see the NFT Features (page 7) and NFT Input Files (page
21) sections.

HERE FILE.
Very like the foregoing technique is the use of a UNIX "here file" of command lines imbedded within your
larger shell script, initiated by << and delimited by a string of your choice (such as EOF). This example "here
file" duplicates the behavior of the quoted NFT commands in the previous paragraph:

 nft <<EOF
 clobber
 cd dir3
 put test3
 quit
 EOF

VARIABLE EVALUATION.
For more elaborate situations you may prefer to assign NFT command sequences to a script variable and then
evaluate that variable on the NFT execute line. For example, a PERL script might contain this fragment (using
the same NFT commands as before):

 $inn = "clobber;cd dir3; " .
 "put test3;quit";
 @out = 'nft "$inn"';

FILE REDIRECTION.
NFT provides two ways to execute already existing separate command files:
(1) the usual UNIX redirection of input, and
(2) NFT's own SOURCE (read an input file) command. This approach allows you to reuse elaborate, comment-
annotated NFT command files, but those files are not part of the invoking script itself, posing a possible file-
management problem. For a comparison of the implementation details of these two external-file approaches, see
the NFT Input Files (page 21) section.

If actually completing (not just launching) all your NFT commands before starting your script's next step
is important to you, consider using NFT's BLOCK (page 36) command before you QUIT. And if running
several scripts with NFT commands at the same time is likely, or if you typically rerun a script many times
close together, then consider using NFT's SESSION NEW feature to help manage your NFT record keeping.
Review the NFT Sessions (page 29) section for a discussion of the relevant problems and possible solutions.

NFT Reference Manual - 33

NFT Command Dictionary

Command Syntax Advice

The other subsections of this command dictionary explain each of NFT's (over 40) interactive commands in
alphabetical order. Comparisons and cross references indicate when several alphabetically scattered commands
are closely related to each other in function.

• See the much shorter Command Summary (page 14) for a concise overview of NFT commands grouped
by function instead of by name.

• See the How To Run NFT (page 6) section for instructions on how to start and operate the program.

• See the Basic NFT Features (page 7) section for length limits and special-character rules that apply within
the NFT commands you use.

NFT has several special syntactical features that affect how you can use its interactive commands:

CASE.
You can type all NFT commands in either lowercase or uppercase (e.g., status or STATUS). Of course,
command suboptions (such as -R) remain case sensitive as is typical of UNIX software.

CONCATENATION.
When NFT's interactive commands have multiple, nonexclusive suboptions, you MUST concatenate all your
chosen suboptions with a single hypen (-) sentinel, not flag each with its own sentinel as UNIX usually allows.
Thus, for example, the correct form is

dir -FPt

ESCAPE.
While running NFT, you can use the exclamation mark (!) as an escape character (prefix) to execute any
ordinary UNIX shell command. Thus typing LN executes NFT's own LN command (on the STORAGE system)
but typing !LN executes the regular LN utility on the local (client) machine instead. Naturally, these !-escaped
commands get no NFT job numbers and are not persistently executed by the NFT server.

NFT Reference Manual - 34

ABT (Abort Incomplete Jobs)

SYNTAX:

abt [[n[-m]] | [-opt]]

ROLE:
Aborts (immediately ends) your most recent NFT request ("job") by default, or aborts your specific job with
unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using a hyphen, not a
comma, as separator), or all members of the job class specified by any one job-class option opt listed below.
You can only abort incomplete jobs (those either still held for scheduling or actively running). Attempting to
abort completed jobs has no effect, but will return the warning that "completed jobs were ignored."

You can use NFT's RPT (report) option to discover the job numbers of still-incomplete jobs that you might
want to abort. On the other hand, you need not wait for an RPT report, or even for the nft> input prompt,
to use ABT to prevent a just-issued erroneous command from completing. You can type ABT immediately
after starting some undesired NFT job, even before getting an input prompt, and (often) abort that current job
quickly.

ABT does not stop your current NFT client from running, just as QUITing or killing the client does not stop
the NFT server from completing any of your already submitted jobs.

RPT (page 78) (report) and CLR (page 46) (clear) are NFT commands closely related to ABT. The
NFT STATUS (page 83) command reports on your environment-variable settings, not on your file-transfer
jobs.

OPTIONS:
ABT accepts several job-class options opt to specify which set of your NFT jobs you want aborted. But ABT
expects you to use these options ONE at a time: combined options do not yield combined job classes to be
terminated. Possible stand-alone job-classes on which you can apply ABT include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions (page
29), a rare practice, then -a selects only jobs in the current session, NOT in all the sessions
that you have created, and the other job-class options behave likewise.]

-i incomplete jobs, waiting to run or not finished running.

-h held jobs, incomplete jobs in the scheduling queue.

-x active jobs, incomplete jobs currently running.

EXAMPLE:
A typical use of ABT to stop an inadvertantly started file transfer (in this case, immediately after it was started,
even before NFT returns another input prompt) is:

 User: get test4
 abt
 Rtne: 5.0 aborted /g/g0/jfk/test4

NFT Reference Manual - 35

ASYNC (Run Jobs in Parallel)

SYNTAX:

async

ROLE:
Begins asynchronous mode. Because SYNC is the default setting whenever you run NFT, the ASYNC
command serves to cancel this default or any previous SYNC (page 84) command. In ASYNC mode,
NFT executes all your subsequent commands (jobs) in parallel, allowing any job to run in any order as soon as
resources are available. Note: The ASYNC command should be used with caution. Results may not be as
expected. ASYNC should not be used with the belief that file transfers will occur more quickly, nor should it
be used with multiple recursive PUTs.

Asynchronous execution on a limited scale also occurs for multi-file transfers using GET, PUT, or CP, and
for command sets flanked by GROUP (page 58) and ENDGR. The BLOCK (page 36) command has no
effect in ASYNC mode. See the command-sequencing (page 16) section above for a comparative analysis of the
three cases where NFT allows asynchronous command execution.

The SYNC (page 84) command cancels ASYNC mode. ASYNC has no options and returns no mode
confirmation, but you can use NFT's STATUS (page 83) command at any time to discover your current
SYNC/ASYNC setting, which persists even across logical NFT "sessions (page 29)."

NFT Reference Manual - 36

BLOCK (Block or Delay Next Command)

SYNTAX:

block

ROLE:
Prevents NFT from executing any more commands until all previously entered synchronous jobs have
completed. Thus BLOCK;QUIT will end NFT only after all pending jobs are done rather than QUITing
immediately (the default).

Synchronous (SYNC (page 84), sequential) command execution is the default whenever you run NFT,
but NFT does support these three exceptions to or exemptions from SYNC mode:

• multiple-file transfers using GET, PUT, or CP,

• command sets flanked by GROUP and ENDGR, and

• commands following ASYNC.

BLOCK has no effect in ASYNC mode, but using BLOCK immediately after any of these asynchronous
episodes ends will prevent the next command (which may depend on previous job completions for success)
from executing prematurely, as the example below shows. Also, if you start a new NFT session (page 29),
BLOCK is an easy, harmless way to confirm that the new job-sequence numbering has started.

BLOCK has no options and returns no confirmation.

EXAMPLE:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel (asynchronously
among themselves) by preceding them with GROUP and following them with ENDGR. To force all subsequent
commands to wait until everything within such a GROUP has excuted, use BLOCK after ENDGR and before
the next command. For example, the following NFT command sequence first creates directory TEST3, then
ASYNCHRONOUSLY copies three files into that directory (since arrival order is often unimportant), then, and
only after all three have arrrived (BLOCK), issues a report (RPT).

 mkdir test3
 cd test3
 group
 cp yana:file1 :file1
 cp atlas:file2 :file2
 cp lucy:file3 :file3
 endgr
 block
 rpt -a

NFT Reference Manual - 37

CD (Change Working Directory)

SYNTAX:

cd [host][pathname]

ROLE:
Changes the current working directory on the specified host to the specified pathname. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede CD with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to your home directory.

So CD used with no arguments (and no OPEN) changes your current STORAGE directory to your home
directory. Use PWD (page 73) to discover the name of your current working directory, CDUP (page 38)
to move up one directory level, and LCD (page 60) to change local (client-machine) directories. These
commands are somewhat redundant, so that the following are exactly equivalent, and all require using NFT's
own prefix syntax for hosts.

 CD :..
 CDUP :
 LCD ..

CD takes no options, and it confirms each requested directory change.

WARNING:
If you specify a nonexistent pathname for the UNIX CD command, you get an immediate error message and
no directory change. If you specify a nonexistent pathname for NFT's CD command, however, you get the
usual confirmation message before receiving the string "no such file or directory." And subsequent use of PWD
will also report the nonexistent directory, without complaint. Of course attempts to then use DIR or actual file-
transfer commands will fail. You must overtly reset the working directory with another use of CD to a real
location to overcome this error and continue transferring files.

EXAMPLE:
In response to each CD command, NFT reports both the machine involved and the new working directory (wd),
where the default remote machine is always STORAGE.

R/Us: nft> cd nfttest
Rtne: remote wd is ~/nfttest [on STORAGE]
R/Us: nft> cd :~
Rtne: local wd is /g/g0/jfk [on client machine]

NFT Reference Manual - 38

CDUP (Change Working Directory Up)

SYNTAX:

cdup [host]

ROLE:
Changes the current working directory on the specified host to the parent directory (one level up), where host is
the NFT host-specifying prefix that defaults to the STORAGE (not current client) machine, as explained above
(keyword: prefix (page 12)). If you precede CDUP with an OPEN (page 69) command, then host defaults to
the machine that OPEN specified.

So CDUP used with no arguments (and no OPEN) moves your current STORAGE directory one level
up. Use PWD (page 73) to discover the name of your current working directory, CD (page 37) to change
directories generally, and LCD (page 60) to change local (client-machine) directories. These commands are
somewhat redundant, so that the following are exactly equivalent, and all require using NFT's own prefix syntax
for hosts.

 CD :..
 CDUP :
 LCD ..

CDUP takes no options, and it confirms each requested directory change.

EXAMPLE:
In response to each CDUP command, NFT reports both the machine involved and the new working directory
(wd), where the default remote machine is always STORAGE.

R/Us: nft> cdup
Rtne: remote wd is ~ [on STORAGE]
R/Us: nft> cdup :
Rtne: local wd is /g/g0/jfk [on client machine]

NFT Reference Manual - 39

CHGRP (Change Groups)

SYNTAX:

chgrp [-R] group [host]filelist

ROLE:
changes to group the group membership of the files or directories specified by filelist, a standard UNIX
pathname or file filter, on the specified host (an NFT host-specifying prefix (page 12) that defaults to the
STORAGE (not current client) machine.

CHGRP can change the group for link targets, but not for the link itself. If you change the group for a
directory, however, CHGRP does not recursively change groups for all the contained files (although you can
change them all at once from within the directory by using the * filter if you wish or by invoking the -R option).

