
UCID-19631,19632,19633

SLATEC5 (REBAK through ZBIRY)

SLATEC5 (REBAK through ZBIRY) - 1

Table of Contents

Preface 8
Introduction 9

Using SLATEC Documentation 9
Loading SLATEC Under UNICOS 9

Subroutine Descriptions 11
REBAK 11
REBAKB 13
REDUC 15
REDUC2 17
RF 19
RFFTB1 24
RFFTF1 26
RFFTI1 28
RG 29
RGAUSS 31
RGG 32
RJ 34
RPQR79 40
RPZERO 41
RS 42
RSB 44
RSG 46
RSGAB 48
RSGBA 50
RSP 52
RST 54
RT 56
RUNIF 58
SASUM 59
SAXPY 60
SBCG 61
SBHIN 66
SBOCLS 69
SBOLS 78
SCASUM 85
SCG 86
SCGN 91
SCGS 96
SCHDC 101
SCHDD 103
SCHEX 106
SCHUD 109
SCNRM2 111

SLATEC5 (REBAK through ZBIRY) - 2

SCOPY 113
SCOPYM 114
SCOV 115
SCPPLT 118
SDASSL 121
SDOT 137
SDRIV1 138
SDRIV2 143
SDRIV3 149
SDSDOT 162
SEPELI 163
SEPX4 171
SGBCO 178
SGBDI 181
SGBFA 182
SGBMV 184
SGBSL 187
SGECO 189
SGEDI 191
SGEEV 193
SGEFA 195
SGEFS 197
SGEIR 199
SGEMM 201
SGEMV 204
SGER 206
SGESL 208
SGLSS 210
SGMRES 213
SGTSL 220
SINDG 222
SINQB 223
SINQF 225
SINQI 227
SINT 228
SINTI 230
SINTRP 231
SIR 232
SLLTI2 237
SLPDOC 239
SNBCO 247
SNBDI 250
SNBFA 251
SNBFS 253
SNBIR 256
SNBSL 259

SLATEC5 (REBAK through ZBIRY) - 3

SNLS1 261
SNLS1E 272
SNRM2 281
SNSQ 283
SNSQE 291
SOMN 297
SOS 302
SPBCO 306
SPBDI 308
SPBFA 309
SPBSL 311
SPENC 313
SPLP 314
SPOCO 340
SPODI 342
SPOFA 344
SPOFS 345
SPOIR 347
SPOSL 349
SPPCO 351
SPPDI 353
SPPERM 355
SPPFA 356
SPPSL 358
SPSORT 360
SPTSL 362
SQRDC 363
SQRSL 365
SROT 368
SROTG 369
SROTM 371
SROTMG 373
SS2LT 375
SS2Y 377
SSBMV 380
SSCAL 383
SSD2S 384
SSDBCG 386
SSDCG 390
SSDCGN 394
SSDCGS 398
SSDGMR 402
SSDI 408
SSDOMN 410
SSDS 414
SSDSCL 416

SLATEC5 (REBAK through ZBIRY) - 4

SSGS 419
SSICCG 423
SSICO 427
SSICS 429
SSIDI 432
SSIEV 434
SSIFA 436
SSILUR 438
SSILUS 442
SSISL 445
SSJAC 447
SSLI 451
SSLI2 452
SSLLTI 454
SSLUBC 455
SSLUCN 459
SSLUCS 463
SSLUGM 467
SSLUI 473
SSLUI2 474
SSLUI4 477
SSLUOM 480
SSLUTI 484
SSMMI2 485
SSMMTI 488
SSMTV 489
SSMV 491
SSORT 493
SSPCO 494
SSPDI 496
SSPEV 498
SSPFA 500
SSPMV 502
SSPR 504
SSPR2 506
SSPSL 508
SSVDC 510
SSWAP 512
SSYMM 513
SSYMV 516
SSYR 518
SSYR2 520
SSYR2K 522
SSYRK 525
STBMV 528
STBSV 531

SLATEC5 (REBAK through ZBIRY) - 5

STEPS 534
STIN 537
STOUT 540
STPMV 542
STPSV 544
STRCO 546
STRDI 548
STRMM 550
STRMV 553
STRSL 555
STRSM 557
STRSV 560
TINVIT 562
TQL1 564
TQL2 566
TQLRAT 568
TRBAK1 570
TRBAK3 572
TRED1 574
TRED2 576
TRED3 578
TRI3 580
TRIDIB 581
TSTURM 583
ULSIA 585
WNNLS 588
XADD 593
XADJ 594
XC210 595
XCON 596
XERCLR 597
XERDMP 598
XERMAX 599
XERMSG 600
XGETF 604
XGETUA 605
XGETUN 606
XLEGF 607
XNRMP 610
XRED 613
XSET 614
XSETF 618
XSETUA 619
XSETUN 620
ZAIRY 621
ZBESH 624

SLATEC5 (REBAK through ZBIRY) - 6

ZBESI 627
ZBESJ 630
ZBESK 633
ZBESY 636
ZBIRY 639

Disclaimer 642
Structural Keyword Index 643
Date and Revisions 648

SLATEC5 (REBAK through ZBIRY) - 7

Preface

Scope: SLATEC5 contains brief descriptions ("prologues") for the SLATEC (version 4.1)
mathematical library subroutines with names from REBAK through ZBIRY.

Availability: The SLATEC library is downloadable through LINMath (URL:
http://www.llnl.gov/LCdocs/nmg1) and can be run on all LC production computers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slatec5/slatec5.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slatec5/slatec5_scf.pdf

SLATEC5 (REBAK through ZBIRY) - 8

http://www.llnl.gov/LCdocs/nmg1
http://www.llnl.gov/LCdocs/slatec5/slatec5.pdf

Introduction

Using SLATEC Documentation
Over 1600 pages of online documentation describe the 902 user-callable subroutines available in version

4.1 of the SLATEC library. Because of this unwieldy bulk, the documentation is published in five separate,
but interrelated, volumes:

SLATEC1 provides introductory information on the whole library, explains the subject categories
into which the SLATEC routines are grouped, and includes short descriptions of all
routines (alphabetical within each subject category). Every category code is also a
link (keyword) for retrieving the brief descriptions of the included routines. SLATEC1
provides the only way to compare related routines by the tasks they perform, rather
than just by name.

SLATEC2 contains the calling sequence and usage details for each of the 225 subroutines from
AAAAAA through D9UPAK, arranged alphabetically by name. Every subroutine
name is also a link (keyword) for retrieving the corresponding description if you start
at the index.

SLATEC3 contains the calling sequence and usage details for each of the 225 subroutines from
DACOSH through DS2Y, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC4 contains the calling sequence and usage details for each of the 226 subroutines from
DSBMV through RD, arranged alphabetically by name. Every subroutine name is
also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC5 (THIS DOCUMENT) contains the calling sequence and usage details for each of the
226 subroutines from REBAK through ZBIRY, arranged alphabetically by name.
Every subroutine name is also a link (keyword) for retrieving the corresponding
description if you start at the index.

You can consult any of these documents from any open machine by running your choice of WWW
client and selecting the document you want from the descriptive LC collection directory available at . Or
you can specifically request the URL

 http://www.llnl.gov/LCdocs/slatecn

where slatecn is any one of slatec1 through slatec5, depending on which volume you want.

Loading SLATEC Under UNICOS
On LC machines, the SLATEC math library file is called LIBSLATEC.A and has the full pathname

SLATEC5 (REBAK through ZBIRY) - 9

http://www.llnl.gov/LCdocs/slatec1
http://www.llnl.gov/LCdocs/slatec2
http://www.llnl.gov/LCdocs/slatec3
http://www.llnl.gov/LCdocs/slatec4
http://www.llnl.gov/LCdocs/slatec5

 /usr/local/lib/libslatec.a
The routines in LIBSLATEC.A may use externals in LIBSCI for optimization, and that library is on the
default search path (loaded automatically) under UNICOS.

SLATEC5 (REBAK through ZBIRY) - 10

Subroutine Descriptions

REBAK

 SUBROUTINE REBAK (NM, N, B, DL, M, Z)
 ***BEGIN PROLOGUE REBAK
 ***PURPOSE Form the eigenvectors of a generalized symmetric
 eigensystem from the eigenvectors of derived matrix output
 from REDUC or REDUC2.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (REBAK-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure REBAKA,
 NUM. MATH. 11, 99-110(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971).

 This subroutine forms the eigenvectors of a generalized
 SYMMETRIC eigensystem by back transforming those of the
 derived symmetric matrix determined by REDUC or REDUC2.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, B and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix system. N is an INTEGER
 variable. N must be less than or equal to NM.

 B contains information about the similarity transformation
 (Cholesky decomposition) used in the reduction by REDUC
 or REDUC2 in its strict lower triangle. B is a two-
 dimensional REAL array, dimensioned B(NM,N).

 DL contains further information about the transformation.
 DL is a one-dimensional REAL array, dimensioned DL(N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 Z contains the eigenvectors to be back transformed in its
 first M columns. Z is a two-dimensional REAL array
 dimensioned Z(NM,M).

 On Output

 Z contains the transformed eigenvectors in its first
 M columns.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

SLATEC5 (REBAK through ZBIRY) - 11

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 12

REBAKB

 SUBROUTINE REBAKB (NM, N, B, DL, M, Z)
 ***BEGIN PROLOGUE REBAKB
 ***PURPOSE Form the eigenvectors of a generalized symmetric
 eigensystem from the eigenvectors of derived matrix output
 from REDUC2.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (REBAKB-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure REBAKB,
 NUM. MATH. 11, 99-110(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971).

 This subroutine forms the eigenvectors of a generalized
 SYMMETRIC eigensystem by back transforming those of the
 derived symmetric matrix determined by REDUC2.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, B and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix system. N is an INTEGER
 variable. N must be less than or equal to NM.

 B contains information about the similarity transformation
 (Cholesky decomposition) used in the reduction by REDUC2
 in its strict lower triangle. B is a two-dimensional
 REAL array, dimensioned B(NM,N).

 DL contains further information about the transformation.
 DL is a one-dimensional REAL array, dimensioned DL(N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 Z contains the eigenvectors to be back transformed in its
 first M columns. Z is a two-dimensional REAL array
 dimensioned Z(NM,M).

 On Output

 Z contains the transformed eigenvectors in its first
 M columns.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,

SLATEC5 (REBAK through ZBIRY) - 13

 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 14

REDUC

 SUBROUTINE REDUC (NM, N, A, B, DL, IERR)
 ***BEGIN PROLOGUE REDUC
 ***PURPOSE Reduce a generalized symmetric eigenproblem to a standard
 symmetric eigenproblem using Cholesky factorization.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1C
 ***TYPE SINGLE PRECISION (REDUC-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure REDUC1,
 NUM. MATH. 11, 99-110(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971).

 This subroutine reduces the generalized SYMMETRIC eigenproblem
 Ax=(LAMBDA)Bx, where B is POSITIVE DEFINITE, to the standard
 symmetric eigenproblem using the Cholesky factorization of B.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and B, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. If the Cholesky
 factor L of B is already available, N should be prefixed
 with a minus sign. N is an INTEGER variable.

 A and B contain the real symmetric input matrices. Only
 the full upper triangles of the matrices need be supplied.
 If N is negative, the strict lower triangle of B contains,
 instead, the strict lower triangle of its Cholesky factor L.
 A and B are two-dimensional REAL arrays, dimensioned A(NM,N)
 and B(NM,N).

 DL contains, if N is negative, the diagonal elements of L.
 DL is a one-dimensional REAL array, dimensioned DL(N).

 On Output

 A contains in its full lower triangle the full lower triangle
 of the symmetric matrix derived from the reduction to the
 standard form. The strict upper triangle of A is unaltered.

 B contains in its strict lower triangle the strict lower
 triangle of its Cholesky factor L. The full upper triangle
 of B is unaltered.

 DL contains the diagonal elements of L.

 IERR is an INTEGER flag set to
 Zero for normal return,
 7*N+1 if B is not positive definite.

 Questions and comments should be directed to B. S. Garbow,

SLATEC5 (REBAK through ZBIRY) - 15

 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 16

REDUC2

 SUBROUTINE REDUC2 (NM, N, A, B, DL, IERR)
 ***BEGIN PROLOGUE REDUC2
 ***PURPOSE Reduce a certain generalized symmetric eigenproblem to a
 standard symmetric eigenproblem using Cholesky
 factorization.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1C
 ***TYPE SINGLE PRECISION (REDUC2-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure REDUC2,
 NUM. MATH. 11, 99-110(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971).

 This subroutine reduces the generalized SYMMETRIC eigenproblems
 ABx=(LAMBDA)x OR BAy=(LAMBDA)y, where B is POSITIVE DEFINITE,
 to the standard symmetric eigenproblem using the Cholesky
 factorization of B.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and B, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. If the Cholesky
 factor L of B is already available, N should be prefixed
 with a minus sign. N is an INTEGER variable.

 A and B contain the real symmetric input matrices. Only
 the full upper triangles of the matrices need be supplied.
 If N is negative, the strict lower triangle of B contains,
 instead, the strict lower triangle of its Cholesky factor L.
 A and B are two-dimensional REAL arrays, dimensioned A(NM,N)
 and B(NM,N).

 DL contains, if N is negative, the diagonal elements of L.
 DL is a one-dimensional REAL array, dimensioned DL(N).

 On Output

 A contains in its full lower triangle the full lower triangle
 of the symmetric matrix derived from the reduction to the
 standard form. The strict upper triangle of A is unaltered.

 B contains in its strict lower triangle the strict lower
 triangle of its Cholesky factor L. The full upper triangle
 of B is unaltered.

 DL contains the diagonal elements of L.

 IERR is an INTEGER flag set to
 Zero for normal return,
 7*N+1 if B is not positive definite.

SLATEC5 (REBAK through ZBIRY) - 17

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 18

RF

 REAL FUNCTION RF (X, Y, Z, IER)
 ***BEGIN PROLOGUE RF
 ***PURPOSE Compute the incomplete or complete elliptic integral of the
 1st kind. For X, Y, and Z non-negative and at most one of
 them zero, RF(X,Y,Z) = Integral from zero to infinity of
 -1/2 -1/2 -1/2
 (1/2)(t+X) (t+Y) (t+Z) dt.
 If X, Y or Z is zero, the integral is complete.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE SINGLE PRECISION (RF-S, DRF-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE FIRST KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. RF
 Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
 of the first kind
 Standard FORTRAN function routine
 Single precision version
 The routine calculates an approximation result to
 RF(X,Y,Z) = Integral from zero to infinity of

 -1/2 -1/2 -1/2
 (1/2)(t+X) (t+Y) (t+Z) dt,

 where X, Y, and Z are nonnegative and at most one of them
 is zero. If one of them is zero, the integral is COMPLETE.
 The duplication theorem is iterated until the variables are
 nearly equal, and the function is then expanded in Taylor
 series to fifth order.

 2. Calling Sequence
 RF(X, Y, Z, IER)

 Parameters on Entry
 Values assigned by the calling routine

 X - Single precision, nonnegative variable

 Y - Single precision, nonnegative variable

 Z - Single precision, nonnegative variable

SLATEC5 (REBAK through ZBIRY) - 19

 On Return (values assigned by the RF routine)

 RF - Single precision approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z are unaltered.

 3. Error Messages

 Value of IER assigned by the RF routine

 Value assigned Error Message Printed
 IER = 1 MIN(X,Y,Z) .LT. 0.0E0
 = 2 MIN(X+Y,X+Z,Y+Z) .LT. LOLIM
 = 3 MAX(X,Y,Z) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X, Y and Z

 LOLIM - Lower limit of valid arguments

 Not less than 5 * (machine minimum).

 UPLIM - Upper limit of valid arguments

 Not greater than (machine maximum) / 5.

 Acceptable Values For: LOLIM UPLIM
 IBM 360/370 SERIES : 3.0E-78 1.0E+75
 CDC 6000/7000 SERIES : 1.0E-292 1.0E+321
 UNIVAC 1100 SERIES : 1.0E-37 1.0E+37
 CRAY : 2.3E-2466 1.09E+2465
 VAX 11 SERIES : 1.5E-38 3.0E+37

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

SLATEC5 (REBAK through ZBIRY) - 20

 ERRTOL - Relative error due to truncation is less than
 ERRTOL ** 6 / (4 * (1-ERRTOL) .

 The accuracy of the computed approximation to the inte-
 gral can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the trunca-
 tion error there will be round-off error, but in prac-
 tice the total error from both sources is usually less
 than the amount given in the table.

 Sample Choices: ERRTOL Relative Truncation
 error less than
 1.0E-3 3.0E-19
 3.0E-3 2.0E-16
 1.0E-2 3.0E-13
 3.0E-2 2.0E-10
 1.0E-1 3.0E-7

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 RF Special Comments

 Check by addition theorem: RF(X,X+Z,X+W) + RF(Y,Y+Z,Y+W)
 = RF(0,Z,W), where X,Y,Z,W are positive and X * Y = Z * W.

 On Input:

 X, Y, and Z are the variables in the integral RF(X,Y,Z).

 On Output:

 X, Y, and Z are unaltered.

 **

 Warning: Changes in the program may improve speed at the
 expense of robustness.

SLATEC5 (REBAK through ZBIRY) - 21

 Special Functions via RF

 Legendre form of ELLIPTIC INTEGRAL of 1st kind
 --

 2 2 2
 F(PHI,K) = SIN(PHI) RF(COS (PHI),1-K SIN (PHI),1)

 2
 K(K) = RF(0,1-K ,1)

 PI/2 2 2 -1/2
 = INT (1-K SIN (PHI)) D PHI
 0

 Bulirsch form of ELLIPTIC INTEGRAL of 1st kind
 --

 2 2 2
 EL1(X,KC) = X RF(1,1+KC X ,1+X)

 Lemniscate constant A

 1 4 -1/2
 A = INT (1-S) DS = RF(0,1,2) = RF(0,2,1)
 0

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2

SLATEC5 (REBAK through ZBIRY) - 22

 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC))
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 23

RFFTB1

 SUBROUTINE RFFTB1 (N, C, CH, WA, IFAC)
 ***BEGIN PROLOGUE RFFTB1
 ***PURPOSE Compute the backward fast Fourier transform of a real
 coefficient array.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (RFFTB1-S, CFFTB1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine RFFTB1 computes the real periodic sequence from its
 Fourier coefficients (Fourier synthesis). The transform is defined
 below at output parameter C.

 The arrays WA and IFAC which are used by subroutine RFFTB1 must be
 initialized by calling subroutine RFFTI1.

 Input Arguments

 N the length of the array R to be transformed. The method
 is most efficient when N is a product of small primes.
 N may change so long as different work arrays are provided.

 C a real array of length N which contains the sequence
 to be transformed.

 CH a real work array of length at least N.

 WA a real work array which must be dimensioned at least N.

 IFAC an integer work array which must be dimensioned at least 15.

 The WA and IFAC arrays must be initialized by calling
 subroutine RFFTI1, and different WA and IFAC arrays must be
 used for each different value of N. This initialization
 does not have to be repeated so long as N remains unchanged.
 Thus subsequent transforms can be obtained faster than the
 first. The same WA and IFAC arrays can be used by RFFTF1
 and RFFTB1.

 Output Argument

 C For N even and for I = 1,...,N

 C(I) = C(1)+(-1)**(I-1)*C(N)

 plus the sum from K=2 to K=N/2 of

 2.*C(2*K-2)*COS((K-1)*(I-1)*2*PI/N)

 -2.*C(2*K-1)*SIN((K-1)*(I-1)*2*PI/N)

 For N odd and for I = 1,...,N

 C(I) = C(1) plus the sum from K=2 to K=(N+1)/2 of

SLATEC5 (REBAK through ZBIRY) - 24

 2.*C(2*K-2)*COS((K-1)*(I-1)*2*PI/N)

 -2.*C(2*K-1)*SIN((K-1)*(I-1)*2*PI/N)

 Notes: This transform is unnormalized since a call of RFFTF1
 followed by a call of RFFTB1 will multiply the input
 sequence by N.

 WA and IFAC contain initialization calculations which must
 not be destroyed between calls of subroutine RFFTF1 or
 RFFTB1.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RADB2, RADB3, RADB4, RADB5, RADBG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 25

RFFTF1

 SUBROUTINE RFFTF1 (N, C, CH, WA, IFAC)
 ***BEGIN PROLOGUE RFFTF1
 ***PURPOSE Compute the forward transform of a real, periodic sequence.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (RFFTF1-S, CFFTF1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine RFFTF1 computes the Fourier coefficients of a real
 periodic sequence (Fourier analysis). The transform is defined
 below at output parameter C.

 The arrays WA and IFAC which are used by subroutine RFFTB1 must be
 initialized by calling subroutine RFFTI1.

 Input Arguments

 N the length of the array R to be transformed. The method
 is most efficient when N is a product of small primes.
 N may change so long as different work arrays are provided.

 C a real array of length N which contains the sequence
 to be transformed.

 CH a real work array of length at least N.

 WA a real work array which must be dimensioned at least N.

 IFAC an integer work array which must be dimensioned at least 15.

 The WA and IFAC arrays must be initialized by calling
 subroutine RFFTI1, and different WA and IFAC arrays must be
 used for each different value of N. This initialization
 does not have to be repeated so long as N remains unchanged.
 Thus subsequent transforms can be obtained faster than the
 first. The same WA and IFAC arrays can be used by RFFTF1
 and RFFTB1.

 Output Argument

 C C(1) = the sum from I=1 to I=N of R(I)

 If N is even set L = N/2; if N is odd set L = (N+1)/2

 then for K = 2,...,L

 C(2*K-2) = the sum from I = 1 to I = N of

 C(I)*COS((K-1)*(I-1)*2*PI/N)

 C(2*K-1) = the sum from I = 1 to I = N of

 -C(I)*SIN((K-1)*(I-1)*2*PI/N)

SLATEC5 (REBAK through ZBIRY) - 26

 If N is even

 C(N) = the sum from I = 1 to I = N of

 (-1)**(I-1)*C(I)

 Notes: This transform is unnormalized since a call of RFFTF1
 followed by a call of RFFTB1 will multiply the input
 sequence by N.

 WA and IFAC contain initialization calculations which must
 not be destroyed between calls of subroutine RFFTF1 or
 RFFTB1.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RADF2, RADF3, RADF4, RADF5, RADFG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 27

RFFTI1

 SUBROUTINE RFFTI1 (N, WA, IFAC)
 ***BEGIN PROLOGUE RFFTI1
 ***PURPOSE Initialize a real and an integer work array for RFFTF1 and
 RFFTB1.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A1
 ***TYPE SINGLE PRECISION (RFFTI1-S, CFFTI1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine RFFTI1 initializes the work arrays WA and IFAC which are
 used in both RFFTF1 and RFFTB1. The prime factorization of N and a
 tabulation of the trigonometric functions are computed and stored in
 IFAC and WA, respectively.

 Input Argument

 N the length of the sequence to be transformed.

 Output Arguments

 WA a real work array which must be dimensioned at least N.

 IFAC an integer work array which must be dimensioned at least 15.

 The same work arrays can be used for both RFFTF1 and RFFTB1 as long
 as N remains unchanged. Different WA and IFAC arrays are required
 for different values of N. The contents of WA and IFAC must not be
 changed between calls of RFFTF1 or RFFTB1.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL, and
 (c) changing definition of variable TPI by using
 FORTRAN intrinsic functions instead of DATA
 statements.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 28

RG

 SUBROUTINE RG (NM, N, A, WR, WI, MATZ, Z, IV1, FV1, IERR)
 ***BEGIN PROLOGUE RG
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real general matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A2
 ***TYPE SINGLE PRECISION (RG-S, CG-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 To find the eigenvalues and eigenvectors (if desired)
 of a REAL GENERAL matrix.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the real general matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 A has been destroyed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues. The eigenvalues are unordered except
 that complex conjugate pairs of eigenvalues appear consecu-
 tively with the eigenvalue having the positive imaginary part
 first. If an error exit is made, the eigenvalues should be
 correct for indices IERR+1, IERR+2, ..., N. WR and WI are
 one-dimensional REAL arrays, dimensioned WR(N) and WI(N).

 Z contains the real and imaginary parts of the eigenvectors
 if MATZ is not zero. If the J-th eigenvalue is real, the
 J-th column of Z contains its eigenvector. If the J-th
 eigenvalue is complex with positive imaginary part, the
 J-th and (J+1)-th columns of Z contain the real and
 imaginary parts of its eigenvector. The conjugate of this
 vector is the eigenvector for the conjugate eigenvalue.
 Z is a two-dimensional REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,

SLATEC5 (REBAK through ZBIRY) - 29

 J if the J-th eigenvalue has not been
 determined after a total of 30 iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 IV1 and FV1 are one-dimensional temporary storage arrays of
 dimension N. IV1 is of type INTEGER and FV1 of type REAL.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED BALANC, BALBAK, ELMHES, ELTRAN, HQR, HQR2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 921103 Corrected description of IV1. (DWL, FNF and WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 30

RGAUSS

 FUNCTION RGAUSS (XMEAN, SD)
 ***BEGIN PROLOGUE RGAUSS
 ***PURPOSE Generate a normally distributed (Gaussian) random number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY L6A14
 ***TYPE SINGLE PRECISION (RGAUSS-S)
 ***KEYWORDS FNLIB, GAUSSIAN, NORMAL, RANDOM NUMBER, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Generate a normally distributed random number, i.e., generate random
 numbers with a Gaussian distribution. These random numbers are not
 exceptionally good -- especially in the tails of the distribution,
 but this implementation is simple and suitable for most applications.
 See R. W. Hamming, Numerical Methods for Scientists and Engineers,
 McGraw-Hill, 1962, pages 34 and 389.

 Input Arguments --
 XMEAN the mean of the Guassian distribution.
 SD the standard deviation of the Guassian function
 EXP (-1/2 * (X-XMEAN)**2 / SD**2)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED RAND
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 910819 Added EXTERNAL statement for RAND due to problem on IBM
 RS 6000. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 31

RGG

 SUBROUTINE RGG (NM, N, A, B, ALFR, ALFI, BETA, MATZ, Z, IERR)
 ***BEGIN PROLOGUE RGG
 ***PURPOSE Compute the eigenvalues and eigenvectors for a real
 generalized eigenproblem.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4B2
 ***TYPE SINGLE PRECISION (RGG-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 for the REAL GENERAL GENERALIZED eigenproblem Ax = (LAMBDA)Bx.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real general matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 B contains a real general matrix. B is a two-dimensional
 REAL array, dimensioned B(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 A and B have been destroyed.

 ALFR and ALFI contain the real and imaginary parts,
 respectively, of the numerators of the eigenvalues.
 ALFR and ALFI are one-dimensional REAL arrays,
 dimensioned ALFR(N) and ALFI(N).

 BETA contains the denominators of the eigenvalues,
 which are thus given by the ratios (ALFR+I*ALFI)/BETA.
 Complex conjugate pairs of eigenvalues appear consecutively
 with the eigenvalue having the positive imaginary part first.
 BETA is a one-dimensional REAL array, dimensioned BETA(N).

 Z contains the real and imaginary parts of the eigenvectors
 if MATZ is not zero. If the J-th eigenvalue is real, the
 J-th column of Z contains its eigenvector. If the J-th
 eigenvalue is complex with positive imaginary part, the
 J-th and (J+1)-th columns of Z contain the real and
 imaginary parts of its eigenvector. The conjugate of this

SLATEC5 (REBAK through ZBIRY) - 32

 vector is the eigenvector for the conjugate eigenvalue.
 Z is a two-dimensional REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED QZHES, QZIT, QZVAL, QZVEC
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 33

RJ

 REAL FUNCTION RJ (X, Y, Z, P, IER)
 ***BEGIN PROLOGUE RJ
 ***PURPOSE Compute the incomplete or complete (X or Y or Z is zero)
 elliptic integral of the 3rd kind. For X, Y, and Z non-
 negative, at most one of them zero, and P positive,
 RJ(X,Y,Z,P) = Integral from zero to infinity of
 -1/2 -1/2 -1/2 -1
 (3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
 ***LIBRARY SLATEC
 ***CATEGORY C14
 ***TYPE SINGLE PRECISION (RJ-S, DRJ-D)
 ***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
 INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE THIRD KIND,
 TAYLOR SERIES
 ***AUTHOR Carlson, B. C.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Notis, E. M.
 Ames Laboratory-DOE
 Iowa State University
 Ames, IA 50011
 Pexton, R. L.
 Lawrence Livermore National Laboratory
 Livermore, CA 94550
 ***DESCRIPTION

 1. RJ
 Standard FORTRAN function routine
 Single precision version
 The routine calculates an approximation result to
 RJ(X,Y,Z,P) = Integral from zero to infinity of

 -1/2 -1/2 -1/2 -1
 (3/2)(t+X) (t+Y) (t+Z) (t+P) dt,

 where X, Y, and Z are nonnegative, at most one of them is
 zero, and P is positive. If X or Y or Z is zero, the
 integral is COMPLETE. The duplication theorem is iterated
 until the variables are nearly equal, and the function is
 then expanded in Taylor series to fifth order.

 2. Calling Sequence
 RJ(X, Y, Z, P, IER)

 Parameters On Entry
 Values assigned by the calling routine

 X - Single precision, nonnegative variable

 Y - Single precision, nonnegative variable

 Z - Single precision, nonnegative variable

 P - Single precision, positive variable

SLATEC5 (REBAK through ZBIRY) - 34

 On Return (values assigned by the RJ routine)

 RJ - Single precision approximation to the integral

 IER - Integer

 IER = 0 Normal and reliable termination of the
 routine. It is assumed that the requested
 accuracy has been achieved.

 IER > 0 Abnormal termination of the routine

 X, Y, Z, P are unaltered.

 3. Error Messages

 Value of IER assigned by the RJ routine

 Value Assigned Error Message Printed
 IER = 1 MIN(X,Y,Z) .LT. 0.0E0
 = 2 MIN(X+Y,X+Z,Y+Z,P) .LT. LOLIM
 = 3 MAX(X,Y,Z,P) .GT. UPLIM

 4. Control Parameters

 Values of LOLIM, UPLIM, and ERRTOL are set by the
 routine.

 LOLIM and UPLIM determine the valid range of X Y, Z, and P

 LOLIM is not less than the cube root of the value
 of LOLIM used in the routine for RC.

 UPLIM is not greater than 0.3 times the cube root of
 the value of UPLIM used in the routine for RC.

 Acceptable Values For: LOLIM UPLIM
 IBM 360/370 SERIES : 2.0E-26 3.0E+24
 CDC 6000/7000 SERIES : 5.0E-98 3.0E+106
 UNIVAC 1100 SERIES : 5.0E-13 6.0E+11
 CRAY : 1.32E-822 1.4E+821
 VAX 11 SERIES : 2.5E-13 9.0E+11

 ERRTOL determines the accuracy of the answer

 The value assigned by the routine will result
 in solution precision within 1-2 decimals of
 "machine precision".

SLATEC5 (REBAK through ZBIRY) - 35

 Relative error due to truncation of the series for RJ
 is less than 3 * ERRTOL ** 6 / (1 - ERRTOL) ** 3/2.

 The accuracy of the computed approximation to the inte-
 gral can be controlled by choosing the value of ERRTOL.
 Truncation of a Taylor series after terms of fifth order
 Introduces an error less than the amount shown in the
 second column of the following table for each value of
 ERRTOL in the first column. In addition to the trunca-
 tion error there will be round-off error, but in prac-
 tice the total error from both sources is usually less
 than the amount given in the table.

 Sample choices: ERRTOL Relative Truncation
 error less than
 1.0E-3 4.0E-18
 3.0E-3 3.0E-15
 1.0E-2 4.0E-12
 3.0E-2 3.0E-9
 1.0E-1 4.0E-6

 Decreasing ERRTOL by a factor of 10 yields six more
 decimal digits of accuracy at the expense of one or
 two more iterations of the duplication theorem.

 *Long Description:

 RJ Special Comments

 Check by addition theorem: RJ(X,X+Z,X+W,X+P)
 + RJ(Y,Y+Z,Y+W,Y+P) + (A-B) * RJ(A,B,B,A) + 3 / SQRT(A)
 = RJ(0,Z,W,P), where X,Y,Z,W,P are positive and X * Y
 = Z * W, A = P * P * (X+Y+Z+W), B = P * (P+X) * (P+Y),
 and B - A = P * (P-Z) * (P-W). The sum of the third and
 fourth terms on the left side is 3 * RC(A,B).

 On Input:

 X, Y, Z, and P are the variables in the integral RJ(X,Y,Z,P).

 On Output:

 X, Y, Z, and P are unaltered.

 **

 Warning: Changes in the program may improve speed at the
 expense of robustness.

 --
SLATEC5 (REBAK through ZBIRY) - 36

 Special Functions via RJ and RF

 Legendre form of ELLIPTIC INTEGRAL of 3rd kind
 --

 PHI 2 -1
 P(PHI,K,N) = INT (1+N SIN (THETA)) *
 0

 2 2 -1/2
 *(1-K SIN (THETA)) D THETA

 2 2 2
 = SIN (PHI) RF(COS (PHI), 1-K SIN (PHI),1)

 3 2 2 2
 -(N/3) SIN (PHI) RJ(COS (PHI),1-K SIN (PHI),

 2
 1,1+N SIN (PHI))

 Bulirsch form of ELLIPTIC INTEGRAL of 3rd kind
 --

 2 2 2
 EL3(X,KC,P) = X RF(1,1+KC X ,1+X) +

 3 2 2 2 2
 +(1/3)(1-P) X RJ(1,1+KC X ,1+X ,1+PX)

 2
 CEL(KC,P,A,B) = A RF(0,KC ,1) +

 2
 +(1/3)(B-PA) RJ(0,KC ,1,P)

 Heuman's LAMBDA function

 2 2 2 1/2
 L(A,B,P) = (COS(A)SIN(B)COS(B)/(1-COS (A)SIN (B)))

 2 2 2
 *(SIN(P) RF(COS (P),1-SIN (A) SIN (P),1)

 2 3 2 2
 +(SIN (A) SIN (P)/(3(1-COS (A) SIN (B))))

SLATEC5 (REBAK through ZBIRY) - 37

 2 2 2
 *RJ(COS (P),1-SIN (A) SIN (P),1,1-

 2 2 2 2
 -SIN (A) SIN (P)/(1-COS (A) SIN (B))))

 (PI/2) LAMBDA0(A,B) =L(A,B,PI/2) =

 2 2 2 -1/2
 = COS (A) SIN(B) COS(B) (1-COS (A) SIN (B))

 2 2 2
 *RF(0,COS (A),1) + (1/3) SIN (A) COS (A)

 2 2 -3/2
 *SIN(B) COS(B) (1-COS (A) SIN (B))

 2 2 2 2 2
 *RJ(0,COS (A),1,COS (A) COS (B)/(1-COS (A) SIN (B)))

 Jacobi ZETA function

 2 2 2 1/2
 Z(B,K) = (K/3) SIN(B) COS(B) (1-K SIN (B))

 2 2 2 2
 *RJ(0,1-K ,1,1-K SIN (B)) / RF (0,1-K ,1)

 ***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
 elliptic integrals, ACM Transactions on Mathematical
 Software 7, 3 (September 1981), pp. 398-403.
 B. C. Carlson, Computing elliptic integrals by
 duplication, Numerische Mathematik 33, (1979),
 pp. 1-16.
 B. C. Carlson, Elliptic integrals of the first kind,
 SIAM Journal of Mathematical Analysis 8, (1977),
 pp. 231-242.
 ***ROUTINES CALLED R1MACH, RC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)

SLATEC5 (REBAK through ZBIRY) - 38

 900510 Changed calls to XERMSG to standard form, and some
 editorial changes. (RWC)).
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 39

RPQR79

 SUBROUTINE RPQR79 (NDEG, COEFF, ROOT, IERR, WORK)
 ***BEGIN PROLOGUE RPQR79
 ***PURPOSE Find the zeros of a polynomial with real coefficients.
 ***LIBRARY SLATEC
 ***CATEGORY F1A1A
 ***TYPE SINGLE PRECISION (RPQR79-S, CPQR79-C)
 ***KEYWORDS COMPLEX POLYNOMIAL, POLYNOMIAL ROOTS, POLYNOMIAL ZEROS
 ***AUTHOR Vandevender, W. H., (SNLA)
 ***DESCRIPTION

 Abstract
 This routine computes all zeros of a polynomial of degree NDEG
 with real coefficients by computing the eigenvalues of the
 companion matrix.

 Description of Parameters
 The user must dimension all arrays appearing in the call list
 COEFF(NDEG+1), ROOT(NDEG), WORK(NDEG*(NDEG+2))

 --Input--
 NDEG degree of polynomial

 COEFF REAL coefficients in descending order. i.e.,
 P(Z)= COEFF(1)*(Z**NDEG) + COEFF(NDEG)*Z + COEFF(NDEG+1)

 WORK REAL work array of dimension at least NDEG*(NDEG+2)

 --Output--
 ROOT COMPLEX vector of roots

 IERR Output Error Code
 - Normal Code
 0 means the roots were computed.
 - Abnormal Codes
 1 more than 30 QR iterations on some eigenvalue of the
 companion matrix
 2 COEFF(1)=0.0
 3 NDEG is invalid (less than or equal to 0)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED HQR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800601 DATE WRITTEN
 890505 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 911010 Code reworked and simplified. (RWC and WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 40

RPZERO

 SUBROUTINE RPZERO (N, A, R, T, IFLG, S)
 ***BEGIN PROLOGUE RPZERO
 ***PURPOSE Find the zeros of a polynomial with real coefficients.
 ***LIBRARY SLATEC
 ***CATEGORY F1A1A
 ***TYPE SINGLE PRECISION (RPZERO-S, CPZERO-C)
 ***KEYWORDS POLYNOMIAL ROOTS, POLYNOMIAL ZEROS, REAL ROOTS
 ***AUTHOR Kahaner, D. K., (NBS)
 ***DESCRIPTION

 Find the zeros of the real polynomial
 P(X)= A(1)*X**N + A(2)*X**(N-1) +...+ A(N+1)

 Input...
 N = degree of P(X)
 A = real vector containing coefficients of P(X),
 A(I) = coefficient of X**(N+1-I)
 R = N word complex vector containing initial estimates for zeros
 if these are known.
 T = 6(N+1) word array used for temporary storage
 IFLG = flag to indicate if initial estimates of
 zeros are input.
 If IFLG .EQ. 0, no estimates are input.
 If IFLG .NE. 0, the vector R contains estimates of
 the zeros
 ** Warning ****** If estimates are input, they must
 be separated; that is, distinct or
 not repeated.
 S = an N word array

 Output...
 R(I) = ith zero,
 S(I) = bound for R(I) .
 IFLG = error diagnostic
 Error Diagnostics...
 If IFLG .EQ. 0 on return, all is well.
 If IFLG .EQ. 1 on return, A(1)=0.0 or N=0 on input.
 If IFLG .EQ. 2 on return, the program failed to converge
 after 25*N iterations. Best current estimates of the
 zeros are in R(I). Error bounds are not calculated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CPZERO
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 41

RS

 SUBROUTINE RS (NM, N, A, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RS
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A1
 ***TYPE SINGLE PRECISION (RS-S, CH-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a REAL SYMMETRIC matrix.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the real symmetric matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 A is unaltered.