DEFAULTS:
When you store a file with NFT, its default group is the same as that of the storage directory that receives it (not
necessarily the group it belonged to on the donor machine). So changing a storage directory's group will change
the default group of all files subsequently stored within it (but already stored files will retain their original
group, even if they are overwritten later). If you try to assign a file to a nonexistent group or one to which you
do not belong, NFT returns an error message (exact text varies depending on your target machine). You can
discover the groups you belong to on the local (client) machine by taking advantage of NFT's ! escape syntax
and typing

!groups youruserid
but you may not belong to the same groups on the STORAGE machine, and NFT does not support any
equivalent to GROUPS for use on STORAGE. See the "Sharing Stored Files" section of the EZSTORAGE
(URL: https://computing.llnl.gov/LCdocs/ezstorage) guide for how to use LDAPSEARCH to discover your
storage groups. Contact the LC user hotline (at lc-hotline@llnl.gov or lc-hotline@pop.llnl.gov) to obtain the
forms needed to create new groups on STORAGE.

CHMOD (page 42) is a similar NFT command that changes file permissions. You can use DIR (page
52) to reveal the current group to which each stored file or directory belongs.

CHGRP confirms changes made with a summary message that gives the count of files or directories whose
group it has changed.

OPTIONS:
CHGRP takes a single option:

-R recursively changes the group membership of every child of the directory that you specify.
NFT ignores soft links to subdirectories.

EXAMPLE:
If group BIG exists on the STORAGE machine and if you belong to it, you can assign stored file TEST2 to it
with the line below; if these conditions are not met (e.g., group XXX) you get the error message shown (you get
a "group name invalid" message on machines other than STORAGE).

R/Us: nft>chgrp big test2
Rtne: 1.0 1 entry changed ~/nfttest/test2
R/Us: nft>chgrp xxx test2

https://computing.llnl.gov/LCdocs/ezstorage

NFT Reference Manual - 40

Rtne: 2.0 error. storage.llnl.gov: 451 could not
 get user id from registry. ~/nfttest/test2

(You can also change storage groups, even recursively, by using a dedicated tool called CHGRPSTG, which
is explained and illustrated in EZSTORAGE (URL: https://computing.llnl.gov/LCdocs/ezstorage).)

https://computing.llnl.gov/LCdocs/ezstorage

NFT Reference Manual - 41

CHKROUTING (Report Routing Availability)

SYNTAX:

chkrouting [[host]:]pathname

ROLE:
Reveals whether or not job routing is currently available for PUTs from or GETs to the specified pathname.
Since routing occurs between pathname and storage (see the ROUTING (page 77) section for a
full explanation), it is never useful to insert a storage directory or a stored file name as the argument of
CHKROUTING. Instead, use NFT's standard colon-based syntax (page 12) to specify a pathname on the client
host (:) or on another nonstorage machine (host:).

When routing is available, NFT performs it automatically, so most users should never need
CHKROUTING. The commands ROUTING (page 77) and NOROUTING (page 67) respectively
enable and disable routing if necessary. Reasons why CHKROUTING might report "no job routing" include:
(a) Routing is not supported for pathname's underlying file system (ordinary NFS-mounted file systems, such as
those for the common home directories, have no routing).
(b) Routing has been disabled by a previous NOROUTING command during this NFT session.
(c) The specified pathname contains at least one link as one of its directories or as its terminal file (NFT does
not both follow links and perform routing).

CHKROUTING often seems to be an immediate (page 17) NFT command. But it must perform FTP I/O to
parse pathname and to check symbolic links, so it is really a job command (and, as the example below shows,
VERBOSE 78 (page 86) will reveal its sequential job numbers).

EXAMPLE:
This dialog shows both local (:) and remote (up:) reporting cases, as well as CHKROUTING's latent job
numbers.

R/Us: nft> chkrouting :/usr/tmp
Rtne: no job routing
R/Us: nft> chkrouting :/p/lscratchb
Rtne: job routing
R/Us: nft> chkrouting up:/p/gscratcha
Rtne: no job routing
R/Us: nft> verbose 78
R/Us: nft> chkrouting :/p/lscratchb
Rtne: job routing
 21.0. done /p/lscratchb

NFT Reference Manual - 42

CHMOD (Change Permissions)

SYNTAX:

chmod [-R] rights [host]filelist

ROLE:
changes to rights the access rights or "mode" of the files or directories specified by filelist, a standard UNIX
pathname or file filter, on the specified host (an NFT host-specifying prefix (page 12) that defaults to the
STORAGE (not current client) machine.

DEFAULTS:
When you transfer a file with NFT, its default rights (mode) on the sink machine seldom agree with its original
rights on the source machine. For example, NFT changes rights for files going to STORAGE using umask
(octal subtraction) 027 on OCF but 077 on SCF. Hence, you usually need to invoke CHMOD to explicitly
restore the original permissions after transfer if you want them to persist.

WARNING:
While the UNIX CHMOD utility lets you specify rights both symbolically (with a syntax such as g+w)
and octally (by ORing, or adding, the octal numbers of the rights to assign), the NFT CHMOD command
accepts the octal format only. Attempts to assign rights sybolically yield an error message. Consult EZFILES
(URL: https://computing.llnl.gov/LCdocs/ezfiles) for a summary of the octal numbers associated with each
combination of access rights that CHMOD accepts.

CHGRP (page 39) is a similar NFT command that changes file groups. You can use DIR (page 52) to
reveal the current rights that each stored file or directory has.

CHMOD confirms changes made with a summary message that gives the count of files or directories whose
rights have changed.

OPTIONS:
CHMOD takes a single option:

-R recursively changes the rights (mode) of every child of the directory that you specify. NFT
ignores soft links to subdirectories.

EXAMPLE:
You can use octal mode 765 to assign a chosen set of rights to stored file TEST2, then confirm the assignment
by using DIR.

R/Us: nft>chmod 765 test2
Rtne: 1.0 1 entry changed ~/nfttest/test2
R/Us: nft>dir test2
Rtne: -rwxrw-r-x 1 jfk jfk 6229 Aug16 14:23 test2

(You can also change storage rights, even recursively and symbolically, by using a dedicated tool called
CHMODSTG, which is explained and illustrated in EZSTORAGE (URL: https://computing.llnl.gov/LCdocs/
ezstorage).)

https://computing.llnl.gov/LCdocs/ezfiles
https://computing.llnl.gov/LCdocs/ezstorage

NFT Reference Manual - 43

CHOWN (Change Owners)

SYNTAX:

chown [-R] owner [host]filelist

ROLE:
(Storage only) changes to owner the official owner of the files or directories specified by filelist, a standard
UNIX pathname or file filter. NFT reports "command not available on specified host" if you try to use CHOWN
on files located anywhere except STORAGE. You need to use the host specifier storage: if and only if your
current remote host is not STORAGE.

DEFAULTS:
When you store a file with NFT, its default owner is the same as that of the storage directory that receives it
(not necessarily the owner it had on the donor machine). So changing a storage directory's owner will change
the default owner of all files subsequently stored within it (but already stored files will retain their original
owner, even if they are overwritten later). And storing a file owned by another user into your storage directory
will change its ownership to you.

CHMOD (page 42) is a similar NFT command that changes file permissions, while CHGRP (page 39)
changes file groups. You can use DIR (page 52) to reveal the current owner for each stored file or directory.

CHOWN confirms changes made with a summary message that gives the count of files or directories whose
group it has changed.

OPTIONS:
CHOWN takes a single option:

-R recursively changes the owner of every child of the directory that you specify. NFT ignores
soft links to subdirectories.

EXAMPLE:
Currently only privileged users (system administrators) can change the ownership of stored files with CHOWN.

NFT Reference Manual - 44

CLOBBER (Enable File Overwriting)

SYNTAX:

clobber

ROLE:
Causes NFT to handle file-name conflicts by allowing an incoming file to overwrite any file of the same name
in the receiving (usually the current working) directory on the target host. By default, NFT prevents such file
overwriting and instead returns a warning when file-name conflicts occur (NOCLOBBER). So CLOBBER
overrides NFT's default NOCLOBBER behavior.

CLOBBER and NOCLOBBER are mutually exclusive alternative settings for an NFT environment variable
that preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by using
separate NFT clients (not multiple sessions with one client) can you have two sets of environment variable
settings for two sets of NFT jobs at once. See the "sessions (page 29)" section for details.

STATUS (page 83) reports your current choice of CLOBBER or NOCLOBBER settings. CLOBBER
takes no options and returns no confirmation message.

EXAMPLE:
Trying to store (an updated version of) an already stored file with NFT is a typical situation where the default
NOCLOBBER behavior needs to be changed with CLOBBER to allow the desired overwriting to occur, as
shown here:

R/Us: nft> put test2
Rtne: 12.0. error. cannot clobber existing sink ~/nfttest/test2
R/Us: nft> clobber
R/Us: nft> put test2
Rtne: 13.0. 95 bytes sent in 1.0 seconds (0.1Kbytes/s) test2

NFT Reference Manual - 45

CLOG (Close Log File)

SYNTAX:

clog

ROLE:
Closes the NFT log file most recently opened with the LOG pathname command. QUITing your NFT client
also closes its open log file, if any, but changing sessions does not. As the LOG section (page 62) explains,
you can create more than one log file, but only one can be in use (open) at any time.

CLOG takes no options or arguments.

EXAMPLE:
NFT uses prefixes to reveal the source of every log-file line. For an explanation of these prefixes and a typical
sample NFT log file, see the section on NFT Logging Techniques (keyword: log-examples (page 19)). Also,
using input files changes the way NFT logs its interactions (keyword: file-interactions (page 22)), but using
sessions does not (keyword: session-usage (page 29)).

CLOSE (Restore Remote Host)

SYNTAX:

close

ROLE:
After any OPEN (page 69), restores NFT's remote host to its default value (namely, STORAGE). As with
OPEN, NFT sends no confirmation or reminder of which host is currently open after a CLOSE, and you must
use STATUS to disclose the current remote host. OPEN (page 69) and CLOSE exist to supplement NFT's
native host-specifying colon syntax (page 12) and to somewhat mimic the behaviour of FTP. But unlike FTP,
NFT lets you use several OPENs sequentially without requiring a corresponding paired CLOSE after each one.
CLOSE used with no preceding OPEN changes nothing and issues no error message.

EXAMPLE:
See the OPEN (page 69) section for an example of restoring NFT's remote host to STORAGE by using
CLOSE following several OPEN commands.

NFT Reference Manual - 46

CLR (Clear Completed Job Reports)

SYNTAX:

clr [[n[-m]] | [-opt]]

ROLE:
Clears (deletes the job-status record on) your most recent NFT request ("job") by default, or clears your specific
job with unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using a hyphen, not
a comma, as separator), or all members of the job class specified by any one job-class option opt listed below.

You can only clear job-status information for completed NFT jobs (those that either ran successfully to
completion, ended with an error, or were aborted by you). Attempting to clear incomplete jobs or jobs whose
records were already cleared has no effect, and will often return an error message such as "no completed jobs
in range." You can use ABT to abort an incomplete job before clearing its record, and you can use RPT to
discover the job numbers of your completed NFT jobs.