 W contains the eigenvalues in ascending order. W is a one-
 dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. The
 eigenvectors are orthonormal. Z is a two-dimensional
 REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues, and eigenvectors if requested,
 should be correct for indices 1, 2, ..., IERR-1.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

SLATEC5 (REBAK through ZBIRY) - 42

 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED TQL2, TQLRAT, TRED1, TRED2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 43

RSB

 SUBROUTINE RSB (NM, N, MB, A, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RSB
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a symmetric band matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A6
 ***TYPE SINGLE PRECISION (RSB-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a REAL SYMMETRIC BAND matrix.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 MB is the half band width of the matrix, defined as the
 number of adjacent diagonals, including the principal
 diagonal, required to specify the non-zero portion of the
 lower triangle of the matrix. MB must be less than or
 equal to N. MB is an INTEGER variable.

 A contains the lower triangle of the real symmetric band
 matrix. Its lowest subdiagonal is stored in the last
 N+1-MB positions of the first column, its next subdiagonal
 in the last N+2-MB positions of the second column, further
 subdiagonals similarly, and finally its principal diagonal
 in the N positions of the last column. Contents of storage
 locations not part of the matrix are arbitrary. A is a
 two-dimensional REAL array, dimensioned A(NM,MB).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 A has been destroyed.

 W contains the eigenvalues in ascending order. W is a one-
 dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. The
 eigenvectors are orthonormal. Z is a two-dimensional
 REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to

SLATEC5 (REBAK through ZBIRY) - 44

 Zero for normal return,
 10*N if N is greater than NM,
 12*N if MB is either non-positive or greater than N,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues and eigenvectors, if requested,
 should be correct for indices 1, 2, ..., IERR-1.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED BANDR, TQL2, TQLRAT
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 45

RSG

 SUBROUTINE RSG (NM, N, A, B, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RSG
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a symmetric generalized eigenproblem.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4B1
 ***TYPE SINGLE PRECISION (RSG-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 To find the eigenvalues and eigenvectors (if desired)
 for the REAL SYMMETRIC generalized eigenproblem Ax = (LAMBDA)Bx.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real symmetric matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 B contains a positive definite real symmetric matrix. B is a
 two-dimensional REAL array, dimensioned B(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 W contains the eigenvalues in ascending order. W is a
 one-dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. Z is a
 two-dimensional REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 7*N+1 if B is not positive definite,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1, but no eigenvectors are
 computed.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

SLATEC5 (REBAK through ZBIRY) - 46

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED REBAK, REDUC, TQL2, TQLRAT, TRED1, TRED2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 47

RSGAB

 SUBROUTINE RSGAB (NM, N, A, B, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RSGAB
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a symmetric generalized eigenproblem.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4B1
 ***TYPE SINGLE PRECISION (RSGAB-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 for the REAL SYMMETRIC generalized eigenproblem ABx = (LAMBDA)x.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real symmetric matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 B contains a positive definite real symmetric matrix. B is a
 two-dimensional REAL array, dimensioned B(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 W contains the eigenvalues in ascending order. W is a
 one-dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. Z is a
 two-dimensional REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 7*N+1 if B is not positive definite,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1, but no eigenvectors are
 computed.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

SLATEC5 (REBAK through ZBIRY) - 48

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED REBAK, REDUC2, TQL2, TQLRAT, TRED1, TRED2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 49

RSGBA

 SUBROUTINE RSGBA (NM, N, A, B, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RSGBA
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a symmetric generalized eigenproblem.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4B1
 ***TYPE SINGLE PRECISION (RSGBA-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 for the REAL SYMMETRIC generalized eigenproblem BAx = (LAMBDA)x.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A, B, and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrices A and B. N is an INTEGER
 variable. N must be less than or equal to NM.

 A contains a real symmetric matrix. A is a two-dimensional
 REAL array, dimensioned A(NM,N).

 B contains a positive definite real symmetric matrix. B is a
 two-dimensional REAL array, dimensioned B(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 W contains the eigenvalues in ascending order. W is a
 one-dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. Z is a
 two-dimensional REAL array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 7*N+1 if B is not positive definite,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1, but no eigenvectors are
 computed.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

SLATEC5 (REBAK through ZBIRY) - 50

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED REBAKB, REDUC2, TQL2, TQLRAT, TRED1, TRED2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 51

RSP

 SUBROUTINE RSP (NM, N, NV, A, W, MATZ, Z, FV1, FV2, IERR)
 ***BEGIN PROLOGUE RSP
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix packed into a one dimensional
 array.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A1
 ***TYPE SINGLE PRECISION (RSP-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a REAL SYMMETRIC PACKED matrix.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 NV is an INTEGER variable set equal to the dimension of the
 array A as specified in the calling program. NV must not
 be less than N*(N+1)/2.

 A contains the lower triangle, stored row-wise, of the real
 symmetric packed matrix. A is a one-dimensional REAL
 array, dimensioned A(NV).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 A has been destroyed.

 W contains the eigenvalues in ascending order. W is a
 one-dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. The eigen-
 vectors are orthonormal. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 20*N if NV is less than N*(N+1)/2,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues and eigenvectors in the W and Z

SLATEC5 (REBAK through ZBIRY) - 52

 arrays should be correct for indices
 1, 2, ..., IERR-1.

 FV1 and FV2 are one-dimensional REAL arrays used for temporary
 storage, dimensioned FV1(N) and FV2(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED TQL2, TQLRAT, TRBAK3, TRED3
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 53

RST

 SUBROUTINE RST (NM, N, W, E, MATZ, Z, IERR)
 ***BEGIN PROLOGUE RST
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real symmetric tridiagonal matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5
 ***TYPE SINGLE PRECISION (RST-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a REAL SYMMETRIC TRIDIAGONAL matrix.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 W contains the diagonal elements of the real symmetric
 tridiagonal matrix. W is a one-dimensional REAL array,
 dimensioned W(N).

 E contains the subdiagonal elements of the matrix in its last
 N-1 positions. E(1) is arbitrary. E is a one-dimensional
 REAL array, dimensioned E(N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 W contains the eigenvalues in ascending order.

 Z contains the eigenvectors if MATZ is not zero. The eigen-
 vectors are orthonormal. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.
 The eigenvalues and eigenvectors in the W and Z
 arrays should be correct for indices
 1, 2, ..., IERR-1.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

SLATEC5 (REBAK through ZBIRY) - 54

 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED IMTQL1, IMTQL2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 55

RT

 SUBROUTINE RT (NM, N, A, W, MATZ, Z, FV1, IERR)
 ***BEGIN PROLOGUE RT
 ***PURPOSE Compute the eigenvalues and eigenvectors of a special real
 tridiagonal matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5
 ***TYPE SINGLE PRECISION (RT-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of subroutines
 from the eigensystem subroutine package (EISPACK) to find the
 eigenvalues and eigenvectors (if desired) of a special REAL
 TRIDIAGONAL matrix. The property of the matrix required for use
 of this subroutine is that the products of pairs of corresponding
 off-diagonal elements be all non-negative. If eigenvectors are
 desired, no product can be zero unless both factors are zero.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the special real tridiagonal matrix in its first
 three columns. The subdiagonal elements are stored in the
 last N-1 positions of the first column, the diagonal elements
 in the second column, and the superdiagonal elements in the
 first N-1 positions of the third column. Elements A(1,1) and
 A(N,3) are arbitrary. A is a two-dimensional REAL array,
 dimensioned A(NM,3).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On Output

 W contains the eigenvalues in ascending order. W is a
 one-dimensional REAL array, dimensioned W(N).

 Z contains the eigenvectors if MATZ is not zero. The eigen-
 vectors are not normalized. Z is a two-dimensional REAL
 array, dimensioned Z(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 N+J if A(J,1)*A(J-1,3) is negative,
 2*N+J if the product is zero with one factor non-zero,
 and MATZ is non-zero;
 J if the J-th eigenvalue has not been

SLATEC5 (REBAK through ZBIRY) - 56

 determined after 30 iterations.
 The eigenvalues and eigenvectors in the W and Z
 arrays should be correct for indices
 1, 2, ..., IERR-1.

 FV1 is a one-dimensional REAL array used for temporary storage,
 dimensioned FV1(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED FIGI, FIGI2, IMTQL1, IMTQL2
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 57

RUNIF

 FUNCTION RUNIF (T, N)
 ***BEGIN PROLOGUE RUNIF
 ***PURPOSE Generate a uniformly distributed random number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY L6A21
 ***TYPE SINGLE PRECISION (RUNIF-S)
 ***KEYWORDS FNLIB, RANDOM NUMBER, SPECIAL FUNCTIONS, UNIFORM
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 This random number generator is portable among a wide variety of
 computers. It generates a random number between 0.0 and 1.0 accord-
 ing to the algorithm presented by Bays and Durham (TOMS, 2, 59,
 1976). The motivation for using this scheme, which resembles the
 Maclaren-Marsaglia method, is to greatly increase the period of the
 random sequence. If the period of the basic generator (RAND) is P,
 then the expected mean period of the sequence generated by RUNIF is
 given by new mean P = SQRT (PI*FACTORIAL(N)/(8*P)),
 where FACTORIAL(N) must be much greater than P in this asymptotic
 formula. Generally, N should be around 32 if P=4.E6 as for RAND.

 Input Argument --
 N ABS(N) is the number of random numbers in an auxiliary table.
 Note though that ABS(N)+1 is the number of items in array T.
 If N is positive and differs from its value in the previous
 invocation, then the table is initialized for the new value of
 N. If N is negative, ABS(N) is the number of items in an
 auxiliary table, but the tables are now assumed already to
 be initialized. This option enables the user to save the
 table T at the end of a long computer run and to restart with
 the same sequence. Normally, RUNIF would be called at most
 once with negative N. Subsequent invocations would have N
 positive and of the correct magnitude.

 Input and Output Argument --
 T an array of ABS(N)+1 random numbers from a previous invocation
 of RUNIF. Whenever N is positive and differs from the old
 N, the table is initialized. The first ABS(N) numbers are the
 table discussed in the reference, and the N+1 -st value is Y.
 This array may be saved in order to restart a sequence.

 Output Value --
 RUNIF a random number between 0.0 and 1.0.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED RAND
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 910819 Added EXTERNAL statement for RAND due to problem on IBM
 RS 6000. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 58

SASUM

 REAL FUNCTION SASUM (N, SX, INCX)
 ***BEGIN PROLOGUE SASUM
 ***PURPOSE Compute the sum of the magnitudes of the elements of a
 vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3A
 ***TYPE SINGLE PRECISION (SASUM-S, DASUM-D, SCASUM-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SUM OF MAGNITUDES OF A VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(S)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX

 --Output--
 SASUM single precision result (zero if N .LE. 0)

 Returns sum of magnitudes of single precision SX.
 SASUM = sum from 0 to N-1 of ABS(SX(IX+I*INCX)),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 59

SAXPY

 SUBROUTINE SAXPY (N, SA, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SAXPY
 ***PURPOSE Compute a constant times a vector plus a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A7
 ***TYPE SINGLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SA single precision scalar multiplier
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 SY single precision result (unchanged if N .LE. 0)

 Overwrite single precision SY with single precision SA*SX +SY.
 For I = 0 to N-1, replace SY(LY+I*INCY) with SA*SX(LX+I*INCX) +
 SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 60

SBCG

 SUBROUTINE SBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE SBCG
 ***PURPOSE Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
 Routine to solve a Non-Symmetric linear system Ax = b
 using the Preconditioned BiConjugate Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SBCG-S, DBCG-D)
 ***KEYWORDS BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), P(N)
 REAL RR(N), ZZ(N), PP(N), DZ(N)
 REAL RWORK(USER DEFINED)
 EXTERNAL MATVEC, MTTVEC, MSOLVE, MTSOLV

 CALL SBCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, MTSOLV, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, Z, P, RR, ZZ, PP, DZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below, for more
 details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 operation Y = A*X given A and X. The name of the MATVEC

SLATEC5 (REBAK through ZBIRY) - 61

 routine must be declared external in the calling program.
 The calling sequence of MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X upon
 return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MTTVEC :EXT External.
 Name of a routine which performs the matrix transpose vector
 multiply y = A'*X given A and X (where ' denotes transpose).
 The name of the MTTVEC routine must be declared external in
 the calling program. The calling sequence to MTTVEC is the
 same as that for MTTVEC, viz.:
 CALL MTTVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A'*X
 upon return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for Z
 given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine
 must be declared external in the calling program. The
 calling sequence of MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector, and Z is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a real array that can be used
 to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for the
 same purpose as RWORK.
 MTSOLV :EXT External.
 Name of a routine which solves a linear system M'ZZ = RR for
 ZZ given RR with the preconditioning matrix M (M is supplied
 via RWORK and IWORK arrays). The name of the MTSOLV routine
 must be declared external in the calling program. The call-
 ing sequence to MTSOLV is:
 CALL MTSOLV(N, RR, ZZ, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, RR is the right-hand side
 vector, and ZZ is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a real array that can be used
 to pass necessary preconditioning information and/or
 workspace to MTSOLV. IWORK is an integer work array for the
 same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution

SLATEC5 (REBAK through ZBIRY) - 62

 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 Z :WORK Real Z(N).
 P :WORK Real P(N).
 RR :WORK Real RR(N).
 ZZ :WORK Real ZZ(N).
 PP :WORK Real PP(N).
 DZ :WORK Real DZ(N).
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used for workspace in MSOLVE
 and MTSOLV.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE
 and MTSOLV.

 *Description
 This routine does not care what matrix data structure is used
 for A and M. It simply calls MATVEC, MTTVEC, MSOLVE, MTSOLV
 routines, with arguments as above. The user could write any
 type of structure, and appropriate MATVEC, MSOLVE, MTTVEC,
 and MTSOLV routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines SSDBCG and SSLUBC are examples of this procedure.

SLATEC5 (REBAK through ZBIRY) - 63

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output

SLATEC5 (REBAK through ZBIRY) - 64

 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSDBCG, SSLUBC
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSBCG, R1MACH, SAXPY, SCOPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC, MTTVEC, MSOLVE, MTSOLV from ROUTINES
 CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 65

SBHIN

 SUBROUTINE SBHIN (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE SBHIN
 ***PURPOSE Read a Sparse Linear System in the Boeing/Harwell Format.
 The matrix is read in and if the right hand side is also
 present in the input file then it too is read in. The
 matrix is then modified to be in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE SINGLE PRECISION (SBHIN-S, DBHIN-D)
 ***KEYWORDS LINEAR SYSTEM, MATRIX READ, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 REAL A(NELT), SOLN(N), RHS(N)

 CALL SBHIN(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :OUT Integer
 Order of the Matrix.
 NELT :INOUT Integer.
 On input NELT is the maximum number of non-zeros that
 can be stored in the IA, JA, A arrays.
 On output NELT is the number of non-zeros stored in A.
 IA :OUT Integer IA(NELT).
 JA :OUT Integer JA(NELT).
 A :OUT Real A(NELT).
 On output these arrays hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :OUT Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :OUT Real SOLN(N).
 The solution to the linear system, if present. This array
 is accessed if and only if JOB is set to read it in, see
 below. If the user requests that SOLN be read in, but it is
 not in the file, then it is simply zeroed out.
 RHS :OUT Real RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to read it in, see below.
 If the user requests that RHS be read in, but it is not in
 the file, then it is simply zeroed out.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to read the matrix
 from. This unit must be connected in a system dependent
 fashion to a file, or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :INOUT Integer.

SLATEC5 (REBAK through ZBIRY) - 66

 Flag indicating what I/O operations to perform.
 On input JOB indicates what Input operations to try to
 perform.
 JOB = 0 => Read only the matrix.
 JOB = 1 => Read matrix and RHS (if present).
 JOB = 2 => Read matrix and SOLN (if present).
 JOB = 3 => Read matrix, RHS and SOLN (if present).
 On output JOB indicates what operations were actually
 performed.
 JOB = -3 => Unable to parse matrix "CODE" from input file
 to determine if only the lower triangle of matrix
 is stored.
 JOB = -2 => Number of non-zeros (NELT) too large.
 JOB = -1 => System size (N) too large.
 JOB = 0 => Read in only the matrix.
 JOB = 1 => Read in the matrix and RHS.
 JOB = 2 => Read in the matrix and SOLN.
 JOB = 3 => Read in the matrix, RHS and SOLN.
 JOB = 10 => Read in only the matrix *STRUCTURE*, but no
 non-zero entries. Hence, A(*) is not referenced
 and has the return values the same as the input.
 JOB = 11 => Read in the matrix *STRUCTURE* and RHS.
 JOB = 12 => Read in the matrix *STRUCTURE* and SOLN.
 JOB = 13 => Read in the matrix *STRUCTURE*, RHS and SOLN.

 *Description:
 The format for the input is as follows. The first line contains
 a title to identify the data file. On the second line (5I4) are
 counters: NLINE, NPLS, NRILS, NNVLS, NRHSLS.
 NLINE Number of data lines (after the header) in the file.
 NPLS Number of lines for the Column Pointer data in the file.
 NRILS Number of lines for the Row indices in the file.
 NNVLS Number of lines for the Matrix elements in the file.
 NRHSLS Number of lines for the RHS in the file.
 The third line (A3,11X,4I4) contains a symmetry code and some
 additional counters: CODE, NROW, NCOL, NIND, NELE.
 On the fourth line (2A16,2A20) are formats to be used to read
 the following data: PNTFNT, RINFMT, NVLFMT, RHSFMT.
 Following that are the blocks of data in the order indicated.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
SLATEC5 (REBAK through ZBIRY) - 67

 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Portability:
 You must make sure that IUNIT is a valid Fortran logical
 I/O device unit number and that the unit number has been
 associated with a file or the console. This is a system
 dependent function.

 *Implementation note:
 SOLN is not read by this version. It will simply be
 zeroed out if JOB = 2 or 3 and the returned value of
 JOB will indicate SOLN has not been read.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 881107 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 911122 Added loop to zero out RHS if user wants to read RHS, but
 it's not in the input file. (MKS)
 911125 Minor improvements to prologue. (FNF)
 920511 Added complete declaration section. (WRB)
 921007 Corrected description of input format. (FNF)
 921208 Added Implementation Note and code to zero out SOLN. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 68

SBOCLS

 SUBROUTINE SBOCLS (W, MDW, MCON, MROWS, NCOLS, BL, BU, IND, IOPT,
 + X, RNORMC, RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE SBOCLS
 ***PURPOSE Solve the bounded and constrained least squares
 problem consisting of solving the equation
 E*X = F (in the least squares sense)
 subject to the linear constraints
 C*X = Y.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, G2E, G2H1, G2H2
 ***TYPE SINGLE PRECISION (SBOCLS-S, DBOCLS-D)
 ***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 This subprogram solves the bounded and constrained least squares
 problem. The problem statement is:

 Solve E*X = F (least squares sense), subject to constraints
 C*X=Y.

 In this formulation both X and Y are unknowns, and both may
 have bounds on any of their components. This formulation
 of the problem allows the user to have equality and inequality
 constraints as well as simple bounds on the solution components.

 This constrained linear least squares subprogram solves E*X=F
 subject to C*X=Y, where E is MROWS by NCOLS, C is MCON by NCOLS.

 The user must have dimension statements of the form

 DIMENSION W(MDW,NCOLS+MCON+1), BL(NCOLS+MCON), BU(NCOLS+MCON),
 * X(2*(NCOLS+MCON)+2+NX), RW(6*NCOLS+5*MCON)
 INTEGER IND(NCOLS+MCON), IOPT(17+NI), IW(2*(NCOLS+MCON))

 (here NX=number of extra locations required for the options; NX=0
 if no options are in use. Also NI=number of extra locations
 for options 1-9.)

 INPUT

 W(MDW,*),MCON,MROWS,NCOLS

 The array W contains the (possibly null) matrix [C:*] followed by
 [E:F]. This must be placed in W as follows:
 [C : *]
 W = []
 [E : F]
 The (*) after C indicates that this data can be undefined. The
 matrix [E:F] has MROWS rows and NCOLS+1 columns. The matrix C is
 placed in the first MCON rows of W(*,*) while [E:F]
 follows in rows MCON+1 through MCON+MROWS of W(*,*). The vector F
 is placed in rows MCON+1 through MCON+MROWS, column NCOLS+1. The
 values of MDW and NCOLS must be positive; the value of MCON must

SLATEC5 (REBAK through ZBIRY) - 69

 be nonnegative. An exception to this occurs when using option 1
 for accumulation of blocks of equations. In that case MROWS is an
 OUTPUT variable only, and the matrix data for [E:F] is placed in
 W(*,*), one block of rows at a time. See IOPT(*) contents, option
 number 1, for further details. The row dimension, MDW, of the
 array W(*,*) must satisfy the inequality:

 If using option 1,
 MDW .ge. MCON + max(max. number of
 rows accumulated, NCOLS) + 1.
 If using option 8,
 MDW .ge. MCON + MROWS.
 Else
 MDW .ge. MCON + max(MROWS, NCOLS).

 Other values are errors, but this is checked only when using
 option=2. The value of MROWS is an output parameter when
 using option number 1 for accumulating large blocks of least
 squares equations before solving the problem.
 See IOPT(*) contents for details about option 1.

 BL(*),BU(*),IND(*)

 These arrays contain the information about the bounds that the
 solution values are to satisfy. The value of IND(J) tells the
 type of bound and BL(J) and BU(J) give the explicit values for
 the respective upper and lower bounds on the unknowns X and Y.
 The first NVARS entries of IND(*), BL(*) and BU(*) specify
 bounds on X; the next MCON entries specify bounds on Y.

 1. For IND(J)=1, require X(J) .ge. BL(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J).
 (the value of BU(J) is not used.)
 2. For IND(J)=2, require X(J) .le. BU(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .le. BU(J).
 (the value of BL(J) is not used.)
 3. For IND(J)=3, require X(J) .ge. BL(J) and
 X(J) .le. BU(J);
 IF J.gt.NCOLS, Y(J-NCOLS) .ge. BL(J) and
 Y(J-NCOLS) .le. BU(J).
 (to impose equality constraints have BL(J)=BU(J)=
 constraining value.)
 4. For IND(J)=4, no bounds on X(J) or Y(J-NCOLS) are required.
 (the values of BL(J) and BU(J) are not used.)

 Values other than 1,2,3 or 4 for IND(J) are errors. In the case
 IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
 is an error. The values BL(J), BU(J), J .gt. NCOLS, will be
 changed. Significant changes mean that the constraints are
 infeasible. (Users must make this decision themselves.)
 The new values for BL(J), BU(J), J .gt. NCOLS, define a
 region such that the perturbed problem is feasible. If users
 know that their problem is feasible, this step can be skipped
 by using option number 8 described below.

 See IOPT(*) description.

SLATEC5 (REBAK through ZBIRY) - 70

 IOPT(*)

 This is the array where the user can specify nonstandard options
 for SBOCLS(). Most of the time this feature can be ignored by
 setting the input value IOPT(1)=99. Occasionally users may have
 needs that require use of the following subprogram options. For
 details about how to use the options see below: IOPT(*) CONTENTS.

 Option Number Brief Statement of Purpose
 ------ ------ ----- --------- -- -------
 1 Return to user for accumulation of blocks
 of least squares equations. The values
 of IOPT(*) are changed with this option.
 The changes are updates to pointers for
 placing the rows of equations into position
 for processing.
 2 Check lengths of all arrays used in the
 subprogram.
 3 Column scaling of the data matrix, [C].
 [E]
 4 User provides column scaling for matrix [C].
 [E]
 5 Provide option array to the low-level
 subprogram SBOLS().
 6 Provide option array to the low-level
 subprogram SBOLSM().
 7 Move the IOPT(*) processing pointer.
 8 Do not preprocess the constraints to
 resolve infeasibilities.
 9 Do not pretriangularize the least squares matrix.
 99 No more options to change.

 X(*)

 This array is used to pass data associated with options 4,5 and
 6. Ignore this parameter (on input) if no options are used.
 Otherwise see below: IOPT(*) CONTENTS.

 OUTPUT

 X(*),RNORMC,RNORM

 The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
 the constrained least squares problem. The value RNORMC is the
 minimum residual vector length for the constraints C*X - Y = 0.
 The value RNORM is the minimum residual vector length for the
 least squares equations. Normally RNORMC=0, but in the case of
 inconsistent constraints this value will be nonzero.
 The values of X are returned in the first NVARS entries of X(*).
 The values of Y are returned in the last MCON entries of X(*).

 MODE

 The sign of MODE determines whether the subprogram has completed
 normally, or encountered an error condition or abnormal status. A

SLATEC5 (REBAK through ZBIRY) - 71

 value of MODE .ge. 0 signifies that the subprogram has completed
 normally. The value of mode (.ge. 0) is the number of variables
 in an active status: not at a bound nor at the value zero, for
 the case of free variables. A negative value of MODE will be one
 of the cases (-57)-(-41), (-37)-(-22), (-19)-(-2). Values .lt. -1
 correspond to an abnormal completion of the subprogram. These
 error messages are in groups for the subprograms SBOCLS(),
 SBOLSM(), and SBOLS(). An approximate solution will be returned
 to the user only when max. iterations is reached, MODE=-22.

 RW(*),IW(*)

 These are working arrays. (normally the user can ignore the
 contents of these arrays.)

 IOPT(*) CONTENTS
 ------- --------
 The option array allows a user to modify some internal variables
 in the subprogram without recompiling the source code. A central
 goal of the initial software design was to do a good job for most
 people. Thus the use of options will be restricted to a select
 group of users. The processing of the option array proceeds as
 follows: a pointer, here called LP, is initially set to the value
 1. At the pointer position the option number is extracted and
 used for locating other information that allows for options to be
 changed. The portion of the array IOPT(*) that is used for each
 option is fixed; the user and the subprogram both know how many
 locations are needed for each option. The value of LP is updated
 for each option based on the amount of storage in IOPT(*) that is
 required. A great deal of error checking is done by the
 subprogram on the contents of the option array. Nevertheless it
 is still possible to give the subprogram optional input that is
 meaningless. For example option 4 uses the locations
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing scaling data.
 The user must manage the allocation of these locations.

 1
 -
 This option allows the user to solve problems with a large number
 of rows compared to the number of variables. The idea is that the
 subprogram returns to the user (perhaps many times) and receives
 new least squares equations from the calling program unit.
 Eventually the user signals "that's all" and a solution is then
 computed. The value of MROWS is an output variable when this
 option is used. Its value is always in the range 0 .le. MROWS
 .le. NCOLS+1. It is the number of rows after the
 triangularization of the entire set of equations. If LP is the
 processing pointer for IOPT(*), the usage for the sequential
 processing of blocks of equations is

 IOPT(LP)=1
 Move block of equations to W(*,*) starting at
 the first row of W(*,*).
 IOPT(LP+3)=# of rows in the block; user defined

 The user now calls SBOCLS() in a loop. The value of IOPT(LP+1)
 directs the user's action. The value of IOPT(LP+2) points to
 where the subsequent rows are to be placed in W(*,*). Both of

SLATEC5 (REBAK through ZBIRY) - 72

 these values are first defined in the subprogram. The user
 changes the value of IOPT(LP+1) (to 2) as a signal that all of
 the rows have been processed.

 .<LOOP
 . CALL SBOCLS()
 . IF(IOPT(LP+1) .EQ. 1) THEN
 . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
 . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
 . W(*,*) STARTING AT ROW MCON + IOPT(LP+2).
 .
 . IF(THIS IS THE LAST BLOCK OF EQUATIONS) THEN
 . IOPT(LP+1)=2
 .<------CYCLE LOOP
 . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
 <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
 . ELSE
 . ERROR CONDITION; SHOULD NOT HAPPEN.
 .<END LOOP

 Use of this option adds 4 to the required length of IOPT(*).

 2
 -
 This option is useful for checking the lengths of all arrays used
 by SBOCLS() against their actual requirements for this problem.
 The idea is simple: the user's program unit passes the declared
 dimension information of the arrays. These values are compared
 against the problem-dependent needs within the subprogram. If any
 of the dimensions are too small an error message is printed and a
 negative value of MODE is returned, -41 to -47. The printed error
 message tells how long the dimension should be. If LP is the
 processing pointer for IOPT(*),

 IOPT(LP)=2
 IOPT(LP+1)=Row dimension of W(*,*)
 IOPT(LP+2)=Col. dimension of W(*,*)
 IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
 IOPT(LP+4)=Dimension of X(*)
 IOPT(LP+5)=Dimension of RW(*)
 IOPT(LP+6)=Dimension of IW(*)
 IOPT(LP+7)=Dimension of IOPT(*)
 .
 CALL SBOCLS()

 Use of this option adds 8 to the required length of IOPT(*).

 3
 -
 This option can change the type of scaling for the data matrix.
 Nominally each nonzero column of the matrix is scaled so that the
 magnitude of its largest entry is equal to the value ONE. If LP
 is the processing pointer for IOPT(*),

 IOPT(LP)=3
 IOPT(LP+1)=1,2 or 3
 1= Nominal scaling as noted;
 2= Each nonzero column scaled to have length ONE;
 3= Identity scaling; scaling effectively suppressed.

SLATEC5 (REBAK through ZBIRY) - 73

 .
 CALL SBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 4
 -
 This options allows the user to provide arbitrary (positive)
 column scaling for the matrix. If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=4
 IOPT(LP+1)=IOFF
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
 = Positive scale factors for cols. of E.
 .
 CALL SBOCLS()

 Use of this option adds 2 to the required length of IOPT(*)
 and NCOLS to the required length of X(*).

 5
 -
 This option allows the user to provide an option array to the
 low-level subprogram SBOLS(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=5
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for SBOLS() begins.
 .
 CALL SBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 6
 -
 This option allows the user to provide an option array to the
 low-level subprogram SBOLSM(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=6
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for SBOLSM() begins.
 .
 CALL SBOCLS()

 Use of this option adds 2 to the required length of IOPT(*).

 7
 -
 Move the processing pointer (either forward or backward) to the
 location IOPT(LP+1). The processing pointer moves to locations
 LP+2 if option number 7 is used with the value -7. For
 example to skip over locations 3,...,NCOLS+2,

 IOPT(1)=7
 IOPT(2)=NCOLS+3
 (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
 IOPT(NCOLS+3)=99

SLATEC5 (REBAK through ZBIRY) - 74

 CALL SBOCLS()

 CAUTION: Misuse of this option can yield some very hard-to-find
 bugs. Use it with care. It is intended to be used for passing
 option arrays to other subprograms.

 8
 -
 This option allows the user to suppress the algorithmic feature
 of SBOCLS() that processes the constraint equations C*X = Y and
 resolves infeasibilities. The steps normally done are to solve
 C*X - Y = 0 in a least squares sense using the stated bounds on
 both X and Y. Then the "reachable" vector Y = C*X is computed
 using the solution X obtained. Finally the stated bounds for Y are
 enlarged to include C*X. To suppress the feature:

 IOPT(LP)=8
 .
 CALL SBOCLS()

 Use of this option adds 1 to the required length of IOPT(*).

 9
 -
 This option allows the user to suppress the pretriangularizing
 step of the least squares matrix that is done within SBOCLS().
 This is primarily a means of enhancing the subprogram efficiency
 and has little effect on accuracy. To suppress the step, set:

 IOPT(LP)=9
 .
 CALL SBOCLS()

 Use of this option adds 1 to the required length of IOPT(*).

 99
 --
 There are no more options to change.

 Only option numbers -99, -9,-8,...,-1, 1,2,...,9, and 99 are
 permitted. Other values are errors. Options -99,-1,...,-9 mean
 that the respective options 99,1,...,9 are left at their default
 values. An example is the option to suppress the preprocessing of
 constraints:

 IOPT(1)=-8 Option is recognized but not changed
 IOPT(2)=99
 CALL SBOCLS()

 Error Messages for SBOCLS()
 ----- -------- --- --------

 WARNING in...
 SBOCLS(). THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE. THE NUMBER
 OF EFFECTIVE ROWS=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 41

SLATEC5 (REBAK through ZBIRY) - 75

 WARNING IN...
 SBOCLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+
 MCON+1=(I2).
 IN ABOVE MESSAGE, I1= 2
 IN ABOVE MESSAGE, I2= 3
 ERROR NUMBER = 42

 WARNING IN...
 SBOCLS(). THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1)
 MUST BE .GE. NCOLS+MCON=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 43

 WARNING IN...
 SBOCLS(). THE DIMENSION OF X()=(I1) MUST BE
 .GE. THE REQD.LENGTH=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 44

 WARNING IN...
 SBOCLS(). THE .
 SBOCLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS+2*MCON=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 4
 ERROR NUMBER = 46

 WARNING IN...
 SBOCLS(). THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD.
 LEN.=(I2).
 IN ABOVE MESSAGE, I1= 16
 IN ABOVE MESSAGE, I2= 18
 ERROR NUMBER = 47

 WARNING IN...
 SBOCLS(). ISCALE OPTION=(I1) MUST BE 1-3.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 48

 WARNING IN...
 SBOCLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
 MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 49

 WARNING IN...
 SBOCLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
 COMPONENT (I1) NOW = (R1).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 ERROR NUMBER = 50

 WARNING IN...
 SBOCLS(). THE OPTION NUMBER=(I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1001
 ERROR NUMBER = 51

 WARNING IN...
 SBOCLS(). NO. OF ROWS=(I1) MUST BE .GE. 0 .AND. .LE. MDW-MCON=(I2).

SLATEC5 (REBAK through ZBIRY) - 76

 IN ABOVE MESSAGE, I1= 2
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 52

 WARNING IN...
 SBOCLS(). MDW=(I1) MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 53

 WARNING IN...
 SBOCLS(). MCON=(I1) MUST BE NONNEGATIVE.
 IN ABOVE MESSAGE, I1= -1
 ERROR NUMBER = 54

 WARNING IN...
 SBOCLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 55

 WARNING IN...
 SBOCLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 56

 WARNING IN...
 SBOCLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= .1000000000E+01
 IN ABOVE MESSAGE, R2= 0.
 ERROR NUMBER = 57
 LINEAR CONSTRAINTS, SNLA REPT. SAND82-1517, AUG. (1982).

 ***REFERENCES R. J. Hanson, Linear least squares with bounds and
 linear constraints, Report SAND82-1517, Sandia
 Laboratories, August 1982.
 ***ROUTINES CALLED R1MACH, SASUM, SBOLS, SCOPY, SDOT, SNRM2, SSCAL,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 821220 DATE WRITTEN
 870803 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 910819 Added variable M for MOUT+MCON in reference to SBOLS. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 77

SBOLS

 SUBROUTINE SBOLS (W, MDW, MROWS, NCOLS, BL, BU, IND, IOPT, X,
 + RNORM, MODE, RW, IW)
 ***BEGIN PROLOGUE SBOLS
 ***PURPOSE Solve the problem
 E*X = F (in the least squares sense)
 with bounds on selected X values.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A, G2E, G2H1, G2H2
 ***TYPE SINGLE PRECISION (SBOLS-S, DBOLS-D)
 ***KEYWORDS BOUNDS, CONSTRAINTS, INEQUALITY, LEAST SQUARES, LINEAR
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 The user must have dimension statements of the form:

 DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS),
 * X(NCOLS+NX), RW(5*NCOLS)
 INTEGER IND(NCOLS), IOPT(1+NI), IW(2*NCOLS)

 (here NX=number of extra locations required for option 4; NX=0
 for no options; NX=NCOLS if this option is in use. Here NI=number
 of extra locations required for options 1-6; NI=0 for no
 options.)

 INPUT

 W(MDW,*),MROWS,NCOLS

 The array W(*,*) contains the matrix [E:F] on entry. The matrix
 [E:F] has MROWS rows and NCOLS+1 columns. This data is placed in
 the array W(*,*) with E occupying the first NCOLS columns and the
 right side vector F in column NCOLS+1. The row dimension, MDW, of
 the array W(*,*) must satisfy the inequality MDW .ge. MROWS.
 Other values of MDW are errors. The values of MROWS and NCOLS
 must be positive. Other values are errors. There is an exception
 to this when using option 1 for accumulation of blocks of
 equations. In that case MROWS is an OUTPUT variable ONLY, and the
 matrix data for [E:F] is placed in W(*,*), one block of rows at a
 time. MROWS contains the number of rows in the matrix after
 triangularizing several blocks of equations. This is an OUTPUT
 parameter ONLY when option 1 is used. See IOPT(*) CONTENTS
 for details about option 1.

 BL(*),BU(*),IND(*)

 These arrays contain the information about the bounds that the
 solution values are to satisfy. The value of IND(J) tells the
 type of bound and BL(J) and BU(J) give the explicit values for
 the respective upper and lower bounds.

 1. For IND(J)=1, require X(J) .ge. BL(J).
 (the value of BU(J) is not used.)
 2. For IND(J)=2, require X(J) .le. BU(J).

SLATEC5 (REBAK through ZBIRY) - 78

 (the value of BL(J) is not used.)
 3. For IND(J)=3, require X(J) .ge. BL(J) and
 X(J) .le. BU(J).
 4. For IND(J)=4, no bounds on X(J) are required.
 (the values of BL(J) and BU(J) are not used.)

 Values other than 1,2,3 or 4 for IND(J) are errors. In the case
 IND(J)=3 (upper and lower bounds) the condition BL(J) .gt. BU(J)
 is an error.

 IOPT(*)

 This is the array where the user can specify nonstandard options
 for SBOLSM(). Most of the time this feature can be ignored by
 setting the input value IOPT(1)=99. Occasionally users may have
 needs that require use of the following subprogram options. For
 details about how to use the options see below: IOPT(*) CONTENTS.

 Option Number Brief Statement of Purpose
 ------ ------ ----- --------- -- -------
 1 Return to user for accumulation of blocks
 of least squares equations.
 2 Check lengths of all arrays used in the
 subprogram.
 3 Standard scaling of the data matrix, E.
 4 User provides column scaling for matrix E.
 5 Provide option array to the low-level
 subprogram SBOLSM().
 6 Move the IOPT(*) processing pointer.
 99 No more options to change.

 X(*)

 This array is used to pass data associated with option 4. Ignore
 this parameter if this option is not used. Otherwise see below:
 IOPT(*) CONTENTS.

 OUTPUT

 X(*),RNORM

 The array X(*) contains a solution (if MODE .ge.0 or .eq.-22) for
 the constrained least squares problem. The value RNORM is the
 minimum residual vector length.

 MODE

 The sign of MODE determines whether the subprogram has completed
 normally, or encountered an error condition or abnormal status. A
 value of MODE .ge. 0 signifies that the subprogram has completed
 normally. The value of MODE (.GE. 0) is the number of variables
 in an active status: not at a bound nor at the value ZERO, for
 the case of free variables. A negative value of MODE will be one
 of the cases -37,-36,...,-22, or -17,...,-2. Values .lt. -1
 correspond to an abnormal completion of the subprogram. To

SLATEC5 (REBAK through ZBIRY) - 79

 understand the abnormal completion codes see below: ERROR
 MESSAGES for SBOLS(). AN approximate solution will be returned
 to the user only when max. iterations is reached, MODE=-22.
 Values for MODE=-37,...,-22 come from the low-level subprogram
 SBOLSM(). See the section ERROR MESSAGES for SBOLSM() in the
 documentation for SBOLSM().

 RW(*),IW(*)

 These are working arrays with 5*NCOLS and 2*NCOLS entries.
 (normally the user can ignore the contents of these arrays,
 but they must be dimensioned properly.)

 IOPT(*) CONTENTS
 ------- --------
 The option array allows a user to modify internal variables in
 the subprogram without recompiling the source code. A central
 goal of the initial software design was to do a good job for most
 people. Thus the use of options will be restricted to a select
 group of users. The processing of the option array proceeds as
 follows: a pointer, here called LP, is initially set to the value
 1. This value is updated as each option is processed. At the
 pointer position the option number is extracted and used for
 locating other information that allows for options to be changed.
 The portion of the array IOPT(*) that is used for each option is
 fixed; the user and the subprogram both know how many locations
 are needed for each option. A great deal of error checking is
 done by the subprogram on the contents of the option array.
 Nevertheless it is still possible to give the subprogram optional
 input that is meaningless. For example option 4 uses the
 locations X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1) for passing
 scaling data. The user must manage the allocation of these
 locations.

 1
 -
 This option allows the user to solve problems with a large number
 of rows compared to the number of variables. The idea is that the
 subprogram returns to the user (perhaps many times) and receives
 new least squares equations from the calling program unit.
 Eventually the user signals "that's all" and then computes the
 solution with one final call to subprogram SBOLS(). The value of
 MROWS is an OUTPUT variable when this option is used. Its value
 is always in the range 0 .le. MROWS .le. NCOLS+1. It is equal to
 the number of rows after the triangularization of the entire set
 of equations. If LP is the processing pointer for IOPT(*), the
 usage for the sequential processing of blocks of equations is

 IOPT(LP)=1
 Move block of equations to W(*,*) starting at
 the first row of W(*,*).
 IOPT(LP+3)=# of rows in the block; user defined

 The user now calls SBOLS() in a loop. The value of IOPT(LP+1)
 directs the user's action. The value of IOPT(LP+2) points to
 where the subsequent rows are to be placed in W(*,*).

 .<LOOP
 . CALL SBOLS()

SLATEC5 (REBAK through ZBIRY) - 80

 . IF(IOPT(LP+1) .EQ. 1) THEN
 . IOPT(LP+3)=# OF ROWS IN THE NEW BLOCK; USER DEFINED
 . PLACE NEW BLOCK OF IOPT(LP+3) ROWS IN
 . W(*,*) STARTING AT ROW IOPT(LP+2).
 .
 . IF(THIS IS THE LAST BLOCK OF EQUATIONS) THEN
 . IOPT(LP+1)=2
 .<------CYCLE LOOP
 . ELSE IF (IOPT(LP+1) .EQ. 2) THEN
 <-------EXIT LOOP SOLUTION COMPUTED IF MODE .GE. 0
 . ELSE
 . ERROR CONDITION; SHOULD NOT HAPPEN.
 .<END LOOP

 Use of this option adds 4 to the required length of IOPT(*).

 2
 -
 This option is useful for checking the lengths of all arrays used
 by SBOLS() against their actual requirements for this problem.
 The idea is simple: the user's program unit passes the declared
 dimension information of the arrays. These values are compared
 against the problem-dependent needs within the subprogram. If any
 of the dimensions are too small an error message is printed and a
 negative value of MODE is returned, -11 to -17. The printed error
 message tells how long the dimension should be. If LP is the
 processing pointer for IOPT(*),

 IOPT(LP)=2
 IOPT(LP+1)=Row dimension of W(*,*)
 IOPT(LP+2)=Col. dimension of W(*,*)
 IOPT(LP+3)=Dimensions of BL(*),BU(*),IND(*)
 IOPT(LP+4)=Dimension of X(*)
 IOPT(LP+5)=Dimension of RW(*)
 IOPT(LP+6)=Dimension of IW(*)
 IOPT(LP+7)=Dimension of IOPT(*)
 .
 CALL SBOLS()

 Use of this option adds 8 to the required length of IOPT(*).

 3
 -
 This option changes the type of scaling for the data matrix E.
 Nominally each nonzero column of E is scaled so that the
 magnitude of its largest entry is equal to the value ONE. If LP
 is the processing pointer for IOPT(*),

 IOPT(LP)=3
 IOPT(LP+1)=1,2 or 3
 1= Nominal scaling as noted;
 2= Each nonzero column scaled to have length ONE;
 3= Identity scaling; scaling effectively suppressed.
 .
 CALL SBOLS()

 Use of this option adds 2 to the required length of IOPT(*).

 4
SLATEC5 (REBAK through ZBIRY) - 81

 -
 This option allows the user to provide arbitrary (positive)
 column scaling for the matrix E. If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=4
 IOPT(LP+1)=IOFF
 X(NCOLS+IOFF),...,X(NCOLS+IOFF+NCOLS-1)
 = Positive scale factors for cols. of E.
 .
 CALL SBOLS()

 Use of this option adds 2 to the required length of IOPT(*) and
 NCOLS to the required length of X(*).

 5
 -
 This option allows the user to provide an option array to the
 low-level subprogram SBOLSM(). If LP is the processing pointer
 for IOPT(*),

 IOPT(LP)=5
 IOPT(LP+1)= Position in IOPT(*) where option array
 data for SBOLSM() begins.
 .
 CALL SBOLS()

 Use of this option adds 2 to the required length of IOPT(*).

 6
 -
 Move the processing pointer (either forward or backward) to the
 location IOPT(LP+1). The processing point is moved to entry
 LP+2 of IOPT(*) if the option is left with -6 in IOPT(LP). For
 example to skip over locations 3,...,NCOLS+2 of IOPT(*),

 IOPT(1)=6
 IOPT(2)=NCOLS+3
 (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
 IOPT(NCOLS+3)=99
 CALL SBOLS()

 CAUTION: Misuse of this option can yield some very hard
 -to-find bugs. Use it with care.

 99
 --
 There are no more options to change.

 Only option numbers -99, -6,-5,...,-1, 1,2,...,6, and 99 are
 permitted. Other values are errors. Options -99,-1,...,-6 mean
 that the respective options 99,1,...,6 are left at their default
 values. An example is the option to modify the (rank) tolerance:

 IOPT(1)=-3 Option is recognized but not changed
 IOPT(2)=2 Scale nonzero cols. to have length ONE
 IOPT(3)=99

 ERROR MESSAGES for SBOLS()
 ----- -------- --- -------

SLATEC5 (REBAK through ZBIRY) - 82

 WARNING IN...
 SBOLS(). MDW=(I1) MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 2
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). NCOLS=(I1) THE NO. OF VARIABLES MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 3
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). FOR J=(I1), IND(J)=(I2) MUST BE 1-4.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 4
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). FOR J=(I1), BOUND BL(J)=(R1) IS .GT. BU(J)=(R2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 6
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). ISCALE OPTION=(I1) MUST BE 1-3.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 7
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). OFFSET PAST X(NCOLS) (I1) FOR USER-PROVIDED COLUMN SCALING
 MUST BE POSITIVE.
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 8
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). EACH PROVIDED COL. SCALE FACTOR MUST BE POSITIVE.
 COMPONENT (I1) NOW = (R1).
 IN ABOVE MESSAGE, I1= ND. .LE. MDW=(I2).
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 10
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS().THE ROW DIMENSION OF W(,)=(I1) MUST BE .GE.THE NUMBER OF ROWS=
 (I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 11
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). THE COLUMN DIMENSION OF W(,)=(I1) MUST BE .GE. NCOLS+1=(I2).

SLATEC5 (REBAK through ZBIRY) - 83

 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 12
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS().THE DIMENSIONS OF THE ARRAYS BL(),BU(), AND IND()=(I1) MUST BE
 .GE. NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 13
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). THE DIMENSION OF X()=(I1) MUST BE .GE. THE REQD. LENGTH=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 14
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS(). THE DIMENSION OF RW()=(I1) MUST BE .GE. 5*NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 3
 ERROR NUMBER = 15
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS() THE DIMENSION OF IW()=(I1) MUST BE .GE. 2*NCOLS=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 16
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 WARNING IN...
 SBOLS() THE DIMENSION OF IOPT()=(I1) MUST BE .GE. THE REQD. LEN.=(I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 1
 ERROR NUMBER = 17
 (NORMALLY A RETURN TO THE USER TAKES PLACE FOLLOWING THIS MESSAGE.)

 ***REFERENCES R. J. Hanson, Linear least squares with bounds and
 linear constraints, Report SAND82-1517, Sandia
 Laboratories, August 1982.
 ***ROUTINES CALLED ISAMAX, SBOLSM, SCOPY, SNRM2, SROT, SROTG, XERMSG
 ***REVISION HISTORY (YYMMDD)
 821220 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 84

SCASUM

 FUNCTION SCASUM (N, CX, INCX)
 ***BEGIN PROLOGUE SCASUM
 ***PURPOSE Compute the sum of the magnitudes of the real and
 imaginary elements of a complex vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3A
 ***TYPE COMPLEX (SASUM-S, DASUM-D, SCASUM-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SUM OF MAGNITUDES OF A VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX

 --Output--
 SCASUM single precision result (zero if N .LE. 0)

 Returns sums of magnitudes of real and imaginary parts of
 components of CX. Note that this is not the L1 norm of CX.
 CASUM = sum from 0 to N-1 of ABS(REAL(CX(IX+I*INCX))) +
 ABS(IMAG(CX(IX+I*INCX))),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 85

SCG

 SUBROUTINE SCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
 $ RWORK, IWORK)
 ***BEGIN PROLOGUE SCG
 ***PURPOSE Preconditioned Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the Preconditioned Conjugate
 Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE SINGLE PRECISION (SCG-S, DCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 REAL P(N), DZ(N), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL SCG(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, DZ,
 $ RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must

SLATEC5 (REBAK through ZBIRY) - 86

 be declared external in the calling program. The calling
 sequence to MATVEC is:

 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)

 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotest that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:

 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)

 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a real array that can
 be used to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.

SLATEC5 (REBAK through ZBIRY) - 87

 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 Z :WORK Real Z(N).
 P :WORK Real P(N).
 DZ :WORK Real DZ(N).
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines SSDCG and SSICCG are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11

SLATEC5 (REBAK through ZBIRY) - 88

 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSDCG, SSICCG
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 3. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSCG, R1MACH, SAXPY, SCOPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC

SLATEC5 (REBAK through ZBIRY) - 89

 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 90

SCGN

 SUBROUTINE SCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)
 ***BEGIN PROLOGUE SCGN
 ***PURPOSE Preconditioned CG Sparse Ax=b Solver for Normal Equations.
 Routine to solve a general linear system Ax = b using the
 Preconditioned Conjugate Gradient method applied to the
 normal equations AA'y = b, x=A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SCGN-S, DCGN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 NORMAL EQUATIONS., SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 REAL P(N), ATP(N), ATZ(N), DZ(N), ATDZ(N)
 REAL RWORK(USER DEFINED)
 EXTERNAL MATVEC, MTTVEC, MSOLVE

 CALL SCGN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MTTVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, ATP, ATZ, DZ, ATDZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply

SLATEC5 (REBAK through ZBIRY) - 91

 y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP-Column IA, JA, A storage for the matrix
 A. ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MTTVEC :EXT External.
 Name of a routine which performs the matrix transpose vector
 multiply y = A'*X given A and X (where ' denotes transpose).
 The name of the MTTVEC routine must be declared external in
 the calling program. The calling sequence to MTTVEC is the
 same as that for MATVEC, viz.:
 CALL MTTVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A'*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP-Column IA, JA, A storage for the matrix
 A. ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a real array that can
 be used to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)

SLATEC5 (REBAK through ZBIRY) - 92

 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 Z :WORK Real Z(N).
 P :WORK Real P(N).
 ATP :WORK Real ATP(N).
 ATZ :WORK Real ATZ(N).
 DZ :WORK Real DZ(N).
 ATDZ :WORK Real ATDZ(N).
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description:
 This routine applies the preconditioned conjugate gradient
 (PCG) method to a non-symmetric system of equations Ax=b. To
 do this the normal equations are solved:
 AA' y = b, where x = A'y.
 In PCG method the iteration count is determined by condition
 -1
 number of the matrix (M A). In the situation where the
 normal equations are used to solve a non-symmetric system
 the condition number depends on AA' and should therefore be
 much worse than that of A. This is the conventional wisdom.
 When one has a good preconditioner for AA' this may not hold.
 The latter is the situation when SCGN should be tried.

 If one is trying to solve a symmetric system, SCG should be
 used instead.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls MATVEC, MTTVEC and MSOLVE
 routines, with arguments as described above. The user could
 write any type of structure, and appropriate MATVEC, MTTVEC
 and MSOLVE routines. It is assumed that A is stored in the

SLATEC5 (REBAK through ZBIRY) - 93

 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines SSDCGN and SSLUCN are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12

SLATEC5 (REBAK through ZBIRY) - 94

 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSDCGN, SSLUCN, ISSCGN
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSCGN, R1MACH, SAXPY, SCOPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC, MTTVEC and MSOLVE from ROUTINES CALLED
 list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 95

SCGS

 SUBROUTINE SCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, R0, P, Q, U, V1, V2, RWORK, IWORK)
 ***BEGIN PROLOGUE SCGS
 ***PURPOSE Preconditioned BiConjugate Gradient Squared Ax=b Solver.
 Routine to solve a Non-Symmetric linear system Ax = b
 using the Preconditioned BiConjugate Gradient Squared
 method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SCGS-S, DCGS-D)
 ***KEYWORDS BICONJUGATE GRADIENT, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), R0(N), P(N)
 REAL Q(N), U(N), V1(N), V2(N), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL SCGS(N, B, X, NELT, IA, JA, A, ISYM, MATVEC,
 $ MSOLVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ R, R0, P, Q, U, V1, V2, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 operation Y = A*X given A and X. The name of the MATVEC

SLATEC5 (REBAK through ZBIRY) - 96

 routine must be declared external in the calling program.
 The calling sequence of MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X upon
 return, X is an input vector. NELT, IA, JA, A and ISYM
 define the SLAP matrix data structure: see Description,below.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for Z
 given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine
 must be declared external in the calling program. The
 calling sequence of MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector, and Z is the solution upon return. NELT, IA, JA, A
 and ISYM define the SLAP matrix data structure: see
 Description, below. RWORK is a real array that can be used
 to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for the
 same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-
 ative method. ITOL=2 is *STRONGLY* recommended.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.

SLATEC5 (REBAK through ZBIRY) - 97

 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 R0 :WORK Real R0(N).
 P :WORK Real P(N).
 Q :WORK Real Q(N).
 U :WORK Real U(N).
 V1 :WORK Real V1(N).
 V2 :WORK Real V2(N).
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used for workspace in MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines SSDBCG and SSLUCS are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|

SLATEC5 (REBAK through ZBIRY) - 98

 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSDCGS, SSLUCS
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 3. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSCGS, R1MACH, SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)

SLATEC5 (REBAK through ZBIRY) - 99

 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 100

SCHDC

 SUBROUTINE SCHDC (A, LDA, P, WORK, JPVT, JOB, INFO)
 ***BEGIN PROLOGUE SCHDC
 ***PURPOSE Compute the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition number of a positive definite matrix or determine
 the rank of a positive semidefinite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SCHDC-S, DCHDC-D, CCHDC-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Dongarra, J., (ANL)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SCHDC computes the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition of a positive definite matrix or determine the rank
 of a positive semidefinite matrix.

 On Entry

 A REAL(LDA,P).
 A contains the matrix whose decomposition is to
 be computed. Only the upper half of A need be stored.
 The lower part of the array A is not referenced.

 LDA INTEGER.
 LDA is the leading dimension of the array A.

 P INTEGER.
 P is the order of the matrix.

 WORK REAL.
 WORK is a work array.

 JPVT INTEGER(P).
 JPVT contains integers that control the selection
 of the pivot elements, if pivoting has been requested.
 Each diagonal element A(K,K)
 is placed in one of three classes according to the
 value of JPVT(K).

 If JPVT(K) .GT. 0, then X(K) is an initial
 element.

 If JPVT(K) .EQ. 0, then X(K) is a free element.

 If JPVT(K) .LT. 0, then X(K) is a final element.

 Before the decomposition is computed, initial elements
 are moved by symmetric row and column interchanges to
 the beginning of the array A and final
 elements to the end. Both initial and final elements
 are frozen in place during the computation and only
 free elements are moved. At the K-th stage of the

SLATEC5 (REBAK through ZBIRY) - 101

 reduction, if A(K,K) is occupied by a free element
 it is interchanged with the largest free element
 A(L,L) with L .GE. K. JPVT is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 If JOB .EQ. 0, no pivoting is done.
 If JOB .NE. 0, pivoting is done.

 On Return

 A A contains in its upper half the Cholesky factor
 of the matrix A as it has been permuted by pivoting.

 JPVT JPVT(J) contains the index of the diagonal element
 of a that was moved into the J-th position,
 provided pivoting was requested.

 INFO contains the index of the last positive diagonal
 element of the Cholesky factor.

 For positive definite matrices INFO = P is the normal return.
 For pivoting with positive semidefinite matrices INFO will
 in general be less than P. However, INFO may be greater than
 the rank of A, since rounding error can cause an otherwise zero
 element to be positive. Indefinite systems will always cause
 INFO to be less than P.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SSWAP
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890313 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 102

SCHDD

 SUBROUTINE SCHDD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S, INFO)
 ***BEGIN PROLOGUE SCHDD
 ***PURPOSE Downdate an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE SINGLE PRECISION (SCHDD-S, DCHDD-D, CCHDD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, DOWNDATE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SCHDD downdates an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 Specifically, given an upper triangular matrix R of order P, a
 row vector X, a column vector Z, and a scalar Y, SCHDD
 determines an orthogonal matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (0 ZETA) (X Y)

 where RR is upper triangular. If R and Z have been obtained
 from the factorization of a least squares problem, then
 RR and ZZ are the factors corresponding to the problem
 with the observation (X,Y) removed. In this case, if RHO
 is the norm of the residual vector, then the norm of
 the residual vector of the downdated problem is
 SQRT(RHO**2 - ZETA**2). SCHDD will simultaneously downdate
 several triplets (Z,Y,RHO) along with R.
 For a less terse description of what SCHDD does and how
 it may be applied, see the LINPACK guide.

 The matrix U is determined as the product U(1)*...*U(P)
 where U(I) is a rotation in the (P+1,I)-plane of the
 form

 (C(I) -S(I))
 () .
 (S(I) C(I))

 The rotations are chosen so that C(I) is real.

 The user is warned that a given downdating problem may
 be impossible to accomplish or may produce
 inaccurate results. For example, this can happen
 if X is near a vector whose removal will reduce the
 rank of R. Beware.

 On Entry

 R REAL(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be downdated. The part of R
 below the diagonal is not referenced.

SLATEC5 (REBAK through ZBIRY) - 103

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

 X REAL(P).
 X contains the row vector that is to
 be removed from R. X is not altered by SCHDD.

 Z REAL(LDZ,NZ), where LDZ .GE. P.
 Z is an array of NZ P-vectors which
 are to be downdated along with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be downdated
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y REAL(NZ).
 Y contains the scalars for the downdating
 of the vectors Z. Y is not altered by SCHDD.

 RHO REAL(NZ).
 RHO contains the norms of the residual
 vectors that are to be downdated.

 On Return

 R
 Z contain the downdated quantities.
 RHO

 C REAL(P).
 C contains the cosines of the transforming
 rotations.

 S REAL(P).
 S contains the sines of the transforming
 rotations.

 INFO INTEGER.
 INFO is set as follows.

 INFO = 0 if the entire downdating
 was successful.

 INFO =-1 if R could not be downdated.
 In this case, all quantities
 are left unaltered.

 INFO = 1 if some RHO could not be
 downdated. The offending RHOs are
 set to -1.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC5 (REBAK through ZBIRY) - 104

 ***ROUTINES CALLED SDOT, SNRM2
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 105

SCHEX

 SUBROUTINE SCHEX (R, LDR, P, K, L, Z, LDZ, NZ, C, S, JOB)
 ***BEGIN PROLOGUE SCHEX
 ***PURPOSE Update the Cholesky factorization A=TRANS(R)*R of A
 positive definite matrix A of order P under diagonal
 permutations of the form TRANS(E)*A*E, where E is a
 permutation matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE SINGLE PRECISION (SCHEX-S, DCHEX-D, CCHEX-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, EXCHANGE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SCHEX updates the Cholesky factorization

 A = TRANS(R)*R

 of a positive definite matrix A of order P under diagonal
 permutations of the form

 TRANS(E)*A*E

 where E is a permutation matrix. Specifically, given
 an upper triangular matrix R and a permutation matrix
 E (which is specified by K, L, and JOB), SCHEX determines
 an orthogonal matrix U such that

 U*R*E = RR,

 where RR is upper triangular. At the users option, the
 transformation U will be multiplied into the array Z.
 If A = TRANS(X)*X, so that R is the triangular part of the
 QR factorization of X, then RR is the triangular part of the
 QR factorization of X*E, i.e., X with its columns permuted.
 For a less terse description of what SCHEX does and how
 it may be applied, see the LINPACK guide.

 The matrix Q is determined as the product U(L-K)*...*U(1)
 of plane rotations of the form

 (C(I) S(I))
 () ,
 (-S(I) C(I))

 where C(I) is real. The rows these rotations operate on
 are described below.

 There are two types of permutations, which are determined
 by the value of JOB.

 1. Right circular shift (JOB = 1).

 The columns are rearranged in the following order.

 1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.

SLATEC5 (REBAK through ZBIRY) - 106

 U is the product of L-K rotations U(I), where U(I)
 acts in the (L-I,L-I+1)-plane.

 2. Left circular shift (JOB = 2).
 The columns are rearranged in the following order

 1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.

 U is the product of L-K rotations U(I), where U(I)
 acts in the (K+I-1,K+I)-plane.

 On Entry

 R REAL(LDR,P), where LDR .GE. P.
 R contains the upper triangular factor
 that is to be updated. Elements of R
 below the diagonal are not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

 K INTEGER.
 K is the first column to be permuted.

 L INTEGER.
 L is the last column to be permuted.
 L must be strictly greater than K.

 Z REAL(LDZ,NZ), where LDZ.GE.P.
 Z is an array of NZ P-vectors into which the
 transformation U is multiplied. Z is
 not referenced if NZ = 0.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of columns of the matrix Z.

 JOB INTEGER.
 JOB determines the type of permutation.
 JOB = 1 right circular shift.
 JOB = 2 left circular shift.

 On Return

 R contains the updated factor.

 Z contains the updated matrix Z.

 C REAL(P).
 C contains the cosines of the transforming rotations.

 S REAL(P).
 S contains the sines of the transforming rotations.

SLATEC5 (REBAK through ZBIRY) - 107

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 108

SCHUD

 SUBROUTINE SCHUD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S)
 ***BEGIN PROLOGUE SCHUD
 ***PURPOSE Update an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE SINGLE PRECISION (SCHUD-S, DCHUD-D, CCHUD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 UPDATE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SCHUD updates an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition. Specifically,
 given an upper triangular matrix R of order P, a row vector
 X, a column vector Z, and a scalar Y, SCHUD determines a
 unitary matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (X Y) (0 ZETA)

 where RR is upper triangular. If R and Z have been
 obtained from the factorization of a least squares
 problem, then RR and ZZ are the factors corresponding to
 the problem with the observation (X,Y) appended. In this
 case, if RHO is the norm of the residual vector, then the
 norm of the residual vector of the updated problem is
 SQRT(RHO**2 + ZETA**2). SCHUD will simultaneously update
 several triplets (Z,Y,RHO).
 For a less terse description of what SCHUD does and how
 it may be applied, see the LINPACK guide.

 The matrix U is determined as the product U(P)*...*U(1),
 where U(I) is a rotation in the (I,P+1) plane of the
 form

 (C(I) S(I))
 () .
 (-S(I) C(I))

 The rotations are chosen so that C(I) is real.

 On Entry

 R REAL(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be updated. The part of R
 below the diagonal is not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

SLATEC5 (REBAK through ZBIRY) - 109

 X REAL(P).
 X contains the row to be added to R. X is
 not altered by SCHUD.

 Z REAL(LDZ,NZ), where LDZ .GE. P.
 Z is an array containing NZ P-vectors to
 be updated with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be updated.
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y REAL(NZ).
 Y contains the scalars for updating the vectors
 Z. Y is not altered by SCHUD.

 RHO REAL(NZ).
 RHO contains the norms of the residual
 vectors that are to be updated. If RHO(J)
 is negative, it is left unaltered.

 On Return

 RC
 RHO contain the updated quantities.
 Z

 C REAL(P).
 C contains the cosines of the transforming
 rotations.

 S REAL(P).
 S contains the sines of the transforming
 rotations.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 110

SCNRM2

 REAL FUNCTION SCNRM2 (N, CX, INCX)
 ***BEGIN PROLOGUE SCNRM2
 ***PURPOSE Compute the unitary norm of a complex vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3B
 ***TYPE COMPLEX (SNRM2-S, DNRM2-D, SCNRM2-C)
 ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2,
 LINEAR ALGEBRA, UNITARY, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX

 --Output--
 SCNRM2 single precision result (zero if N .LE. 0)

 Unitary norm of the complex N-vector stored in CX with storage
 increment INCX.
 If N .LE. 0, return with result = 0.
 If N .GE. 1, then INCX must be .GE. 1

 Four phase method using two built-in constants that are
 hopefully applicable to all machines.
 CUTLO = maximum of SQRT(U/EPS) over all known machines.
 CUTHI = minimum of SQRT(V) over all known machines.
 where
 EPS = smallest no. such that EPS + 1. .GT. 1.
 U = smallest positive no. (underflow limit)
 V = largest no. (overflow limit)

 Brief outline of algorithm.

 Phase 1 scans zero components.
 Move to phase 2 when a component is nonzero and .LE. CUTLO
 Move to phase 3 when a component is .GT. CUTLO
 Move to phase 4 when a component is .GE. CUTHI/M
 where M = N for X() real and M = 2*N for complex.

 Values for CUTLO and CUTHI.
 From the environmental parameters listed in the IMSL converter
 document the limiting values are as follows:
 CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are
 Univac and DEC at 2**(-103)
 Thus CUTLO = 2**(-51) = 4.44089E-16
 CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC.
 Thus CUTHI = 2**(63.5) = 1.30438E19
 CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC.

SLATEC5 (REBAK through ZBIRY) - 111

 Thus CUTLO = 2**(-33.5) = 8.23181D-11
 CUTHI, D.P. same as S.P. CUTHI = 1.30438D19
 DATA CUTLO, CUTHI /8.232D-11, 1.304D19/
 DATA CUTLO, CUTHI /4.441E-16, 1.304E19/

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 112

SCOPY

 SUBROUTINE SCOPY (N, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SCOPY
 ***PURPOSE Copy a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE SINGLE PRECISION (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I)
 ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 SY copy of vector SX (unchanged if N .LE. 0)

 Copy single precision SX to single precision SY.
 For I = 0 to N-1, copy SX(LX+I*INCX) to SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 113

SCOPYM

 SUBROUTINE SCOPYM (N, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SCOPYM
 ***PURPOSE Copy the negative of a vector to a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE SINGLE PRECISION (SCOPYM-S, DCOPYM-D)
 ***KEYWORDS BLAS, COPY, VECTOR
 ***AUTHOR Kahaner, D. K., (NBS)
 ***DESCRIPTION

 Description of Parameters
 The * Flags Output Variables

 N Number of elements in vector(s)
 SX Real vector with N elements
 INCX Storage spacing between elements of SX
 SY* Real negative copy of SX
 INCY Storage spacing between elements of SY

 *** Note that SY = -SX ***

 Copy negative of real SX to real SY. For I=0 to N-1,
 copy -SX(LX+I*INCX) to SY(LY+I*INCY), where LX=1 if
 INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined
 in a similar way using INCY.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 114

SCOV

 SUBROUTINE SCOV (FCN, IOPT, M, N, X, FVEC, R, LDR, INFO, WA1, WA2,
 + WA3, WA4)
 ***BEGIN PROLOGUE SCOV
 ***PURPOSE Calculate the covariance matrix for a nonlinear data
 fitting problem. It is intended to be used after a
 successful return from either SNLS1 or SNLS1E.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1
 ***TYPE SINGLE PRECISION (SCOV-S, DCOV-D)
 ***KEYWORDS COVARIANCE MATRIX, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 SCOV calculates the covariance matrix for a nonlinear data
 fitting problem. It is intended to be used after a
 successful return from either SNLS1 or SNLS1E. SCOV
 and SNLS1 (and SNLS1E) have compatible parameters. The
 required external subroutine, FCN, is the same
 for all three codes, SCOV, SNLS1, and SNLS1E.

 2. Subroutine and Type Statements.

 SUBROUTINE SCOV(FCN,IOPT,M,N,X,FVEC,R,LDR,INFO,
 WA1,WA2,WA3,WA4)
 INTEGER IOPT,M,N,LDR,INFO
 REAL X(N),FVEC(M),R(LDR,N),WA1(N),WA2(N),WA3(N),WA4(M)
 EXTERNAL FCN

 3. Parameters.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below. FCN must be declared in an
 EXTERNAL statement in the calling program and should be
 written as follows.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 INTEGER IFLAG,LDFJAC,M,N
 REAL X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 REAL FJAC(LDFJAC,N) , if IOPT=2.
 REAL FJAC(N) , if IOPT=3.

 IFLAG will never be zero when FCN is called by SCOV.
 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

SLATEC5 (REBAK through ZBIRY) - 115

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FJAC(J) must be set to
 the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of SCOV. In this case, set
 IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input X must contain the value
 at which the covariance matrix is to be evaluated. This is
 usually the value for X returned from a successful run of
 SNLS1 (or SNLS1E). The value of X will not be changed.

 FVEC is an output array of length M which contains the functions
 evaluated at X.

 R is an output array. For IOPT=1 and 2, R is an M by N array.
 For IOPT=3, R is an N by N array. On output, if INFO=1,
 the upper N by N submatrix of R contains the covariance
 matrix evaluated at X.

 LDR is a positive integer input variable which specifies
 the leading dimension of the array R. For IOPT=1 and 2,
 LDR must not be less than M. For IOPT=3, LDR must not
 be less than N.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN. Otherwise, INFO is set as follows.

 INFO = 0 Improper input parameters (M.LE.0 or N.LE.0).
SLATEC5 (REBAK through ZBIRY) - 116

 INFO = 1 Successful return. The covariance matrix has been
 calculated and stored in the upper N by N
 submatrix of R.

 INFO = 2 The Jacobian matrix is singular for the input value
 of X. The covariance matrix cannot be calculated.
 The upper N by N submatrix of R contains the QR
 factorization of the Jacobian (probably not of
 interest to the user).

 WA1 is a work array of length N.
 WA2 is a work array of length N.
 WA3 is a work array of length N.
 WA4 is a work array of length M.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ENORM, FDJAC3, QRFAC, RWUPDT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810522 DATE WRITTEN
 890505 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 117

SCPPLT

 SUBROUTINE SCPPLT (N, NELT, IA, JA, A, ISYM, IUNIT)
 ***BEGIN PROLOGUE SCPPLT
 ***PURPOSE Printer Plot of SLAP Column Format Matrix.
 Routine to print out a SLAP Column format matrix in a
 "printer plot" graphical representation.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE SINGLE PRECISION (SCPPLT-S, DCPPLT-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT
 REAL A(NELT)

 CALL SCPPLT(N, NELT, IA, JA, A, ISYM, IUNIT)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 If N.gt.MAXORD, only the leading MAXORD x MAXORD
 submatrix will be printed. (Currently MAXORD = 225.)
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP
 Column format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.

 *Description:
 This routine prints out a SLAP Column format matrix to the
 Fortran logical I/O unit number IUNIT. The numbers them
 selves are not printed out, but rather a one character
 representation of the numbers. Elements of the matrix that
 are not represented in the (IA,JA,A) arrays are denoted by
 ' ' character (a blank). Elements of A that are *ZERO* (and
 hence should really not be stored) are denoted by a '0'
 character. Elements of A that are *POSITIVE* are denoted by
 'D' if they are Diagonal elements and '#' if they are off
 Diagonal elements. Elements of A that are *NEGATIVE* are

SLATEC5 (REBAK through ZBIRY) - 118

 denoted by 'N' if they are Diagonal elements and '*' if
 they are off Diagonal elements.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 *Portability:
 This routine, as distributed, can generate lines up to 229
 characters long. Some Fortran systems have more restricted
 line lengths. Change parameter MAXORD and the large number
 in FORMAT 1010 to reduce this line length.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921007 Replaced hard-wired 225 with parameter MAXORD. (FNF)
 921021 Corrected syntax of CHARACTER declaration. (FNF)

SLATEC5 (REBAK through ZBIRY) - 119

 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 120

SDASSL

 SUBROUTINE SDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
 * IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)
 ***BEGIN PROLOGUE SDASSL
 ***PURPOSE This code solves a system of differential/algebraic
 equations of the form G(T,Y,YPRIME) = 0.
 ***LIBRARY SLATEC (DASSL)
 ***CATEGORY I1A2
 ***TYPE SINGLE PRECISION (SDASSL-S, DDASSL-D)
 ***KEYWORDS BACKWARD DIFFERENTIATION FORMULAS, DASSL,
 DIFFERENTIAL/ALGEBRAIC, IMPLICIT DIFFERENTIAL SYSTEMS
 ***AUTHOR Petzold, Linda R., (LLNL)
 Computing and Mathematics Research Division
 Lawrence Livermore National Laboratory
 L - 316, P.O. Box 808,
 Livermore, CA. 94550
 ***DESCRIPTION

 *Usage:

 EXTERNAL RES, JAC
 INTEGER NEQ, INFO(N), IDID, LRW, LIW, IWORK(LIW), IPAR
 REAL T, Y(NEQ), YPRIME(NEQ), TOUT, RTOL, ATOL,
 * RWORK(LRW), RPAR

 CALL SDASSL (RES, NEQ, T, Y, YPRIME, TOUT, INFO, RTOL, ATOL,
 * IDID, RWORK, LRW, IWORK, LIW, RPAR, IPAR, JAC)

 *Arguments:

 RES:EXT This is a subroutine which you provide to define the
 differential/algebraic system.

 NEQ:IN This is the number of equations to be solved.

 T:INOUT This is the current value of the independent variable.

 Y(*):INOUT This array contains the solution components at T.

 YPRIME(*):INOUT This array contains the derivatives of the solution
 components at T.

 TOUT:IN This is a point at which a solution is desired.

 INFO(N):IN The basic task of the code is to solve the system from T
 to TOUT and return an answer at TOUT. INFO is an integer
 array which is used to communicate exactly how you want
 this task to be carried out. (See below for details.)
 N must be greater than or equal to 15.

 RTOL,ATOL:INOUT These quantities represent relative and absolute
 error tolerances which you provide to indicate how
 accurately you wish the solution to be computed. You
 may choose them to be both scalars or else both vectors.
 Caution: In Fortran 77, a scalar is not the same as an
 array of length 1. Some compilers may object

SLATEC5 (REBAK through ZBIRY) - 121

 to using scalars for RTOL,ATOL.

 IDID:OUT This scalar quantity is an indicator reporting what the
 code did. You must monitor this integer variable to
 decide what action to take next.

 RWORK:WORK A real work array of length LRW which provides the
 code with needed storage space.

 LRW:IN The length of RWORK. (See below for required length.)

 IWORK:WORK An integer work array of length LIW which provides the
 code with needed storage space.

 LIW:IN The length of IWORK. (See below for required length.)

 RPAR,IPAR:IN These are real and integer parameter arrays which
 you can use for communication between your calling
 program and the RES subroutine (and the JAC subroutine)

 JAC:EXT This is the name of a subroutine which you may choose
 to provide for defining a matrix of partial derivatives
 described below.

 Quantities which may be altered by SDASSL are:
 T, Y(*), YPRIME(*), INFO(1), RTOL, ATOL,
 IDID, RWORK(*) AND IWORK(*)

 *Description

 Subroutine SDASSL uses the backward differentiation formulas of
 orders one through five to solve a system of the above form for Y and
 YPRIME. Values for Y and YPRIME at the initial time must be given as
 input. These values must be consistent, (that is, if T,Y,YPRIME are
 the given initial values, they must satisfy G(T,Y,YPRIME) = 0.). The
 subroutine solves the system from T to TOUT. It is easy to continue
 the solution to get results at additional TOUT. This is the interval
 mode of operation. Intermediate results can also be obtained easily
 by using the intermediate-output capability.

 The following detailed description is divided into subsections:
 1. Input required for the first call to SDASSL.
 2. Output after any return from SDASSL.
 3. What to do to continue the integration.
 4. Error messages.

 -------- INPUT -- WHAT TO DO ON THE FIRST CALL TO SDASSL ------------

 The first call of the code is defined to be the start of each new
 problem. Read through the descriptions of all the following items,
 provide sufficient storage space for designated arrays, set
 appropriate variables for the initialization of the problem, and
 give information about how you want the problem to be solved.

 RES -- Provide a subroutine of the form
 SUBROUTINE RES(T,Y,YPRIME,DELTA,IRES,RPAR,IPAR)
 to define the system of differential/algebraic
 equations which is to be solved. For the given values

SLATEC5 (REBAK through ZBIRY) - 122

 of T,Y and YPRIME, the subroutine should
 return the residual of the differential/algebraic
 system
 DELTA = G(T,Y,YPRIME)
 (DELTA(*) is a vector of length NEQ which is
 output for RES.)

 Subroutine RES must not alter T,Y or YPRIME.
 You must declare the name RES in an external
 statement in your program that calls SDASSL.
 You must dimension Y,YPRIME and DELTA in RES.

 IRES is an integer flag which is always equal to
 zero on input. Subroutine RES should alter IRES
 only if it encounters an illegal value of Y or
 a stop condition. Set IRES = -1 if an input value
 is illegal, and SDASSL will try to solve the problem
 without getting IRES = -1. If IRES = -2, SDASSL
 will return control to the calling program
 with IDID = -11.

 RPAR and IPAR are real and integer parameter arrays which
 you can use for communication between your calling program
 and subroutine RES. They are not altered by SDASSL. If you
 do not need RPAR or IPAR, ignore these parameters by treat-
 ing them as dummy arguments. If you do choose to use them,
 dimension them in your calling program and in RES as arrays
 of appropriate length.

 NEQ -- Set it to the number of differential equations.
 (NEQ .GE. 1)

 T -- Set it to the initial point of the integration.
 T must be defined as a variable.

 Y(*) -- Set this vector to the initial values of the NEQ solution
 components at the initial point. You must dimension Y of
 length at least NEQ in your calling program.

 YPRIME(*) -- Set this vector to the initial values of the NEQ
 first derivatives of the solution components at the initial
 point. You must dimension YPRIME at least NEQ in your
 calling program. If you do not know initial values of some
 of the solution components, see the explanation of INFO(11).

 TOUT -- Set it to the first point at which a solution
 is desired. You can not take TOUT = T.
 integration either forward in T (TOUT .GT. T) or
 backward in T (TOUT .LT. T) is permitted.

 The code advances the solution from T to TOUT using
 step sizes which are automatically selected so as to
 achieve the desired accuracy. If you wish, the code will
 return with the solution and its derivative at
 intermediate steps (intermediate-output mode) so that
 you can monitor them, but you still must provide TOUT in
 accord with the basic aim of the code.