By default, jobs are remembered by the NFT server for up to 4 days after they complete. This can be a
convenience for reviewing your work, but frequent NFT users may find long accumulated RPT status reports
confusing and may want to prune no-longer-interesting job records from them by astute use of CLR.

RPT (page 78) (report) and ABT (page 46) (abort) are NFT commands closely related to CLR. The
NFT STATUS (page 83) command reports on your environment-variable settings, not on your file-transfer
jobs.

OPTIONS:
CLR accepts several job-class options opt to specify which set of your NFT job records you want cleared. But
CLR expects you to use these options ONE at a time: combined options do not yield combined job classes to be
cleared. Possible stand-alone job-classes on which you can apply CLR include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions (page
29), a rare practice, then -a selects only jobs in the current session, NOT in all the sessions
that you have created, and the other job-class options behave likewise.]

-c complete jobs, that have successfully or unsuccessfully completed running.

-o okay jobs, those that have succesfully completed running.

-e error jobs, that have unsuccessfully completed running.

-k aborted jobs, those that were terminated by the user with ABT.

NFT Reference Manual - 47

EXAMPLE:
CLR returns no confirmation of success when you delete one or more job-status records, just the usual prompt
for next input:

User: clr 4
Rtne: nft>

NFT Reference Manual - 48

CP (Copy/Transfer Files)

SYNTAX:

cp [-dR] [host]sourcepath [host][sinkpath]

cp [-dR] [host]{fl1,fl2,...} [host][{flx,fly,...}]

ROLE:
Transfers (copies) the file specified by sourcepath from the first host into the file specified by sinkpath on the
second host. Alternatively, CP transfers (copies) each file in the ordered list {fl1,fl2...} on the first host into the
corresponding file in the second ordered list {flx,fly...} on the second host (each file list must have the same
number of members). Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)).

sourcepath and sinkpath are standard UNIX pathnames that default to the current working directory on
each host (specified by LCD (page 60) or CD (page 37)). You can use standard UNIX
file filters in sourcepath (to copy many files with one command) if sinkpath is a directory.
File filters are never allowed in sinkpath itself.

fl1,fl2,... and flx,fly,... must be surrounded by the braces {} shown above. If both lists are present
they must have an equal number of members and no file filters. If you omit the second list
you can include file filters among the entries in the first.

DEFAULTS:
CP always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode
file transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 44) command. CP commands that
include file filters, to transfer many files at once, are always processed asynchronously (subordinate jobs run in
parallel, in any order) regardless of your current SYNC/ASYNC (page 35) setting, so never use filters with CP
if arrival order is crucial.

Because NFT uses overt host prefixes to specify the source and sink machines for a file copy (not login, as
with FTP), you can use CP to transfer files between two machines even when you are running the NFT client on
a third machine (third-party transfers, see example below).

NFT's GET (page 56) and PUT (page 71) commands behave like CP but by default only work with
the LC STORAGE system, not between any two hosts. (You can "generalize" them if you use OPEN (page
69) first.) Hence, CP is really NFT's clearest equivalent of the well-known FTP general GET and PUT
commands.

NFT Reference Manual - 49

OPTIONS:
CP accepts two options:

-d destroys each source file after the transfer (copy) is successful.

-R recursively copies source subdirectories (however, soft links to subdirectories are not
followed).

EXAMPLE:
(1) Transfer (copy) file t1 from the local machine (:) into file /usr/tmp/t2 on YANA.

nft>cp :t1 yana:/usr/tmp/t2
 1.0. 95 bytes received in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/t1 to /usr/tmp/t2
 1.0 1 entry copied /g/g0/jfk/t1

(2) Transfer (copy) file /usr/tmp/t3 from YANA into file /usr/tmp/t6 on ATLAS, even if running NFT on a third
machine.

nft>cp yana:/usr/tmp/t3 atlas:/usr/tmp/t6
 3.0. 98 bytes received in 0.4 seconds
 (0.2 Kbytes/s) from /usr/tmp/t3 to /usr/tmp/t6
 3.0 1 entry copied /g/g0/jfk/t3

(3) Use the file filter * to transfer (copy) all files whose names begin with LOG from YANA to ATLAS. Note
that these files did not copy in numerical order because NFT processes such multiple-file jobs asynchronously
(in parallel), even if SYNC mode is enabled, and that the final transaction summary (here 11.0) has the lowest
job number of the jobs reported.

nft>cp yana:/usr/tmp/log* atlas:/usr/tmp
 12.0. 914 bytes received in 0.1 seconds (7.4 Kbytes/s)
 from /usr/tmp/log1 to /usr/tmp/log1
 14.0. 288 bytes received in 0.3 seconds (0.9 Kbytes/s)
 from /usr/tmp/log3 to /usr/tmp/log3
 13.0. 178 bytes received in 0.1 seconds (1.9 Kbytes/s)
 from /usr/tmp/log2 to /usr/tmp/log2
 11.0. 3 entries copied (aggregate 3.4 Kbytes/s) /usr/tmp/log*

NFT Reference Manual - 50

DELETE (Remove Files)

SYNTAX:

del[ete] [-R] [host]pathname

del[ete] [-R] [host]{file1,file2,...}

ROLE:
Deletes the file specified by pathname from the specified host. Alternatively, DELETE removes each file in the
ordered list {file1,file2...} from the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede DELETE with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX pathname, often a file in the current working directory (specified by
CD (page 37)). To delete many files with one command, use a standard UNIX file filter
at the end of pathname. At LC, HPSS interprets DELETE * to remove all files from only
your current working directory, not from any of its child directories (this is an important
difference from FTP's MDELETE *, which behaves recursively in STORAGE).

file1,file2,... must be surrounded by the braces {} shown above. File filters are allowed in any list
member.

Remember that by default deletions occur among your stored files, not your local files (on the client
machine), which you must overtly specify with the colon (:) prefix. To delete (empty) directories, use RMDIR
(page 76) instead of DELETE. NFT's DIR (page 52) command lists your files. DELETE reports each
single file it removes, but not multiples (from filter use). NFT has no separate MDELETE command (but see -R
below).

OPTIONS:
DELETE accepts one option:

-R recursively deletes all subdirectories and their contents. NFT ignores soft links to
subdirectories. (NFT's DELETE and RMDIR commands are equivalent when you invoke
the -R option.)

EXAMPLE:
To DELETE local file test8 you must use NFT's colon (:) prefix, or else NFT will try to delete a file of that
name from your current STORAGE working directory instead:

NFT Reference Manual - 51

nft>delete test8
 8.0. error. storage: 562
 No such file or directory ~/test8
nft>delete :test8
 9.0 1 entry deleted /g/g0/jfk/test8

NFT Reference Manual - 52

DIR (List Directory Contents, Long)

SYNTAX:

dir [-opts] [host][pathname]

ROLE:
Lists the contents of a directory in a long (detailed) format, with entries alphabetical by file (or subdirectory)
name in the ASCII collating sequence that puts symbols first, then uppercase letters, then lowercase letters.
Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede DIR with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to the current working directory.

opts control the format of DIR's display, but only those options supported by the FTP daemon
on the target host actually work, while others will fail, usually with an error message of the
form

nnn.0 error: Syntax error: Invalid command options specified

Different FTP daemons support different sets of display opts and those not supported by
LC's STORAGE machine(s) are noted in the option list below.

LS (page 63) is a similar NFT command with different default output.

OPTIONS:

-a lists all files, including dot (.), dot-dot (..), and the others begining with a period.

-b displays nonprintable characters in the octal \ddd notation.

-c (not supported by STORAGE) sorts the listing by time of last change.

-d lists the directory entry itself (i.e., the single entry for .), not the contents of the directory.

-e (not supported by STORAGE) lists the security level (a digit).

-f (not supported by STORAGE) forces each argument to be treated as a directory.

-g (not supported by STORAGE) includes group ownership in the listing.

-h lists each file's class of service (COS) integer (in the third column, instead of its owner).
See the SETCOS section of the HPSS Manual (URL: https://computing.llnl.gov/LCdocs/
hpss/index.jsp?show=s2.1.4) for details about COS policy issues. NFT's own SETCOS
command (page 81) may be used to specify COS before you store a file using NFT.

-i (not supported by STORAGE) prints the i-node number before each list entry.

https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s2.1.4

NFT Reference Manual - 53

-l lists permissions, owner, group, and date with each list entry.

-n lists the owner's UID and group's GID numbers, rather than the associated character
strings.

-o (not supported by STORAGE) includes file ownership in the listing.

-p (not supported by STORAGE) displays each directory name with an appended slash.

-q (not supported by STORAGE) prints nondisplayable characters in file names as a question
mark (?).

-r (not supported by STORAGE) reverses the (default alphabetical) order of the listing.

-s (not supported by STORAGE) reports the file size in sectors (instead of the default of
blocks).

-t (not supported by STORAGE) sorts the listing by time last modified (most recent first).

-u (not supported by STORAGE) sorts the listing by time last accessed (most recent first).

-A (not supported by STORAGE) same as option -a except that dot (.) and dod-dot (..) are not
listed.

-F appends to each directory name a slash (/), to each executable file an asterisk (*), and to
each soft link an at-sign (@).

-L (not supported by STORAGE) lists the target of each symbolic link rather than the link
itself.

-P (not supported by STORAGE) lists the account identifier with each entry.

-R provides a recursive listing of the contents of all subdirectories too (may run very slowly).
NFT ignores soft links to subdirectories.

EXAMPLE:
A typical default (no -opts used) response to NFT's DIR command has this form (the meaning of each field is
indicated below it), with a similar line for each file reported:

-rwxr-xr-x 2 jfk doc 2048 Sep30 16:04 test1
[permission links owner group size date name]

NFT Reference Manual - 54

DUALCOPY (Store Dual Copies of Files)

SYNTAX:

dualcopy

ROLE:
Causes NFT to write dual copies of Mission Critical files to HPSS Storage.

Newly written archival data is currently stored in HPSS via one of five classes of service (COS), informally
called Small, Medium, Large, Jumbo, and Mission Critical. By default, files of Small and Medium COS are
dual copied. (This is subject to change without notice.) Files of Large and Jumbo COS are not dual copied
because dual copy is cost prohibitive.

Utilization of the Mission Critical COS is monitored, and users should limit their use of the service for truly
irreplaceable data.

You can check the current DUALCOPY or NODUALCOPY setting for your NFT session with STATUS
(page 83). You can discover the COS with which already stored files have been stored by using NFT's
DIR (page 52) command with the -h option (COS then appears in the third column in DIR's report). Use the
NODUALCOPY (page 66) command to store a file to the HPSS default COS (which may or may not be
dual-copied based upon file size). See also the detailed COS discussion in LC's HPSS Reference Manual (URL:
https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s1.2.1).

EXAMPLE:
To select the dual-copy COS to store file1 using the NFT interface:

R/Us: nft> dualcopy
R/Us: nft> put file1

To then store file2 to the HPSS default COS:

R/Us: nft> nodualcopy
R/Us: nft> put file2
R/Us: nft> quit

https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s1.2.1

NFT Reference Manual - 55

ENDGR (End Asynchronous Group)

SYNTAX:

endgr

ROLE:
Ends the scope of an asnychronous group of NFT commands (jobs). See the GROUP (page 58) command
for usage and examples.