 The first step taken by the code is a critical one
 because it must reflect how fast the solution changes near

SLATEC5 (REBAK through ZBIRY) - 123

 the initial point. The code automatically selects an
 initial step size which is practically always suitable for
 the problem. By using the fact that the code will not step
 past TOUT in the first step, you could, if necessary,
 restrict the length of the initial step size.

 For some problems it may not be permissible to integrate
 past a point TSTOP because a discontinuity occurs there
 or the solution or its derivative is not defined beyond
 TSTOP. When you have declared a TSTOP point (SEE INFO(4)
 and RWORK(1)), you have told the code not to integrate
 past TSTOP. In this case any TOUT beyond TSTOP is invalid
 input.

 INFO(*) -- Use the INFO array to give the code more details about
 how you want your problem solved. This array should be
 dimensioned of length 15, though SDASSL uses only the first
 eleven entries. You must respond to all of the following
 items, which are arranged as questions. The simplest use
 of the code corresponds to answering all questions as yes,
 i.e. setting all entries of INFO to 0.

 INFO(1) - This parameter enables the code to initialize
 itself. You must set it to indicate the start of every
 new problem.

 **** Is this the first call for this problem ...
 Yes - Set INFO(1) = 0
 No - Not applicable here.
 See below for continuation calls. ****

 INFO(2) - How much accuracy you want of your solution
 is specified by the error tolerances RTOL and ATOL.
 The simplest use is to take them both to be scalars.
 To obtain more flexibility, they can both be vectors.
 The code must be told your choice.

 **** Are both error tolerances RTOL, ATOL scalars ...
 Yes - Set INFO(2) = 0
 and input scalars for both RTOL and ATOL
 No - Set INFO(2) = 1
 and input arrays for both RTOL and ATOL ****

 INFO(3) - The code integrates from T in the direction
 of TOUT by steps. If you wish, it will return the
 computed solution and derivative at the next
 intermediate step (the intermediate-output mode) or
 TOUT, whichever comes first. This is a good way to
 proceed if you want to see the behavior of the solution.
 If you must have solutions at a great many specific
 TOUT points, this code will compute them efficiently.

 **** Do you want the solution only at
 TOUT (and not at the next intermediate step) ...
 Yes - Set INFO(3) = 0
 No - Set INFO(3) = 1 ****

 INFO(4) - To handle solutions at a great many specific
 values TOUT efficiently, this code may integrate past
 TOUT and interpolate to obtain the result at TOUT.

SLATEC5 (REBAK through ZBIRY) - 124

 Sometimes it is not possible to integrate beyond some
 point TSTOP because the equation changes there or it is
 not defined past TSTOP. Then you must tell the code
 not to go past.

 **** Can the integration be carried out without any
 restrictions on the independent variable T ...
 Yes - Set INFO(4)=0
 No - Set INFO(4)=1
 and define the stopping point TSTOP by
 setting RWORK(1)=TSTOP ****

 INFO(5) - To solve differential/algebraic problems it is
 necessary to use a matrix of partial derivatives of the
 system of differential equations. If you do not
 provide a subroutine to evaluate it analytically (see
 description of the item JAC in the call list), it will
 be approximated by numerical differencing in this code.
 although it is less trouble for you to have the code
 compute partial derivatives by numerical differencing,
 the solution will be more reliable if you provide the
 derivatives via JAC. Sometimes numerical differencing
 is cheaper than evaluating derivatives in JAC and
 sometimes it is not - this depends on your problem.

 **** Do you want the code to evaluate the partial
 derivatives automatically by numerical differences ...
 Yes - Set INFO(5)=0
 No - Set INFO(5)=1
 and provide subroutine JAC for evaluating the
 matrix of partial derivatives ****

 INFO(6) - SDASSL will perform much better if the matrix of
 partial derivatives, DG/DY + CJ*DG/DYPRIME,
 (here CJ is a scalar determined by SDASSL)
 is banded and the code is told this. In this
 case, the storage needed will be greatly reduced,
 numerical differencing will be performed much cheaper,
 and a number of important algorithms will execute much
 faster. The differential equation is said to have
 half-bandwidths ML (lower) and MU (upper) if equation i
 involves only unknowns Y(J) with
 I-ML .LE. J .LE. I+MU
 for all I=1,2,...,NEQ. Thus, ML and MU are the widths
 of the lower and upper parts of the band, respectively,
 with the main diagonal being excluded. If you do not
 indicate that the equation has a banded matrix of partial
 derivatives, the code works with a full matrix of NEQ**2
 elements (stored in the conventional way). Computations
 with banded matrices cost less time and storage than with
 full matrices if 2*ML+MU .LT. NEQ. If you tell the
 code that the matrix of partial derivatives has a banded
 structure and you want to provide subroutine JAC to
 compute the partial derivatives, then you must be careful
 to store the elements of the matrix in the special form
 indicated in the description of JAC.

 **** Do you want to solve the problem using a full
 (dense) matrix (and not a special banded
 structure) ...

SLATEC5 (REBAK through ZBIRY) - 125

 Yes - Set INFO(6)=0
 No - Set INFO(6)=1
 and provide the lower (ML) and upper (MU)
 bandwidths by setting
 IWORK(1)=ML
 IWORK(2)=MU ****

 INFO(7) -- You can specify a maximum (absolute value of)
 stepsize, so that the code
 will avoid passing over very
 large regions.

 **** Do you want the code to decide
 on its own maximum stepsize?
 Yes - Set INFO(7)=0
 No - Set INFO(7)=1
 and define HMAX by setting
 RWORK(2)=HMAX ****

 INFO(8) -- Differential/algebraic problems
 may occasionally suffer from
 severe scaling difficulties on the
 first step. If you know a great deal
 about the scaling of your problem, you can
 help to alleviate this problem by
 specifying an initial stepsize HO.

 **** Do you want the code to define
 its own initial stepsize?
 Yes - Set INFO(8)=0
 No - Set INFO(8)=1
 and define HO by setting
 RWORK(3)=HO ****

 INFO(9) -- If storage is a severe problem,
 you can save some locations by
 restricting the maximum order MAXORD.
 the default value is 5. for each
 order decrease below 5, the code
 requires NEQ fewer locations, however
 it is likely to be slower. In any
 case, you must have 1 .LE. MAXORD .LE. 5
 **** Do you want the maximum order to
 default to 5?
 Yes - Set INFO(9)=0
 No - Set INFO(9)=1
 and define MAXORD by setting
 IWORK(3)=MAXORD ****

 INFO(10) --If you know that the solutions to your equations
 will always be nonnegative, it may help to set this
 parameter. However, it is probably best to
 try the code without using this option first,
 and only to use this option if that doesn't
 work very well.
 **** Do you want the code to solve the problem without
 invoking any special nonnegativity constraints?
 Yes - Set INFO(10)=0
 No - Set INFO(10)=1

SLATEC5 (REBAK through ZBIRY) - 126

 INFO(11) --SDASSL normally requires the initial T,
 Y, and YPRIME to be consistent. That is,
 you must have G(T,Y,YPRIME) = 0 at the initial
 time. If you do not know the initial
 derivative precisely, you can let SDASSL try
 to compute it.
 **** Are the initial T, Y, YPRIME consistent?
 Yes - Set INFO(11) = 0
 No - Set INFO(11) = 1,
 and set YPRIME to an initial approximation
 to YPRIME. (If you have no idea what
 YPRIME should be, set it to zero. Note
 that the initial Y should be such
 that there must exist a YPRIME so that
 G(T,Y,YPRIME) = 0.)

 RTOL, ATOL -- You must assign relative (RTOL) and absolute (ATOL
 error tolerances to tell the code how accurately you
 want the solution to be computed. They must be defined
 as variables because the code may change them. You
 have two choices --
 Both RTOL and ATOL are scalars. (INFO(2)=0)
 Both RTOL and ATOL are vectors. (INFO(2)=1)
 in either case all components must be non-negative.

 The tolerances are used by the code in a local error
 test at each step which requires roughly that
 ABS(LOCAL ERROR) .LE. RTOL*ABS(Y)+ATOL
 for each vector component.
 (More specifically, a root-mean-square norm is used to
 measure the size of vectors, and the error test uses the
 magnitude of the solution at the beginning of the step.)

 The true (global) error is the difference between the
 true solution of the initial value problem and the
 computed approximation. Practically all present day
 codes, including this one, control the local error at
 each step and do not even attempt to control the global
 error directly.
 Usually, but not always, the true accuracy of the
 computed Y is comparable to the error tolerances. This
 code will usually, but not always, deliver a more
 accurate solution if you reduce the tolerances and
 integrate again. By comparing two such solutions you
 can get a fairly reliable idea of the true error in the
 solution at the bigger tolerances.

 Setting ATOL=0. results in a pure relative error test on
 that component. Setting RTOL=0. results in a pure
 absolute error test on that component. A mixed test
 with non-zero RTOL and ATOL corresponds roughly to a
 relative error test when the solution component is much
 bigger than ATOL and to an absolute error test when the
 solution component is smaller than the threshhold ATOL.

 The code will not attempt to compute a solution at an
 accuracy unreasonable for the machine being used. It will
 advise you if you ask for too much accuracy and inform
 you as to the maximum accuracy it believes possible.

SLATEC5 (REBAK through ZBIRY) - 127

 RWORK(*) -- Dimension this real work array of length LRW in your
 calling program.

 LRW -- Set it to the declared length of the RWORK array.
 You must have
 LRW .GE. 40+(MAXORD+4)*NEQ+NEQ**2
 for the full (dense) JACOBIAN case (when INFO(6)=0), or
 LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
 for the banded user-defined JACOBIAN case
 (when INFO(5)=1 and INFO(6)=1), or
 LRW .GE. 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
 +2*(NEQ/(ML+MU+1)+1)
 for the banded finite-difference-generated JACOBIAN case
 (when INFO(5)=0 and INFO(6)=1)

 IWORK(*) -- Dimension this integer work array of length LIW in
 your calling program.

 LIW -- Set it to the declared length of the IWORK array.
 You must have LIW .GE. 20+NEQ

 RPAR, IPAR -- These are parameter arrays, of real and integer
 type, respectively. You can use them for communication
 between your program that calls SDASSL and the
 RES subroutine (and the JAC subroutine). They are not
 altered by SDASSL. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension
 them in your calling program and in RES (and in JAC)
 as arrays of appropriate length.

 JAC -- If you have set INFO(5)=0, you can ignore this parameter
 by treating it as a dummy argument. Otherwise, you must
 provide a subroutine of the form
 SUBROUTINE JAC(T,Y,YPRIME,PD,CJ,RPAR,IPAR)
 to define the matrix of partial derivatives
 PD=DG/DY+CJ*DG/DYPRIME
 CJ is a scalar which is input to JAC.
 For the given values of T,Y,YPRIME, the
 subroutine must evaluate the non-zero partial
 derivatives for each equation and each solution
 component, and store these values in the
 matrix PD. The elements of PD are set to zero
 before each call to JAC so only non-zero elements
 need to be defined.

 Subroutine JAC must not alter T,Y,(*),YPRIME(*), or CJ.
 You must declare the name JAC in an EXTERNAL statement in
 your program that calls SDASSL. You must dimension Y,
 YPRIME and PD in JAC.

 The way you must store the elements into the PD matrix
 depends on the structure of the matrix which you
 indicated by INFO(6).
 *** INFO(6)=0 -- Full (dense) matrix ***
 Give PD a first dimension of NEQ.
 When you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to

SLATEC5 (REBAK through ZBIRY) - 128

 PD(I,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"
 *** INFO(6)=1 -- Banded JACOBIAN with ML lower and MU
 upper diagonal bands (refer to INFO(6) description
 of ML and MU) ***
 Give PD a first dimension of 2*ML+MU+1.
 when you evaluate the (non-zero) partial derivative
 of equation I with respect to variable J, you must
 store it in PD according to
 IROW = I - J + ML + MU + 1
 PD(IROW,J) = "DG(I)/DY(J)+CJ*DG(I)/DYPRIME(J)"

 RPAR and IPAR are real and integer parameter arrays
 which you can use for communication between your calling
 program and your JACOBIAN subroutine JAC. They are not
 altered by SDASSL. If you do not need RPAR or IPAR,
 ignore these parameters by treating them as dummy
 arguments. If you do choose to use them, dimension
 them in your calling program and in JAC as arrays of
 appropriate length.

 OPTIONALLY REPLACEABLE NORM ROUTINE:

 SDASSL uses a weighted norm SDANRM to measure the size
 of vectors such as the estimated error in each step.
 A FUNCTION subprogram
 REAL FUNCTION SDANRM(NEQ,V,WT,RPAR,IPAR)
 DIMENSION V(NEQ),WT(NEQ)
 is used to define this norm. Here, V is the vector
 whose norm is to be computed, and WT is a vector of
 weights. A SDANRM routine has been included with SDASSL
 which computes the weighted root-mean-square norm
 given by
 SDANRM=SQRT((1/NEQ)*SUM(V(I)/WT(I))**2)
 this norm is suitable for most problems. In some
 special cases, it may be more convenient and/or
 efficient to define your own norm by writing a function
 subprogram to be called instead of SDANRM. This should,
 however, be attempted only after careful thought and
 consideration.

 -------- OUTPUT -- AFTER ANY RETURN FROM SDASSL ---------------------

 The principal aim of the code is to return a computed solution at
 TOUT, although it is also possible to obtain intermediate results
 along the way. To find out whether the code achieved its goal
 or if the integration process was interrupted before the task was
 completed, you must check the IDID parameter.

 T -- The solution was successfully advanced to the
 output value of T.

 Y(*) -- Contains the computed solution approximation at T.

 YPRIME(*) -- Contains the computed derivative
 approximation at T.

 IDID -- Reports what the code did.
SLATEC5 (REBAK through ZBIRY) - 129

 *** Task completed ***
 Reported by positive values of IDID

 IDID = 1 -- A step was successfully taken in the
 intermediate-output mode. The code has not
 yet reached TOUT.

 IDID = 2 -- The integration to TSTOP was successfully
 completed (T=TSTOP) by stepping exactly to TSTOP.

 IDID = 3 -- The integration to TOUT was successfully
 completed (T=TOUT) by stepping past TOUT.
 Y(*) is obtained by interpolation.
 YPRIME(*) is obtained by interpolation.

 *** Task interrupted ***
 Reported by negative values of IDID

 IDID = -1 -- A large amount of work has been expended.
 (About 500 steps)

 IDID = -2 -- The error tolerances are too stringent.

 IDID = -3 -- The local error test cannot be satisfied
 because you specified a zero component in ATOL
 and the corresponding computed solution
 component is zero. Thus, a pure relative error
 test is impossible for this component.

 IDID = -6 -- SDASSL had repeated error test
 failures on the last attempted step.

 IDID = -7 -- The corrector could not converge.

 IDID = -8 -- The matrix of partial derivatives
 is singular.

 IDID = -9 -- The corrector could not converge.
 there were repeated error test failures
 in this step.

 IDID =-10 -- The corrector could not converge
 because IRES was equal to minus one.

 IDID =-11 -- IRES equal to -2 was encountered
 and control is being returned to the
 calling program.

 IDID =-12 -- SDASSL failed to compute the initial
 YPRIME.

 IDID = -13,..,-32 -- Not applicable for this code

 *** Task terminated ***
 Reported by the value of IDID=-33

 IDID = -33 -- The code has encountered trouble from which
SLATEC5 (REBAK through ZBIRY) - 130

 it cannot recover. A message is printed
 explaining the trouble and control is returned
 to the calling program. For example, this occurs
 when invalid input is detected.

 RTOL, ATOL -- These quantities remain unchanged except when
 IDID = -2. In this case, the error tolerances have been
 increased by the code to values which are estimated to
 be appropriate for continuing the integration. However,
 the reported solution at T was obtained using the input
 values of RTOL and ATOL.

 RWORK, IWORK -- Contain information which is usually of no
 interest to the user but necessary for subsequent calls.
 However, you may find use for

 RWORK(3)--Which contains the step size H to be
 attempted on the next step.

 RWORK(4)--Which contains the current value of the
 independent variable, i.e., the farthest point
 integration has reached. This will be different
 from T only when interpolation has been
 performed (IDID=3).

 RWORK(7)--Which contains the stepsize used
 on the last successful step.

 IWORK(7)--Which contains the order of the method to
 be attempted on the next step.

 IWORK(8)--Which contains the order of the method used
 on the last step.

 IWORK(11)--Which contains the number of steps taken so
 far.

 IWORK(12)--Which contains the number of calls to RES
 so far.

 IWORK(13)--Which contains the number of evaluations of
 the matrix of partial derivatives needed so
 far.

 IWORK(14)--Which contains the total number
 of error test failures so far.

 IWORK(15)--Which contains the total number
 of convergence test failures so far.
 (includes singular iteration matrix
 failures.)

 -------- INPUT -- WHAT TO DO TO CONTINUE THE INTEGRATION ------------
 (CALLS AFTER THE FIRST)

 This code is organized so that subsequent calls to continue the
 integration involve little (if any) additional effort on your
 part. You must monitor the IDID parameter in order to determine
 what to do next.

SLATEC5 (REBAK through ZBIRY) - 131

 Recalling that the principal task of the code is to integrate
 from T to TOUT (the interval mode), usually all you will need
 to do is specify a new TOUT upon reaching the current TOUT.

 Do not alter any quantity not specifically permitted below,
 in particular do not alter NEQ,T,Y(*),YPRIME(*),RWORK(*),IWORK(*)
 or the differential equation in subroutine RES. Any such
 alteration constitutes a new problem and must be treated as such,
 i.e., you must start afresh.

 You cannot change from vector to scalar error control or vice
 versa (INFO(2)), but you can change the size of the entries of
 RTOL, ATOL. Increasing a tolerance makes the equation easier
 to integrate. Decreasing a tolerance will make the equation
 harder to integrate and should generally be avoided.

 You can switch from the intermediate-output mode to the
 interval mode (INFO(3)) or vice versa at any time.

 If it has been necessary to prevent the integration from going
 past a point TSTOP (INFO(4), RWORK(1)), keep in mind that the
 code will not integrate to any TOUT beyond the currently
 specified TSTOP. Once TSTOP has been reached you must change
 the value of TSTOP or set INFO(4)=0. You may change INFO(4)
 or TSTOP at any time but you must supply the value of TSTOP in
 RWORK(1) whenever you set INFO(4)=1.

 Do not change INFO(5), INFO(6), IWORK(1), or IWORK(2)
 unless you are going to restart the code.

 *** Following a completed task ***
 If
 IDID = 1, call the code again to continue the integration
 another step in the direction of TOUT.

 IDID = 2 or 3, define a new TOUT and call the code again.
 TOUT must be different from T. You cannot change
 the direction of integration without restarting.

 *** Following an interrupted task ***
 To show the code that you realize the task was
 interrupted and that you want to continue, you
 must take appropriate action and set INFO(1) = 1
 If
 IDID = -1, The code has taken about 500 steps.
 If you want to continue, set INFO(1) = 1 and
 call the code again. An additional 500 steps
 will be allowed.

 IDID = -2, The error tolerances RTOL, ATOL have been
 increased to values the code estimates appropriate
 for continuing. You may want to change them
 yourself. If you are sure you want to continue
 with relaxed error tolerances, set INFO(1)=1 and
 call the code again.

 IDID = -3, A solution component is zero and you set the
 corresponding component of ATOL to zero. If you
 are sure you want to continue, you must first

SLATEC5 (REBAK through ZBIRY) - 132

 alter the error criterion to use positive values
 for those components of ATOL corresponding to zero
 solution components, then set INFO(1)=1 and call
 the code again.

 IDID = -4,-5 --- Cannot occur with this code.

 IDID = -6, Repeated error test failures occurred on the
 last attempted step in SDASSL. A singularity in the
 solution may be present. If you are absolutely
 certain you want to continue, you should restart
 the integration. (Provide initial values of Y and
 YPRIME which are consistent)

 IDID = -7, Repeated convergence test failures occurred
 on the last attempted step in SDASSL. An inaccurate
 or ill-conditioned JACOBIAN may be the problem. If
 you are absolutely certain you want to continue, you
 should restart the integration.

 IDID = -8, The matrix of partial derivatives is singular.
 Some of your equations may be redundant.
 SDASSL cannot solve the problem as stated.
 It is possible that the redundant equations
 could be removed, and then SDASSL could
 solve the problem. It is also possible
 that a solution to your problem either
 does not exist or is not unique.

 IDID = -9, SDASSL had multiple convergence test
 failures, preceded by multiple error
 test failures, on the last attempted step.
 It is possible that your problem
 is ill-posed, and cannot be solved
 using this code. Or, there may be a
 discontinuity or a singularity in the
 solution. If you are absolutely certain
 you want to continue, you should restart
 the integration.

 IDID =-10, SDASSL had multiple convergence test failures
 because IRES was equal to minus one.
 If you are absolutely certain you want
 to continue, you should restart the
 integration.

 IDID =-11, IRES=-2 was encountered, and control is being
 returned to the calling program.

 IDID =-12, SDASSL failed to compute the initial YPRIME.
 This could happen because the initial
 approximation to YPRIME was not very good, or
 if a YPRIME consistent with the initial Y
 does not exist. The problem could also be caused
 by an inaccurate or singular iteration matrix.

 IDID = -13,..,-32 --- Cannot occur with this code.

 *** Following a terminated task ***
SLATEC5 (REBAK through ZBIRY) - 133

 If IDID= -33, you cannot continue the solution of this problem.
 An attempt to do so will result in your
 run being terminated.

 -------- ERROR MESSAGES ---

 The SLATEC error print routine XERMSG is called in the event of
 unsuccessful completion of a task. Most of these are treated as
 "recoverable errors", which means that (unless the user has directed
 otherwise) control will be returned to the calling program for
 possible action after the message has been printed.

 In the event of a negative value of IDID other than -33, an appro-
 priate message is printed and the "error number" printed by XERMSG
 is the value of IDID. There are quite a number of illegal input
 errors that can lead to a returned value IDID=-33. The conditions
 and their printed "error numbers" are as follows:

 Error number Condition

 1 Some element of INFO vector is not zero or one.
 2 NEQ .le. 0
 3 MAXORD not in range.
 4 LRW is less than the required length for RWORK.
 5 LIW is less than the required length for IWORK.
 6 Some element of RTOL is .lt. 0
 7 Some element of ATOL is .lt. 0
 8 All elements of RTOL and ATOL are zero.
 9 INFO(4)=1 and TSTOP is behind TOUT.
 10 HMAX .lt. 0.0
 11 TOUT is behind T.
 12 INFO(8)=1 and H0=0.0
 13 Some element of WT is .le. 0.0
 14 TOUT is too close to T to start integration.
 15 INFO(4)=1 and TSTOP is behind T.
 16 --(Not used in this version)--
 17 ML illegal. Either .lt. 0 or .gt. NEQ
 18 MU illegal. Either .lt. 0 or .gt. NEQ
 19 TOUT = T.

 If SDASSL is called again without any action taken to remove the
 cause of an unsuccessful return, XERMSG will be called with a fatal
 error flag, which will cause unconditional termination of the
 program. There are two such fatal errors:

 Error number -998: The last step was terminated with a negative
 value of IDID other than -33, and no appropriate action was
 taken.

 Error number -999: The previous call was terminated because of
 illegal input (IDID=-33) and there is illegal input in the
 present call, as well. (Suspect infinite loop.)

 ***REFERENCES A DESCRIPTION OF DASSL: A DIFFERENTIAL/ALGEBRAIC
 SYSTEM SOLVER, L. R. PETZOLD, SAND82-8637,
 SANDIA NATIONAL LABORATORIES, SEPTEMBER 1982.

SLATEC5 (REBAK through ZBIRY) - 134

 ***ROUTINES CALLED R1MACH, SDAINI, SDANRM, SDASTP, SDATRP, SDAWTS,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 830315 DATE WRITTEN
 880387 Code changes made. All common statements have been
 replaced by a DATA statement, which defines pointers into
 RWORK, and PARAMETER statements which define pointers
 into IWORK. As well the documentation has gone through
 grammatical changes.
 881005 The prologue has been changed to mixed case.
 The subordinate routines had revision dates changed to
 this date, although the documentation for these routines
 is all upper case. No code changes.
 890511 Code changes made. The DATA statement in the declaration
 section of SDASSL was replaced with a PARAMETER
 statement. Also the statement S = 100.E0 was removed
 from the top of the Newton iteration in SDASTP.
 The subordinate routines had revision dates changed to
 this date.
 890517 The revision date syntax was replaced with the revision
 history syntax. Also the "DECK" comment was added to
 the top of all subroutines. These changes are consistent
 with new SLATEC guidelines.
 The subordinate routines had revision dates changed to
 this date. No code changes.
 891013 Code changes made.
 Removed all occurrences of FLOAT. All operations
 are now performed with "mixed-mode" arithmetic.
 Also, specific function names were replaced with generic
 function names to be consistent with new SLATEC guidelines.
 In particular:
 Replaced AMIN1 with MIN everywhere.
 Replaced MIN0 with MIN everywhere.
 Replaced AMAX1 with MAX everywhere.
 Replaced MAX0 with MAX everywhere.
 Also replaced REVISION DATE with REVISION HISTORY in all
 subordinate routines.
 901004 Miscellaneous changes to prologue to complete conversion
 to SLATEC 4.0 format. No code changes. (F.N.Fritsch)
 901009 Corrected GAMS classification code and converted subsidiary
 routines to 4.0 format. No code changes. (F.N.Fritsch)
 901010 Converted XERRWV calls to XERMSG calls. (R.Clemens, AFWL)
 901019 Code changes made.
 Merged SLATEC 4.0 changes with previous changes made
 by C. Ulrich. Below is a history of the changes made by
 C. Ulrich. (Changes in subsidiary routines are implied
 by this history)
 891228 Bug was found and repaired inside the SDASSL
 and SDAINI routines. SDAINI was incorrectly
 returning the initial T with Y and YPRIME
 computed at T+H. The routine now returns T+H
 rather than the initial T.
 Cosmetic changes made to SDASTP.
 900904 Three modifications were made to fix a bug (inside
 SDASSL) re interpolation for continuation calls and
 cases where TN is very close to TSTOP:

 1) In testing for whether H is too large, just
 compare H to (TSTOP - TN), rather than
 (TSTOP - TN) * (1-4*UROUND), and set H to

SLATEC5 (REBAK through ZBIRY) - 135

 TSTOP - TN. This will force SDASTP to step
 exactly to TSTOP under certain situations
 (i.e. when H returned from SDASTP would otherwise
 take TN beyond TSTOP).

 2) Inside the SDASTP loop, interpolate exactly to
 TSTOP if TN is very close to TSTOP (rather than
 interpolating to within roundoff of TSTOP).

 3) Modified IDID description for IDID = 2 to say
 that the solution is returned by stepping exactly
 to TSTOP, rather than TOUT. (In some cases the
 solution is actually obtained by extrapolating
 over a distance near unit roundoff to TSTOP,
 but this small distance is deemed acceptable in
 these circumstances.)
 901026 Added explicit declarations for all variables and minor
 cosmetic changes to prologue, removed unreferenced labels,
 and improved XERMSG calls. (FNF)
 901030 Added ERROR MESSAGES section and reworked other sections to
 be of more uniform format. (FNF)
 910624 Fixed minor bug related to HMAX (six lines after label
 525). (LRP)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 136

SDOT

 REAL FUNCTION SDOT (N, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SDOT
 ***PURPOSE Compute the inner product of two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE SINGLE PRECISION (SDOT-S, DDOT-D, CDOTU-C)
 ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 SDOT single precision dot product (zero if N .LE. 0)

 Returns the dot product of single precision SX and SY.
 SDOT = sum for I = 0 to N-1 of SX(LX+I*INCX) * SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 137

SDRIV1

 SUBROUTINE SDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, LENW,
 8 IERFLG)
 ***BEGIN PROLOGUE SDRIV1
 ***PURPOSE The function of SDRIV1 is to solve N (200 or fewer)
 ordinary differential equations of the form
 dY(I)/dT = F(Y(I),T), given the initial conditions
 Y(I) = YI. SDRIV1 uses single precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE SINGLE PRECISION (SDRIV1-S, DDRIV1-D, CDRIV1-C)
 ***KEYWORDS GEAR'S METHOD, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, SINGLE PRECISION,
 STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 Version 92.1

 I. CHOOSING THE CORRECT ROUTINE

 SDRIV
 DDRIV
 CDRIV
 These are the generic names for three packages for solving
 initial value problems for ordinary differential equations.
 SDRIV uses single precision arithmetic. DDRIV uses double
 precision arithmetic. CDRIV allows complex-valued
 differential equations, integrated with respect to a single,
 real, independent variable.

 As an aid in selecting the proper program, the following is a
 discussion of the important options or restrictions associated with
 each program:

 A. SDRIV1 should be tried first for those routine problems with
 no more than 200 differential equations (SDRIV2 and SDRIV3
 have no such restriction.) Internally this routine has two
 important technical defaults:
 1. Numerical approximation of the Jacobian matrix of the
 right hand side is used.
 2. The stiff solver option is used.
 Most users of SDRIV1 should not have to concern themselves
 with these details.

 B. SDRIV2 should be considered for those problems for which
 SDRIV1 is inadequate. For example, SDRIV1 may have difficulty
 with problems having zero initial conditions and zero
 derivatives. In this case SDRIV2, with an appropriate value
 of the parameter EWT, should perform more efficiently. SDRIV2
 provides three important additional options:

SLATEC5 (REBAK through ZBIRY) - 138

 1. The nonstiff equation solver (as well as the stiff
 solver) is available.
 2. The root-finding option is available.
 3. The program can dynamically select either the non-stiff
 or the stiff methods.
 Internally this routine also defaults to the numerical
 approximation of the Jacobian matrix of the right hand side.

 C. SDRIV3 is the most flexible, and hence the most complex, of
 the programs. Its important additional features include:
 1. The ability to exploit band structure in the Jacobian
 matrix.
 2. The ability to solve some implicit differential
 equations, i.e., those having the form:
 A(Y,T)*dY/dT = F(Y,T).
 3. The option of integrating in the one step mode.
 4. The option of allowing the user to provide a routine
 which computes the analytic Jacobian matrix of the right
 hand side.
 5. The option of allowing the user to provide a routine
 which does all the matrix algebra associated with
 corrections to the solution components.

 II. PARAMETERS ..

 The user should use parameter names in the call sequence of SDRIV1
 for those quantities whose value may be altered by SDRIV1. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations, N .LE. 200

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y
 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routine F. Thus
 parameters required by F can be stored in this array in
 components N+1 and above. (Note: Changes by the user to
 the first N components of this array will take effect only
 after a restart, i.e., after setting MSTATE to +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 REAL Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls SDRIV1.

SLATEC5 (REBAK through ZBIRY) - 139

 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to SDRIV1. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls SDRIV1, he should set N to zero.
 SDRIV1 will signal this by returning a value of MSTATE
 equal to +5(-5). Altering the value of N in F has no
 effect on the value of N in the call sequence of SDRIV1.

 TOUT = (Input) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless SDRIV1 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, SDRIV1 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling SDRIV1
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling SDRIV1
 again.
 5 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 6 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling SDRIV1 again.
 7 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset MSTATE to +1(-1) before

SLATEC5 (REBAK through ZBIRY) - 140

 calling SDRIV1 again. Otherwise the program will
 terminate the run.

 EPS = On input, the requested relative accuracy in all solution
 components. On output, the adjusted relative accuracy if
 the input value was too small. The value of EPS should be
 set as large as is reasonable, because the amount of work
 done by SDRIV1 increases as EPS decreases.

 WORK
 LENW = (Input)
 WORK is an array of LENW real words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 REAL WORK(...)
 The length of WORK should be at least N*N + 11*N + 300
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to SDRIV1.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section IV-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds 1000 .
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 21 (Recoverable) N is greater than 200 .
 22 (Recoverable) N is not positive.
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 7 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 7 .

 III. USAGE ..

 PROGRAM SAMPLE
 EXTERNAL F
 REAL ALFA, EPS, T, TOUT
 C N is the number of equations
 PARAMETER(ALFA = 1.E0, N = 3, LENW = N*N + 11*N + 300)
 REAL WORK(LENW), Y(N+1)
 C Initial point
 T = 0.00001E0
 C Set initial conditions
 Y(1) = 10.E0

SLATEC5 (REBAK through ZBIRY) - 141

 Y(2) = 0.E0
 Y(3) = 10.E0
 C Pass parameter
 Y(4) = ALFA
 TOUT = T
 MSTATE = 1
 EPS = .001E0
 10 CALL SDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, WORK, LENW,
 8 IERFLG)
 IF (MSTATE .GT. 2) STOP
 WRITE(*, '(4E12.3)') TOUT, (Y(I), I=1,3)
 TOUT = 10.E0*TOUT
 IF (TOUT .LT. 50.E0) GO TO 10
 END

 SUBROUTINE F (N, T, Y, YDOT)
 REAL ALFA, T, Y(*), YDOT(*)
 ALFA = Y(N+1)
 YDOT(1) = 1.E0 + ALFA*(Y(2) - Y(1)) - Y(1)*Y(3)
 YDOT(2) = ALFA*(Y(1) - Y(2)) - Y(2)*Y(3)
 YDOT(3) = 1.E0 - Y(3)*(Y(1) + Y(2))
 END

 IV. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The number of evaluations of the right hand side can be found
 in the WORK array in the location determined by:
 LENW - (N + 50) + 4

 V. REMARKS ..

 For other information, see Section IV of the writeup for SDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED SDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 142

SDRIV2

 SUBROUTINE SDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, G, IERFLG)
 ***BEGIN PROLOGUE SDRIV2
 ***PURPOSE The function of SDRIV2 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. SDRIV2 uses single precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE SINGLE PRECISION (SDRIV2-S, DDRIV2-D, CDRIV2-C)
 ***KEYWORDS GEAR'S METHOD, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, SINGLE PRECISION,
 STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. PARAMETERS ...

 The user should use parameter names in the call sequence of SDRIV2
 for those quantities whose value may be altered by SDRIV2. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations.

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y
 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routines F and
 G. Thus parameters required by F and G can be stored in
 this array in components N+1 and above. (Note: Changes
 by the user to the first N components of this array will
 take effect only after a restart, i.e., after setting
 MSTATE to +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 REAL Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...

SLATEC5 (REBAK through ZBIRY) - 143

 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls SDRIV2.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to SDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls SDRIV2, he should set N to zero.
 SDRIV2 will signal this by returning a value of MSTATE
 equal to +6(-6). Altering the value of N in F has no
 effect on the value of N in the call sequence of SDRIV2.

 TOUT = (Input) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless SDRIV2 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, SDRIV2 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling SDRIV2
 again. Other than an error in problem setup, the
 most likely cause for this condition is trying to
 integrate a stiff set of equations with the non-stiff
 integrator option. (See description of MINT below.)
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling SDRIV2
 again.
 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by
 simply calling SDRIV2 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.

SLATEC5 (REBAK through ZBIRY) - 144

 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling SDRIV2 again.
 9 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset MSTATE to +1(-1) before
 calling SDRIV2 again. Otherwise the program will
 terminate the run.

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) SDRIV2 attempts
 to find the value of T at which one of the equations
 changes sign. SDRIV2 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the
 equation whose root is being reported is stored in the
 sixth element of IWORK.
 NOTE: NROOT is never altered by this program.

 EPS = On input, the requested relative accuracy in all solution
 components. EPS = 0 is allowed. On output, the adjusted
 relative accuracy if the input value was too small. The
 value of EPS should be set as large as is reasonable,
 because the amount of work done by SDRIV2 increases as
 EPS decreases.

 EWT = (Input) Problem zero, i.e., the smallest physically
 meaningful value for the solution. This is used inter-
 nally to compute an array YWT(I) = MAX(ABS(Y(I)), EWT).
 One step error estimates divided by YWT(I) are kept less
 than EPS. Setting EWT to zero provides pure relative
 error control. However, setting EWT smaller than
 necessary can adversely affect the running time.

 MINT = (Input) The integration method flag.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is
 stiff.
 MINT may not be changed without restarting, i.e., setting
 the magnitude of MSTATE to 1.

SLATEC5 (REBAK through ZBIRY) - 145

 WORK
 LENW = (Input)
 WORK is an array of LENW real words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 REAL WORK(...)
 The length of WORK should be at least
 16*N + 2*NROOT + 250 if MINT is 1, or
 N*N + 10*N + 2*NROOT + 250 if MINT is 2, or
 N*N + 17*N + 2*NROOT + 250 if MINT is 3,
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to SDRIV2.

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MINT is 1, or
 N+50 if MINT is 2 or 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to SDRIV2.

 G = A real FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to
 obtain the value of each of the NROOT equations for which
 a root is desired. G is of the form:
 REAL FUNCTION G (N, T, Y, IROOT)
 REAL Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls SDRIV2. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to SDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls SDRIV2, he should set N to zero.
 SDRIV2 will signal this by returning a value of MSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of SDRIV2.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section II-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is

SLATEC5 (REBAK through ZBIRY) - 146

 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 22 (Recoverable) N is not positive.
 23 (Recoverable) MINT is less than 1 or greater than 3 .
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 9 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 9 .

 II. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 III. REMARKS ..

 A. On any return from SDRIV2 all information necessary to continue
 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 B. If this package is to be used in an overlay situation, the user
 must declare in the primary overlay the variables in the call
 sequence to SDRIV2.

SLATEC5 (REBAK through ZBIRY) - 147

 C. When the routine G is not required, difficulties associated with
 an unsatisfied external can be avoided by using the name of the
 routine which calculates the right hand side of the differential
 equations in place of G in the call sequence of SDRIV2.

 IV. USAGE ...

 PROGRAM SAMPLE
 EXTERNAL F
 PARAMETER(MINT = 1, NROOT = 0, N = ...,
 8 LENW = 16*N + 2*NROOT + 250, LENIW = 50)
 C N is the number of equations
 REAL EPS, EWT, T, TOUT, WORK(LENW), Y(N)
 INTEGER IWORK(LENIW)
 OPEN(FILE='TAPE6', UNIT=6, STATUS='NEW')
 C Initial point
 T = 0.
 C Set initial conditions
 DO 10 I = 1,N
 10 Y(I) = ...
 TOUT = T
 EWT = ...
 MSTATE = 1
 EPS = ...
 20 CALL SDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, F, IERFLG)
 C Next to last argument is not
 C F if rootfinding is used.
 IF (MSTATE .GT. 2) STOP
 WRITE(6, 100) TOUT, (Y(I), I=1,N)
 TOUT = TOUT + 1.
 IF (TOUT .LE. 10.) GO TO 20
 100 FORMAT(...)
 END (Sample)

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED SDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 148

SDRIV3

 SUBROUTINE SDRIV3 (N, T, Y, F, NSTATE, TOUT, NTASK, NROOT,
 8 EPS, EWT, IERROR, MINT, MITER, IMPL, ML, MU, MXORD, HMAX,
 8 LENW, IWORK, LENIW, JACOBN, FA, NDE, MXSTEP, G, USERS, IERFLG)
 ***BEGIN PROLOGUE SDRIV3
 ***PURPOSE The function of SDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. Other important options are available. SDRIV3
 uses single precision arithmetic.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE SINGLE PRECISION (SDRIV3-S, DDRIV3-D, CDRIV3-C)
 ***KEYWORDS GEAR'S METHOD, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, SINGLE PRECISION,
 STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. ABSTRACT ...