ENDGR has no options and returns no confirmation.

NFT Reference Manual - 56

GET (Retrieve Stored Files)
SYNTAX:

get [-dR] sourcepath [sinkpath]

get [-dR] {file1,file2,...} [{filex,filey,...}]

ROLE:
(Storage defaulted) transfers (copies) the file specified by sourcepath from the LC STORAGE system into the
file specified by sinkpath on the local machine (where you are running your NFT client). Alternatively, GET
transfers (copies) each file in the ordered list {file1,file2...} on the STORAGE system into the corresponding
file in the second ordered list {filex,filey...} on the local machine (each file list must have the same number
of members). If you precede GET with an OPEN (page 69) command, you can also retrieve files from a
specified host other than STORAGE. Here

sourcepath and sinkpath are standard UNIX pathnames. You can use standard UNIX file filters in
sourcepath (to transfer many files with one command) if sinkpath is a directory. File filters
are never allowed in sinkpath itself. If sourcepath is just a simple file name, omitting
sinkpath causes NFT to put the retrieved file into the current local working directory
(which you can specify with LCD (page 60)). If sourcepath is a longer pathname, then
omitting sinkpath causes NFT to try to duplicate sourcepath on the local machine, but if
the appropriate subdirectories do not already exist the transfer fails with an error.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above. If both lists are present
they must have an equal number of members and no file filters. If you omit the second list
you can include file filters among the entries in the first.

DEFAULTS:
Unlike NFT's CP (copy) command and FTP's general GET command, NFT's GET transfers files by default
only from LC's STORAGE system and only to the local (client) machine. Hence, no host-specifying prefixes
are allowed when you use GET, and third-party GETs between remote machines are not supported. You can,
however, use OPEN (page 69) to reset NFT's remote host and then GET files from a nonSTORAGE source
machine.

GET always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode
file transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 44) command. GET commands that
include file filters, to transfer many files at once, are always processed asynchronously (subordinate jobs run
in parallel, in any order) regardless of your current SYNC/ASYNC (page 35) setting, so never use filters with
GET if arrival order is crucial.

Use CP (page 48) (copy) for all general file transfers with NFT, and use PUT (page 71) (transfer to
STORAGE) to move files in the opposite direction from GET.

OPTIONS:

-d destroys the source file (on STORAGE) after transfer to the local machine is successful.

-R recursively copies all children in subdirectories of sourcepath, if it is a directory. NFT
ignores soft links to subdirectories.

NFT Reference Manual - 57

EXAMPLE:
By default NFT prevents overwriting an existing file (here t4) whenever you use GET to retrieve (here t6) from
STORAGE. You can retrieve to a nonconflicting file name (as shown here) or use NFT's CLOBBER command
to enable overwriting.

nft>get t6 t4
 5.0. error. Cannot clobber existing
 sink /g/g0/jfk/t4

nft>get t6
 6.0. 95 bytes received in 1.8 seconds
 (0.1 Kbytes/s) from ~/t6 to /g/g0/jfk/t6
 1 entry copied ~/t6

NOTE:
If you want to GET a few files from inside a stored TAR-format archive file without first GETting the whole
(large) archive to your local machine, use HTAR instead of NFT. Using HTAR's -F option, you can even
extract files from within a remote TAR-format archive file on any LC machine that has a preauthenticated FTP
server. Consult the HTAR Reference Manual (URL: https://computing.llnl.gov/LCdocs/htar) for instructions
and examples.

https://computing.llnl.gov/LCdocs/htar

NFT Reference Manual - 58

GROUP (Begin Asynchronous Group)

SYNTAX:

group

ROLE:
Begins the scope of an asynchronous group of NFT commands (that will be closed by an ENDGR command).

All commands between a GROUP/ENDGR pair are executed asynchronously, in parallel, as resources
become available, even though the default for NFT command execution is synchronous (serial). The whole
group is scheduled serially, as usual, so that all previously entered synchronous commands will execute before
any commands within the group execute.

Users interested in running NFT asynchronously should consult the SYNC (page 84) command section
as well as the command-sequencing (page 16) discussion for a comparative analysis of the three ways that NFT
supports parallel jobs.

OPTIONS:
GROUP has no options, but you must use ENDGR to close a command group started with GROUP.

EXAMPLE:
While remaining in SYNC mode, you can specify a subset of commands to process in parallel (asynchronously
among themselves) by preceding them with GROUP and following them with ENDGR. To force all subsequent
commands to wait until everything within such a GROUP has excuted, use BLOCK after ENDGR and before
the next command. For example, the following NFT command sequence first creates directory TEST3, then
ASYNCHRONOUSLY copies three files into that directory (since arrival order is often unimportant), then, and
only after all three have arrrived (BLOCK), issues a report (RPT).

 mkdir test3
 cd test3
 group
 cp yana:file1 :file1
 cp atlas:file2 :file2
 cp lucy:file3 :file3
 endgr
 block
 rpt -a

NFT Reference Manual - 59

HELP (Describe NFT Commands)

SYNTAX:

help [command]

ROLE:
Lists the available NFT command names, in broad functional groups, or, if you supply a specific command's
name, describes that command. Here

command identifies the NFT option on which you want specific help. NFT returns a MAN-page-like
syntax summary briefly covering uses and suboptions, followed by a few examples. Help
messages for commands with many suboptions, such as DIR, are abbreviated.

HELP takes no options and requests for help about nonexistent NFT commands return a syntax error.

NFT Reference Manual - 60

LCD (Change Local Working Directory)

SYNTAX:

lcd [pathname]

ROLE:
Changes the current working directory on the local machine (where you are running your NFT client) to the
specified pathname, which is a standard UNIX path that defaults to your home directory.

Use CD (page 37) to change working directories generally, PWD: (page 73) to discover the name of
your current local working directory, and CDUP (page 38) to move up one directory level. These commands are
somewhat redundant, so that the following are exactly equivalent, and all require using NFT's own prefix syntax
(page 12) for hosts.

 CD :..
 CDUP :
 LCD ..

LCD takes no options, and it confirms each requested directory change.

WARNING:
If you specify a nonexistent pathname for the UNIX CD command, you get an immediate error message and
no directory change. If you specify a nonexistent pathname for NFT's LCD command, however, you get the
usual confirmation message before receiving the string "no such file or directory." And subsequent use of PWD
will also report the nonexistent directory, without complaint. Of course attempts to then use DIR or actual file-
transfer commands will fail. You must overtly reset the local working directory with another use of LCD to a
real location to overcome this error and continue transferring files.

EXAMPLE:
In response to each LCD command, NFT reports both the machine involved and the new working directory
(wd).

R/Us: nft> lcd /usr/tmp/stuff
Rtne: local wd is /usr/tmp/stuff [on client machine]

NFT Reference Manual - 61

LN (Create a Link)

SYNTAX:

ln -s sourcepath linkname

ROLE:
(Storage only) creates a new directory entry called linkname that points to the file or directory specified in
sourcepath on the STORAGE system. Here

-s specifies a soft link (hard links on the STORAGE system are not allowed, and using LN
without this option returns an error message that says so).

sourcepath is a standard UNIX path that leads to the original file or directory, to which you want to
link.

linkname is a UNIX path that leads to where the link (pointer) will be placed. If linkname ends in
a directory, then the children of sourcepath will be duplicated there as links back to their
counterparts. If linkname ends in a file, then the new link will be given the file name at the
end of that path.

NFT's LN command works only on the STORAGE system, not on any other hosts. (Technically, using
OPEN (page 69) should allow you to use LN on the nonSTORAGE host you have OPENed. In practice,
however, the only LC FTP daemon that supports remote links is the one on STORAGE, both open and secure.)
But you can use the escape syntax !LN to issue a link command that executes on the local (client) machine
(though not on other remote machines).

EXAMPLE:
To create a link (pointer) in your storage directory NFTTEST called T4 that points back to actual file T1 in your
home storage directory, use the LN command shown here.

nft>ln -s ~/t1 ~/nfttest/t4
 3.0. 1 entry linked ~/t1

NFT Reference Manual - 62

LOG (Open Log File)

SYNTAX:

log pathname

ROLE:
Begins recording in a log file all your input to and output messages from NFT as it runs. Here

pathname is usually just the name of a file (e.g. nftlog) that you want NFT to create in the current
working directory (where NFT was started) on the machine where you are running the
NFT client. If you supply an absolute pathname (such as ~/projects/nftlog or /usr/tmp/
testdir5/log5) then NFT creates the log file in the other directory that you specify.

Logging of all NFT input and output continues until you issue the CLOG (page 45) (close log) command or
until you QUIT your current NFT session, whichever comes first.

Issuing a second LOG command with a different pathname will (1) create a second, independent log file,
(2) stop recording messages in the first log file, and (3) start recording (subsequent) messages in the second log
file. Issuing a second LOG command with the same pathname will insert an updated time stamp (comment) in
the open log file and then simply append all new messages to the old ones. If a file named pathname already
exists when you first issue a LOG command, NFT opens it, appends a current time stamp, and places all your
new messages at the end of that file. Thus you can jump between multiple log files during an NFT session,
channeling messages to one and then another, just by using LOG with each file's name whenever you want to
change files.

NFT does not collect a large buffer of messages before logging them; instead, messages are flushed to the
log file after every carriage return. Logging starts immediately, and the first line recorded in your log file (after
a comment-line date stamp) will be the LOG pathname command that requested the file. CLOG will be the last
line recorded. As long as you do not change the (default) TERM mode setting with a NOTERM (page 68)
command, all your input and output will continue to display at your terminal while logging occurs.

DEFAULTS:
LOG takes no options and there is no default log-file name.

EXAMPLE:
NFT uses prefixes to reveal the source of every log-file line. For an explanation of these prefixes and a typical
sample NFT log file, see the section on NFT Logging Techniques (keyword: log-examples (page 19)). Also,
using input files changes the way NFT logs its interactions (keyword: file-interactions (page 22)), but using
sessions does not (keyword: session-usage (page 29)).

NFT Reference Manual - 63

LS (List Directory Contents, Short)

SYNTAX:

ls [-opts] [host][pathname]

ROLE:
Lists the contents of a directory in a short format (names only by default, unless you add detail with options),
with entries alphabetical by file (or subdirectory) name in the ASCII collating sequence that puts symbols first,
then uppercase letters, then lowercase letters. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede LS with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX path that defaults to the current working directory.

opts control the format of LS's display, but only those options supported by the FTP daemon on
the target host actually work, while others will fail, usually with an error message of the
form

nnn.0. error: Syntax error: Invalid command options specified

Different FTP daemons support different sets of display opts and those not supported by
LC's STORAGE machine(s) are noted in the option list below.

DIR (page 52) is a similar NFT command with different default output.

OPTIONS:

-a lists all files, including dot (.), dot-dot (..), and the others begining with a period.

-b displays nonprintable characters in the octal \ddd notation.