 The primary function of SDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the initial
 conditions Y(I) = YI. The program has options to allow the
 solution of both stiff and non-stiff differential equations. In
 addition, SDRIV3 may be used to solve:
 1. The initial value problem, A*dY(I)/dT = F(Y(I),T), where A is
 a non-singular matrix depending on Y and T.
 2. The hybrid differential/algebraic initial value problem,
 A*dY(I)/dT = F(Y(I),T), where A is a vector (whose values may
 depend upon Y and T) some of whose components will be zero
 corresponding to those equations which are algebraic rather
 than differential.
 SDRIV3 is to be called once for each output point of T.

 II. PARAMETERS ..

 The user should use parameter names in the call sequence of SDRIV3
 for those quantities whose value may be altered by SDRIV3. The
 parameters in the call sequence are:

 N = (Input) The number of dependent functions whose solution
 is desired. N must not be altered during a problem.

 T = The independent variable. On input for the first call, T
 is the initial point. On output, T is the point at which
 the solution is given.

 Y = The vector of dependent variables. Y is used as input on
 the first call, to set the initial values. On output, Y

SLATEC5 (REBAK through ZBIRY) - 149

 is the computed solution vector. This array Y is passed
 in the call sequence of the user-provided routines F,
 JACOBN, FA, USERS, and G. Thus parameters required by
 those routines can be stored in this array in components
 N+1 and above. (Note: Changes by the user to the first
 N components of this array will take effect only after a
 restart, i.e., after setting NSTATE to 1 .)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 REAL Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls SDRIV3.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to SDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls SDRIV3, he should set N to zero.
 SDRIV3 will signal this by returning a value of NSTATE
 equal to 6 . Altering the value of N in F has no effect
 on the value of N in the call sequence of SDRIV3.

 NSTATE = An integer describing the status of integration. The
 meaning of NSTATE is as follows:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of NSTATE should be tested by the
 user, but must not be altered. (As a convenience to
 the user who may wish to put out the initial
 conditions, SDRIV3 can be called with NSTATE=1, and
 TOUT=T. In this case the program will return with
 NSTATE unchanged, i.e., NSTATE=1.)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 MXSTEP steps without reaching TOUT. The user can
 continue the integration by simply calling SDRIV3
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling SDRIV3

SLATEC5 (REBAK through ZBIRY) - 150

 again.
 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by
 simply calling SDRIV3 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE JACOBN. See description of JACOBN below.
 9 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE FA. See description of FA below.
 10 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE USERS. See description of USERS below.
 11 (Output)(Successful) For NTASK = 2 or 3, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling SDRIV3 again.
 12 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset NSTATE to 1 before
 calling SDRIV3 again. Otherwise the program will
 terminate the run.

 TOUT = (Input) The point at which the solution is desired. The
 position of TOUT relative to T on the first call
 determines the direction of integration.

 NTASK = (Input) An index specifying the manner of returning the
 solution, according to the following:
 NTASK = 1 Means SDRIV3 will integrate past TOUT and
 interpolate the solution. This is the most
 efficient mode.
 NTASK = 2 Means SDRIV3 will return the solution after
 each internal integration step, or at TOUT,
 whichever comes first. In the latter case,
 the program integrates exactly to TOUT.
 NTASK = 3 Means SDRIV3 will adjust its internal step to
 reach TOUT exactly (useful if a singularity
 exists beyond TOUT.)

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) SDRIV3 attempts
 to find the value of T at which one of the equations
 changes sign. SDRIV3 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the
 equation whose root is being reported is stored in the
 sixth element of IWORK.

SLATEC5 (REBAK through ZBIRY) - 151

 NOTE: NROOT is never altered by this program.

 EPS = On input, the requested relative accuracy in all solution
 components. EPS = 0 is allowed. On output, the adjusted
 relative accuracy if the input value was too small. The
 value of EPS should be set as large as is reasonable,
 because the amount of work done by SDRIV3 increases as EPS
 decreases.

 EWT = (Input) Problem zero, i.e., the smallest, nonzero,
 physically meaningful value for the solution. (Array,
 possibly of length one. See following description of
 IERROR.) Setting EWT smaller than necessary can adversely
 affect the running time.

 IERROR = (Input) Error control indicator. A value of 3 is
 suggested for most problems. Other choices and detailed
 explanations of EWT and IERROR are given below for those
 who may need extra flexibility.

 These last three input quantities EPS, EWT and IERROR
 control the accuracy of the computed solution. EWT and
 IERROR are used internally to compute an array YWT. One
 step error estimates divided by YWT(I) are kept less than
 EPS in root mean square norm.
 IERROR (Set by the user) =
 1 Means YWT(I) = 1. (Absolute error control)
 EWT is ignored.
 2 Means YWT(I) = ABS(Y(I)), (Relative error control)
 EWT is ignored.
 3 Means YWT(I) = MAX(ABS(Y(I)), EWT(1)).
 4 Means YWT(I) = MAX(ABS(Y(I)), EWT(I)).
 This choice is useful when the solution components
 have differing scales.
 5 Means YWT(I) = EWT(I).
 If IERROR is 3, EWT need only be dimensioned one.
 If IERROR is 4 or 5, the user must dimension EWT at least
 N, and set its values.

 MINT = (Input) The integration method indicator.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is
 stiff. When using the Adams methods, the
 program uses a value of MITER=0; when using
 the Gear methods, the program uses the value
 of MITER provided by the user. Only a value
 of IMPL = 0 and a value of MITER = 1, 2, 4, or
 5 is allowed for this option. The user may
 not alter the value of MINT or MITER without
 restarting, i.e., setting NSTATE to 1.

 MITER = (Input) The iteration method indicator.
 MITER = 0 Means functional iteration. This value is
 suggested for non-stiff problems.

SLATEC5 (REBAK through ZBIRY) - 152

 MITER = 1 Means chord method with analytic Jacobian.
 In this case, the user supplies subroutine
 JACOBN (see description below).
 MITER = 2 Means chord method with Jacobian calculated
 internally by finite differences.
 MITER = 3 Means chord method with corrections computed
 by the user-written routine USERS (see
 description of USERS below.) This option
 allows all matrix algebra and storage
 decisions to be made by the user. When using
 a value of MITER = 3, the subroutine FA is
 not required, even if IMPL is not 0. For
 further information on using this option, see
 Section IV-E below.
 MITER = 4 Means the same as MITER = 1 but the A and
 Jacobian matrices are assumed to be banded.
 MITER = 5 Means the same as MITER = 2 but the A and
 Jacobian matrices are assumed to be banded.

 IMPL = (Input) The implicit method indicator.
 IMPL = 0 Means solving dY(I)/dT = F(Y(I),T).
 IMPL = 1 Means solving A*dY(I)/dT = F(Y(I),T), non-
 singular A (see description of FA below.)
 Only MINT = 1 or 2, and MITER = 1, 2, 3, 4,
 or 5 are allowed for this option.
 IMPL = 2,3 Means solving certain systems of hybrid
 differential/algebraic equations (see
 description of FA below.) Only MINT = 2 and
 MITER = 1, 2, 3, 4, or 5, are allowed for
 this option.
 The value of IMPL must not be changed during a problem.

 ML = (Input) The lower half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(R-C) for nonzero
 A(R,C).)

 MU = (Input) The upper half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(C-R).)

 MXORD = (Input) The maximum order desired. This is .LE. 12 for
 the Adams methods and .LE. 5 for the Gear methods. Normal
 value is 12 and 5, respectively. If MINT is 3, the
 maximum order used will be MIN(MXORD, 12) when using the
 Adams methods, and MIN(MXORD, 5) when using the Gear
 methods. MXORD must not be altered during a problem.

 HMAX = (Input) The maximum magnitude of the step size that will
 be used for the problem. This is useful for ensuring that
 important details are not missed. If this is not the
 case, a large value, such as the interval length, is
 suggested.

 WORK
 LENW = (Input)
 WORK is an array of LENW real words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 REAL WORK(...)
 The following table gives the required minimum value for

SLATEC5 (REBAK through ZBIRY) - 153

 the length of WORK, depending on the value of IMPL and
 MITER. LENW should be set to the value used. The
 contents of WORK should not be disturbed between calls to
 SDRIV3.

 IMPL = 0 1 2 3

 MITER = 0 (MXORD+4)*N Not allowed Not allowed Not allowed
 + 2*NROOT
 + 250

 1,2 N*N + 2*N*N + N*N + N*(N + NDE)
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 3 (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 4,5 (2*ML+MU+1) 2*(2*ML+MU+1) (2*ML+MU+1) (2*ML+MU+1)*
 *N + *N + *N + (N+NDE) +
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MITER is 0 or 3, or
 N+50 if MITER is 1, 2, 4, or 5, or MINT is 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to SDRIV3.

 JACOBN = A subroutine supplied by the user, if MITER is 1 or 4.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. Given a system of N
 differential equations, it is meaningful to speak about
 the partial derivative of the I-th right hand side with
 respect to the J-th dependent variable. In general there
 are N*N such quantities. Often however the equations can
 be ordered so that the I-th differential equation only
 involves dependent variables with index near I, e.g., I+1,
 I-2. Such a system is called banded. If, for all I, the
 I-th equation depends on at most the variables
 Y(I-ML), Y(I-ML+1), ... , Y(I), Y(I+1), ... , Y(I+MU)
 then we call ML+MU+1 the bandwidth of the system. In a
 banded system many of the partial derivatives above are
 automatically zero. For the cases MITER = 1, 2, 4, and 5,
 some of these partials are needed. For the cases
 MITER = 2 and 5 the necessary derivatives are
 approximated numerically by SDRIV3, and we only ask the
 user to tell SDRIV3 the value of ML and MU if the system
 is banded. For the cases MITER = 1 and 4 the user must
 derive these partials algebraically and encode them in

SLATEC5 (REBAK through ZBIRY) - 154

 subroutine JACOBN. By computing these derivatives the
 user can often save 20-30 per cent of the computing time.
 Usually, however, the accuracy is not much affected and
 most users will probably forego this option. The optional
 user-written subroutine JACOBN has the form:
 SUBROUTINE JACOBN (N, T, Y, DFDY, MATDIM, ML, MU)
 REAL Y(*), DFDY(MATDIM,*)
 .
 .
 Calculate values of DFDY
 .
 .
 END (Sample)
 Here Y is a vector of length at least N. The actual
 length of Y is determined by the user's declaration in the
 program which calls SDRIV3. Thus the dimensioning of Y in
 JACOBN, while required by FORTRAN convention, does not
 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. If the system is not
 banded (MITER=1), the partials of the I-th equation with
 respect to the J-th dependent function are to be stored in
 DFDY(I,J). Thus partials of the I-th equation are stored
 in the I-th row of DFDY. If the system is banded
 (MITER=4), then the partials of the I-th equation with
 respect to Y(J) are to be stored in DFDY(K,J), where
 K=I-J+MU+1 . Normally a return from JACOBN passes control
 back to SDRIV3. However, if the user would like to abort
 the calculation, i.e., return control to the program which
 calls SDRIV3, he should set N to zero. SDRIV3 will signal
 this by returning a value of NSTATE equal to +8(-8).
 Altering the value of N in JACOBN has no effect on the
 value of N in the call sequence of SDRIV3.

 FA = A subroutine supplied by the user if IMPL is not zero, and
 MITER is not 3. If so, the name must be declared EXTERNAL
 in the user's calling program. This subroutine computes
 the array A, where A*dY(I)/dT = F(Y(I),T).
 There are three cases:

 IMPL=1.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 REAL Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular matrix,
 with the same structure as DFDY (see JACOBN description
 above). Programming considerations prevent complete
 generality. If MITER is 1 or 2, A is assumed to be full
 and the user must compute and store all values of
 A(I,J), I,J=1, ... ,N. If MITER is 4 or 5, A is assumed
 to be banded with lower and upper half bandwidth ML and
 MU. The left hand side of the I-th equation is a linear
 combination of dY(I-ML)/dT, dY(I-ML+1)/dT, ... ,

SLATEC5 (REBAK through ZBIRY) - 155

 dY(I)/dT, ... , dY(I+MU-1)/dT, dY(I+MU)/dT. Thus in the
 I-th equation, the coefficient of dY(J)/dT is to be
 stored in A(K,J), where K=I-J+MU+1.
 NOTE: The array A will be altered between calls to FA.

 IMPL=2.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 REAL Y(*), A(*)
 .
 .
 Calculate non-zero values of A(1),...,A(NDE)
 .
 .
 END (Sample)
 In this case it is assumed that the system is ordered by
 the user so that the differential equations appear
 first, and the algebraic equations appear last. The
 algebraic equations must be written in the form:
 0 = F(Y(I),T). When using this option it is up to the
 user to provide initial values for the Y(I) that satisfy
 the algebraic equations as well as possible. It is
 further assumed that A is a vector of length NDE. All
 of the components of A, which may depend on T, Y(I),
 etc., must be set by the user to non-zero values.

 IMPL=3.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 REAL Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular NDE by NDE
 matrix with the same structure as DFDY (see JACOBN
 description above). Programming considerations prevent
 complete generality. If MITER is 1 or 2, A is assumed
 to be full and the user must compute and store all
 values of A(I,J), I,J=1, ... ,NDE. If MITER is 4 or 5,
 A is assumed to be banded with lower and upper half
 bandwidths ML and MU. The left hand side of the I-th
 equation is a linear combination of dY(I-ML)/dT,
 dY(I-ML+1)/dT, ... , dY(I)/dT, ... , dY(I+MU-1)/dT,
 dY(I+MU)/dT. Thus in the I-th equation, the coefficient
 of dY(J)/dT is to be stored in A(K,J), where K=I-J+MU+1.
 It is assumed that the system is ordered by the user so
 that the differential equations appear first, and the
 algebraic equations appear last. The algebraic
 equations must be written in the form 0 = F(Y(I),T).
 When using this option it is up to the user to provide
 initial values for the Y(I) that satisfy the algebraic
 equations as well as possible.
 NOTE: For IMPL = 3, the array A will be altered between
 calls to FA.
 Here Y is a vector of length at least N. The actual
 length of Y is determined by the user's declaration in the
 program which calls SDRIV3. Thus the dimensioning of Y in

SLATEC5 (REBAK through ZBIRY) - 156

 FA, while required by FORTRAN convention, does not
 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. FA is always called
 immediately after calling F, with the same values of T
 and Y. Normally a return from FA passes control back to
 SDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls SDRIV3, he should set N to zero. SDRIV3 will signal
 this by returning a value of NSTATE equal to +9(-9).
 Altering the value of N in FA has no effect on the value
 of N in the call sequence of SDRIV3.

 NDE = (Input) The number of differential equations. This is
 required only for IMPL = 2 or 3, with NDE .LT. N.

 MXSTEP = (Input) The maximum number of internal steps allowed on
 one call to SDRIV3.

 G = A real FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to obtain
 the value of each of the NROOT equations for which a root
 is desired. G is of the form:
 REAL FUNCTION G (N, T, Y, IROOT)
 REAL Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls SDRIV3. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to SDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls SDRIV3, he should set N to zero.
 SDRIV3 will signal this by returning a value of NSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of SDRIV3.

 USERS = A subroutine supplied by the user, if MITER is 3.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. The routine USERS is called
 by SDRIV3 when certain linear systems must be solved. The
 user may choose any method to form, store and solve these
 systems in order to obtain the solution result that is
 returned to SDRIV3. In particular, this allows sparse
 matrix methods to be used. The call sequence for this
 routine is:

 SUBROUTINE USERS (Y, YH, YWT, SAVE1, SAVE2, T, H, EL,
SLATEC5 (REBAK through ZBIRY) - 157

 8 IMPL, N, NDE, IFLAG)
 REAL Y(*), YH(*), YWT(*), SAVE1(*),
 8 SAVE2(*), T, H, EL

 The input variable IFLAG indicates what action is to be
 taken. Subroutine USERS should perform the following
 operations, depending on the value of IFLAG and IMPL.

 IFLAG = 0
 IMPL = 0. USERS is not called.
 IMPL = 1, 2 or 3. Solve the system A*X = SAVE2,
 returning the result in SAVE2. The array SAVE1 can
 be used as a work array. For IMPL = 1, there are N
 components to the system, and for IMPL = 2 or 3,
 there are NDE components to the system.

 IFLAG = 1
 IMPL = 0. Compute, decompose and store the matrix
 (I - H*EL*J), where I is the identity matrix and J
 is the Jacobian matrix of the right hand side. The
 array SAVE1 can be used as a work array.
 IMPL = 1, 2 or 3. Compute, decompose and store the
 matrix (A - H*EL*J). The array SAVE1 can be used as
 a work array.

 IFLAG = 2
 IMPL = 0. Solve the system
 (I - H*EL*J)*X = H*SAVE2 - YH - SAVE1,
 returning the result in SAVE2.
 IMPL = 1, 2 or 3. Solve the system
 (A - H*EL*J)*X = H*SAVE2 - A*(YH + SAVE1)
 returning the result in SAVE2.
 The array SAVE1 should not be altered.
 If IFLAG is 0 and IMPL is 1 or 2 and the matrix A is
 singular, or if IFLAG is 1 and one of the matrices
 (I - H*EL*J), (A - H*EL*J) is singular, the INTEGER
 variable IFLAG is to be set to -1 before RETURNing.
 Normally a return from USERS passes control back to
 SDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls SDRIV3, he should set N to zero. SDRIV3 will signal
 this by returning a value of NSTATE equal to +10(-10).
 Altering the value of N in USERS has no effect on the
 value of N in the call sequence of SDRIV3.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section III-A below) is the same
 as the corresponding value of IERFLG. The meaning of
 IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For NTASK = 2 or 3, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)

SLATEC5 (REBAK through ZBIRY) - 158

 22 (Recoverable) N is not positive.
 23 (Recoverable) MINT is less than 1 or greater than 3 .
 24 (Recoverable) MITER is less than 0 or greater than
 5 .
 25 (Recoverable) IMPL is less than 0 or greater than 3 .
 26 (Recoverable) The value of NSTATE is less than 1 or
 greater than 12 .
 27 (Recoverable) EPS is less than zero.
 28 (Recoverable) MXORD is not positive.
 29 (Recoverable) For MINT = 3, either MITER = 0 or 3, or
 IMPL = 0 .
 30 (Recoverable) For MITER = 0, IMPL is not 0 .
 31 (Recoverable) For MINT = 1, IMPL is 2 or 3 .
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 43 (Recoverable) For IMPL greater than 0, the matrix A
 is singular.
 999 (Fatal) The value of NSTATE is 12 .

 III. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 IV. REMARKS ...

 A. Other routines used:
 SDNTP, SDZRO, SDSTP, SDNTL, SDPST, SDCOR, SDCST,
 SDPSC, and SDSCL;
 SGEFA, SGESL, SGBFA, SGBSL, and SNRM2 (from LINPACK)
 R1MACH (from the Bell Laboratories Machine Constants Package)
 XERMSG (from the SLATEC Common Math Library)
 The last seven routines above, not having been written by the
 present authors, are not explicitly part of this package.

SLATEC5 (REBAK through ZBIRY) - 159

 B. On any return from SDRIV3 all information necessary to continue
 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 C. If this package is to be used in an overlay situation, the user
 must declare in the primary overlay the variables in the call
 sequence to SDRIV3.

 D. Changing parameters during an integration.
 The value of NROOT, EPS, EWT, IERROR, MINT, MITER, or HMAX may
 be altered by the user between calls to SDRIV3. For example, if
 too much accuracy has been requested (the program returns with
 NSTATE = 4 and an increased value of EPS) the user may wish to
 increase EPS further. In general, prudence is necessary when
 making changes in parameters since such changes are not
 implemented until the next integration step, which is not
 necessarily the next call to SDRIV3. This can happen if the
 program has already integrated to a point which is beyond the
 new point TOUT.

 E. As the price for complete control of matrix algebra, the SDRIV3
 USERS option puts all responsibility for Jacobian matrix
 evaluation on the user. It is often useful to approximate
 numerically all or part of the Jacobian matrix. However this
 must be done carefully. The FORTRAN sequence below illustrates
 the method we recommend. It can be inserted directly into
 subroutine USERS to approximate Jacobian elements in rows I1
 to I2 and columns J1 to J2.
 REAL DFDY(N,N), EPSJ, H, R, R1MACH,
 8 SAVE1(N), SAVE2(N), T, UROUND, Y(N), YJ, YWT(N)
 UROUND = R1MACH(4)
 EPSJ = SQRT(UROUND)
 DO 30 J = J1,J2
 R = EPSJ*MAX(ABS(YWT(J)), ABS(Y(J)))
 IF (R .EQ. 0.E0) R = YWT(J)
 YJ = Y(J)
 Y(J) = Y(J) + R
 CALL F (N, T, Y, SAVE1)
 IF (N .EQ. 0) RETURN
 Y(J) = YJ
 DO 20 I = I1,I2
 20 DFDY(I,J) = (SAVE1(I) - SAVE2(I))/R
 30 CONTINUE
 Many problems give rise to structured sparse Jacobians, e.g.,
 block banded. It is possible to approximate them with fewer
 function evaluations than the above procedure uses; see Curtis,
 Powell and Reid, J. Inst. Maths Applics, (1974), Vol. 13,
 pp. 117-119.

 F. When any of the routines JACOBN, FA, G, or USERS, is not
 required, difficulties associated with unsatisfied externals can
 be avoided by using the name of the routine which calculates the
 right hand side of the differential equations in place of the
 corresponding name in the call sequence of SDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED R1MACH, SDNTP, SDSTP, SDZRO, SGBFA, SGBSL, SGEFA,
 SGESL, SNRM2, XERMSG

SLATEC5 (REBAK through ZBIRY) - 160

 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 161

SDSDOT

 REAL FUNCTION SDSDOT (N, SB, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SDSDOT
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE SINGLE PRECISION (SDSDOT-S, CDCDOT-C)
 ***KEYWORDS BLAS, DOT PRODUCT, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SB single precision scalar to be added to inner product
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 SDSDOT single precision dot product (SB if N .LE. 0)

 Returns S.P. result with dot product accumulated in D.P.
 SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+I*INCX)*SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 162

SEPELI

 SUBROUTINE SEPELI (INTL, IORDER, A, B, M, MBDCND, BDA, ALPHA, BDB,
 BETA, C, D, N, NBDCND, BDC, GAMA, BDD, XNU, COFX, COFY, GRHS,
 + USOL, IDMN, W, PERTRB, IERROR)
 ***BEGIN PROLOGUE SEPELI
 ***PURPOSE Discretize and solve a second and, optionally, a fourth
 order finite difference approximation on a uniform grid to
 the general separable elliptic partial differential
 equation on a rectangle with any combination of periodic or
 mixed boundary conditions.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A2
 ***TYPE SINGLE PRECISION (SEPELI-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SEPARABLE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Dimension of BDA(N+1), BDB(N+1), BDC(M+1), BDD(M+1),
 Arguments USOL(IDMN,N+1), GRHS(IDMN,N+1),
 W (see argument list)

 Latest Revision March 1977

 Purpose SEPELI solves for either the second-order
 finite difference approximation or a
 fourth-order approximation to a separable
 elliptic equation.

 2 2
 AF(X)*d U/dX + BF(X)*dU/dX + CF(X)*U +
 2 2
 DF(Y)*d U/dY + EF(Y)*dU/dY + FF(Y)*U

 = G(X,Y)

 on a rectangle (X greater than or equal to A
 and less than or equal to B; Y greater than
 or equal to C and less than or equal to D).
 Any combination of periodic or mixed boundary
 conditions is allowed.

 Purpose The possible boundary conditions are:
 in the X-direction:
 (0) Periodic, U(X+B-A,Y)=U(X,Y) for all Y,X
 (1) U(A,Y), U(B,Y) are specified for all Y
 (2) U(A,Y), dU(B,Y)/dX+BETA*U(B,Y) are
 specified for all Y
 (3) dU(A,Y)/dX+ALPHA*U(A,Y),dU(B,Y)/dX+
 BETA*U(B,Y) are specified for all Y
 (4) dU(A,Y)/dX+ALPHA*U(A,Y),U(B,Y) are
 specified for all Y

 in the Y-direction:
 (0) Periodic, U(X,Y+D-C)=U(X,Y) for all X,Y
 (1) U(X,C),U(X,D) are specified for all X

SLATEC5 (REBAK through ZBIRY) - 163

 (2) U(X,C),dU(X,D)/dY+XNU*U(X,D) are specified
 for all X
 (3) dU(X,C)/dY+GAMA*U(X,C),dU(X,D)/dY+
 XNU*U(X,D) are specified for all X
 (4) dU(X,C)/dY+GAMA*U(X,C),U(X,D) are
 specified for all X

 Arguments

 On Input INTL
 = 0 On initial entry to SEPELI or if any of
 the arguments C, D, N, NBDCND, COFY are
 changed from a previous call
 = 1 If C, D, N, NBDCND, COFY are unchanged
 from the previous call.

 IORDER
 = 2 If a second-order approximation is sought
 = 4 If a fourth-order approximation is sought

 A,B
 The range of the X-independent variable;
 i.e., X is greater than or equal to A and
 less than or equal to B. A must be less than
 B.

 M
 The number of panels into which the interval
 [A,B] is subdivided. Hence, there will be
 M+1 grid points in the X-direction given by
 XI=A+(I-1)*DLX for I=1,2,...,M+1 where
 DLX=(B-A)/M is the panel width. M must be
 less than IDMN and greater than 5.

 MBDCND
 Indicates the type of boundary condition at
 X=A and X=B
 = 0 If the solution is periodic in X; i.e.,
 U(X+B-A,Y)=U(X,Y) for all Y,X
 = 1 If the solution is specified at X=A and
 X=B; i.e., U(A,Y) and U(B,Y) are
 specified for all Y
 = 2 If the solution is specified at X=A and
 the boundary condition is mixed at X=B;
 i.e., U(A,Y) and dU(B,Y)/dX+BETA*U(B,Y)
 are specified for all Y
 = 3 If the boundary conditions at X=A and X=B
 are mixed; i.e., dU(A,Y)/dX+ALPHA*U(A,Y)
 and dU(B,Y)/dX+BETA*U(B,Y) are specified
 for all Y
 = 4 If the boundary condition at X=A is mixed
 and the solution is specified at X=B;
 i.e., dU(A,Y)/dX+ALPHA*U(A,Y) and U(B,Y)
 are specified for all Y

 BDA
 A one-dimensional array of length N+1 that
 specifies the values of dU(A,Y)/dX+
 ALPHA*U(A,Y) at X=A, when MBDCND=3 or 4.
 BDA(J) = dU(A,YJ)/dX+ALPHA*U(A,YJ);

SLATEC5 (REBAK through ZBIRY) - 164

 J=1,2,...,N+1
 when MBDCND has any other value, BDA is a
 dummy parameter.

 On Input ALPHA
 The scalar multiplying the solution in case
 of a mixed boundary condition at X=A (see
 argument BDA). If MBDCND = 3,4 then ALPHA is
 a dummy parameter.

 BDB
 A one-dimensional array of length N+1 that
 specifies the values of dU(B,Y)/dX+
 BETA*U(B,Y) at X=B. When MBDCND=2 or 3
 BDB(J) = dU(B,YJ)/dX+BETA*U(B,YJ);
 J=1,2,...,N+1
 When MBDCND has any other value, BDB is a
 dummy parameter.

 BETA
 The scalar multiplying the solution in case
 of a mixed boundary condition at X=B (see
 argument BDB). If MBDCND=2,3 then BETA is a
 dummy parameter.

 C,D
 The range of the Y-independent variable;
 i.e., Y is greater than or equal to C and
 less than or equal to D. C must be less than
 D.

 N
 The number of panels into which the interval
 [C,D] is subdivided. Hence, there will be
 N+1 grid points in the Y-direction given by
 YJ=C+(J-1)*DLY for J=1,2,...,N+1 where
 DLY=(D-C)/N is the panel width. In addition,
 N must be greater than 4.

 NBDCND
 Indicates the types of boundary conditions at
 Y=C and Y=D
 = 0 If the solution is periodic in Y; i.e.,
 U(X,Y+D-C)=U(X,Y) for all X,Y
 = 1 If the solution is specified at Y=C and
 Y = D, i.e., U(X,C) and U(X,D) are
 specified for all X
 = 2 If the solution is specified at Y=C and
 the boundary condition is mixed at Y=D;
 i.e., U(X,C) and dU(X,D)/dY+XNU*U(X,D)
 are specified for all X
 = 3 If the boundary conditions are mixed at
 Y=C and Y=D; i.e., dU(X,D)/dY+GAMA*U(X,C)
 and dU(X,D)/dY+XNU*U(X,D) are specified
 for all X
 = 4 If the boundary condition is mixed at Y=C
 and the solution is specified at Y=D;
 i.e. dU(X,C)/dY+GAMA*U(X,C) and U(X,D)
 are specified for all X

SLATEC5 (REBAK through ZBIRY) - 165

 BDC
 A one-dimensional array of length M+1 that
 specifies the value of dU(X,C)/dY+GAMA*U(X,C)
 at Y=C. When NBDCND=3 or 4
 BDC(I) = dU(XI,C)/dY + GAMA*U(XI,C);
 I=1,2,...,M+1.
 When NBDCND has any other value, BDC is a
 dummy parameter.

 GAMA
 The scalar multiplying the solution in case
 of a mixed boundary condition at Y=C (see
 argument BDC). If NBDCND=3,4 then GAMA is a
 dummy parameter.

 BDD
 A one-dimensional array of length M+1 that
 specifies the value of dU(X,D)/dY +
 XNU*U(X,D) at Y=C. When NBDCND=2 or 3
 BDD(I) = dU(XI,D)/dY + XNU*U(XI,D);
 I=1,2,...,M+1.
 When NBDCND has any other value, BDD is a
 dummy parameter.

 XNU
 The scalar multiplying the solution in case
 of a mixed boundary condition at Y=D (see
 argument BDD). If NBDCND=2 or 3 then XNU is
 a dummy parameter.

 COFX
 A user-supplied subprogram with
 parameters X, AFUN, BFUN, CFUN which
 returns the values of the X-dependent
 coefficients AF(X), BF(X), CF(X) in
 the elliptic equation at X.

 COFY
 A user-supplied subprogram with
 parameters Y, DFUN, EFUN, FFUN which
 returns the values of the Y-dependent
 coefficients DF(Y), EF(Y), FF(Y) in
 the elliptic equation at Y.

 NOTE: COFX and COFY must be declared external
 in the calling routine. The values returned in
 AFUN and DFUN must satisfy AFUN*DFUN greater
 than 0 for A less than X less than B,
 C less than Y less than D (see IERROR=10).
 The coefficients provided may lead to a matrix
 equation which is not diagonally dominant in
 which case solution may fail (see IERROR=4).

 GRHS
 A two-dimensional array that specifies the
 values of the right-hand side of the elliptic
 equation; i.e., GRHS(I,J)=G(XI,YI), for
 I=2,...,M; J=2,...,N. At the boundaries,
 GRHS is defined by

SLATEC5 (REBAK through ZBIRY) - 166

 MBDCND GRHS(1,J) GRHS(M+1,J)
 ------ --------- -----------
 0 G(A,YJ) G(B,YJ)
 1 * *
 2 * G(B,YJ) J=1,2,...,N+1
 3 G(A,YJ) G(B,YJ)
 4 G(A,YJ) *

 NBDCND GRHS(I,1) GRHS(I,N+1)
 ------ --------- -----------
 0 G(XI,C) G(XI,D)
 1 * *
 2 * G(XI,D) I=1,2,...,M+1
 3 G(XI,C) G(XI,D)
 4 G(XI,C) *

 where * means these quantities are not used.
 GRHS should be dimensioned IDMN by at least
 N+1 in the calling routine.

 USOL
 A two-dimensional array that specifies the
 values of the solution along the boundaries.
 At the boundaries, USOL is defined by

 MBDCND USOL(1,J) USOL(M+1,J)
 ------ --------- -----------
 0 * *
 1 U(A,YJ) U(B,YJ)
 2 U(A,YJ) * J=1,2,...,N+1
 3 * *
 4 * U(B,YJ)

 NBDCND USOL(I,1) USOL(I,N+1)
 ------ --------- -----------
 0 * *
 1 U(XI,C) U(XI,D)
 2 U(XI,C) * I=1,2,...,M+1
 3 * *
 4 * U(XI,D)

 where * means the quantities are not used in
 the solution.

 If IORDER=2, the user may equivalence GRHS
 and USOL to save space. Note that in this
 case the tables specifying the boundaries of
 the GRHS and USOL arrays determine the
 boundaries uniquely except at the corners.
 If the tables call for both G(X,Y) and
 U(X,Y) at a corner then the solution must be
 chosen. For example, if MBDCND=2 and
 NBDCND=4, then U(A,C), U(A,D), U(B,D) must be
 chosen at the corners in addition to G(B,C).

 If IORDER=4, then the two arrays, USOL and
 GRHS, must be distinct.

 USOL should be dimensioned IDMN by at least
 N+1 in the calling routine.

SLATEC5 (REBAK through ZBIRY) - 167

 IDMN
 The row (or first) dimension of the arrays
 GRHS and USOL as it appears in the program
 calling SEPELI. This parameter is used to
 specify the variable dimension of GRHS and
 USOL. IDMN must be at least 7 and greater
 than or equal to M+1.

 W
 A one-dimensional array that must be provided
 by the user for work space. Let
 K=INT(log2(N+1))+1 and set L=2**(K+1).
 then (K-2)*L+K+10*N+12*M+27 will suffice
 as a length of W. THE actual length of W in
 the calling routine must be set in W(1) (see
 IERROR=11).

 On Output USOL
 Contains the approximate solution to the
 elliptic equation. USOL(I,J) is the
 approximation to U(XI,YJ) for I=1,2...,M+1
 and J=1,2,...,N+1. The approximation has
 error O(DLX**2+DLY**2) if called with
 IORDER=2 and O(DLX**4+DLY**4) if called with
 IORDER=4.

 W
 Contains intermediate values that must not be
 destroyed if SEPELI is called again with
 INTL=1. In addition W(1) contains the exact
 minimal length (in floating point) required
 for the work space (see IERROR=11).

 PERTRB
 If a combination of periodic or derivative
 boundary conditions (i.e., ALPHA=BETA=0 if
 MBDCND=3; GAMA=XNU=0 if NBDCND=3) is
 specified and if the coefficients of U(X,Y)
 in the separable elliptic equation are zero
 (i.e., CF(X)=0 for X greater than or equal to
 A and less than or equal to B; FF(Y)=0 for
 Y greater than or equal to C and less than
 or equal to D) then a solution may not exist.
 PERTRB is a constant calculated and
 subtracted from the right-hand side of the
 matrix equations generated by SEPELI which
 insures that a solution exists. SEPELI then
 computes this solution which is a weighted
 minimal least squares solution to the
 original problem.

 IERROR
 An error flag that indicates invalid input
 parameters or failure to find a solution
 = 0 No error
 = 1 If A greater than B or C greater than D
 = 2 If MBDCND less than 0 or MBDCND greater
 than 4
 = 3 If NBDCND less than 0 or NBDCND greater

SLATEC5 (REBAK through ZBIRY) - 168

 than 4
 = 4 If attempt to find a solution fails.
 (the linear system generated is not
 diagonally dominant.)
 = 5 If IDMN is too small (see discussion of
 IDMN)
 = 6 If M is too small or too large (see
 discussion of M)
 = 7 If N is too small (see discussion of N)
 = 8 If IORDER is not 2 or 4
 = 9 If INTL is not 0 or 1
 = 10 If AFUN*DFUN less than or equal to 0 for
 some interior mesh point (XI,YJ)
 = 11 If the work space length input in W(1)
 is less than the exact minimal work
 space length required output in W(1).

 NOTE (concerning IERROR=4): for the
 coefficients input through COFX, COFY, the
 discretization may lead to a block
 tridiagonal linear system which is not
 diagonally dominant (for example, this
 happens if CFUN=0 and BFUN/(2.*DLX) greater
 than AFUN/DLX**2). In this case solution may
 fail. This cannot happen in the limit as
 DLX, DLY approach zero. Hence, the condition
 may be remedied by taking larger values for M
 or N.

 Entry Points SEPELI, SPELIP, CHKPRM, CHKSNG, ORTHOG, MINSOL,
 TRISP, DEFER, DX, DY, BLKTRI, BLKTR1, INDXB,
 INDXA, INDXC, PROD, PRODP, CPROD, CPRODP,
 PPADD, PSGF, BSRH, PPSGF, PPSPF, COMPB,
 TRUN1, STOR1, TQLRAT

 Special Conditions NONE

 Common Blocks SPLP, CBLKT

 I/O NONE

 Precision Single

 Specialist John C. Adams, NCAR, Boulder, Colorado 80307

 Language FORTRAN

 History Developed at NCAR during 1975-76.

 Algorithm SEPELI automatically discretizes the separable
 elliptic equation which is then solved by a
 generalized cyclic reduction algorithm in the
 subroutine, BLKTRI. The fourth-order solution
 is obtained using 'Deferred Corrections' which
 is described and referenced in sections,
 references and method.

 Space Required 14654 (octal) = 6572 (decimal)

 Accuracy and Timing The following computational results were
SLATEC5 (REBAK through ZBIRY) - 169

 obtained by solving the sample problem at the
 end of this write-up on the Control Data 7600.
 The op count is proportional to M*N*log2(N).
 In contrast to the other routines in this
 chapter, accuracy is tested by computing and
 tabulating second- and fourth-order
 discretization errors. Below is a table
 containing computational results. The times
 given do not include initialization (i.e.,
 times are for INTL=1). Note that the
 fourth-order accuracy is not realized until the
 mesh is sufficiently refined.

 Second-order Fourth-order Second-order Fourth-order
 M N Execution Time Execution Time Error Error
 (M SEC) (M SEC)
 6 6 6 14 6.8E-1 1.2E0
 14 14 23 58 1.4E-1 1.8E-1
 30 30 100 247 3.2E-2 9.7E-3
 62 62 445 1,091 7.5E-3 3.0E-4
 126 126 2,002 4,772 1.8E-3 3.5E-6

 Portability There are no machine-dependent constants.

 Required Resident SQRT, ABS, LOG
 Routines

 References Keller, H.B., 'Numerical Methods for Two-point
 Boundary-value Problems', Blaisdel (1968),
 Waltham, Mass.

 Swarztrauber, P., and R. Sweet (1975):
 'Efficient FORTRAN Subprograms for The
 Solution of Elliptic Partial Differential
 Equations'. NCAR Technical Note
 NCAR-TN/IA-109, pp. 135-137.