-c (not supported by STORAGE) sorts the listing by time of last change.

-d lists the directory entry itself (i.e., the single entry for .), not the contents of the directory.

-e (not supported by STORAGE) lists the security level (a digit).

-f (not supported by STORAGE) forces each argument to be treated as a directory.

-g (not supported by STORAGE) includes group ownership in the listing.

-h lists each file's class of service (COS) identifier (instead of its owner). See the SETCOS
section of the HPSS Manual (URL: https://computing.llnl.gov/LCdocs/hpss) for class of
service details.

-i (not supported by STORAGE) prints the i-node number before each list entry.

-l lists permissions, owner, group, and date with each list entry.

https://computing.llnl.gov/LCdocs/hpss

NFT Reference Manual - 64

-m (not supported by STORAGE) lists file names horizontally, each separated by one comma
and one blank space from the next.

-n lists the owner's UID and group's GID numbers, rather than the associated character
strings.

-o (not supported by STORAGE) includes file ownership in the listing.

-p (not supported by STORAGE) displays each directory name with an appended slash.

-q (not supported by STORAGE) prints nondisplayable characters in file names as a question
mark (?).

-r (not supported by STORAGE) reverses the (default alphabetical) order of the listing.

-s (not supported by STORAGE) reports the file size in sectors (instead of the default of
blocks).

-t (not supported by STORAGE) sorts the listing by time last modified (most recent first).

-u (not supported by STORAGE) sorts the listing by time last accessed (most recent first).

-x (not supported by STORAGE) lists file names horizontally in columns.

-A (not supported by STORAGE) same as option -a except that dot (.) and dod-dot (..) are not
listed.

-C (not supported by STORAGE) formats the listing in multiple columns.

-F appends to each directory name a slash (/), to each executable file an asterisk (*), and to
each soft link an at-sign (@).

-L (not supported by STORAGE) lists the target of each symbolic link rather than the link
itself.

-P (not supported by STORAGE) lists the account identifier with each entry.

-R provides a recursive listing of the contents of all subdirectories too (may run very slowly).
If you use -R together with any multicolumn option (-m, -x, -C), the multicolumn option is
ignored. NFT ignores soft links to subdirectories.

EXAMPLE:
A typical default (no -opts used) response to NFT's LS command is a one-column list of file and directory
names. See the DIR (page 52) section above for an annotated explanation of the more elaborate output that
using LS with options can yield.

NFT Reference Manual - 65

MKDIR (Make Directories)

SYNTAX:

mkdir [host]pathname

ROLE:
Creates the specified directory on the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede MKDIR with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname specifies where to put the new directory. If this is a simple directory name, then NFT
makes the directory in the current working directory (specified by CD (page 37)). If this
is a relative or absolute pathname all of whose other directories already exist, then NFT
makes the new directory as a child of the last directory in the path.

MKDIR takes no options and (at default reporting levels) does not confirm the creation of the directory you
requested. However, NFT's DIR (page 52) command lists your files and directories for confirmation.

NFT Reference Manual - 66

NOCLOBBER (Disable File Overwriting)

SYNTAX:

noclobber

ROLE:
Causes NFT to handle file-name conflicts by preventing an incoming file from overwriting any file of the same
name in the receiving (current working) directory on the target host. Instead NFT returns a warning when file-
name conflicts occur. NOCLOBBER is NFT's default behavior, so you would normally need to use the overt
NOCLOBBER command only to reverse your previous use of the CLOBBER command, which enables file
overwriting.

CLOBBER and NOCLOBBER are mutually exclusive alternative settings for an NFT environment variable
that preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by using
separate NFT clients (not multiple sessions with one client) can you have two sets of environment variable
settings for two sets of NFT jobs at once. See the "sessions (page 29)" section for details.

STATUS (page 83) reports your current choice of CLOBBER or NOLOBBER settings. NOCLOBBER
takes no options and returns no confirmation message.

EXAMPLE:
NOCLOBBER (no overwriting) is NFT's default behavior; consult the CLOBBER (page 44) section for an
example of how to reverse this behavior.

NODUALCOPY (Undo Dual Copy)

SYNTAX:

nodualcopy

ROLE:
Causes NFT to to write files to HPSS storage in their default class of service (COS).

You can check the current DUALCOPY or NODUALCOPY setting for your NFT session with STATUS
(page 83). You can discover the COS with which already stored files have been stored by using NFT's
DIR (page 52) command with the -h option (COS then appears in the third column in DIR's report). Use
the DUALCOPY (page 54) command to store a Mission Critical file to the HPSS. See also the detailed
COS discussion in LC's HPSS Reference Manual (URL: https://computing.llnl.gov/LCdocs/hpss/index.jsp?
show=s1.2.1).

https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s1.2.1

NFT Reference Manual - 67

NOROUTING (Disable Routing)

SYNTAX:

norouting

ROLE:
Disables the normally automatic ROUTING (page 77) of NFT file transfers (to or from storage) from
compute nodes to login nodes to take advantage of the latter's jumbo-frame network connections.

On many LC production machines, the login nodes have jumbo-frame network conections to storage,
enabling large data blocks to transfer more quickly than with standard, smaller frames. Compute nodes lack
these jumbo-frame conections because of their higher cost. When appropriate, NFT now routes file-transfer
requests (to or from storage) from their originating compute nodes to the login nodes on the same cluster to take
advantage of available faster jumbo-frame transfer rates.

NOROUTING disables such routing (usually needed only for timing or other special tests). Use
CHKROUTING (page 41) to see if routing is currently enabled or disabled (or otherwise not available) between
a specified pathname and storage. STATUS also reveals whether routing is on (yes) or off (no). See the
ROUTING (page 77) section below for more details on where routing is available and when it is beneficial.

EXAMPLE:
Routing is on by default, but you can disable it with NOROUTING if you wish.

R/Us: nft> norouting
R/Us: nft> status
Rtne: Connected to storage as jfk.
 . . .
 Routing: no

NFT Reference Manual - 68

NOTERM (Disable Terminal Output)

SYNTAX:

noterm

ROLE:
Causes NFT to prevent terminal display of all output from its executed commands, and to stop offering its
interactive nft> prompt as well. So NOTERM overrides NFT's default TERM behavior. If you have enabled an
NFT log file with the LOG (page 62) command, however, all normal output and prompts continue to collect in
that file even after you use NOTERM.

TERM and NOTERM are mutually exclusive alternative settings for an NFT environment variable that
preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by using
separate NFT clients (not multiple sessions with one client) can you have two sets of environment variable
settings for two sets of NFT jobs at once. See the "sessions (page 29)" section for details.

STATUS (page 83) normally reports your NFT environment variable settings, but of course NOTERM
hides all STATUS output as well as other output. NOTERM takes no options and returns no confirmation
message, but the absence of NFT prompts betrays its use.

NFT Reference Manual - 69

OPEN (Change Remote Host)

SYNTAX:

open host

ROLE:
Changes from STORAGE (the default) to host (which you must specify) the remote host with which NFT
interacts and on which it reports. Actually, OPEN itself is a local command that only changes the remote host
reported by the STATUS command in its "connected to host as yyy" output. Only after you attempt a specific
interaction with that host (such as CD or PUT) does the hidden NFT server try to connect to it (persistently).
For OPEN, host must be a domain name (e.g., ATLAS or ATLAS.LLNL.GOV), not a numerical IP address.

When using OPEN remember that:
(1) NFT sends no clarification or reminder of which host is currently open, and no altered prompt reveals the
current target (unlike FTP). You must use STATUS to disclose the current remote host.
(2) ONLY machines offering NFT clients can really be OPENed for NFT file transfers. You can request OPENs
of other hosts (such as FIS) without receiving any immediate error message, and even with a successful reset of
the STATUS report (see example below). But attempts to actually change directories, move files, etc., will fail,
yielding "invalid source" or "invalid sink" messages.

OPEN exists to supplement NFT's native host-specifying colon syntax (page 12) and to somewhat mimic
the behavior of FTP. Open lets you use PUT and GET (but not the other "storage-defaulted" commands) with
remote hosts other than the LC storage system (because OPEN resets NFT's default remote host). Unlike FTP,
however, NFT lets you use subsequent OPENs to repeatedly reset the current remote host without requiring a
paired CLOSE after each OPEN.

EXAMPLE:
Using OPEN lets you
(1) change NFT's remote host from STORAGE to ATLAS,
(2) confirm the change with STATUS, and
(3) successfully transfer a file to ATLAS with PUT, which is reserved for storage-only use if you omit the
preceding OPEN. But note that you can also
(4) apparently change remote hosts to FIS, and
(5) apparently confirm that change with STATUS even though
(6) all actual file-transfer attempts fail with an error message (because FIS is not a host known to the NFT
server).
(7) CLOSE restores NFT's remote host to STORAGE.

nft>open atlas ---(1)
nft>status ---(2)
 connected to atlas as jfk...
nft>put test3 /usr/tmp/test3a ---(3)
 1.0 95 bytes sent in 0.1 seconds
 (0.7 Kbytes/s) from /g/g0/jfk/test3
 to /usr/tmp/test3a
nft>open fis ---(4)
nft>status ---(5)
 connected to fis as jfk...

NFT Reference Manual - 70

nft>put test3 ---(6)
 2.0 error Invalid host
 specified. ~/test3
nft>close ---(7)
nft>status
 connected to storage as jfk...

NFT Reference Manual - 71

PUT (Store Local Files)

SYNTAX:

put [-dR] sourcepath [sinkpath]

put [-dR] {file1,file2,...} [{filex,filey,...}]

ROLE:
(Storage defaulted) transfers (copies) the file specified by sourcepath from the local machine (where you are
running your NFT client) into the file specified by sinkpath on the LC STORAGE system. Alternatively, PUT
transfers (copies) each file in the ordered list {file1,file2...} on the local machine into the corresponding file in
the second ordered list {filex,filey...} on the STORAGE system (each file list must have the same number of
members). If you precede PUT with an OPEN (page 69) command, you can also deliver files to a specified host
other than STORAGE. Here

sourcepath and sinkpath are standard UNIX pathnames. You can use standard UNIX file filters in
sourcepath (to transfer many files with one command) if sinkpath is a directory. File filters
are never allowed in sinkpath itself. If sourcepath is just a simple file name, omitting
sinkpath causes NFT to put the stored file into the current STORAGE working directory
(which you can specify with CD (page 37)). If sourcepath is a longer pathname, then
omitting sinkpath causes NFT to try to duplicate sourcepath on the STORAGE system, but
if the appropriate subdirectories do not already exist the transfer fails with an error.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above. If both lists are present
they must have an equal number of members and no file filters. If you omit the second list
you can include file filters among the entries in the first.

DEFAULTS:
Unlike NFT's CP (copy) command and FTP's general PUT command, NFT's PUT transfers files by default
only from the local (client) machine and only to the STORAGE system. Hence, no host-specifying prefixes
are allowed when you use PUT, and third-party PUTs between remote machines are not supported. You
can, however, use OPEN (page 69) to reset NFT's remote host and then PUT files to a nonSTORAGE target
machine.

PUT always transfers files using FTP binary mode (you must run FTP itself, not NFT, for ASCII-mode
file transfers). By default, NFT does NOT overwrite existing files with incoming files of the same name
(NOCLOBBER), but you can enable overwrites with the CLOBBER (page 44) command. PUT commands that
include file filters, to transfer many files at once, are always processed asynchronously (subordinate jobs run in
parallel, in any order) regardless of your current SYNC/ASYNC (page 35) setting, so never use filters with PUT
if arrival order is crucial.

Use CP (page 48) (copy) for all general file transfers with NFT, and use GET (page 56) (transfer from
STORAGE) to move files in the opposite direction from PUT.

OPTIONS:

-d destroys the source file (on the local machine) after transfer to the STORAGE system is
successful.

NFT Reference Manual - 72

-R recursively transfers (copies) files in subdirectories if sourcepath is a directory. NFT
ignores soft links to subdirectories.

EXAMPLE:
To store local file t1 into a file called t2 in the current STORAGE working directory, use this command:

nft>put t1 t2
 4.0. 95 bytes sent in 1.0 seconds
 (0.1 Kbytes.s) from /g/g0/jfk/t1 to ~/t2
 1 entry copied /g/g0/jfk/t1

NOTES:
(a) If you want to PUT a large TAR-format archive file into storage but don't have the space (or time) to build it
first on your local machine, use HTAR instead of NFT (HTAR will actually build the archive directly in storage
as member files arrive). With HTAR's -F option, you can similarly transfer files directly into a remote TAR-
format archive file on any LC machine that has a preauthenticated FTP server. Consult the HTAR Reference
Manual (URL: https://computing.llnl.gov/LCdocs/htar) for details and examples.

(b) Since a common PUT error is to omit CLOBBER (page 44) if you wish to overwrite a stored file, NFT now
explicitly distinguishes between "no clobber failures" and other failures when it reports user errors.

https://computing.llnl.gov/LCdocs/htar
https://computing.llnl.gov/LCdocs/htar

NFT Reference Manual - 73

PWD (Print Working Directory)

SYNTAX:

pwd [-a] | [host]

ROLE:
Prints (reports the name of) the current working directory on the specified host, where host is the NFT host-
specifying prefix that defaults to the STORAGE (not current client) machine, as explained above (keyword:
prefix (page 12)). If you precede PWD with an OPEN (page 69) command, then host defaults to the machine
that OPEN specified.

So by default PWD used with no arguments reports your current STORAGE directory. Use CD (page 37)
to change directories generally, CDUP (page 38) to move one directory level up, and LCD (page 60) to change
local (client-machine) directories. These commands are somewhat redundant, so that the following are exactly
equivalent, and all require using NFT's own prefix syntax for hosts.

 CD :..
 CDUP :
 LCD ..

WARNING:
If you specify a nonexistent directory with CD or LCD, then subsequent use of PWD will report that
nonexistent directory with no complaint, even though attempts to use DIR or actual file-transfer commands will
fail. You must specify a real location with another CD or LCD command to overcome this error.

OPTIONS:

-a reports the current working directory on both the local (NFT-client) and the STORAGE
machines. This replaces a host specification.

EXAMPLE:
Remember that PWD reports on the STORAGE machine by default.

R/Us: nft> pwd
Rtne: remote wd is ~/nfttest [on STORAGE]
R/Us: nft> pwd :
Rtne: local wd is /g/g0/jfk/stuff [on client machine]
R/Us-a nft> pwd -a
Rtne: local wd is /g/g0/jfk/stuff
 remote wd is ~/nfttest

NFT Reference Manual - 74

QUIT (Terminate NFT Client)

SYNTAX:

quit

ROLE:
Terminates your current interactive NFT client and closes any open log file, but does NOT stop your previously
submitted file-transfer jobs from continuing to execute. Indeed, job persistence even after your client ends is an
NFT safety feature. To wait until all jobs complete before QUITing, use the combination command BLOCK
(page 36);QUIT.

To discover if any incomplete file-transfer jobs remain, even from previous NFT runs, use NFT's RPT (page
78) command. To terminate specific file-transfer jobs (as opposed to terminating the client that submits
them), use NFT's ABT (page 34) (abort) command.

NFT Reference Manual - 75

RENAME (Change File Name)

SYNTAX:

ren[ame] [host]sourcepath [host]sinkpath

ren[ame] [host]{file1,file2,...} [host]{filex,filey,...}

ROLE:
Renames the file specified by sourcepath to the name specified by sinkpath. Alternatively, RENAME changes
the name of each file in the ordered list {file1,file2...} into the corresponding file name in the second ordered list
{filex,filey...} (each file list must have the same number of members). Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). For RENAME (unlike CP), if
you use a host prefix, it must be the SAME for both sourcepath and sinkpath. You can
thus rename files on any single remote machine, but you can NOT rename files "across
machines." Use CP (page 48) to move files between machines and simultaneously change
their names.

sourcepath and sinkpath are standard UNIX pathnames that default to the current working directory
(specified by CD (page 37)). Because of the obvious ambiguity that would result, you
cannot use file filters.

file1,file2,... and filex,filey,... must be surrounded by the braces {} shown above, and both lists must
have an equal number of members and no file filters.

Some FTP daemons do not support renaming directories. To actually transfer files between machines, use
NFT's CP (copy) (page 48), GET (from storage) (page 56), or PUT (to storage) (page 71) commands instead of
RENAME. To confirm name changes, use DIR (page 52). RENAME takes no options and reports (only) the old
name of each file it changes.

EXAMPLE:
To RENAME file test7 to test8 on the local (client) machine, use the syntax shown here:

nft>rename :test7 :test8
 11.0 1 entry renamed /usr/tmp/test7

NFT Reference Manual - 76

RMDIR (Remove Directories)

SYNTAX:

rmdir [-R] [host]pathname

rmdir [-R] [host]{dir1,dir2,...}

ROLE:
Removes the (empty) directory specified by pathname from the specified host. Alternatively, RMDIR removes
each (empty) directory in the ordered list {dir1,dir2...} from the specified host. Here

host is the NFT host-specifying prefix that defaults to the STORAGE (not current client)
machine, as explained above (keyword: prefix (page 12)). If you precede RMDIR with an
OPEN (page 69) command, then host defaults to the machine that OPEN specified.

pathname is a standard UNIX pathname that ends in a directory, often a child of the current working
directory (specified by CD (page 37)). To delete many directories with one command, use
a standard UNIX file filter at the end of pathname.

dir1,dir2,... must be surrounded by the braces {} shown above. File filters are allowed in any list
member.

Remember that by default removals occur among your storage directories, not your local directories (on the
client machine), which you must overtly specify with the colon (:) prefix. To delete files instead of directories,
use DELETE (page 50) instead of RMDIR. NFT's DIR (page 52) command lists your files and directories.

OPTIONS:

-R (uppercase are) recursively deletes the files and subdirectories in a directory before
deleting the directory itself. Without -R, you must empty each directory before you can
remove it with RMDIR. (The DELETE and RMDIR commands are equivalent when you
invoke the -R option.) NFT ignores soft links to subdirectories.

NFT Reference Manual - 77

ROUTING (Use Login Node Jumbo Frames)

SYNTAX:

routing

ROLE:
Performs file transfers (to or from storage) on login nodes with jumbo-frame network connections when
available (on by default).

On many LC production machines, the login nodes have jumbo-frame network conections to storage,
enabling large data blocks to transfer more quickly than with standard, smaller frames. Compute nodes lack
these jumbo-frame conections because of their higher cost. When appropriate, NFT now routes file-transfer
requests (to or from storage) from their originating compute nodes to the login nodes on the same cluster to take
advantage of available faster jumbo-frame transfer rates.

NFT routes storage transfers (as explained above) by default. Use NOROUTING (page 67) to disable
automatic routing (perhaps for timing or other tests). Use CHKROUTING (page 41) to see if routing is
currently enabled or disabled (or otherwise not available) between a specified pathname and storage. STATUS
also reveals whether routing is on (yes) or off (no). Routing will not speed NFT transfers between file systems
one of which is not storage (between different parallel file systems, for example). Also, routing seldom benefits
file transfers to or from regular NFS-mounted file systems (such as the common home directories). Routing
primarily speeds transfers between storage and Lustre parallel file systems (either direction) on Linux/CHAOS
clusters. It may later similarly benefit transfers between storage and GPFS on IBM/AIX machines (where now
the high ratio of compute nodes to login nodes poses possible contention problems).

EXAMPLE:
Routing is on by default, but you can restore it with the ROUTING command if needed.

R/Us: nft> routing
R/Us: nft> status
Rtne: Connected to storage as jfk.
 . . .
 Routing: yes

NFT Reference Manual - 78

RPT (Report Job Status)

SYNTAX:

rpt [[n[-m]] | [-opt]]

ROLE:
Reports the current status of your most recent NFT request ("job") by default, or the status of the specific job
with unique job number n (an integer), or the range of jobs with numbers n-m inclusive (using a hyphen, not a
comma, as separator), or all members of the job class specified by any one job-class option opt listed below.

Besides the job number(s) or job class you select, three other factors are relevant to the scope of RPT status
reports:

Record persistence

The NFT server remembers your jobs, their numbers, and their status for up to 4 days
before purging its records. So frequent NFT users will get reports on all members of a job
class throughout this time range, not just on the jobs started with their currently running
NFT client. If this is a problem, use CLR to overtly delete the old(er) records that are no
longer of interest.

Sessions Most NFT uses have only one NFT session, and RPT reports on the jobs (job class
members) in that session. If you start multiple sessions, RPT reports only on the jobs in
your currently selected sesion, ignoring all your jobs in other sessions. This can give you
more control of your status reports or lead to confusion, depending on your awareness
of the sessions you have started. For details on the effect of multiple sessions, see the
Sessions section (keyword: sessions (page 29)).

Verbosity The NFT VERBOSE command (keyword: verbose-levels (page 27)) lets you specify
which state changes NFT reports interactively as it runs (e.g., when jobs begin as well as
when they end). VERBOSE does NOT, however, affect which jobs (or job class members)
NFT includes in RPT status reports, nor the amount of detail provided on each job's status
line. Thus VERBOSE does not change RPT's scope at all, although it does change general
NFT dialog. See the -v option below for a different way to add detail to each line that RPT
reports.

ABT (page 34) (abort) and CLR (page 46) (clear) are NFT commands closely related to RPT. The NFT
STATUS (page 83) command reports on your environment-variable settings, not on your file-transfer jobs.

OPTIONS:
RPT accepts many job-class options opt to specify which set of your NFT jobs you want reported. But RPT
expects you to use these options ONE at a time: combined options (such as -ek or -ke) yield INcomplete status
reports or sometimes return just the warning message

job class? choose from -aichxoek. command rejected.
Possible stand-alone job-classes on which you can request reports include:

-a all jobs that NFT remembers, regardless of state. [If you use multiple NFT sessions (page
29), a rare practice, then -a selects only jobs in the current session, NOT in all the sessions
that you have created, and the other job-class options behave likewise.]