 ***REFERENCES H. B. Keller, Numerical Methods for Two-point
 Boundary-value Problems, Blaisdel, Waltham, Mass.,
 1968.
 P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED CHKPRM, SPELIP
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 170

SEPX4

 SUBROUTINE SEPX4(IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,
 + BETA,C,D,N,NBDCND,BDC,BDD,COFX,
 + GRHS,USOL,IDMN,W,PERTRB,IERROR)
 ***BEGIN PROLOGUE SEPX4
 ***PURPOSE Solve for either the second or fourth order finite
 difference approximation to the solution of a separable
 elliptic partial differential equation on a rectangle.
 Any combination of periodic or mixed boundary conditions is
 allowed.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B1A2
 ***TYPE SINGLE PRECISION (SEPX4-S)
 ***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, SEPARABLE
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Purpose SEPX4 solves for either the second-order
 finite difference approximation or a
 fourth-order approximation to the
 solution of a separable elliptic equation
 AF(X)*UXX+BF(X)*UX+CF(X)*U+UYY = G(X,Y)

 on a rectangle (X greater than or equal to A
 and less than or equal to B; Y greater than
 or equal to C and less than or equal to D).
 Any combination of periodic or mixed boundary
 conditions is allowed.
 If boundary conditions in the X direction
 are periodic (see MBDCND=0 below) then the
 coefficients must satisfy
 AF(X)=C1,BF(X)=0,CF(X)=C2 for all X.
 Here C1,C2 are constants, C1.GT.0.

 The possible boundary conditions are
 in the X-direction:
 (0) Periodic, U(X+B-A,Y)=U(X,Y) for all Y,X
 (1) U(A,Y), U(B,Y) are specified for all Y
 (2) U(A,Y), dU(B,Y)/dX+BETA*U(B,Y) are
 specified for all Y
 (3) dU(A,Y)/dX+ALPHA*U(A,Y),dU(B,Y)/dX+
 BETA*U(B,Y) are specified for all Y
 (4) dU(A,Y)/dX+ALPHA*U(A,Y),U(B,Y) are
 specified for all Y

 In the Y-direction:
 (0) Periodic, U(X,Y+D-C)=U(X,Y) for all X,Y
 (1) U(X,C),U(X,D) are specified for all X
 (2) U(X,C),dU(X,D)/dY are specified for all X
 (3) dU(X,C)/DY,dU(X,D)/dY are specified for
 all X
 (4) dU(X,C)/DY,U(X,D) are specified for all X

 Usage Call SEPX4(IORDER,A,B,M,MBDCND,BDA,ALPHA,BDB,
 BETA,C,D,N,NBDCND,BDC,BDD,COFX,

SLATEC5 (REBAK through ZBIRY) - 171

 GRHS,USOL,IDMN,W,PERTRB,IERROR)

 Arguments

 IORDER
 = 2 If a second-order approximation is sought
 = 4 If a fourth-order approximation is sought

 A,B
 The range of the X-independent variable;
 i.e., X is greater than or equal to A and
 less than or equal to B. A must be less than
 B.

 M
 The number of panels into which the interval
 [A,B] is subdivided. Hence, there will be
 M+1 grid points in the X-direction given by
 XI=A+(I-1)*DLX for I=1,2,...,M+1 where
 DLX=(B-A)/M is the panel width. M must be
 less than IDMN and greater than 5.

 MBDCND
 Indicates the type of boundary condition at
 X=A and X=B
 = 0 If the solution is periodic in X; i.e.,
 U(X+B-A,Y)=U(X,Y) for all Y,X
 = 1 If the solution is specified at X=A and
 X=B; i.e., U(A,Y) and U(B,Y) are
 specified for all Y
 = 2 If the solution is specified at X=A and
 the boundary condition is mixed at X=B;
 i.e., U(A,Y) and dU(B,Y)/dX+BETA*U(B,Y)
 are specified for all Y
 = 3 If the boundary conditions at X=A and X=B
 are mixed; i.e., dU(A,Y)/dX+ALPHA*U(A,Y)
 and dU(B,Y)/dX+BETA*U(B,Y) are specified
 for all Y
 = 4 If the boundary condition at X=A is mixed
 and the solution is specified at X=B;
 i.e., dU(A,Y)/dX+ALPHA*U(A,Y) and U(B,Y)
 are specified for all Y

 BDA
 A one-dimensional array of length N+1 that
 specifies the values of dU(A,Y)/dX+
 ALPHA*U(A,Y) at X=A, when MBDCND=3 or 4.
 BDA(J) = dU(A,YJ)/dX+ALPHA*U(A,YJ);
 J=1,2,...,N+1
 When MBDCND has any other value, BDA is a
 dummy parameter.

 On Input ALPHA
 The scalar multiplying the solution in case
 of a mixed boundary condition AT X=A (see
 argument BDA). If MBDCND = 3,4 then ALPHA is
 a dummy parameter.

 BDB
 A one-dimensional array of length N+1 that

SLATEC5 (REBAK through ZBIRY) - 172

 specifies the values of dU(B,Y)/dX+
 BETA*U(B,Y) at X=B. when MBDCND=2 or 3
 BDB(J) = dU(B,YJ)/dX+BETA*U(B,YJ);
 J=1,2,...,N+1
 When MBDCND has any other value, BDB is a
 dummy parameter.

 BETA
 The scalar multiplying the solution in case
 of a mixed boundary condition at X=B (see
 argument BDB). If MBDCND=2,3 then BETA is a
 dummy parameter.

 C,D
 The range of the Y-independent variable;
 i.e., Y is greater than or equal to C and
 less than or equal to D. C must be less than
 D.

 N
 The number of panels into which the interval
 [C,D] is subdivided. Hence, there will be
 N+1 grid points in the Y-direction given by
 YJ=C+(J-1)*DLY for J=1,2,...,N+1 where
 DLY=(D-C)/N is the panel width. In addition,
 N must be greater than 4.

 NBDCND
 Indicates the types of boundary conditions at
 Y=C and Y=D
 = 0 If the solution is periodic in Y; i.e.,
 U(X,Y+D-C)=U(X,Y) for all X,Y
 = 1 If the solution is specified at Y=C and
 Y = D, i.e., U(X,C) and U(X,D) are
 specified for all X
 = 2 If the solution is specified at Y=C and
 the boundary condition is mixed at Y=D;
 i.e., dU(X,C)/dY and U(X,D)
 are specified for all X
 = 3 If the boundary conditions are mixed at
 Y= C and Y=D i.e., dU(X,D)/DY
 and dU(X,D)/dY are specified
 for all X
 = 4 If the boundary condition is mixed at Y=C
 and the solution is specified at Y=D;
 i.e. dU(X,C)/dY+GAMA*U(X,C) and U(X,D)
 are specified for all X

 BDC
 A one-dimensional array of length M+1 that
 specifies the value dU(X,C)/DY
 at Y=C. When NBDCND=3 or 4
 BDC(I) = dU(XI,C)/DY
 I=1,2,...,M+1.
 When NBDCND has any other value, BDC is a
 dummy parameter.

 BDD
 A one-dimensional array of length M+1 that

SLATEC5 (REBAK through ZBIRY) - 173

 specifies the value of dU(X,D)/DY
 at Y=D. When NBDCND=2 or 3
 BDD(I)=dU(XI,D)/DY
 I=1,2,...,M+1.
 When NBDCND has any other value, BDD is a
 dummy parameter.

 COFX
 A user-supplied subprogram with
 parameters X, AFUN, BFUN, CFUN which
 returns the values of the X-dependent
 coefficients AF(X), BF(X), CF(X) in
 the elliptic equation at X.
 If boundary conditions in the X direction
 are periodic then the coefficients
 must satisfy AF(X)=C1,BF(X)=0,CF(X)=C2 for
 all X. Here C1.GT.0 and C2 are constants.

 Note that COFX must be declared external
 in the calling routine.

 GRHS
 A two-dimensional array that specifies the
 values of the right-hand side of the elliptic
 equation; i.e., GRHS(I,J)=G(XI,YI), for
 I=2,...,M; J=2,...,N. At the boundaries,
 GRHS is defined by

 MBDCND GRHS(1,J) GRHS(M+1,J)
 ------ --------- -----------
 0 G(A,YJ) G(B,YJ)
 1 * *
 2 * G(B,YJ) J=1,2,...,N+1
 3 G(A,YJ) G(B,YJ)
 4 G(A,YJ) *

 NBDCND GRHS(I,1) GRHS(I,N+1)
 ------ --------- -----------
 0 G(XI,C) G(XI,D)
 1 * *
 2 * G(XI,D) I=1,2,...,M+1
 3 G(XI,C) G(XI,D)
 4 G(XI,C) *

 where * means these quantities are not used.
 GRHS should be dimensioned IDMN by at least
 N+1 in the calling routine.

 USOL
 A two-dimensional array that specifies the
 values of the solution along the boundaries.
 At the boundaries, USOL is defined by

 MBDCND USOL(1,J) USOL(M+1,J)
 ------ --------- -----------
 0 * *
 1 U(A,YJ) U(B,YJ)
 2 U(A,YJ) * J=1,2,...,N+1
 3 * *

SLATEC5 (REBAK through ZBIRY) - 174

 4 * U(B,YJ)

 NBDCND USOL(I,1) USOL(I,N+1)
 ------ --------- -----------
 0 * *
 1 U(XI,C) U(XI,D)
 2 U(XI,C) * I=1,2,...,M+1
 3 * *
 4 * U(XI,D)

 where * means the quantities are not used in
 the solution.

 If IORDER=2, the user may equivalence GRHS
 and USOL to save space. Note that in this
 case the tables specifying the boundaries of
 the GRHS and USOL arrays determine the
 boundaries uniquely except at the corners.
 If the tables call for both G(X,Y) and
 U(X,Y) at a corner then the solution must be
 chosen. For example, if MBDCND=2 and
 NBDCND=4, then U(A,C), U(A,D), U(B,D) must be
 chosen at the corners in addition to G(B,C).

 If IORDER=4, then the two arrays, USOL and
 GRHS, must be distinct.

 USOL should be dimensioned IDMN by at least
 N+1 in the calling routine.

 IDMN
 The row (or first) dimension of the arrays
 GRHS and USOL as it appears in the program
 calling SEPX4. This parameter is used to
 specify the variable dimension of GRHS and
 USOL. IDMN must be at least 7 and greater
 than or equal to M+1.

 W
 A one-dimensional array that must be provided
 by the user for work space.
 10*N+(16+INT(log2(N)))*(M+1)+23 will suffice
 as a length for W. The actual length of
 W in the calling routine must be set in W(1)
 (see IERROR=11).

 On Output USOL
 Contains the approximate solution to the
 elliptic equation. USOL(I,J) is the
 approximation to U(XI,YJ) for I=1,2...,M+1
 and J=1,2,...,N+1. The approximation has
 error O(DLX**2+DLY**2) if called with
 IORDER=2 and O(DLX**4+DLY**4) if called with
 IORDER=4.

 W
 W(1) contains the exact minimal length (in
 floating point) required for the work space
 (see IERROR=11).

SLATEC5 (REBAK through ZBIRY) - 175

 PERTRB
 If a combination of periodic or derivative
 boundary conditions (i.e., ALPHA=BETA=0 if
 MBDCND=3) is specified and if CF(X)=0 for all
 X, then a solution to the discretized matrix
 equation may not exist (reflecting the non-
 uniqueness of solutions to the PDE). PERTRB
 is a constant calculated and subtracted from
 the right hand side of the matrix equation
 insuring the existence of a solution.
 SEPX4 computes this solution which is a
 weighted minimal least squares solution to
 the original problem. If singularity is
 not detected PERTRB=0.0 is returned by
 SEPX4.

 IERROR
 An error flag that indicates invalid input
 parameters or failure to find a solution
 = 0 No error
 = 1 If A greater than B or C greater than D
 = 2 If MBDCND less than 0 or MBDCND greater
 than 4
 = 3 If NBDCND less than 0 or NBDCND greater
 than 4
 = 4 If attempt to find a solution fails.
 (the linear system generated is not
 diagonally dominant.)
 = 5 If IDMN is too small (see discussion of
 IDMN)
 = 6 If M is too small or too large (see
 discussion of M)
 = 7 If N is too small (see discussion of N)
 = 8 If IORDER is not 2 or 4
 = 10 If AFUN is less than or equal to zero
 for some interior mesh point XI
 = 11 If the work space length input in W(1)
 is less than the exact minimal work
 space length required output in W(1).
 = 12 If MBDCND=0 and AF(X)=CF(X)=constant
 or BF(X)=0 for all X is not true.

 *Long Description:

 Dimension of BDA(N+1), BDB(N+1), BDC(M+1), BDD(M+1),
 Arguments USOL(IDMN,N+1), GRHS(IDMN,N+1),
 W (see argument list)

 Latest Revision October 1980

 Special Conditions NONE

 Common Blocks SPL4

 I/O NONE

 Precision Single

 Required Library NONE
 Files

SLATEC5 (REBAK through ZBIRY) - 176

 Specialist John C. Adams, NCAR, Boulder, Colorado 80307

 Language FORTRAN

 Entry Points SEPX4,SPELI4,CHKPR4,CHKSN4,ORTHO4,MINSO4,TRIS4,
 DEFE4,DX4,DY4

 History SEPX4 was developed by modifying the ULIB
 routine SEPELI during October 1978.
 It should be used instead of SEPELI whenever
 possible. The increase in speed is at least
 a factor of three.

 Algorithm SEPX4 automatically discretizes the separable
 elliptic equation which is then solved by a
 generalized cyclic reduction algorithm in the
 subroutine POIS. The fourth order solution
 is obtained using the technique of
 deferred corrections referenced below.

 References Keller, H.B., 'Numerical Methods for Two-point
 Boundary-value Problems', Blaisdel (1968),
 Waltham, Mass.

 Swarztrauber, P., and R. Sweet (1975):
 'Efficient FORTRAN Subprograms For The
 Solution of Elliptic Partial Differential
 Equations'. NCAR Technical Note
 NCAR-TN/IA-109, pp. 135-137.

 ***REFERENCES H. B. Keller, Numerical Methods for Two-point
 Boundary-value Problems, Blaisdel, Waltham, Mass.,
 1968.
 P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 ***ROUTINES CALLED CHKPR4, SPELI4
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920122 Minor corrections and modifications to prologue. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 177

SGBCO

 SUBROUTINE SGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE SGBCO
 ***PURPOSE Factor a band matrix by Gaussian elimination and
 estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SGBCO-S, DGBCO-D, CGBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SBGCO factors a real band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, SGBFA is slightly faster.
 To solve A*X = B , follow SBGCO by SGBSL.
 To compute INVERSE(A)*C , follow SBGCO by SGBSL.
 To compute DETERMINANT(A) , follow SBGCO by SGBDI.

 On Entry

 ABD REAL(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC5 (REBAK through ZBIRY) - 178

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+ML)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABD should contain

 * * * + + + , * = not used
 * * 13 24 35 46 , + = used for pivoting
 * 12 23 34 45 56
 11 22 33 44 55 66
 21 32 43 54 65 *

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
SLATEC5 (REBAK through ZBIRY) - 179

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SGBFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 180

SGBDI

 SUBROUTINE SGBDI (ABD, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE SGBDI
 ***PURPOSE Compute the determinant of a band matrix using the factors
 computed by SGBCO or SGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3A2
 ***TYPE SINGLE PRECISION (SGBDI-S, DGBDI-D, CGBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGBDI computes the determinant of a band matrix
 using the factors computed by SBGCO or SGBFA.
 If the inverse is needed, use SGBSL N times.

 On Entry

 ABD REAL(LDA, N)
 the output from SBGCO or SGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from SBGCO or SGBFA.

 On Return

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 181

SGBFA

 SUBROUTINE SGBFA (ABD, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE SGBFA
 ***PURPOSE Factor a band matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SGBFA-S, DGBFA-D, CGBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGBFA factors a real band matrix by elimination.

 SGBFA is usually called by SBGCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD REAL(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .
 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U , where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that SGBSL will divide by zero if
 called. Use RCOND in SBGCO for a reliable

SLATEC5 (REBAK through ZBIRY) - 182

 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+ML)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED ISAMAX, SAXPY, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 183

SGBMV

 SUBROUTINE SGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA,
 + X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE SGBMV
 ***PURPOSE Multiply a real vector by a real general band matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SGBMV-S, DGBMV-D, CGBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SGBMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n band matrix, with kl sub-diagonals and ku super-diagonals.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 KL - INTEGER.
 On entry, KL specifies the number of sub-diagonals of the
 matrix A. KL must satisfy 0 .le. KL.
 Unchanged on exit.

 KU - INTEGER.
 On entry, KU specifies the number of super-diagonals of the
 matrix A. KU must satisfy 0 .le. KU.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 184

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry, the leading (kl + ku + 1) by n part of the
 array A must contain the matrix of coefficients, supplied
 column by column, with the leading diagonal of the matrix in
 row (ku + 1) of the array, the first super-diagonal
 starting at position 2 in row ku, the first sub-diagonal
 starting at position 1 in row (ku + 2), and so on.
 Elements in the array A that do not correspond to elements
 in the band matrix (such as the top left ku by ku triangle)
 are not referenced.
 The following program segment will transfer a band matrix
 from conventional full matrix storage to band storage:

 DO 20, J = 1, N
 K = KU + 1 - J
 DO 10, I = MAX(1, J - KU), MIN(M, J + KL)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (kl + ku + 1).
 Unchanged on exit.

 X - REAL array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - REAL array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.

SLATEC5 (REBAK through ZBIRY) - 185

 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 186

SGBSL

 SUBROUTINE SGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE SGBSL
 ***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using
 the factors computed by SGBCO or SGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGBSL solves the real band system
 A * X = B or TRANS(A) * X = B
 using the factors computed by SBGCO or SGBFA.

 On Entry

 ABD REAL(LDA, N)
 the output from SBGCO or SGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from SBGCO or SGBFA.

 B REAL(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve TRANS(A)*X = B , where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically, this indicates singularity,
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if SBGCO has set RCOND .GT. 0.0
 or SGBFA has set INFO .EQ. 0 .

SLATEC5 (REBAK through ZBIRY) - 187

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SBGCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
 If (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL SGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 188

SGECO

 SUBROUTINE SGECO (A, LDA, N, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE SGECO
 ***PURPOSE Factor a matrix using Gaussian elimination and estimate
 the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE SINGLE PRECISION (SGECO-S, DGECO-D, CGECO-C)
 ***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGECO factors a real matrix by Gaussian elimination
 and estimates the condition of the matrix.

 If RCOND is not needed, SGEFA is slightly faster.
 To solve A*X = B , follow SGECO by SGESL.
 To compute INVERSE(A)*C , follow SGECO by SGESL.
 To compute DETERMINANT(A) , follow SGECO by SGEDI.
 To compute INVERSE(A) , follow SGECO by SGEDI.

 On Entry

 A REAL(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U , where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)

SLATEC5 (REBAK through ZBIRY) - 189

 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SGEFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 190

SGEDI

 SUBROUTINE SGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE SGEDI
 ***PURPOSE Compute the determinant and inverse of a matrix using the
 factors computed by SGECO or SGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1, D3A1
 ***TYPE SINGLE PRECISION (SGEDI-S, DGEDI-D, CGEDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGEDI computes the determinant and inverse of a matrix
 using the factors computed by SGECO or SGEFA.

 On Entry

 A REAL(LDA, N)
 the output from SGECO or SGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from SGECO or SGEFA.

 WORK REAL(N)
 work vector. Contents destroyed.

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A inverse of original matrix if requested.
 Otherwise unchanged.

 DET REAL(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if SGECO has set RCOND .GT. 0.0 or SGEFA has set
 INFO .EQ. 0 .

SLATEC5 (REBAK through ZBIRY) - 191

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SSCAL, SSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 192

SGEEV

 SUBROUTINE SGEEV (A, LDA, N, E, V, LDV, WORK, JOB, INFO)
 ***BEGIN PROLOGUE SGEEV
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real general matrix.
 ***LIBRARY SLATEC
 ***CATEGORY D4A2
 ***TYPE SINGLE PRECISION (SGEEV-S, CGEEV-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, GENERAL MATRIX
 ***AUTHOR Kahaner, D. K., (NBS)
 Moler, C. B., (U. of New Mexico)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 Abstract
 SGEEV computes the eigenvalues and, optionally,
 the eigenvectors of a general real matrix.

 Call Sequence Parameters-
 (The values of parameters marked with * (star) will be changed
 by SGEEV.)

 A* REAL(LDA,N)
 real nonsymmetric input matrix.

 LDA INTEGER
 set by the user to
 the leading dimension of the real array A.

 N INTEGER
 set by the user to
 the order of the matrices A and V, and
 the number of elements in E.

 E* COMPLEX(N)
 on return from SGEEV, E contains the eigenvalues of A.
 See also INFO below.

 V* COMPLEX(LDV,N)
 on return from SGEEV, if the user has set JOB
 = 0 V is not referenced.
 = nonzero the N eigenvectors of A are stored in the
 first N columns of V. See also INFO below.
 (Note that if the input matrix A is nearly degenerate,
 V may be badly conditioned, i.e., may have nearly
 dependent columns.)

 LDV INTEGER
 set by the user to
 the leading dimension of the array V if JOB is also
 set nonzero. In that case, N must be .LE. LDV.
 If JOB is set to zero, LDV is not referenced.

 WORK* REAL(2N)
 temporary storage vector. Contents changed by SGEEV.

 JOB INTEGER

SLATEC5 (REBAK through ZBIRY) - 193

 set by the user to
 = 0 eigenvalues only to be calculated by SGEEV.
 Neither V nor LDV is referenced.
 = nonzero eigenvalues and vectors to be calculated.
 In this case, A & V must be distinct arrays.
 Also, if LDA .GT. LDV, SGEEV changes all the
 elements of A thru column N. If LDA < LDV,
 SGEEV changes all the elements of V through
 column N. If LDA = LDV, only A(I,J) and V(I,
 J) for I,J = 1,...,N are changed by SGEEV.

 INFO* INTEGER
 on return from SGEEV the value of INFO is
 = 0 normal return, calculation successful.
 = K if the eigenvalue iteration fails to converge,
 eigenvalues K+1 through N are correct, but
 no eigenvectors were computed even if they were
 requested (JOB nonzero).

 Error Messages
 No. 1 recoverable N is greater than LDA
 No. 2 recoverable N is less than one.
 No. 3 recoverable JOB is nonzero and N is greater than LDV
 No. 4 warning LDA > LDV, elements of A other than the
 N by N input elements have been changed.
 No. 5 warning LDA < LDV, elements of V other than the
 N x N output elements have been changed.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BALANC, BALBAK, HQR, HQR2, ORTHES, ORTRAN, SCOPY,
 SCOPYM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 194

SGEFA

 SUBROUTINE SGEFA (A, LDA, N, IPVT, INFO)
 ***BEGIN PROLOGUE SGEFA
 ***PURPOSE Factor a matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE SINGLE PRECISION (SGEFA-S, DGEFA-D, CGEFA-C)
 ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGEFA factors a real matrix by Gaussian elimination.

 SGEFA is usually called by SGECO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for SGECO) = (1 + 9/N)*(Time for SGEFA) .

 On Entry

 A REAL(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U , where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that SGESL or SGEDI will divide by zero
 if called. Use RCOND in SGECO for a reliable
 indication of singularity.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED ISAMAX, SAXPY, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC5 (REBAK through ZBIRY) - 195

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 196

SGEFS

 SUBROUTINE SGEFS (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE SGEFS
 ***PURPOSE Solve a general system of linear equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2A1
 ***TYPE SINGLE PRECISION (SGEFS-S, DGEFS-D, CGEFS-C)
 ***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
 GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SGEFS solves a general NxN system of single
 precision linear equations using LINPACK subroutines SGECO
 and SGESL. That is, if A is an NxN real matrix and if X
 and B are real N-vectors, then SGEFS solves the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by SGEFS
 in this case.

 Argument Description ***

 A REAL(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix.
 on return, an upper triangular matrix U and the
 multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. The first N elements of
 the array A are the elements of the first column of
 the matrix A. N must be greater than or equal to 1.
 (terminal error message IND=-2)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK=1, the matrix A is factored and then the

SLATEC5 (REBAK through ZBIRY) - 197

 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 see error message corresponding to IND below.
 WORK REAL(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED R1MACH, SGECO, SGESL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800317 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 198

SGEIR

 SUBROUTINE SGEIR (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE SGEIR
 ***PURPOSE Solve a general system of linear equations. Iterative
 refinement is used to obtain an error estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2A1
 ***TYPE SINGLE PRECISION (SGEIR-S, CGEIR-C)
 ***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
 GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SGEIR solves a general NxN system of single
 precision linear equations using LINPACK subroutines SGEFA and
 SGESL. One pass of iterative refinement is used only to obtain
 an estimate of the accuracy. That is, if A is an NxN real
 matrix and if X and B are real N-vectors, then SGEIR solves
 the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to calculate
 the solution, X. Then the residual vector is found and
 used to calculate an estimate of the relative error, IND.
 IND estimates the accuracy of the solution only when the
 input matrix and the right hand side are represented
 exactly in the computer and does not take into account
 any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to solve only (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N, WORK, and IWORK must not have been altered by the
 user following factorization (ITASK=1). IND will not be
 changed by SGEIR in this case.

 Argument Description ***

 A REAL(LDA,N)
 the doubly subscripted array with dimension (LDA,N)
 which contains the coefficient matrix. A is not
 altered by the routine.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. The first N elements of
 the array A are the elements of the first column of
 matrix A. N must be greater than or equal to 1.
 (terminal error message IND=-2)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a

SLATEC5 (REBAK through ZBIRY) - 199

 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A (stored in WORK).
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X. IND=75 means
 that the solution vector X is zero.
 LT. 0 see error message corresponding to IND below.
 WORK REAL(N*(N+1))
 a singly subscripted array of dimension at least N*(N+1).
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than one.
 IND=-3 terminal ITASK is less than one.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED R1MACH, SASUM, SCOPY, SDSDOT, SGEFA, SGESL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800430 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 200

SGEMM

 SUBROUTINE SGEMM (TRANSA, TRANSB, M, N, ALPHA, A, LDA,
 + B, LDB, BETA, C, LDC)
 ***BEGIN PROLOGUE SGEMM
 ***PURPOSE Multiply a real general matrix by a real general matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (SGEMM-S, DGEMM-D, CGEMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 SGEMM performs one of the matrix-matrix operations

 C := alpha*op(A)*op(B) + beta*C,

 where op(X) is one of

 op(X) = X or op(X) = X',

 alpha and beta are scalars, and A, B and C are matrices, with op(A)
 an m by k matrix, op(B) a k by n matrix and C an m by n matrix.

 Parameters
 ==========

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = A'.

 Unchanged on exit.

 TRANSB - CHARACTER*1.
 On entry, TRANSB specifies the form of op(B) to be used in
 the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = B'.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix
 op(A) and of the matrix C. M must be at least zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 201

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix
 op(B) and the number of columns of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of columns of the matrix
 op(A) and the number of rows of the matrix op(B). K must
 be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, ka), where ka is
 k when TRANSA = 'N' or 'n', and is m otherwise.
 Before entry with TRANSA = 'N' or 'n', the leading m by k
 part of the array A must contain the matrix A, otherwise
 the leading k by m part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANSA = 'N' or 'n' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, k).
 Unchanged on exit.

 B - REAL array of DIMENSION (LDB, kb), where kb is
 n when TRANSB = 'N' or 'n', and is k otherwise.
 Before entry with TRANSB = 'N' or 'n', the leading k by n
 part of the array B must contain the matrix B, otherwise
 the leading n by k part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANSB = 'N' or 'n' then
 LDB must be at least max(1, k), otherwise LDB must be at
 least max(1, n).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - REAL array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.
 On exit, the array C is overwritten by the m by n matrix
 (alpha*op(A)*op(B) + beta*C).

 LDC - INTEGER.
SLATEC5 (REBAK through ZBIRY) - 202

 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 203

SGEMV

 SUBROUTINE SGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX,
 + BETA, Y, INCY)
 ***BEGIN PROLOGUE SGEMV
 ***PURPOSE Multiply a real vector by a real general matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SGEMV-S, DGEMV-D, CGEMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SGEMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients.
 Unchanged on exit.

 LDA - INTEGER.

SLATEC5 (REBAK through ZBIRY) - 204

 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 X - REAL array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - REAL array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry with BETA non-zero, the incremented array Y
 must contain the vector y. On exit, Y is overwritten by the
 updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 205

SGER

 SUBROUTINE SGER (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE SGER
 ***PURPOSE Perform rank 1 update of a real general matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SGER-S)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SGER performs the rank 1 operation

 A := alpha*x*y' + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.

 Parameters
 ==========

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (m - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the m
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 Y - REAL array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of

SLATEC5 (REBAK through ZBIRY) - 206

 Y. INCY must not be zero.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients. On exit, A is
 overwritten by the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 207

SGESL

 SUBROUTINE SGESL (A, LDA, N, IPVT, B, JOB)
 ***BEGIN PROLOGUE SGESL
 ***PURPOSE Solve the real system A*X=B or TRANS(A)*X=B using the
 factors of SGECO or SGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A1
 ***TYPE SINGLE PRECISION (SGESL-S, DGESL-D, CGESL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SGESL solves the real system
 A * X = B or TRANS(A) * X = B
 using the factors computed by SGECO or SGEFA.

 On Entry

 A REAL(LDA, N)
 the output from SGECO or SGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from SGECO or SGEFA.

 B REAL(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve TRANS(A)*X = B where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically, this indicates singularity,
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if SGECO has set RCOND .GT. 0.0
 or SGEFA has set INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SGECO(A,LDA,N,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL SGESL(A,LDA,N,IPVT,C(1,J),0)

SLATEC5 (REBAK through ZBIRY) - 208

 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 209

SGLSS

 SUBROUTINE SGLSS (A, MDA, M, N, B, MDB, NB, RNORM, WORK, LW,
 + IWORK, LIW, INFO)
 ***BEGIN PROLOGUE SGLSS
 ***PURPOSE Solve a linear least squares problems by performing a QR
 factorization of the matrix using Householder
 transformations. Emphasis is put on detecting possible
 rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9, D5
 ***TYPE SINGLE PRECISION (SGLSS-S, DGLSS-D)
 ***KEYWORDS LINEAR LEAST SQUARES, LQ FACTORIZATION, QR FACTORIZATION,
 UNDERDETERMINED LINEAR SYSTEMS
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 SGLSS solves both underdetermined and overdetermined
 LINEAR systems AX = B, where A is an M by N matrix
 and B is an M by NB matrix of right hand sides. If
 M.GE.N, the least squares solution is computed by
 decomposing the matrix A into the product of an
 orthogonal matrix Q and an upper triangular matrix
 R (QR factorization). If M.LT.N, the minimal
 length solution is computed by factoring the
 matrix A into the product of a lower triangular
 matrix L and an orthogonal matrix Q (LQ factor-
 ization). If the matrix A is determined to be rank
 deficient, that is the rank of A is less than
 MIN(M,N), then the minimal length least squares
 solution is computed.

 SGLSS assumes full machine precision in the data.
 If more control over the uncertainty in the data
 is desired, the codes LLSIA and ULSIA are
 recommended.

 SGLSS requires MDA*N + (MDB + 1)*NB + 5*MIN(M,N) dimensioned
 real space and M+N dimensioned integer space.

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **
 SUBROUTINE SGLSS(A,MDA,M,N,B,MDB,NB,RNORM,WORK,LW,IWORK,LIW,INFO)

 Input..

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Must have

SLATEC5 (REBAK through ZBIRY) - 210

 MDB.GE.MAX(M,N). If NB = 0, B is never accessed.

 RNORM() Vector of length at least NB. On input the contents
 of RNORM are unused.

 WORK() A real work array dimensioned 5*MIN(M,N).

 LW Actual dimension of WORK.

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO A flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, INFO,
 LW, IWORK, LIW, and the first 2*MIN(M,N) locations
 of WORK as output by the original call to SGLSS.

 Output..

 A(,) Contains the triangular part of the reduced matrix
 and the transformation information. It together with
 the first 2*MIN(M,N) elements of WORK (see below)
 completely specify the factorization of A.

 B(,) Contains the N by NB solution matrix X.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB.

 WORK() The first 2*MIN(M,N) locations of WORK contain value
 necessary to reproduce the factorization of A.

 IWORK() The first M+N locations contain the order in
 which the rows and columns of A were used.
 If M.GE.N columns then rows. If M.LT.N rows
 then columns.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Full rank
 N.GT.0 - Reduced rank rank=MIN(M,N)-INFO

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED LLSIA, ULSIA
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC5 (REBAK through ZBIRY) - 211

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 212

SGMRES

 SUBROUTINE SGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
 $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)
 ***BEGIN PROLOGUE SGMRES
 ***PURPOSE Preconditioned GMRES Iterative Sparse Ax=b Solver.
 This routine uses the generalized minimum residual
 (GMRES) method with preconditioning to solve
 non-symmetric linear systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SGMRES-S, DGMRES-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW
 INTEGER IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N)
 REAL RGWK(LRGW), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL SGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
 $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for the solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply

SLATEC5 (REBAK through ZBIRY) - 213

 Y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 where N is the number of unknowns, Y is the product A*X
 upon return, X is an input vector, and NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of the routine which solves a linear system Mz = r for
 z given r with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays. The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a real array that can
 be used to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate the type of convergence criterion used.
 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISSGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning being
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11

SLATEC5 (REBAK through ZBIRY) - 214

 then this common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :DUMMY Integer.
 Maximum number of iterations in most SLAP routines. In
 this routine this does not make sense. The maximum number
 of iterations here is given by ITMAX = MAXL*(NRMAX+1).
 See IGWK for definitions of MAXL and NRMAX.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows..

 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 for left preconditioning.
 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine SGMRES failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Illegal value of ITOL, or ITOL and JPRE
 values are inconsistent.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 SB :IN Real SB(N).

SLATEC5 (REBAK through ZBIRY) - 215

 Array of length N containing scale factors for the right
 hand side vector B. If JSCAL.eq.0 (see below), SB need
 not be supplied.
 SX :IN Real SX(N).
 Array of length N containing scale factors for the solution
 vector X. If JSCAL.eq.0 (see below), SX need not be
 supplied. SB and SX can be the same array in the calling
 program if desired.
 RGWK :INOUT Real RGWK(LRGW).
 Real array used for workspace by SGMRES.
 On return, RGWK(1) = RHOL. See IERR for definition of RHOL.
 LRGW :IN Integer.
 Length of the real workspace, RGWK.
 LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3).
 See below for definition of MAXL.
 For the default values, RGWK has size at least 131 + 16*N.
 IGWK :INOUT Integer IGWK(LIGW).
 The following IGWK parameters should be set by the user
 before calling this routine.
 IGWK(1) = MAXL. Maximum dimension of Krylov subspace in
 which X - X0 is to be found (where, X0 is the initial
 guess). The default value of MAXL is 10.
 IGWK(2) = KMP. Maximum number of previous Krylov basis
 vectors to which each new basis vector is made orthogonal.
 The default value of KMP is MAXL.
 IGWK(3) = JSCAL. Flag indicating whether the scaling
 arrays SB and SX are to be used.
 JSCAL = 0 => SB and SX are not used and the algorithm
 will perform as if all SB(I) = 1 and SX(I) = 1.
 JSCAL = 1 => Only SX is used, and the algorithm
 performs as if all SB(I) = 1.
 JSCAL = 2 => Only SB is used, and the algorithm
 performs as if all SX(I) = 1.
 JSCAL = 3 => Both SB and SX are used.
 IGWK(4) = JPRE. Flag indicating whether preconditioning
 is being used.
 JPRE = 0 => There is no preconditioning.
 JPRE > 0 => There is preconditioning on the right
 only, and the solver will call routine MSOLVE.
 JPRE < 0 => There is preconditioning on the left
 only, and the solver will call routine MSOLVE.
 IGWK(5) = NRMAX. Maximum number of restarts of the
 Krylov iteration. The default value of NRMAX = 10.
 if IWORK(5) = -1, then no restarts are performed (in
 this case, NRMAX is set to zero internally).
 The following IWORK parameters are diagnostic information
 made available to the user after this routine completes.
 IGWK(6) = MLWK. Required minimum length of RGWK array.
 IGWK(7) = NMS. The total number of calls to MSOLVE.
 LIGW :IN Integer.
 Length of the integer workspace, IGWK. LIGW >= 20.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used for workspace in MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description:
 SGMRES solves a linear system A*X = B rewritten in the form:

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,
SLATEC5 (REBAK through ZBIRY) - 216

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

 with left preconditioning, where A is an N-by-N real matrix,
 X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is a preconditioning matrix. It uses
 preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when SGMRES is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by SGMRES:
 SPIGMR Contains the main iteration loop for GMRES.
 SORTH Orthogonalizes a new vector against older basis vectors.
 SHEQR Computes a QR decomposition of a Hessenberg matrix.
 SHELS Solves a Hessenberg least-squares system, using QR
 factors.
 SRLCAL Computes the scaled residual RL.
 SXLCAL Computes the solution XL.
 ISSGMR User-replaceable stopping routine.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK in some fashion. The SLAP
 routines SSDCG and SSICCG are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
SLATEC5 (REBAK through ZBIRY) - 217

 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
SLATEC5 (REBAK through ZBIRY) - 218

 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 2. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED R1MACH, SCOPY, SNRM2, SPIGMR
 ***REVISION HISTORY (YYMMDD)
 871001 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910506 Corrected errors in C***ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921026 Added check for valid value of ITOL. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 219

SGTSL

 SUBROUTINE SGTSL (N, C, D, E, B, INFO)
 ***BEGIN PROLOGUE SGTSL
 ***PURPOSE Solve a tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A2A
 ***TYPE SINGLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 SGTSL given a general tridiagonal matrix and a right hand
 side will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 C REAL(N)
 is the subdiagonal of the tridiagonal matrix.
 C(2) through C(N) should contain the subdiagonal.
 On output, C is destroyed.

 D REAL(N)
 is the diagonal of the tridiagonal matrix.
 On output, D is destroyed.

 E REAL(N)
 is the superdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the superdiagonal.
 On output, E is destroyed.

 B REAL(N)
 is the right hand side vector.

 On Return

 B is the solution vector.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th element of the diagonal becomes
 exactly zero. The subroutine returns when
 this is detected.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)

SLATEC5 (REBAK through ZBIRY) - 220

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 221

SINDG

 FUNCTION SINDG (X)
 ***BEGIN PROLOGUE SINDG
 ***PURPOSE Compute the sine of an argument in degrees.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE SINGLE PRECISION (SINDG-S, DSINDG-D)
 ***KEYWORDS DEGREES, ELEMENTARY FUNCTIONS, FNLIB, SINE, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 SINDG(X) evaluates the single precision sine of X where
 X is in degrees.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 222

SINQB

 SUBROUTINE SINQB (N, X, WSAVE)
 ***BEGIN PROLOGUE SINQB
 ***PURPOSE Compute the unnormalized inverse of SINQF.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (SINQB-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine SINQB computes the fast Fourier transform of quarter
 wave data. That is, SINQB computes a sequence from its
 representation in terms of a sine series with odd wave numbers.
 the transform is defined below at output parameter X.

 SINQF is the unnormalized inverse of SINQB since a call of SINQB
 followed by a call of SINQF will multiply the input sequence X
 by 4*N.

 The array WSAVE which is used by subroutine SINQB must be
 initialized by calling subroutine SINQI(N,WSAVE).

 Input Parameters

 N the length of the array X to be transformed. The method
 is most efficient when N is a product of small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls SINQB. The WSAVE array must be
 initialized by calling subroutine SINQI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I)= the sum from K=1 to K=N of

 4*X(K)*SIN((2*K-1)*I*PI/(2*N))

 a call of SINQB followed by a call of
 SINQF will multiply the sequence X by 4*N.
 Therefore SINQF is the unnormalized inverse
 of SINQB.

 WSAVE contains initialization calculations which must not
 be destroyed between calls of SINQB or SINQF.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.

SLATEC5 (REBAK through ZBIRY) - 223

 ***ROUTINES CALLED COSQB
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 224

SINQF

 SUBROUTINE SINQF (N, X, WSAVE)
 ***BEGIN PROLOGUE SINQF
 ***PURPOSE Compute the forward sine transform with odd wave numbers.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (SINQF-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine SINQF computes the fast Fourier transform of quarter
 wave data. That is, SINQF computes the coefficients in a sine
 series representation with only odd wave numbers. The transform
 is defined below at output parameter X.

 SINQB is the unnormalized inverse of SINQF since a call of SINQF
 followed by a call of SINQB will multiply the input sequence X
 by 4*N.

 The array WSAVE which is used by subroutine SINQF must be
 initialized by calling subroutine SINQI(N,WSAVE).

 Input Parameters

 N the length of the array X to be transformed. The method
 is most efficient when N is a product of small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls SINQF. The WSAVE array must be
 initialized by calling subroutine SINQI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I) = (-1)**(I-1)*X(N)

 + the sum from K=1 to K=N-1 of

 2*X(K)*SIN((2*I-1)*K*PI/(2*N))

 A call of SINQF followed by a call of
 SINQB will multiply the sequence X by 4*N.
 Therefore SINQB is the unnormalized inverse
 of SINQF.

 WSAVE contains initialization calculations which must not
 be destroyed between calls of SINQF or SINQB.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel

SLATEC5 (REBAK through ZBIRY) - 225

 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED COSQF
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*)
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 226

SINQI

 SUBROUTINE SINQI (N, WSAVE)
 ***BEGIN PROLOGUE SINQI
 ***PURPOSE Initialize a work array for SINQF and SINQB.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (SINQI-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine SINQI initializes the array WSAVE which is used in
 both SINQF and SINQB. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the sequence to be transformed. The method
 is most efficient when N is a product of small primes.

 Output Parameter

 WSAVE a work array which must be dimensioned at least 3*N+15.
 The same work array can be used for both SINQF and SINQB
 as long as N remains unchanged. Different WSAVE arrays
 are required for different values of N. The contents of
 WSAVE must not be changed between calls of SINQF or SINQB.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED COSQI
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*)
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 227

SINT

 SUBROUTINE SINT (N, X, WSAVE)
 ***BEGIN PROLOGUE SINT
 ***PURPOSE Compute the sine transform of a real, odd sequence.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (SINT-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine SINT computes the discrete Fourier sine transform
 of an odd sequence X(I). The transform is defined below at
 output parameter X.

 SINT is the unnormalized inverse of itself since a call of SINT
 followed by another call of SINT will multiply the input sequence
 X by 2*(N+1).

 The array WSAVE which is used by subroutine SINT must be
 initialized by calling subroutine SINTI(N,WSAVE).

 Input Parameters

 N the length of the sequence to be transformed. The method
 is most efficient when N+1 is the product of small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array with dimension at least INT(3.5*N+16)
 in the program that calls SINT. The WSAVE array must be
 initialized by calling subroutine SINTI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I)= the sum from K=1 to K=N

 2*X(K)*SIN(K*I*PI/(N+1))

 A call of SINT followed by another call of
 SINT will multiply the sequence X by 2*(N+1).
 Hence SINT is the unnormalized inverse
 of itself.

 WSAVE contains initialization calculations which must not be
 destroyed between calls of SINT.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.

SLATEC5 (REBAK through ZBIRY) - 228

 ***ROUTINES CALLED RFFTF
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing definition of variable SQRT3 by using
 FORTRAN intrinsic function SQRT instead of a DATA
 statement.
 881128 Modified by Dick Valent to meet prologue standards.
 891009 Removed unreferenced statement label. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 229

SINTI

 SUBROUTINE SINTI (N, WSAVE)
 ***BEGIN PROLOGUE SINTI
 ***PURPOSE Initialize a work array for SINT.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (SINTI-S)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine SINTI initializes the array WSAVE which is used in
 subroutine SINT. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the sequence to be transformed. The method
 is most efficient when N+1 is a product of small primes.

 Output Parameter

 WSAVE a work array with at least INT(3.5*N+16) locations.
 Different WSAVE arrays are required for different values
 of N. The contents of WSAVE must not be changed between
 calls of SINT.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTI
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL, and
 (c) changing definition of variable PI by using
 FORTRAN intrinsic function ATAN instead of a DATA
 statement.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 230

SINTRP

 SUBROUTINE SINTRP (X, Y, XOUT, YOUT, YPOUT, NEQN, KOLD, PHI, IVC,
 + IV, KGI, GI, ALPHA, OG, OW, OX, OY)
 ***BEGIN PROLOGUE SINTRP
 ***PURPOSE Approximate the solution at XOUT by evaluating the
 polynomial computed in STEPS at XOUT. Must be used in
 conjunction with STEPS.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE SINGLE PRECISION (SINTRP-S, DINTP-D)
 ***KEYWORDS ADAMS METHOD, DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR,
 SMOOTH INTERPOLANT
 ***AUTHOR Watts, H. A., (SNLA)
 ***DESCRIPTION

 The methods in subroutine STEPS approximate the solution near X
 by a polynomial. Subroutine SINTRP approximates the solution at
 XOUT by evaluating the polynomial there. Information defining this
 polynomial is passed from STEPS so SINTRP cannot be used alone.

 Subroutine STEPS is completely explained and documented in the text,
 "Computer Solution of Ordinary Differential Equations, the Initial
 Value Problem" by L. F. Shampine and M. K. Gordon.

 Input to SINTRP --

 The user provides storage in the calling program for the arrays in
 the call list
 DIMENSION Y(NEQN),YOUT(NEQN),YPOUT(NEQN),PHI(NEQN,16),OY(NEQN)
 AND ALPHA(12),OG(13),OW(12),GI(11),IV(10)
 and defines
 XOUT -- point at which solution is desired.
 The remaining parameters are defined in STEPS and passed to
 SINTRP from that subroutine

 Output from SINTRP --

 YOUT(*) -- solution at XOUT
 YPOUT(*) -- derivative of solution at XOUT
 The remaining parameters are returned unaltered from their input
 values. Integration with STEPS may be continued.

 ***REFERENCES H. A. Watts, A smoother interpolant for DE/STEP, INTRP
 II, Report SAND84-0293, Sandia Laboratories, 1984.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 840201 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 231

SIR

 SUBROUTINE SIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
 $ TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)
 ***BEGIN PROLOGUE SIR
 ***PURPOSE Preconditioned Iterative Refinement Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 iterative refinement with a matrix splitting.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SIR-S, DIR-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N), DZ(N),
 REAL RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL SIR(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, ITOL,
 $ TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, DZ, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below,
 for more details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must
 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X

SLATEC5 (REBAK through ZBIRY) - 232

 upon return, X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotes that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a real array that can
 be used to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.

SLATEC5 (REBAK through ZBIRY) - 233

 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 Z :WORK Real Z(N).
 DZ :WORK Real DZ(N).
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used by MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used by MSOLVE.

 *Description:
 The basic algorithm for iterative refinement (also known as
 iterative improvement) is:

 n+1 n -1 n
 X = X + M (B - AX).

 -1 -1
 If M = A then this is the standard iterative refinement
 algorithm and the "subtraction" in the residual calculation
 should be done in double precision (which it is not in this
 routine).
 If M = DIAG(A), the diagonal of A, then iterative refinement
 is known as Jacobi's method. The SLAP routine SSJAC
 implements this iterative strategy.
 If M = L, the lower triangle of A, then iterative refinement
 is known as Gauss-Seidel. The SLAP routine SSGS implements
 this iterative strategy.

 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines SSJAC and SSGS are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear

SLATEC5 (REBAK through ZBIRY) - 234

 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Examples:
 See the SLAP routines SSJAC, SSGS

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSJAC, SSGS
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 2. Mark K. Seager, A SLAP for the Masses, in

SLATEC5 (REBAK through ZBIRY) - 235

 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSIR, R1MACH
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 236

SLLTI2

 SUBROUTINE SLLTI2 (N, B, X, NEL, IEL, JEL, EL, DINV)
 ***BEGIN PROLOGUE SLLTI2
 ***PURPOSE SLAP Backsolve routine for LDL' Factorization.
 Routine to solve a system of the form L*D*L' X = B,
 where L is a unit lower triangular matrix and D is a
 diagonal matrix and ' means transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SLLTI2-S, DLLTI2-D)
 ***KEYWORDS INCOMPLETE FACTORIZATION, ITERATIVE PRECONDITION, SLAP,
 SPARSE, SYMMETRIC LINEAR SYSTEM SOLVE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NEL, IEL(NEL), JEL(NEL)
 REAL B(N), X(N), EL(NEL), DINV(N)

 CALL SLLTI2(N, B, X, NEL, IEL, JEL, EL, DINV)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right hand side vector.
 X :OUT Real X(N).
 Solution to L*D*L' x = b.
 NEL :IN Integer.
 Number of non-zeros in the EL array.
 IEL :IN Integer IEL(NEL).
 JEL :IN Integer JEL(NEL).
 EL :IN Real EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in
 SLAP Row format. The diagonal of ones *IS* stored. This
 structure can be set up by the SS2LT routine. See the
 "Description", below for more details about the SLAP Row
 format.
 DINV :IN Real DINV(N).
 Inverse of the diagonal matrix D.

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SCG iteration routine
 for the driver routine SSICCG. It must be called via the
 SLAP MSOLVE calling sequence convention interface routine
 SSLLI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IEL, JEL, EL should contain the unit lower triangular factor

SLATEC5 (REBAK through ZBIRY) - 237

 of the incomplete decomposition of the A matrix stored in
 SLAP Row format. This IC factorization can be computed by
 the SSICS routine. The diagonal (which is all one's) is
 stored.

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in
 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP Row format the "inner loop" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO SSICCG, SSICS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 238

SLPDOC

 SUBROUTINE SLPDOC
 ***BEGIN PROLOGUE SLPDOC
 ***PURPOSE Sparse Linear Algebra Package Version 2.0.2 Documentation.
 Routines to solve large sparse symmetric and nonsymmetric
 positive definite linear systems, Ax = b, using precondi-
 tioned iterative methods.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4, Z
 ***TYPE SINGLE PRECISION (SLPDOC-S, DLPDOC-D)
 ***KEYWORDS BICONJUGATE GRADIENT SQUARED, DOCUMENTATION,
 GENERALIZED MINIMUM RESIDUAL, ITERATIVE IMPROVEMENT,
 NORMAL EQUATIONS, ORTHOMIN,
 PRECONDITIONED CONJUGATE GRADIENT, SLAP,
 SPARSE ITERATIVE METHODS
 ***AUTHOR Seager, Mark. K., (LLNL)
 User Systems Division
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550
 (FTS) 543-3141, (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 The
 Sparse Linear Algebra Package

 @@@@ @ @@ @@@@
 @ @ @ @ @ @ @
 @ @ @ @ @ @
 @@@@ @ @ @ @@@@
 @ @ @@@@@ @
 @ @ @ @ @ @
 @@@@ @@@@@ @ @ @

 @ @ @@@@ @@@
 @ @ @ @ @ @
 @ @ @@@@ @ @ @ @ @ @
 @ @ @ @ @ @ @@@ @ @ @
 @ @ @@@@@ @ @ @ @ @
 @ @ @ @ @ @@ @ @
 @@ @@@@ @ @@@@@ @@ @@@

 ===
 ========================== Introduction =========================
 ===
 This package was originally derived from a set of iterative
 routines written by Anne Greenbaum, as announced in "Routines
 for Solving Large Sparse Linear Systems", Tentacle, Lawrence
 Livermore National Laboratory, Livermore Computing Center
 (January 1986), pp 15-21.

 This document contains the specifications for the SLAP Version
 2.0 package, a Fortran 77 package for the solution of large
 sparse linear systems, Ax = b, via preconditioned iterative
 methods. Included in this package are "core" routines to do
 Iterative Refinement (Jacobi's method), Conjugate Gradient,

SLATEC5 (REBAK through ZBIRY) - 239

 Conjugate Gradient on the normal equations, AA'y = b, (where x =
 A'y and A' denotes the transpose of A), BiConjugate Gradient,
 BiConjugate Gradient Squared, Orthomin and Generalized Minimum
 Residual Iteration. These "core" routines do not require a
 "fixed" data structure for storing the matrix A and the
 preconditioning matrix M. The user is free to choose any
 structure that facilitates efficient solution of the problem at
 hand. The drawback to this approach is that the user must also
 supply at least two routines (MATVEC and MSOLVE, say). MATVEC
 must calculate, y = Ax, given x and the user's data structure for
 A. MSOLVE must solve, r = Mz, for z (*NOT* r) given r and the
 user's data structure for M (or its inverse). The user should
 choose M so that inv(M)*A is approximately the identity and the
 solution step r = Mz is "easy" to solve. For some of the "core"
 routines (Orthomin, BiConjugate Gradient and Conjugate Gradient
 on the normal equations) the user must also supply a matrix
 transpose times vector routine (MTTVEC, say) and (possibly,
 depending on the "core" method) a routine that solves the
 transpose of the preconditioning step (MTSOLV, say).
 Specifically, MTTVEC is a routine which calculates y = A'x, given
 x and the user's data structure for A (A' is the transpose of A).
 MTSOLV is a routine which solves the system r = M'z for z given r
 and the user's data structure for M.

 This process of writing the matrix vector operations can be time
 consuming and error prone. To alleviate these problems we have
 written drivers for the "core" methods that assume the user
 supplies one of two specific data structures (SLAP Triad and SLAP
 Column format), see below. Utilizing these data structures we
 have augmented each "core" method with two preconditioners:
 Diagonal Scaling and Incomplete Factorization. Diagonal scaling
 is easy to implement, vectorizes very well and for problems that
 are not too ill-conditioned reduces the number of iterations
 enough to warrant its use. On the other hand, an Incomplete
 factorization (Incomplete Cholesky for symmetric systems and
 Incomplete LU for nonsymmetric systems) may take much longer to
 calculate, but it reduces the iteration count (for most problems)
 significantly. Our implementations of IC and ILU vectorize for
 machines with hardware gather scatter, but the vector lengths can
 be quite short if the number of non-zeros in a column is not
 large.

 ===
 ==================== Supplied Data Structures ===================
 ===
 The following describes the data structures supplied with the
 package: SLAP Triad and Column formats.

 ====================== S L A P Triad format =====================

 In the SLAP Triad format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of length
 NELT, where NELT is the number of non-zeros in the matrix:
 (IA(NELT), JA(NELT), A(NELT)). If the matrix is symmetric then
 one need only store the lower triangle (including the diagonal)
 and NELT would be the corresponding number of non-zeros stored.
 For each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding location
 of the A array. This is an extremely easy data structure to

SLATEC5 (REBAK through ZBIRY) - 240

 generate. On the other hand, it is not very efficient on vector
 computers for the iterative solution of linear systems. Hence,
 SLAP changes this input data structure to the SLAP Column format
 for the iteration (but does not change it back).

 Here is an example of the SLAP Triad storage format for a
 nonsymmetric 5x5 Matrix. NELT=11. Recall that the entries may
 appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ====================== S L A P Column format ====================

 In the SLAP Column format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear first
 in each "column") and are stored in the real array A. In other
 words, for each column in the matrix first put the diagonal entry
 in A. Then put in the other non-zero elements going down the
 column (except the diagonal) in order. The IA array holds the
 row index for each non-zero. The JA array holds the offsets into
 the IA, A arrays for the beginning of each column. That is,
 IA(JA(ICOL)), A(JA(ICOL)) are the first elements of the ICOL-th
 column in IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) are the
 last elements of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the matrix
 and NELT is the number of non-zeros in the matrix. If the matrix
 is symmetric one need only store the lower triangle (including
 the diagonal) and NELT would be the corresponding number of
 non-zeros stored.

 Here is an example of the SLAP Column storage format for a
 nonsymmetric 5x5 Matrix (in the A and IA arrays '|' denotes the
 end of a column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ===
 ====================== Which Method To Use ======================
 ===

 BACKGROUND
 In solving a large sparse linear system Ax = b using an iterative
 method, it is not necessary to actually store the matrix A.
 Rather, what is needed is a procedure for multiplying the matrix
 A times a given vector y to obtain the matrix-vector product, Ay.
 SLAP has been written to take advantage of this fact. The higher
 level routines in the package require storage only of the non-zero
 elements of A (and their positions), and even this can be

SLATEC5 (REBAK through ZBIRY) - 241

 avoided, if the user writes his own subroutine for multiplying
 the matrix times a vector and calls the lower-level iterative
 routines in the package.

 If the matrix A is ill-conditioned, then most iterative methods
 will be slow to converge (if they converge at all!). To improve
 the convergence rate, one may use a "matrix splitting," or,
 "preconditioning matrix," say, M. It is then necessary to solve,
 at each iteration, a linear system with coefficient matrix M. A
 good preconditioner M should have two properties: (1) M should
 "approximate" A, in the sense that the matrix inv(M)*A (or some
 variant thereof) is better conditioned than the original matrix
 A; and (2) linear systems with coefficient matrix M should be
 much easier to solve than the original system with coefficient
 matrix A. Preconditioning routines in the SLAP package are
 separate from the iterative routines, so that any of the
 preconditioners provided in the package, or one that the user
 codes himself, can be used with any of the iterative routines.

 CHOICE OF PRECONDITIONER
 If you willing to live with either the SLAP Triad or Column
 matrix data structure you can then choose one of two types of
 preconditioners to use: diagonal scaling or incomplete
 factorization. To choose between these two methods requires
 knowing something about the computer you're going to run these
 codes on and how well incomplete factorization approximates the
 inverse of your matrix.

 Let us suppose you have a scalar machine. Then, unless the
 incomplete factorization is very, very poor this is *GENERALLY*
 the method to choose. It will reduce the number of iterations
 significantly and is not all that expensive to compute. So if
 you have just one linear system to solve and "just want to get
 the job done" then try incomplete factorization first. If you
 are thinking of integrating some SLAP iterative method into your
 favorite "production code" then try incomplete factorization
 first, but also check to see that diagonal scaling is indeed
 slower for a large sample of test problems.

 Let us now suppose you have a vector computer with hardware
 gather/scatter support (Cray X-MP, Y-MP, SCS-40 or Cyber 205, ETA
 10, ETA Piper, Convex C-1, etc.). Then it is much harder to
 choose between the two methods. The versions of incomplete
 factorization in SLAP do in fact vectorize, but have short vector
 lengths and the factorization step is relatively more expensive.
 Hence, for most problems (i.e., unless your problem is ill
 conditioned, sic!) diagonal scaling is faster, with its very
 fast set up time and vectorized (with long vectors)
 preconditioning step (even though it may take more iterations).
 If you have several systems (or right hand sides) to solve that
 can utilize the same preconditioner then the cost of the
 incomplete factorization can be amortized over these several
 solutions. This situation gives more advantage to the incomplete
 factorization methods. If you have a vector machine without
 hardware gather/scatter (Cray 1, Cray 2 & Cray 3) then the
 advantages for incomplete factorization are even less.

 If you're trying to shoehorn SLAP into your favorite "production
 code" and can not easily generate either the SLAP Triad or Column
 format then you are left to your own devices in terms of

SLATEC5 (REBAK through ZBIRY) - 242

 preconditioning. Also, you may find that the preconditioners
 supplied with SLAP are not sufficient for your problem. In this
 situation we would recommend that you talk with a numerical
 analyst versed in iterative methods about writing other
 preconditioning subroutines (e.g., polynomial preconditioning,
 shifted incomplete factorization, SOR or SSOR iteration). You
 can always "roll your own" by using the "core" iterative methods
 and supplying your own MSOLVE and MATVEC (and possibly MTSOLV and
 MTTVEC) routines.

 SYMMETRIC SYSTEMS
 If your matrix is symmetric then you would want to use one of the
 symmetric system solvers. If your system is also positive
 definite, (Ax,x) (Ax dot product with x) is positive for all
 non-zero vectors x, then use Conjugate Gradient (SCG, SSDCG,
 SSICSG). If you're not sure it's SPD (symmetric and Positive
 Definite) then try SCG anyway and if it works, fine. If you're
 sure your matrix is not positive definite then you may want to
 try the iterative refinement methods (SIR) or the GMRES code
 (SGMRES) if SIR converges too slowly.

 NONSYMMETRIC SYSTEMS
 This is currently an area of active research in numerical
 analysis and there are new strategies being developed.
 Consequently take the following advice with a grain of salt. If
 you matrix is positive definite, (Ax,x) (Ax dot product with x
 is positive for all non-zero vectors x), then you can use any of
 the methods for nonsymmetric systems (Orthomin, GMRES,
 BiConjugate Gradient, BiConjugate Gradient Squared and Conjugate
 Gradient applied to the normal equations). If your system is not
 too ill conditioned then try BiConjugate Gradient Squared (BCGS)
 or GMRES (SGMRES). Both of these methods converge very quickly
 and do not require A' or M' (' denotes transpose) information.
 SGMRES does require some additional storage, though. If the
 system is very ill conditioned or nearly positive indefinite
 ((Ax,x) is positive, but may be very small), then GMRES should
 be the first choice, but try the other methods if you have to
 fine tune the solution process for a "production code". If you
 have a great preconditioner for the normal equations (i.e., M is
 an approximation to the inverse of AA' rather than just A) then
 this is not a bad route to travel. Old wisdom would say that the
 normal equations are a disaster (since it squares the condition
 number of the system and SCG convergence is linked to this number
 of infamy), but some preconditioners (like incomplete
 factorization) can reduce the condition number back below that of
 the original system.

 ===
 ======================= Naming Conventions ======================
 ===
 SLAP iterative methods, matrix vector and preconditioner
 calculation routines follow a naming convention which, when
 understood, allows one to determine the iterative method and data
 structure(s) used. The subroutine naming convention takes the
 following form:
 P[S][M]DESC
 where
 P stands for the precision (or data type) of the routine and
 is required in all names,
 S denotes whether or not the routine requires the SLAP Triad

SLATEC5 (REBAK through ZBIRY) - 243

 or Column format (it does if the second letter of the name
 is S and does not otherwise),
 M stands for the type of preconditioner used (only appears
 in drivers for "core" routines), and
 DESC is some number of letters describing the method or purpose
 of the routine. The following is a list of the "DESC"
 fields for iterative methods and their meaning:
 BCG,BC: BiConjugate Gradient
 CG: Conjugate Gradient
 CGN,CN: Conjugate Gradient on the Normal equations
 CGS,CS: biConjugate Gradient Squared
 GMRES,GMR,GM: Generalized Minimum RESidual
 IR,R: Iterative Refinement
 JAC: JACobi's method
 GS: Gauss-Seidel
 OMN,OM: OrthoMiN

 In the single precision version of SLAP, all routine names start
 with an S. The brackets around the S and M designate that these
 fields are optional.

 Here are some examples of the routines:
 1) SBCG: Single precision BiConjugate Gradient "core" routine.
 One can deduce that this is a "core" routine, because the S and
 M fields are missing and BiConjugate Gradient is an iterative
 method.
 2) SSDBCG: Single precision, SLAP data structure BCG with Diagonal
 scaling.
 3) SSLUBC: Single precision, SLAP data structure BCG with incom-
 plete LU factorization as the preconditioning.
 4) SCG: Single precision Conjugate Gradient "core" routine.
 5) SSDCG: Single precision, SLAP data structure Conjugate Gradient
 with Diagonal scaling.
 6) SSICCG: Single precision, SLAP data structure Conjugate Gra-
 dient with Incomplete Cholesky factorization preconditioning.

 ===
 ===================== USER CALLABLE ROUTINES ====================
 ===
 The following is a list of the "user callable" SLAP routines and
 their one line descriptions. The headers denote the file names
 where the routines can be found, as distributed for UNIX systems.

 Note: Each core routine, SXXX, has a corresponding stop routine,
 ISSXXX. If the stop routine does not have the specific stop
 test the user requires (e.g., weighted infinity norm), then
 the user should modify the source for ISSXXX accordingly.

 ============================= sir.f =============================
 SIR: Preconditioned Iterative Refinement Sparse Ax = b Solver.
 SSJAC: Jacobi's Method Iterative Sparse Ax = b Solver.
 SSGS: Gauss-Seidel Method Iterative Sparse Ax = b Solver.
 SSILUR: Incomplete LU Iterative Refinement Sparse Ax = b Solver.

 ============================= scg.f =============================
 SCG: Preconditioned Conjugate Gradient Sparse Ax=b Solver.
 SSDCG: Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
 SSICCG: Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.

SLATEC5 (REBAK through ZBIRY) - 244

 ============================= scgn.f ============================
 SCGN: Preconditioned CG Sparse Ax=b Solver for Normal Equations.
 SSDCGN: Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
 SSLUCN: Incomplete LU CG Sparse Ax=b Solver for Normal Equations.

 ============================= sbcg.f ============================
 SBCG: Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
 SSDBCG: Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
 SSLUBC: Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.

 ============================= scgs.f ============================
 SCGS: Preconditioned BiConjugate Gradient Squared Ax=b Solver.
 SSDCGS: Diagonally Scaled CGS Sparse Ax=b Solver.
 SSLUCS: Incomplete LU BiConjugate Gradient Squared Ax=b Solver.

 ============================= somn.f ============================
 SOMN: Preconditioned Orthomin Sparse Iterative Ax=b Solver.
 SSDOMN: Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
 SSLUOM: Incomplete LU Orthomin Sparse Iterative Ax=b Solver.

 ============================ sgmres.f ===========================
 SGMRES: Preconditioned GMRES Iterative Sparse Ax=b Solver.
 SSDGMR: Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
 SSLUGM: Incomplete LU GMRES Iterative Sparse Ax=b Solver.

 ============================ smset.f ============================
 The following routines are used to set up preconditioners.

 SSDS: Diagonal Scaling Preconditioner SLAP Set Up.
 SSDSCL: Diagonally Scales/Unscales a SLAP Column Matrix.
 SSD2S: Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
 SS2LT: Lower Triangle Preconditioner SLAP Set Up.
 SSICS: Incomplete Cholesky Decomp. Preconditioner SLAP Set Up.
 SSILUS: Incomplete LU Decomposition Preconditioner SLAP Set Up.

 ============================ smvops.f ===========================
 Most of the incomplete factorization (LL' and LDU) solvers
 in this file require an intermediate routine to translate
 from the SLAP MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK,
 IWORK) calling convention to the calling sequence required
 by the solve routine. This generally is accomplished by
 fishing out pointers to the preconditioner (stored in RWORK)
 from the IWORK array and then making a call to the routine
 that actually does the backsolve.

 SSMV: SLAP Column Format Sparse Matrix Vector Product.
 SSMTV: SLAP Column Format Sparse Matrix (transpose) Vector Prod.
 SSDI: Diagonal Matrix Vector Multiply.
 SSLI: SLAP MSOLVE for Lower Triangle Matrix (set up for SSLI2).
 SSLI2: Lower Triangle Matrix Backsolve.
 SSLLTI: SLAP MSOLVE for LDL' (IC) Fact. (set up for SLLTI2).
 SLLTI2: Backsolve routine for LDL' Factorization.
 SSLUI: SLAP MSOLVE for LDU Factorization (set up for SSLUI2).
 SSLUI2: SLAP Backsolve for LDU Factorization.
 SSLUTI: SLAP MTSOLV for LDU Factorization (set up for SSLUI4).
 SSLUI4: SLAP Backsolve for LDU Factorization.
 SSMMTI: SLAP MSOLVE for LDU Fact of Normal Eq (set up for SSMMI2).
 SSMMI2: SLAP Backsolve for LDU Factorization of Normal Equations.

 =========================== slaputil.f ==========================
SLATEC5 (REBAK through ZBIRY) - 245

 The following utility routines are useful additions to SLAP.

 SBHIN: Read Sparse Linear System in the Boeing/Harwell Format.
 SCHKW: SLAP WORK/IWORK Array Bounds Checker.
 SCPPLT: Printer Plot of SLAP Column Format Matrix.
 SS2Y: SLAP Triad to SLAP Column Format Converter.
 QS2I1R: Quick Sort Integer array, moving integer and real arrays.
 (Used by SS2Y.)
 STIN: Read in SLAP Triad Format Linear System.
 STOUT: Write out SLAP Triad Format Linear System.

 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 880715 DATE WRITTEN
 890404 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 -----(This produced Version 2.0.1.)-----
 891003 Rearranged list of user callable routines to agree with
 order in source deck. (FNF)
 891004 Updated reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 -----(This produced Version 2.0.2.)-----
 910506 Minor improvements to prologue. (FNF)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Improved one-line descriptions, reordering some. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 246

SNBCO

 SUBROUTINE SNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE SNBCO
 ***PURPOSE Factor a band matrix using Gaussian elimination and
 estimate the condition number.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SNBCO-S, DNBCO-D, CNBCO-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 SNBCO factors a real band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, SNBFA is slightly faster.
 To solve A*X = B , follow SNBCO by SNBSL.
 To compute INVERSE(A)*C , follow SNBCO by SNBSL.
 To compute DETERMINANT(A) , follow SNBCO by SNBDI.

 On Entry

 ABE REAL(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 The factorization can be written A = L*U , where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC5 (REBAK through ZBIRY) - 247

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
SLATEC5 (REBAK through ZBIRY) - 248

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SNBFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 800723 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 249

SNBDI

 SUBROUTINE SNBDI (ABE, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE SNBDI
 ***PURPOSE Compute the determinant of a band matrix using the factors
 computed by SNBCO or SNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D3A2
 ***TYPE SINGLE PRECISION (SNBDI-S, DNBDI-D, CNBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 SNBDI computes the determinant of a band matrix
 using the factors computed by SNBCO or SNBFA.
 If the inverse is needed, use SNBSL N times.

 On Entry

 ABE REAL(LDA, NC)
 the output from SNBCO or SNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from SNBCO or SNBFA.

 On Return

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 800725 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 250

SNBFA

 SUBROUTINE SNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE SNBFA
 ***PURPOSE Factor a real band matrix by elimination.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SNBFA-S, DNBFA-D, CNBFA-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 SNBFA factors a real band matrix by elimination.

 SNBFA is usually called by SNBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABE REAL(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 The factorization can be written A = L*U , where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 =0 normal value
 =K if U(K,K) .EQ. 0.0 . This is not an error

SLATEC5 (REBAK through ZBIRY) - 251

 condition for this subroutine, but it does
 indicate that SNBSL will divide by zero if
 called. Use RCOND in SNBCO for a reliable
 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED ISAMAX, SAXPY, SSCAL, SSWAP
 ***REVISION HISTORY (YYMMDD)
 800606 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 252

SNBFS

 SUBROUTINE SNBFS (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE SNBFS
 ***PURPOSE Solve a general nonsymmetric banded system of linear
 equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SNBFS-S, DNBFS-D, CNBFS-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SNBFS solves a general nonsymmetric banded NxN
 system of single precision real linear equations using
 SLATEC subroutines SNBCO and SNBSL. These are adaptations
 of the LINPACK subroutines SBGCO and SGBSL, which require
 a different format for storing the matrix elements. If
 A is an NxN real matrix and if X and B are real
 N-vectors, then SNBFS solves the equation

 A*X=B.

 A band matrix is a matrix whose nonzero elements are all
 fairly near the main diagonal, specifically A(I,J) = 0
 if I-J is greater than ML or J-I is greater than
 MU . The integers ML and MU are called the lower and upper
 band widths and M = ML+MU+1 is the total band width.
 SNBFS uses less time and storage than the corresponding
 program for general matrices (SGEFS) if 2*ML+MU .LT. N .

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by SNBFS
 in this case.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2

SLATEC5 (REBAK through ZBIRY) - 253

 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 Argument Description ***

 ABE REAL(LDA,NC)
 on entry, contains the matrix in band storage as
 described above. NC must not be less than
 2*ML+MU+1 . The user is cautioned to specify NC
 with care since it is not an argument and cannot
 be checked by SNBFS. The rows of the original
 matrix are stored in the rows of ABE and the
 diagonals of the original matrix are stored in
 columns 1 through ML+MU+1 of ABE .
 on return, contains an upper triangular matrix U and
 the multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of array ABE. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1 . (terminal error message IND=-2)
 ML INTEGER
 the number of diagonals below the main diagonal.
 ML must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-5)
 MU INTEGER
 the number of diagonals above the main diagonal.
 MU must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-6)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-

SLATEC5 (REBAK through ZBIRY) - 254

 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 See error message corresponding to IND below.
 WORK REAL(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal the matrix A is computationally singular.
 A solution has not been computed.
 IND=-5 terminal ML is less than zero or is greater than
 or equal to N .
 IND=-6 terminal MU is less than zero or is greater than
 or equal to N .
 IND=-10 warning the solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED R1MACH, SNBCO, SNBSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 255

SNBIR

 SUBROUTINE SNBIR (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE SNBIR
 ***PURPOSE Solve a general nonsymmetric banded system of linear
 equations. Iterative refinement is used to obtain an error
 estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SNBIR-S, CNBIR-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SNBIR solves a general nonsymmetric banded NxN
 system of single precision real linear equations using
 SLATEC subroutines SNBFA and SNBSL. These are adaptations
 of the LINPACK subroutines SGBFA and SGBSL, which require
 a different format for storing the matrix elements.
 One pass of iterative refinement is used only to obtain an
 estimate of the accuracy. If A is an NxN real banded
 matrix and if X and B are real N-vectors, then SNBIR
 solves the equation

 A*X=B.

 A band matrix is a matrix whose nonzero elements are all
 fairly near the main diagonal, specifically A(I,J) = 0
 if I-J is greater than ML or J-I is greater than
 MU . The integers ML and MU are called the lower and upper
 band widths and M = ML+MU+1 is the total band width.
 SNBIR uses less time and storage than the corresponding
 program for general matrices (SGEIR) if 2*ML+MU .LT. N .

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X . Then the residual vector is found and used
 to calculate an estimate of the relative error, IND . IND esti-
 mates the accuracy of the solution only when the input matrix
 and the right hand side are represented exactly in the computer
 and does not take into account any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A, LDA,
 N, work and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by SNBIR
 in this case.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)

SLATEC5 (REBAK through ZBIRY) - 256

 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 Through ML+MU+1 of ABE .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 , * = not used
 21 22 23 24
 32 33 34 35
 43 44 45 46
 54 55 56 *
 65 66 * *

 Argument Description ***

 ABE REAL(LDA,MM)
 on entry, contains the matrix in band storage as
 described above. MM must not be less than M =
 ML+MU+1 . The user is cautioned to dimension ABE
 with care since MM is not an argument and cannot
 be checked by SNBIR. The rows of the original
 matrix are stored in the rows of ABE and the
 diagonals of the original matrix are stored in
 columns 1 through ML+MU+1 of ABE . ABE is
 not altered by the program.
 LDA INTEGER
 the leading dimension of array ABE. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1 . (terminal error message IND=-2)
 ML INTEGER
 the number of diagonals below the main diagonal.
 ML must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-5)
 MU INTEGER
 the number of diagonals above the main diagonal.
 MU must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-6)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a

SLATEC5 (REBAK through ZBIRY) - 257

 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X . IND=75 means
 that the solution vector X is zero.
 LT. 0 See error message corresponding to IND below.
 WORK REAL(N*(NC+1))
 a singly subscripted array of dimension at least
 N*(NC+1) where NC = 2*ML+MU+1 .
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal the matrix A is computationally singular.
 A solution has not been computed.
 IND=-5 terminal ML is less than zero or is greater than
 or equal to N .
 IND=-6 terminal MU is less than zero or is greater than
 or equal to N .
 IND=-10 warning the solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED R1MACH, SASUM, SCOPY, SDSDOT, SNBFA, SNBSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800815 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 258

SNBSL

 SUBROUTINE SNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE SNBSL
 ***PURPOSE Solve a real band system using the factors computed by
 SNBCO or SNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D2A2
 ***TYPE SINGLE PRECISION (SNBSL-S, DNBSL-D, CNBSL-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 SNBSL solves the real band system
 A * X = B or TRANS(A) * X = B
 using the factors computed by SNBCO or SNBFA.

 On Entry

 ABE REAL(LDA, NC)
 the output from SNBCO or SNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from SNBCO or SNBFA.

 B REAL(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B .
 = nonzero to solve TRANS(A)*X = B , where
 TRANS(A) is the transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically, this indicates singularity,
 but it is often caused by improper arguments or improper
 setting of LDA. It will not occur if the subroutines are
 called correctly and if SNBCO has set RCOND .GT. 0.0
 or SNBFA has set INFO .EQ. 0 .

SLATEC5 (REBAK through ZBIRY) - 259

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL SNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 800717 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 260

SNLS1

 SUBROUTINE SNLS1 (FCN, IOPT, M, N, X, FVEC, FJAC, LDFJAC, FTOL,
 XTOL, GTOL, MAXFEV, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO,
 + NFEV, NJEV, IPVT, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE SNLS1
 ***PURPOSE Minimize the sum of the squares of M nonlinear functions
 in N variables by a modification of the Levenberg-Marquardt
 algorithm.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1A1, K1B1A2
 ***TYPE SINGLE PRECISION (SNLS1-S, DNLS1-D)
 ***KEYWORDS LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of SNLS1 is to minimize the sum of the squares of M
 nonlinear functions in N variables by a modification of the
 Levenberg-Marquardt algorithm. The user must provide a subrou-
 tine which calculates the functions. The user has the option
 of how the Jacobian will be supplied. The user can supply the
 full Jacobian, or the rows of the Jacobian (to avoid storing
 the full Jacobian), or let the code approximate the Jacobian by
 forward-differencing. This code is the combination of the
 MINPACK codes (Argonne) LMDER, LMDIF, and LMSTR.

 2. Subroutine and Type Statements.

 SUBROUTINE SNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
 * GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO
 * ,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
 INTEGER IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
 INTEGER IPVT(N)
 REAL FTOL,XTOL,GTOL,EPSFCN,FACTOR
 REAL X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
 * WA1(N),WA2(N),WA3(N),WA4(M)

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to SNLS1 and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from SNLS1.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below.
 If the user wants the iterates printed (NPRINT positive), then
 FCN must do the printing. See the explanation of NPRINT
 below. FCN must be declared in an EXTERNAL statement in the
 calling program and should be written as follows.

SLATEC5 (REBAK through ZBIRY) - 261

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 INTEGER IFLAG,LDFJAC,M,N
 REAL X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 REAL FJAC(LDFJAC,N) , if IOPT=2.
 REAL FJAC(N) , if IOPT=3.

 If IFLAG=0, the values in X and FVEC are available
 for printing. See the explanation of NPRINT below.
 IFLAG will never be zero unless NPRINT is positive.
 The values of X and FVEC must not be changed.
 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FVEC contains the function
 values at X and must not be altered. FJAC(J) must be
 set to the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of SNLS1. In this case, set
 IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the

SLATEC5 (REBAK through ZBIRY) - 262

 final estimate of the solution vector.

 FVEC is an output array of length M which contains the functions
 evaluated at the output X.