NFT Reference Manual - 79

-i incomplete jobs, waiting to run or not finished running.

-h held jobs, incomplete jobs in the scheduling queue.

-x active jobs, incomplete jobs currently running.

-c complete jobs, that have successfully or unsuccessfully completed running.

-o okay jobs, those that have succesfully completed running.

-e error jobs, that have unsuccessfully completed running.

-k aborted jobs, those that were terminated by the user with ABT.

-v output that has the same scope as other RPT reports but with more detail on each line (adds
the command used or action taken to the usual status message).

EXAMPLE:
A typical annotated example of output from RPT, with the format of each line explained, appears in part of the
Job Reporting section above (keyword: rpt-examples (page 26)).

NFT Reference Manual - 80

SESSION (Change NFT Sessions)

SYNTAX:

session nn | new

ROLE:
Closes your former NFT session (session 0 is the default) and opens a new one, in which the new session
number nn is associated with all your subsequent NFT commands. NFT numbers the jobs in each session with
an increasing sequence of integers that ignores all other sessions (so, e.g., each session may have an unrelated
job numbered 13).

You can reopen a former session by using its session number in this same command (e.g., SESSION 0
reopens that session and closes session 1 if issued while you are in session 1). Reopening a session lets you
check on its jobs with RPT (page 78) or start more jobs associated with it. Here

nn is an integer from 0 through 99 inclusive that uniquely identifies your session.

new causes NFT to choose an unique, unused session number for you, open that session, and
report the identifier chosen. Because NFT remembers your session numbers for up to 4
days and because picking a session number already in use reopens that session rather than
creates a new one, you may sometimes want NFT to open a new session by automatically
picking a number for it that is guaranteed to be unused. To guarantee a fresh session
number, use

session new

NFT gives no overt confirmation when you close one session and open another (just the usual prompt for
input). And RPT status reports do not reveal which session they cover. So to discover which session is now
open (or to confirm a requested change of session) use NFT's STATUS (page 83) command, which reports
the current session number along with other NFT environment settings.

See the Sessions (page 29) section above for a complete analysis of the implications of using multiple NFT
sessions, especially if combined with multiple NFT clients or in batch jobs.

NFT Reference Manual - 81

SETCOS (Change Storage Class of Service)

SYNTAX:

setcos nnn

ROLE:
Sets your class of service (COS) for files subsequently transferred to storage to nnn. See the SETCOS
discussion in LC's HPSS Reference Manual (URL: https://computing.llnl.gov/LCdocs/hpss/index.jsp?
show=s2.1.4) for allowed values of nnn.

You can check the current COS setting for your NFT session with STATUS (page 83). STATUS
dutifully reports any integer nnn that you supply with SETCOS, even if not allowed by HPSS. And when
STATUS reports a COS of 0 (zero), HPSS automatically sets each stored file's COS based on its size according
to the default behavior.

You can discover the COS with which already stored files have been stored by using NFT's DIR (page
52) command with the -h option (COS then appears in the third column in DIR's report). See also the detailed
class of service discussion in LC's HPSS Reference Manual (URL: https://computing.llnl.gov/LCdocs/hpss/
index.jsp?show=s1.2.1).

EXAMPLE:
STATUS here reveals the change (from the default situation) after you use SETCOS.

R/Us: nft> status
Rtne: Connected to storage as jfk.
 . . .
 Cos: 0
R/Us: nft> setcos 120
R/Us: nft> status
Rtne: Connected to storage as jfk.
 . . .
 Cos: 120

https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s2.1.4
https://computing.llnl.gov/LCdocs/hpss/index.jsp?show=s1.2.1

NFT Reference Manual - 82

SOURCE (Use Command File)

SYNTAX:

source pathname

ROLE:
Reads and executes all the NFT commands contained in the text file located at pathname, where

pathname is usually just the name of a file (e.g., extracoms) that you want NFT to read from the
current working directory on the machine where you are running the NFT client. If you
supply an absolute pathname (such as ~/projects/extracoms or /usr/tmp/testdir5/input) then
NFT uses that location instead.

When you use SOURCE NFT's normal response messages continue to appear at your terminal while the
commands in the file execute. (Note that the SOURCEd commands themselves do NOT echo at the terminal:
thus PUT test3 will NOT appear but NFT's response when test3 is stored will appear. This can make some
responses hard to interpret.)

Usually the commands in a SOURCE file are just what you might type at your terminal, one per line. But
you can construct condensed, annotated command files by using # as a comment sentinel, semicolon as a
command separator, and backslash (\) as a line-continuation flag (example below).

You can achieve an effect rather similar to using SOURCE by instead using file redirection (page 21)
on NFT's execute line when you first start your NFT client, but neither the commands in the input file nor
responses that arrive after your client ends will echo at your terminal with this alternative approach.

DEFAULTS:
SOURCE takes no options and there is no default input file.

EXAMPLE:
This example shows a simple 3-line command file for use with SOURCE, and a version altered (in appearance
but not effect) using three sentinel characters mentioned above. These are equivalent command files for use
with SOURCE.

 clobber
 put test4
 get test6

 #shows special characters
 clobber;put test4;get tes\
 t6

NFT Reference Manual - 83

STATUS (Report Environment Variables)

SYNTAX:

status

ROLE:
Reports a list of the current values of NFT's environment variables, including the current session number and
apparent security level. Most of the commands that toggle the values of these variables do not report the result
of their own action, so using STATUS is the best way to confirm changes you have made.

If you need information on the status of file transfers you have requested, use NFT's RPT (page 78)
command rather than STATUS.

EXAMPLE:
Here is a typical NFT response to a STATUS command.

R/Us: nft> status
Rtne: Connected to storage as jfk.
 Session: 0.
 Verbose: 76 (decimal), 4c (hexidecimal).
 Clobber: no.
 Routing: yes.
 Cos: 0.
 Dualcopy: no.
 Job Execution mode: Synchronous.
 Group construct: closed.
 Input from: standard-in.
 Output to standard-out: yes.
 Output to log file: no.

NFT Reference Manual - 84

SYNC (Run Jobs in Series)

SYNTAX:

sync

ROLE:
Begins synchronous mode. Since SYNC is the default setting whenever you run NFT, the SYNC command
serves chiefly to cancel a previous ASYNC (page 35) command. In SYNC mode, NFT executes all your
subsequent commands (jobs) strictly in series, always preserving the order in which you submitted them (with
three exceptions).

NFT supports these three exceptions to or exemptions from SYNC mode:

• multiple-file transfers using GET or PUT,

• command sets flanked by GROUP and ENDGR, and

• commands following ASYNC.

See the command-sequencing (page 16) section above for a comparative analysis of these SYNC exceptions.

The ASYNC, (page 35) GROUP, (page 58) and BLOCK (page 36) commands can all be used to influence
how NFT sequences its jobs. SYNC has no options and returns no mode confirmation, but you can use NFT's
STATUS (page 83) command at any time to discover your current SYNC/ASYNC setting, which persists even
across logical NFT "sessions (page 29)."

NFT Reference Manual - 85

TERM (Enable Terminal Output)

SYNTAX:

term

ROLE:
Causes NFT to display at your terminal output from its executed commands, as well as its interactive prompt
nft> for more input. TERM is NFT's default behavior, so you would normally need to use the overt TERM
command only to reverse your previous use of the NOTERM (page 68) command, which disables terminal
output.

TERM and NOTERM are mutually exclusive alternative settings for an NFT environment variable that
preserves your choice of behavior until you overtly change it (or terminate your NFT client). Only by using
separate NFT clients (not multiple sessions with one client) can you have two sets of environment variable
settings for two sets of NFT jobs at once. See the "sessions (page 29)" section for details.

TERM takes no options and returns no confirmation message, but its use restores the interactive nft>
prompts that are absent after NOTERM.

TIME (Report Current Time)

SYNTAX:

time

ROLE:
Reports the current system time (day, date, hour, minutes, seconds) on the machine where you are running the
NFT client.

NFT Reference Manual - 86

VERBOSE (Control State-Change Reports)

SYNTAX:

verbose mask

ROLE:
Specifies which changes of state for each file-transfer job NFT will report to you, where

mask is a 32-bit mask each of whose bits toggles the reporting of one kind of state change. The
mask's default value is decimal 76. To set the bits, see the table below.

NFT jobs pass through several states from submittal to completion, and you can control how finely NFT
reports on these changes of state by using its VERBOSE option. By default, NFT passes along transfer statistics
from the FTP daemon that actually moves files at NFT's request, as well as sending error and abort diagnostic
messages if a job completes unsuccessfully. But there are other state changes too, and you can request messages
about any or all of them by using the appropriate argument for VERBOSE. (VERBOSE does not change the
detail level covered in status reports from RPT (page 78), nor the environment-variable setting reports from
STATUS (page 83). See instead RPT's -v option.)

Each possible state change for an NFT job corresponds to one bit in a (32-bit) mask that VERBOSE sets.
You request diagnostic messages about a state change by setting its bit in the mask, and you set each bit by
using the decimal value shown in the table below. To request a combination of reports, ADD the corresponding
decimal values and use the sum as the argument for VERBOSE (for example, the default combination of
diagnostic messages corresponds to the sum 4+8+64=76).

State
Change

Decimal
Value

Diagnostic
Meaning

Begin 1 client has submitted job
Done 2 job has completed successfully
Error(*) 4 job has failed (unsuccessfully completed)
Abort(*) 8 job was killed by user
Accepted 16 job was received by server
Reserved -- --
Transfer
stats(*)

64 FTP transfer amount and rate

Start 128 server has started job execution
Progress
errors

256 immediately reports in-progress errors in
secondary jobs

Reserved -- --
 (*)Default verbosity (combination 76)

VERBOSE does not confirm your requests for different state-change reporting, so you must use NFT's
STATUS (page 83) command to verify the current NFT verbosity setting.

NFT Reference Manual - 87

EXAMPLE:
To see how changing the VERBOSE value changes the grain size of state-change reports during NFT dialogs,
compare this default-value exchange (VERBOSE 76)

 User: get test4
 Rtne: 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 nft>

with this maximum-value exchange for the same job (VERBOSE 479):

 User: get test4
 Rtne: 14.0. accept.
 14.0. begin ~/test4
 14.0. start ~/test4
 14.0. 95 bytes received in 1.3 seconds (0.1 Kbytes/s)
 from ~/test4 to /tmp/jfk/test4
 14.0. 1 entry copied ~/test4
 14.0. done. /tmp/jfk/test4
 nft>

NFT Reference Manual - 88

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial products,

process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or the University of

California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government thereof, and shall not be used for advertising or product endorsement purposes.

(C) Copyright 2007 The Regents of the University of California. All rights reserved.

NFT Reference Manual - 89

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 91).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where this program runs.
who Who to contact for assistance.
introduction Overview of NFT and this manual.
execute-line How to run NFT.
 nft-usage Basic NFT execution tips, options.
 nft-features NFT features, limits, assumptions.
 examples Basic NFT sample sessions.
syntax Specifying files, hosts with path prefixes.
prefix Specifying files, hosts with path prefixes.
command-summary NFT commands compared, grouped.
option-summary NFT commands compared, grouped.
 storage-defaulted General vs. storage-defaulted commands.
 environment-variables Setting NFT envr. variables.
 command-sequencing Series vs. parallel execution.
 command-remoteness Local vs. server execution.
 local-commands Locally (client) executed commands.
 server-commands NFT server executed commands.
 immediate-commands Commands executed without scheduling.
 job-commands Commands scheduled by NFT server.
files NFT input and output files.
 log-files Capturing (logging) NFT output.
 output-files Capturing (logging) NFT output.
 log-usage Using LOG and CLOG.
 log-examples Logging techniques and samples.
 input-files Inputting commands from files.
 redirection-input Command file input by redirection.
 source-usage Command file input using SOURCE.
 file-interactions Effect of input files on log files.
job-status Job status, reporting, grouping.
 job-identifiers NFT job numbers and classes.
 job-numbers How NFT uniquely numbers jobs.
 job-classes Hierarchy of NFT job classes.
 job-reporting Making RPT job-status reports.
 rpt-scope Changing scope of RPT reports.
 rpt-examples RPT report format and examples.
 verbose-levels Change-of-state verbosity control.
 sessions Using NFT job sessions.
 session-scope How sessions affect RPT report scope.
 session-usage Multi-session techniques, effects.
 session-transfer Sessions with multiple clients.
scripts Using NFT within batch scripts.
commands Dictionary of NFT commands.
options Dictionary of NFT commands.
 command-syntax NFT command syntax advice.
 abt Abort Incomplete Jobs (command)
 async Run Jobs in Parallel (command)
 block Block or Delay Next Command (command)
 cd Change Working Directory (command)
 cdup Change Working Directory Up (command)

NFT Reference Manual - 90

 chgrp Change Groups (command)
 chkrouting Report Routing Availability (command)
 chmod Change Permissions (command)
 chown Change Owners (command)
 clobber Enable File Overwriting (command)
 clog Close Log File (command)
 close Restore Remote Host (command)
 clr Clear Completed Job Reports (command)
 cp Copy/Transfer Files (command)
 delete Remove Files (command)
 dir List Directory Contents, Long (command)
 dualcopy Store Multiples of Mission Critical Files (command)
 endgr End Asynchronous Group (command)
 get Retrieve Stored Files (command)
 group Begin Asynchronous Group (command)
 help Describe NFT Commands (command)
 lcd Change Local Working Directory (command)
 ln Create a Link (command)
 log Open Log File (command)
 ls List Directory Contents, Short (command)
 mkdir Make Directories (command)
 noclobber Disable File Overwriting (command)
 nodualcopy Undo Dual Copy (command)
 norouting Disable Routing (command)
 noterm Disable Terminal Output (command)
 open Change Remote Host (command)
 put Store Local Files (command)
 pwd Print Working Directory (command)
 quit Terminate NFT Client (command)
 rename Change File Name (command)
 rmdir Remove Directories (command)
 routing Use Login Node Jumbo Frames (command)
 rpt Report Job Status (command)
 session Change NFT Sessions (command)
 setcos Change Storage Class of Service (command)
 source Use Command File (command)
 status Report Environment Variables (command)
 sync Run Jobs in Series (command)
 term Enable Terminal Output (command)
 time Report Current Time (command)
 verbose Control State-Change Reports (command)
index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

NFT Reference Manual - 91

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
abt Abort Incomplete Jobs (command)
availability Where this program runs.
async Run Jobs in Parallel (command)
block Block or Delay Next Command (command)
cd Change Working Directory (command)
cdup Change Working Directory Up (command)
chgrp Change Groups (command)
chkrouting Report Routing Availability (command)
chmod Change Permissions (command)
chown Change Owners (command)
clobber Enable File Overwriting (command)
clog Close Log File (command)
close Restore Remote Host (command)
clr Clear Completed Job Reports (command)
command-remoteness Local vs. server execution.
command-sequencing Series vs. parallel execution.
command-summary NFT commands compared, grouped.
command-syntax NFT command syntax advice.
commands Dictionary of NFT commands.
cp Copy/Transfer Files (command)
date The latest changes to this document.
delete Remove Files (command)
dir List Directory Contents, Long (command)
dualcopy Store Multiples of Mission Critical Files (command)
endgr End Asynchronous Group (command)
entire This entire document.
environment-variables Setting NFT envr. variables.
examples Basic NFT sample sessions.
execute-line How to run NFT.
file-interactions Effect of input files on log files.
files NFT input and output files.
get Retrieve Stored Files (command)
group Begin Asynchronous Group (command)
help Describe NFT Commands (command)
immediate-commands Commands executed without scheduling.
index The structural index of keywords.
input-files Inputting commands from files.
introduction Overview of NFT and this manual.
job-classes Hierarchy of NFT job classes.
job-commands Commands scheduled by NFT server.
job-identifiers NFT job numbers and classes.
job-numbers How NFT uniquely numbers jobs.
job-reporting Making RPT job-status reports.
job-status Job status, reporting, grouping.
lcd Change Local Working Directory (command)
ln Create a Link (command)
local-commands Locally (client) executed commands.
log Open Log File (command)
log-examples Logging techniques and samples.
log-files Capturing (logging) NFT output.
log-usage Using LOG and CLOG.
ls List Directory Contents, Short (command)
mkdir Make Directories (command)

NFT Reference Manual - 92

nft-features NFT features, limits, assumptions.
nft-usage Basic NFT execution tips, options.
noclobber Disable File Overwriting (command)
nodualcopy Undo Dual Copy (command)
norouting Disable Routing (command)
noterm Disable Terminal Output (command)
open Change Remote Host (command)
option-summary NFT commands compared, grouped.
options Dictionary of NFT commands.
output-files Capturing (logging) NFT output.
prefix Specifying files, hosts with path prefixes.
put Store Local Files (command)
pwd Print Working Directory (command)
quit Terminate NFT Client (command)
redirection-input Command file input by redirection.
rename Change File Name (command)
revisions The complete revision history.
rmdir Remove Directories (command)
routing Use Login Node Jumbo Frames (command)
rpt Report Job Status (command)
rpt-examples RPT report format and examples.
rpt-scope Changing scope of RPT reports.
scope Topics covered in this document.
scripts Using NFT within batch scripts.
server-commands NFT server executed commands.
session Change NFT Sessions (command)
session-scope How sessions affect RPT report scope.
session-transfer Sessions with multiple clients.
session-usage Multi-session techniques, effects.
sessions Using NFT job sessions.
setcos Change Storage Class of Service (command)
source Use Command File (command)
source-usage Command file input using SOURCE.
status Report Environment Variables (command)
storage-defaulted General vs. storage-defaulted commands.
sync Run Jobs in Series (command)
syntax Specifying files, hosts with path prefixes.
term Enable Terminal Output (command)
time Report Current Time (command)
title The name of this document.
verbose Control State-Change Reports (command)
verbose-levels Change-of-state verbosity control.
who Who to contact for assistance.

NFT Reference Manual - 93

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
04Sep08 dualcopy New command added, explained
 nodualcopy New command added, explained
 environment-variables
 New variable toggles added.
 index New keywords for new commands.

17Apr07 routing New command added, explained.
 norouting New command added, explained.
 chkrouting New command added, explained.
 setcos New command added, explained.
 rpt New -v verbosity option added.
 status Now reports ROUTING, SETCOS too.
 dir DIR -h reveals SETCOS effect.
 nft-features Routing and COS details added.
 Some error messages expanded.
 environment-variables
 New variable toggles added.
 local-commands New commands added.
 examples All GPS cases replaced, updated.
 index New keywords for new commands.

12Apr06 introduction LANL, Sandia users can now run NFT.
 nft-features LANL, Sandia users can now run NFT.

19Jul05 introduction HOPPER interface to NFT noted.
 nft-features HOPPER interface to NFT noted.

12Oct04 commands Five ACL commands deleted.
 index Keywords for ACL commands hidden.
 storage-defaulted
 ACL commands deleted.
 job-commands ACL commands deleted.
 introduction Note about discontinued commands.

01Jun04 nft-features Two error-message formats noted.

20Jan04 nft-features Many details revised.
 examples Output messages changed here, elsewhere.
 commands Seven commands add -R option.
 cp Added -d option.
 chgrp No longer limited to storage.
 chmod No longer limited to storage.
 dir Many new format options.
 ls Many new format options.
 acladd New command added, shown.
 aclclear New command added, shown.
 aclremove New command added, shown.
 aclreplace New command added, shown.
 aclshow New command added, shown.
 index New keywords for new commands.

29Jul03 introduction HTAR comparative role expanded.
 get HTAR now gets from nonstorage archives.

NFT Reference Manual - 94

 put HTAR now puts into nonstorage archives.

09Oct02 availability NFT on Linux, Furnace replaces Forest.

20Jun02 nft-features Class of service, stored copies added.
 delete Contrast with FTP's MDELETE noted.
 setlev Class of service, stored copies added.

14Feb02 entire Names updated in all examples.

27Aug01 introduction HTAR role and manual noted.
 get When to use HTAR instead of GET.
 put When to use HTAR instead of PUT.

09Nov00 availability DEC becomes Compaq/DEC.
 introduction All CRAY-based examples replaced.
 commands All CRAY-based examples replaced.

24May00 scope EZSTORAGE relevance noted.
 introduction EZSTORAGE relevance noted.
 chgrp CHGRPSTG in EZSTORAGE noted.
 chmod CHMODSTG in EZSTORAGE noted.

03Aug98 availability NFT now on open DECs, open IBM.
 introduction Section expanded, clarified.
 dir Four suboptions disabled.
 ls Four suboptions disabled.

20Nov97 availability Only client hosts accept NFT transfers.
 nft-features Special characters added, limits revised.
 storage-defaulted
 Keyword changed, OPEN role noted.
 redirection-input
 Quoted commands explained, compared.
 session-transfer
 SESSION NEW for batch noted.
 command-syntax
 Cross references expanded.
 open Undocumented command added.
 close Undocumented command added.
 commands Many cross refs to OPEN added.
 scripts New script-use tips added.

29Sep97 availability NFT now on SCF IBM SP (SKY).

02Sep97 availability NFT now on all SCF DECs.

18Aug97 availability NFT now on OAK (SCF DEC) too.

03Jul97 execute-line -S security option persists disabled.
 examples -S option deleted from sample.
 setlev Command persists but role disabled.
 status Sec. level reported but disabled.
 redirection-input
 -S option deleted from example.
 environment-variables
 SETLEV role changed.

21Nov96 commands Detailed NFT command dictionary added.
 nft-usage More details added.

NFT Reference Manual - 95

 nft-features Suboption use clarified.
 command-sequencing
 Example revised.
 source-usage Example revised.

17Oct96 entire First edition of NFT reference manual.

 EJG (04Sep08)

UCRL-WEB-201529
LLNL Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
EJG (04Sep08) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

http://www.llnl.gov/disclaimer.html