 FJAC is an output array. For IOPT=1 and 2, FJAC is an M by N
 array. For IOPT=3, FJAC is an N by N array. The upper N by N
 submatrix of FJAC contains an upper triangular matrix R with
 diagonal elements of nonincreasing magnitude such that

 T T T
 P *(JAC *JAC)*P = R *R,

 where P is a permutation matrix and JAC is the final calcu-
 lated Jacobian. Column J of P is column IPVT(J) (see below)
 of the identity matrix. The lower part of FJAC contains
 information generated during the computation of R.

 LDFJAC is a positive integer input variable which specifies
 the leading dimension of the array FJAC. For IOPT=1 and 2,
 LDFJAC must not be less than M. For IOPT=3, LDFJAC must not
 be less than N.

 FTOL is a non-negative input variable. Termination occurs when
 both the actual and predicted relative reductions in the sum
 of squares are at most FTOL. Therefore, FTOL measures the
 relative error desired in the sum of squares. Section 4 con-
 tains more details about FTOL.

 XTOL is a non-negative input variable. Termination occurs when
 the relative error between two consecutive iterates is at most
 XTOL. Therefore, XTOL measures the relative error desired in
 the approximate solution. Section 4 contains more details
 about XTOL.

 GTOL is a non-negative input variable. Termination occurs when
 the cosine of the angle between FVEC and any column of the
 Jacobian is at most GTOL in absolute value. Therefore, GTOL
 measures the orthogonality desired between the function vector
 and the columns of the Jacobian. Section 4 contains more
 details about GTOL.

 MAXFEV is a positive integer input variable. Termination occurs
 when the number of calls to FCN to evaluate the functions
 has reached MAXFEV.

 EPSFCN is an input variable used in determining a suitable step
 for the forward-difference approximation. This approximation
 assumes that the relative errors in the functions are of the
 order of EPSFCN. If EPSFCN is less than the machine preci-
 sion, it is assumed that the relative errors in the functions
 are of the order of the machine precision. If IOPT=2 or 3,
 then EPSFCN can be ignored (treat it as a dummy argument).

 DIAG is an array of length N. If MODE = 1 (see below), DIAG is
 internally set. If MODE = 2, DIAG must contain positive
 entries that serve as implicit (multiplicative) scale factors
 for the variables.

 MODE is an integer input variable. If MODE = 1, the variables
SLATEC5 (REBAK through ZBIRY) - 263

 will be scaled internally. If MODE = 2, the scaling is speci-
 fied by the input DIAG. Other values of MODE are equivalent
 to MODE = 1.

 FACTOR is a positive input variable used in determining the ini-
 tial step bound. This bound is set to the product of FACTOR
 and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
 itself. In most cases FACTOR should lie in the interval
 (.1,100.). 100. is a generally recommended value.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN (see example) and
 FVEC should not be altered. If NPRINT is not positive, no
 special calls to FCN with IFLAG = 0 are made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 improper input parameters.

 INFO = 1 both actual and predicted relative reductions in the
 sum of squares are at most FTOL.

 INFO = 2 relative error between two consecutive iterates is
 at most XTOL.

 INFO = 3 conditions for INFO = 1 and INFO = 2 both hold.

 INFO = 4 the cosine of the angle between FVEC and any column
 of the Jacobian is at most GTOL in absolute value.

 INFO = 5 number of calls to FCN for function evaluation
 has reached MAXFEV.

 INFO = 6 FTOL is too small. No further reduction in the sum
 of squares is possible.

 INFO = 7 XTOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 8 GTOL is too small. FVEC is orthogonal to the
 columns of the Jacobian to machine precision.

 Sections 4 and 5 contain more details about INFO.

 NFEV is an integer output variable set to the number of calls to
 FCN for function evaluation.

 NJEV is an integer output variable set to the number of
 evaluations of the full Jacobian. If IOPT=2, only one call to
 FCN is required for each evaluation of the full Jacobian.
 If IOPT=3, the M calls to FCN are required.
 If IOPT=1, then NJEV is set to zero.

 IPVT is an integer output array of length N. IPVT defines a
SLATEC5 (REBAK through ZBIRY) - 264

 permutation matrix P such that JAC*P = Q*R, where JAC is the
 final calculated Jacobian, Q is orthogonal (not stored), and R
 is upper triangular with diagonal elements of nonincreasing
 magnitude. Column J of P is column IPVT(J) of the identity
 matrix.

 QTF is an output array of length N which contains the first N
 elements of the vector (Q transpose)*FVEC.

 WA1, WA2, and WA3 are work arrays of length N.

 WA4 is a work array of length M.

 4. Successful Completion.

 The accuracy of SNLS1 is controlled by the convergence parame-
 ters FTOL, XTOL, and GTOL. These parameters are used in tests
 which make three types of comparisons between the approximation
 X and a solution XSOL. SNLS1 terminates when any of the tests
 is satisfied. If any of the convergence parameters is less than
 the machine precision (as defined by the function R1MACH(4)),
 then SNLS1 only attempts to satisfy the test defined by the
 machine precision. Further progress is not usually possible.

 The tests assume that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then SNLS1 may incorrectly indicate conver-
 gence. If the Jacobian is coded correctly or IOPT=1,
 then the validity of the answer can be checked, for example, by
 rerunning SNLS1 with tighter tolerances.

 First Convergence Test. If ENORM(Z) denotes the Euclidean norm
 of a vector Z, then this test attempts to guarantee that

 ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

 where FVECS denotes the functions evaluated at XSOL. If this
 condition is satisfied with FTOL = 10**(-K), then the final
 residual norm ENORM(FVEC) has K significant decimal digits and
 INFO is set to 1 (or to 3 if the second test is also satis-
 fied). Unless high precision solutions are required, the
 recommended value for FTOL is the square root of the machine
 precision.

 Second Convergence Test. If D is the diagonal matrix whose
 entries are defined by the array DIAG, then this test attempts
 to guarantee that

 ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

 If this condition is satisfied with XTOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 2 (or to 3 if the first test is also satis-
 fied). There is a danger that the smaller components of D*X
 may have large relative errors, but if MODE = 1, then the
 accuracy of the components of X is usually related to their
 sensitivity. Unless high precision solutions are required,
 the recommended value for XTOL is the square root of the

SLATEC5 (REBAK through ZBIRY) - 265

 machine precision.

 Third Convergence Test. This test is satisfied when the cosine
 of the angle between FVEC and any column of the Jacobian at X
 is at most GTOL in absolute value. There is no clear rela-
 tionship between this test and the accuracy of SNLS1, and
 furthermore, the test is equally well satisfied at other crit-
 ical points, namely maximizers and saddle points. Therefore,
 termination caused by this test (INFO = 4) should be examined
 carefully. The recommended value for GTOL is zero.

 5. Unsuccessful Completion.

 Unsuccessful termination of SNLS1 can be due to improper input
 parameters, arithmetic interrupts, or an excessive number of
 function evaluations.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1
 or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or for IOPT=1 or 2
 LDFJAC .LT. M, or for IOPT=3 LDFJAC .LT. N, or FTOL .LT. 0.E0,
 or XTOL .LT. 0.E0, or GTOL .LT. 0.E0, or MAXFEV .LE. 0, or
 FACTOR .LE. 0.E0.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by SNLS1. In this
 case, it may be possible to remedy the situation by rerunning
 SNLS1 with a smaller value of FACTOR.

 Excessive Number of Function Evaluations. A reasonable value
 for MAXFEV is 100*(N+1) for IOPT=2 or 3 and 200*(N+1) for
 IOPT=1. If the number of calls to FCN reaches MAXFEV, then
 this indicates that the routine is converging very slowly
 as measured by the progress of FVEC, and INFO is set to 5.
 In this case, it may be helpful to restart SNLS1 with MODE
 set to 1.

 6. Characteristics of the Algorithm.

 SNLS1 is a modification of the Levenberg-Marquardt algorithm.
 Two of its main characteristics involve the proper use of
 implicitly scaled variables (if MODE = 1) and an optimal choice
 for the correction. The use of implicitly scaled variables
 achieves scale invariance of SNLS1 and limits the size of the
 correction in any direction where the functions are changing
 rapidly. The optimal choice of the correction guarantees (under
 reasonable conditions) global convergence from starting points
 far from the solution and a fast rate of convergence for
 problems with small residuals.

 Timing. The time required by SNLS1 to solve a given problem
 depends on M and N, the behavior of the functions, the accu-
 racy requested, and the starting point. The number of arith-
 metic operations needed by SNLS1 is about N**3 to process each
 evaluation of the functions (call to FCN) and to process each
 evaluation of the Jacobian it takes M*N**2 for IOPT=2 (one
 call to FCN), M*N**2 for IOPT=1 (N calls to FCN) and
 1.5*M*N**2 for IOPT=3 (M calls to FCN). Unless FCN

SLATEC5 (REBAK through ZBIRY) - 266

 can be evaluated quickly, the timing of SNLS1 will be
 strongly influenced by the time spent in FCN.

 Storage. SNLS1 requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
 (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
 locations and N integer storage locations, in addition to
 the storage required by the program. There are no internally
 declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), and X(3)
 which provide the best fit (in the least squares sense) of

 X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)), I = 1, 15

 to the data

 Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
 0.37,0.58,0.73,0.96,1.34,2.10,4.39),

 where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)). The
 I-th component of FVEC is thus defined by

 Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).

 PROGRAM TEST
 C
 C Driver for SNLS1 example.
 C
 INTEGER J,IOPT,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,
 * NWRITE
 INTEGER IPVT(3)
 REAL FTOL,XTOL,GTOL,FACTOR,FNORM,EPSFCN
 REAL X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),
 * WA1(3),WA2(3),WA3(3),WA4(15)
 REAL ENORM,R1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 1
 M = 15
 N = 3
 C
 C The following starting values provide a rough fit.
 C
 X(1) = 1.E0
 X(2) = 1.E0
 X(3) = 1.E0
 C
 LDFJAC = 15
 C
 C Set FTOL and XTOL to the square root of the machine precision
 C and GTOL to zero. Unless high precision solutions are
 C required, these are the recommended settings.
 C

SLATEC5 (REBAK through ZBIRY) - 267

 FTOL = SQRT(R1MACH(4))
 XTOL = SQRT(R1MACH(4))
 GTOL = 0.E0
 C
 MAXFEV = 400
 EPSFCN = 0.0
 MODE = 1
 FACTOR = 1.E2
 NPRINT = 0
 C
 CALL SNLS1(FCN,IOPT,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,
 * GTOL,MAXFEV,EPSFCN,DIAG,MODE,FACTOR,NPRINT,
 * INFO,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
 FNORM = ENORM(M,FVEC)
 WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
 * 5X,' NUMBER OF JACOBIAN EVALUATIONS',I10 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
 END
 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
 C This is the form of the FCN routine if IOPT=1,
 C that is, if the user does not calculate the Jacobian.
 INTEGER M,N,IFLAG
 REAL X(N),FVEC(M)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.9063596E-01

 NUMBER OF FUNCTION EVALUATIONS 25

 NUMBER OF JACOBIAN EVALUATIONS 0
SLATEC5 (REBAK through ZBIRY) - 268

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 0.8241058E-01 0.1133037E+01 0.2343695E+01

 For IOPT=2, FCN would be modified as follows to also
 calculate the full Jacobian when IFLAG=2.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C
 C This is the form of the FCN routine if IOPT=2,
 C that is, if the user calculates the full Jacobian.
 C
 INTEGER LDFJAC,M,N,IFLAG
 REAL X(N),FVEC(M)
 REAL FJAC(LDFJAC,N)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the full Jacobian.
 C
 20 CONTINUE
 C
 DO 30 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.E0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
 30 CONTINUE
 RETURN
 END

SLATEC5 (REBAK through ZBIRY) - 269

 For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
 LDFJAC would be set to 3, and FCN would be written as
 follows to calculate a row of the Jacobian when IFLAG=3.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C This is the form of the FCN routine if IOPT=3,
 C that is, if the user calculates the Jacobian row by row.
 INTEGER M,N,IFLAG
 REAL X(N),FVEC(M)
 REAL FJAC(N)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the LDFJAC-th row of the Jacobian.
 C
 20 CONTINUE

 I = LDFJAC
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(1) = -1.E0
 FJAC(2) = TMP1*TMP2/TMP4
 FJAC(3) = TMP1*TMP3/TMP4
 RETURN
 END

 ***REFERENCES Jorge J. More, The Levenberg-Marquardt algorithm:
 implementation and theory. In Numerical Analysis
 Proceedings (Dundee, June 28 - July 1, 1977, G. A.
 Watson, Editor), Lecture Notes in Mathematics 630,
 Springer-Verlag, 1978.
 ***ROUTINES CALLED CHKDER, ENORM, FDJAC3, LMPAR, QRFAC, R1MACH,
 RWUPDT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN

SLATEC5 (REBAK through ZBIRY) - 270

 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 271

SNLS1E

 SUBROUTINE SNLS1E (FCN, IOPT, M, N, X, FVEC, TOL, NPRINT, INFO,
 + IW, WA, LWA)
 ***BEGIN PROLOGUE SNLS1E
 ***PURPOSE An easy-to-use code which minimizes the sum of the squares
 of M nonlinear functions in N variables by a modification
 of the Levenberg-Marquardt algorithm.
 ***LIBRARY SLATEC
 ***CATEGORY K1B1A1, K1B1A2
 ***TYPE SINGLE PRECISION (SNLS1E-S, DNLS1E-D)
 ***KEYWORDS EASY-TO-USE, LEVENBERG-MARQUARDT, NONLINEAR DATA FITTING,
 NONLINEAR LEAST SQUARES
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of SNLS1E is to minimize the sum of the squares of M
 nonlinear functions in N variables by a modification of the
 Levenberg-Marquardt algorithm. This is done by using the more
 general least-squares solver SNLS1. The user must provide a
 subroutine which calculates the functions. The user has the
 option of how the Jacobian will be supplied. The user can
 supply the full Jacobian, or the rows of the Jacobian (to avoid
 storing the full Jacobian), or let the code approximate the
 Jacobian by forward-differencing. This code is the combination
 of the MINPACK codes (Argonne) LMDER1, LMDIF1, and LMSTR1.

 2. Subroutine and Type Statements.

 SUBROUTINE SNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
 * INFO,IW,WA,LWA)
 INTEGER IOPT,M,N,NPRINT,INFO,LWA
 INTEGER IW(N)
 REAL TOL
 REAL X(N),FVEC(M),WA(LWA)
 EXTERNAL FCN

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to SNLS1E and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from SNLS1E.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. If the user wants to supply the Jacobian
 (IOPT=2 or 3), then FCN must be written to calculate the
 Jacobian, as well as the functions. See the explanation
 of the IOPT argument below.
 If the user wants the iterates printed (NPRINT positive), then
 FCN must do the printing. See the explanation of NPRINT
 below. FCN must be declared in an EXTERNAL statement in the
 calling program and should be written as follows.

SLATEC5 (REBAK through ZBIRY) - 272

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 INTEGER IFLAG,LDFJAC,M,N
 REAL X(N),FVEC(M)

 FJAC and LDFJAC may be ignored , if IOPT=1.
 REAL FJAC(LDFJAC,N) , if IOPT=2.
 REAL FJAC(N) , if IOPT=3.

 If IFLAG=0, the values in X and FVEC are available
 for printing. See the explanation of NPRINT below.
 IFLAG will never be zero unless NPRINT is positive.
 The values of X and FVEC must not be changed.
 RETURN

 If IFLAG=1, calculate the functions at X and return
 this vector in FVEC.
 RETURN

 If IFLAG=2, calculate the full Jacobian at X and return
 this matrix in FJAC. Note that IFLAG will never be 2 unless
 IOPT=2. FVEC contains the function values at X and must
 not be altered. FJAC(I,J) must be set to the derivative
 of FVEC(I) with respect to X(J).
 RETURN

 If IFLAG=3, calculate the LDFJAC-th row of the Jacobian
 and return this vector in FJAC. Note that IFLAG will
 never be 3 unless IOPT=3. FVEC contains the function
 values at X and must not be altered. FJAC(J) must be
 set to the derivative of FVEC(LDFJAC) with respect to X(J).
 RETURN

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of SNLS1E. In this case,
 set IFLAG to a negative integer.

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=2 or 3, then the user must supply the
 Jacobian, as well as the function values, through the
 subroutine FCN. If IOPT=2, the user supplies the full
 Jacobian with one call to FCN. If IOPT=3, the user supplies
 one row of the Jacobian with each call. (In this manner,
 storage can be saved because the full Jacobian is not stored.)
 If IOPT=1, the code will approximate the Jacobian by forward
 differencing.

 M is a positive integer input variable set to the number of
 functions.

 N is a positive integer input variable set to the number of
 variables. N must not exceed M.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the
 final estimate of the solution vector.

SLATEC5 (REBAK through ZBIRY) - 273

 FVEC is an output array of length M which contains the functions
 evaluated at the output X.

 TOL is a non-negative input variable. Termination occurs when
 the algorithm estimates either that the relative error in the
 sum of squares is at most TOL or that the relative error
 between X and the solution is at most TOL. Section 4 contains
 more details about TOL.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iterations thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN (see example) and
 FVEC should not be altered. If NPRINT is not positive, no
 special calls of FCN with IFLAG = 0 are made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 improper input parameters.

 INFO = 1 algorithm estimates that the relative error in the
 sum of squares is at most TOL.

 INFO = 2 algorithm estimates that the relative error between
 X and the solution is at most TOL.

 INFO = 3 conditions for INFO = 1 and INFO = 2 both hold.

 INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
 machine precision.

 INFO = 5 number of calls to FCN has reached 100*(N+1)
 for IOPT=2 or 3 or 200*(N+1) for IOPT=1.

 INFO = 6 TOL is too small. No further reduction in the sum
 of squares is possible.

 INFO = 7 TOL is too small. No further improvement in the
 approximate solution X is possible.

 Sections 4 and 5 contain more details about INFO.

 IW is an INTEGER work array of length N.

 WA is a work array of length LWA.

 LWA is a positive integer input variable not less than
 N*(M+5)+M for IOPT=1 and 2 or N*(N+5)+M for IOPT=3.

 4. Successful Completion.

 The accuracy of SNLS1E is controlled by the convergence parame-
 ter TOL. This parameter is used in tests which make three types
 of comparisons between the approximation X and a solution XSOL.

SLATEC5 (REBAK through ZBIRY) - 274

 SNLS1E terminates when any of the tests is satisfied. If TOL is
 less than the machine precision (as defined by the function
 R1MACH(4)), then SNLS1E only attempts to satisfy the test
 defined by the machine precision. Further progress is not usu-
 ally possible. Unless high precision solutions are required,
 the recommended value for TOL is the square root of the machine
 precision.

 The tests assume that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then SNLS1E may incorrectly indicate conver-
 gence. If the Jacobian is coded correctly or IOPT=1,
 then the validity of the answer can be checked, for example, by
 rerunning SNLS1E with tighter tolerances.

 First Convergence Test. If ENORM(Z) denotes the Euclidean norm
 of a vector Z, then this test attempts to guarantee that

 ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

 where FVECS denotes the functions evaluated at XSOL. If this
 condition is satisfied with TOL = 10**(-K), then the final
 residual norm ENORM(FVEC) has K significant decimal digits and
 INFO is set to 1 (or to 3 if the second test is also satis-
 fied).

 Second Convergence Test. If D is a diagonal matrix (implicitly
 generated by SNLS1E) whose entries contain scale factors for
 the variables, then this test attempts to guarantee that

 ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

 If this condition is satisfied with TOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 2 (or to 3 if the first test is also satis-
 fied). There is a danger that the smaller components of D*X
 may have large relative errors, but the choice of D is such
 that the accuracy of the components of X is usually related to
 their sensitivity.

 Third Convergence Test. This test is satisfied when FVEC is
 orthogonal to the columns of the Jacobian to machine preci-
 sion. There is no clear relationship between this test and
 the accuracy of SNLS1E, and furthermore, the test is equally
 well satisfied at other critical points, namely maximizers and
 saddle points. Therefore, termination caused by this test
 (INFO = 4) should be examined carefully.

 5. Unsuccessful Completion.

 Unsuccessful termination of SNLS1E can be due to improper input
 parameters, arithmetic interrupts, or an excessive number of
 function evaluations.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1
 or IOPT .GT. 3, or N .LE. 0, or M .LT. N, or TOL .LT. 0.E0,
 or for IOPT=1 or 2 LWA .LT. N*(M+5)+M, or for IOPT=3
 LWA .LT. N*(N+5)+M.

SLATEC5 (REBAK through ZBIRY) - 275

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by SNLS1E. In this
 case, it may be possible to remedy the situation by not evalu-
 ating the functions here, but instead setting the components
 of FVEC to numbers that exceed those in the initial FVEC.

 Excessive Number of Function Evaluations. If the number of
 calls to FCN reaches 100*(N+1) for IOPT=2 or 3 or 200*(N+1)
 for IOPT=1, then this indicates that the routine is converging
 very slowly as measured by the progress of FVEC, and INFO is
 set to 5. In this case, it may be helpful to restart SNLS1E,
 thereby forcing it to disregard old (and possibly harmful)
 information.

 6. Characteristics of the Algorithm.

 SNLS1E is a modification of the Levenberg-Marquardt algorithm.
 Two of its main characteristics involve the proper use of
 implicitly scaled variables and an optimal choice for the cor-
 rection. The use of implicitly scaled variables achieves scale
 invariance of SNLS1E and limits the size of the correction in
 any direction where the functions are changing rapidly. The
 optimal choice of the correction guarantees (under reasonable
 conditions) global convergence from starting points far from the
 solution and a fast rate of convergence for problems with small
 residuals.

 Timing. The time required by SNLS1E to solve a given problem
 depends on M and N, the behavior of the functions, the accu-
 racy requested, and the starting point. The number of arith-
 metic operations needed by SNLS1E is about N**3 to process
 each evaluation of the functions (call to FCN) and to process
 each evaluation of the Jacobian SNLS1E takes M*N**2 for IOPT=2
 (one call to JAC), M*N**2 for IOPT=1 (N calls to FCN) and
 1.5*M*N**2 for IOPT=3 (M calls to FCN). Unless FCN
 can be evaluated quickly, the timing of SNLS1E will be
 strongly influenced by the time spent in FCN.

 Storage. SNLS1E requires (M*N + 2*M + 6*N) for IOPT=1 or 2 and
 (N**2 + 2*M + 6*N) for IOPT=3 single precision storage
 locations and N integer storage locations, in addition to
 the storage required by the program. There are no internally
 declared storage arrays.

 *Long Description:

 7. Example.

 The problem is to determine the values of X(1), X(2), and X(3)
 which provide the best fit (in the least squares sense) of

 X(1) + U(I)/(V(I)*X(2) + W(I)*X(3)), I = 1, 15

 to the data

 Y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
 0.37,0.58,0.73,0.96,1.34,2.10,4.39),

SLATEC5 (REBAK through ZBIRY) - 276

 where U(I) = I, V(I) = 16 - I, and W(I) = MIN(U(I),V(I)). The
 I-th component of FVEC is thus defined by

 Y(I) - (X(1) + U(I)/(V(I)*X(2) + W(I)*X(3))).

 PROGRAM TEST
 C
 C Driver for SNLS1E example.
 C
 INTEGER I,IOPT,M,N,NPRINT,JNFO,LWA,NWRITE
 INTEGER IW(3)
 REAL TOL,FNORM
 REAL X(3),FVEC(15),WA(75)
 REAL ENORM,R1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 1
 M = 15
 N = 3
 C
 C The following starting values provide a rough fit.
 C
 X(1) = 1.E0
 X(2) = 1.E0
 X(3) = 1.E0
 C
 LWA = 75
 NPRINT = 0
 C
 C Set TOL to the square root of the machine precision.
 C Unless high precision solutions are required,
 C this is the recommended setting.
 C
 TOL = SQRT(R1MACH(4))
 C
 CALL SNLS1E(FCN,IOPT,M,N,X,FVEC,TOL,NPRINT,
 * INFO,IW,WA,LWA)
 FNORM = ENORM(M,FVEC)
 WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // 5X,3E15.7)
 END
 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,DUM,IDUM)
 C This is the form of the FCN routine if IOPT=1,
 C that is, if the user does not calculate the Jacobian.
 INTEGER M,N,IFLAG
 REAL X(N),FVEC(M)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/

SLATEC5 (REBAK through ZBIRY) - 277

 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.9063596E-01

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 0.8241058E-01 0.1133037E+01 0.2343695E+01

 For IOPT=2, FCN would be modified as follows to also
 calculate the full Jacobian when IFLAG=2.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C
 C This is the form of the FCN routine if IOPT=2,
 C that is, if the user calculates the full Jacobian.
 C
 INTEGER LDFJAC,M,N,IFLAG
 REAL X(N),FVEC(M)
 REAL FJAC(LDFJAC,N)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1

SLATEC5 (REBAK through ZBIRY) - 278

 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the full Jacobian.
 C
 20 CONTINUE
 C
 DO 30 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.E0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
 30 CONTINUE
 RETURN
 END

 For IOPT = 3, FJAC would be dimensioned as FJAC(3,3),
 LDFJAC would be set to 3, and FCN would be written as
 follows to calculate a row of the Jacobian when IFLAG=3.

 SUBROUTINE FCN(IFLAG,M,N,X,FVEC,FJAC,LDFJAC)
 C This is the form of the FCN routine if IOPT=3,
 C that is, if the user calculates the Jacobian row by row.
 INTEGER M,N,IFLAG
 REAL X(N),FVEC(M)
 REAL FJAC(N)
 INTEGER I
 REAL TMP1,TMP2,TMP3,TMP4
 REAL Y(15)
 DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4E-1,1.8E-1,2.2E-1,2.5E-1,2.9E-1,3.2E-1,3.5E-1,3.9E-1,
 * 3.7E-1,5.8E-1,7.3E-1,9.6E-1,1.34E0,2.1E0,4.39E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 IF(IFLAG.NE.1) GO TO 20
 DO 10 I = 1, M
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
 10 CONTINUE
 RETURN
 C
 C Below, calculate the LDFJAC-th row of the Jacobian.
 C
 20 CONTINUE

SLATEC5 (REBAK through ZBIRY) - 279

 I = LDFJAC
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(1) = -1.E0
 FJAC(2) = TMP1*TMP2/TMP4
 FJAC(3) = TMP1*TMP3/TMP4
 RETURN
 END

 ***REFERENCES Jorge J. More, The Levenberg-Marquardt algorithm:
 implementation and theory. In Numerical Analysis
 Proceedings (Dundee, June 28 - July 1, 1977, G. A.
 Watson, Editor), Lecture Notes in Mathematics 630,
 Springer-Verlag, 1978.
 ***ROUTINES CALLED SNLS1, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 280

SNRM2

 REAL FUNCTION SNRM2 (N, SX, INCX)
 ***BEGIN PROLOGUE SNRM2
 ***PURPOSE Compute the Euclidean length (L2 norm) of a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A3B
 ***TYPE SINGLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C)
 ***KEYWORDS BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2,
 LINEAR ALGEBRA, UNITARY, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX

 --Output--
 SNRM2 single precision result (zero if N .LE. 0)

 Euclidean norm of the N-vector stored in SX with storage
 increment INCX .
 If N .LE. 0, return with result = 0.
 If N .GE. 1, then INCX must be .GE. 1

 Four Phase Method using two built-in constants that are
 hopefully applicable to all machines.
 CUTLO = maximum of SQRT(U/EPS) over all known machines.
 CUTHI = minimum of SQRT(V) over all known machines.
 where
 EPS = smallest no. such that EPS + 1. .GT. 1.
 U = smallest positive no. (underflow limit)
 V = largest no. (overflow limit)

 Brief Outline of Algorithm.

 Phase 1 scans zero components.
 Move to phase 2 when a component is nonzero and .LE. CUTLO
 Move to phase 3 when a component is .GT. CUTLO
 Move to phase 4 when a component is .GE. CUTHI/M
 where M = N for X() real and M = 2*N for complex.

 Values for CUTLO and CUTHI.
 From the environmental parameters listed in the IMSL converter
 document the limiting values are as follows:
 CUTLO, S.P. U/EPS = 2**(-102) for Honeywell. Close seconds are
 Univac and DEC at 2**(-103)
 Thus CUTLO = 2**(-51) = 4.44089E-16
 CUTHI, S.P. V = 2**127 for Univac, Honeywell, and DEC.
 Thus CUTHI = 2**(63.5) = 1.30438E19
 CUTLO, D.P. U/EPS = 2**(-67) for Honeywell and DEC.

SLATEC5 (REBAK through ZBIRY) - 281

 Thus CUTLO = 2**(-33.5) = 8.23181D-11
 CUTHI, D.P. same as S.P. CUTHI = 1.30438D19
 DATA CUTLO, CUTHI /8.232D-11, 1.304D19/
 DATA CUTLO, CUTHI /4.441E-16, 1.304E19/

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 282

SNSQ

 SUBROUTINE SNSQ (FCN, JAC, IOPT, N, X, FVEC, FJAC, LDFJAC, XTOL,
 MAXFEV, ML, MU, EPSFCN, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV,
 + NJEV, R, LR, QTF, WA1, WA2, WA3, WA4)
 ***BEGIN PROLOGUE SNSQ
 ***PURPOSE Find a zero of a system of a N nonlinear functions in N
 variables by a modification of the Powell hybrid method.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE SINGLE PRECISION (SNSQ-S, DNSQ-D)
 ***KEYWORDS NONLINEAR SQUARE SYSTEM, POWELL HYBRID METHOD, ZEROS
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of SNSQ is to find a zero of a system of N non-
 linear functions in N variables by a modification of the Powell
 hybrid method. The user must provide a subroutine which calcu-
 lates the functions. The user has the option of either to
 provide a subroutine which calculates the Jacobian or to let the
 code calculate it by a forward-difference approximation.
 This code is the combination of the MINPACK codes (Argonne)
 HYBRD and HYBRDJ.

 2. Subroutine and Type Statements.

 SUBROUTINE SNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,
 * ML,MU,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,
 * NJEV,R,LR,QTF,WA1,WA2,WA3,WA4)
 INTEGER IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,NJEV,LR
 REAL XTOL,EPSFCN,FACTOR
 REAL X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),
 * WA1(N),WA2(N),WA3(N),WA4(N)
 EXTERNAL FCN,JAC

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to SNSQ and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from SNSQ.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. FCN must be declared in an EXTERNAL statement
 in the user calling program, and should be written as follows.

 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 REAL X(N),FVEC(N)

 Calculate the functions at X and
 return this vector in FVEC.

 RETURN

SLATEC5 (REBAK through ZBIRY) - 283

 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of SNSQ. In this case, set
 IFLAG to a negative integer.

 JAC is the name of the user-supplied subroutine which calculates
 the Jacobian. If IOPT=1, then JAC must be declared in an
 EXTERNAL statement in the user calling program, and should be
 written as follows.

 SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 REAL X(N),FVEC(N),FJAC(LDFJAC,N)

 Calculate the Jacobian at X and return this
 matrix in FJAC. FVEC contains the function
 values at X and should not be altered.

 RETURN
 END

 The value of IFLAG should not be changed by JAC unless the
 user wants to terminate execution of SNSQ. In this case, set
 IFLAG to a negative integer.

 If IOPT=2, JAC can be ignored (treat it as a dummy argument).

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=1, then the user must supply the
 Jacobian through the subroutine JAC. If IOPT=2, then the
 code will approximate the Jacobian by forward-differencing.

 N is a positive integer input variable set to the number of
 functions and variables.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the
 final estimate of the solution vector.

 FVEC is an output array of length N which contains the functions
 evaluated at the output X.

 FJAC is an output N by N array which contains the orthogonal
 matrix Q produced by the QR factorization of the final approx-
 imate Jacobian.

 LDFJAC is a positive integer input variable not less than N
 which specifies the leading dimension of the array FJAC.

 XTOL is a non-negative input variable. Termination occurs when
 the relative error between two consecutive iterates is at most
 XTOL. Therefore, XTOL measures the relative error desired in
 the approximate solution. Section 4 contains more details
 about XTOL.

 MAXFEV is a positive integer input variable. Termination occurs
 when the number of calls to FCN is at least MAXFEV by the end
 of an iteration.

SLATEC5 (REBAK through ZBIRY) - 284

 ML is a non-negative integer input variable which specifies the
 number of subdiagonals within the band of the Jacobian matrix.
 If the Jacobian is not banded or IOPT=1, set ML to at
 least N - 1.

 MU is a non-negative integer input variable which specifies the
 number of superdiagonals within the band of the Jacobian
 matrix. If the Jacobian is not banded or IOPT=1, set MU to at
 least N - 1.

 EPSFCN is an input variable used in determining a suitable step
 for the forward-difference approximation. This approximation
 assumes that the relative errors in the functions are of the
 order of EPSFCN. If EPSFCN is less than the machine preci-
 sion, it is assumed that the relative errors in the functions
 are of the order of the machine precision. If IOPT=1, then
 EPSFCN can be ignored (treat it as a dummy argument).

 DIAG is an array of length N. If MODE = 1 (see below), DIAG is
 internally set. If MODE = 2, DIAG must contain positive
 entries that serve as implicit (multiplicative) scale factors
 for the variables.

 MODE is an integer input variable. If MODE = 1, the variables
 will be scaled internally. If MODE = 2, the scaling is speci-
 fied by the input DIAG. Other values of MODE are equivalent
 to MODE = 1.

 FACTOR is a positive input variable used in determining the ini-
 tial step bound. This bound is set to the product of FACTOR
 and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
 itself. In most cases FACTOR should lie in the interval
 (.1,100.). 100. is a generally recommended value.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iteration thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN(see example). If NPRINT
 is not positive, no special calls of FCN with IFLAG = 0 are
 made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See
 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 improper input parameters.

 INFO = 1 relative error between two consecutive iterates is
 at most XTOL.

 INFO = 2 number of calls to FCN has reached or exceeded
 MAXFEV.

 INFO = 3 XTOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 4 iteration is not making good progress, as measured
 by the improvement from the last five Jacobian eval-

SLATEC5 (REBAK through ZBIRY) - 285

 uations.

 INFO = 5 iteration is not making good progress, as measured
 by the improvement from the last ten iterations.

 Sections 4 and 5 contain more details about INFO.

 NFEV is an integer output variable set to the number of calls to
 FCN.

 NJEV is an integer output variable set to the number of calls to
 JAC. (If IOPT=2, then NJEV is set to zero.)

 R is an output array of length LR which contains the upper
 triangular matrix produced by the QR factorization of the
 final approximate Jacobian, stored rowwise.

 LR is a positive integer input variable not less than
 (N*(N+1))/2.

 QTF is an output array of length N which contains the vector
 (Q TRANSPOSE)*FVEC.

 WA1, WA2, WA3, and WA4 are work arrays of length N.

 4. Successful Completion.

 The accuracy of SNSQ is controlled by the convergence parameter
 XTOL. This parameter is used in a test which makes a comparison
 between the approximation X and a solution XSOL. SNSQ termi-
 nates when the test is satisfied. If the convergence parameter
 is less than the machine precision (as defined by the function
 R1MACH(4)), then SNSQ only attempts to satisfy the test
 defined by the machine precision. Further progress is not
 usually possible.

 The test assumes that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian are coded consistently. If these conditions
 are not satisfied, then SNSQ may incorrectly indicate conver-
 gence. The coding of the Jacobian can be checked by the
 subroutine CHKDER. If the Jacobian is coded correctly or IOPT=2,
 then the validity of the answer can be checked, for example, by
 rerunning SNSQ with a tighter tolerance.

 Convergence Test. If ENORM(Z) denotes the Euclidean norm of a
 vector Z and D is the diagonal matrix whose entries are
 defined by the array DIAG, then this test attempts to guaran-
 tee that

 ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

 If this condition is satisfied with XTOL = 10**(-K), then the
 larger components of D*X have K significant decimal digits and
 INFO is set to 1. There is a danger that the smaller compo-
 nents of D*X may have large relative errors, but the fast rate
 of convergence of SNSQ usually avoids this possibility.
 Unless high precision solutions are required, the recommended
 value for XTOL is the square root of the machine precision.

SLATEC5 (REBAK through ZBIRY) - 286

 5. Unsuccessful Completion.

 Unsuccessful termination of SNSQ can be due to improper input
 parameters, arithmetic interrupts, an excessive number of func-
 tion evaluations, or lack of good progress.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1,
 or IOPT .GT. 2, or N .LE. 0, or LDFJAC .LT. N, or
 XTOL .LT. 0.E0, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
 or FACTOR .LE. 0.E0, or LR .LT. (N*(N+1))/2.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by SNSQ. In this
 case, it may be possible to remedy the situation by rerunning
 SNSQ with a smaller value of FACTOR.

 Excessive Number of Function Evaluations. A reasonable value
 for MAXFEV is 100*(N+1) for IOPT=1 and 200*(N+1) for IOPT=2.
 If the number of calls to FCN reaches MAXFEV, then this
 indicates that the routine is converging very slowly as
 measured by the progress of FVEC, and INFO is set to 2. This
 situation should be unusual because, as indicated below, lack
 of good progress is usually diagnosed earlier by SNSQ,
 causing termination with INFO = 4 or INFO = 5.

 Lack of Good Progress. SNSQ searches for a zero of the system
 by minimizing the sum of the squares of the functions. In so
 doing, it can become trapped in a region where the minimum
 does not correspond to a zero of the system and, in this situ-
 ation, the iteration eventually fails to make good progress.
 In particular, this will happen if the system does not have a
 zero. If the system has a zero, rerunning SNSQ from a dif-
 ferent starting point may be helpful.

 6. Characteristics of the Algorithm.

 SNSQ is a modification of the Powell hybrid method. Two of its
 main characteristics involve the choice of the correction as a
 convex combination of the Newton and scaled gradient directions,
 and the updating of the Jacobian by the rank-1 method of Broy-
 den. The choice of the correction guarantees (under reasonable
 conditions) global convergence for starting points far from the
 solution and a fast rate of convergence. The Jacobian is
 calculated at the starting point by either the user-supplied
 subroutine or a forward-difference approximation, but it is not
 recalculated until the rank-1 method fails to produce satis-
 factory progress.

 Timing. The time required by SNSQ to solve a given problem
 depends on N, the behavior of the functions, the accuracy
 requested, and the starting point. The number of arithmetic
 operations needed by SNSQ is about 11.5*(N**2) to process
 each evaluation of the functions (call to FCN) and 1.3*(N**3)
 to process each evaluation of the Jacobian (call to JAC,
 if IOPT = 1). Unless FCN and JAC can be evaluated quickly,
 the timing of SNSQ will be strongly influenced by the time

SLATEC5 (REBAK through ZBIRY) - 287

 spent in FCN and JAC.

 Storage. SNSQ requires (3*N**2 + 17*N)/2 single precision
 storage locations, in addition to the storage required by the
 program. There are no internally declared storage arrays.

 7. Example.

 The problem is to determine the values of X(1), X(2), ..., X(9),
 which solve the system of tridiagonal equations

 (3-2*X(1))*X(1) -2*X(2) = -1
 -X(I-1) + (3-2*X(I))*X(I) -2*X(I+1) = -1, I=2-8
 -X(8) + (3-2*X(9))*X(9) = -1
 C **********

 PROGRAM TEST
 C
 C Driver for SNSQ example.
 C
 INTEGER J,IOPT,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR,
 * NWRITE
 REAL XTOL,EPSFCN,FACTOR,FNORM
 REAL X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),QTF(9),
 * WA1(9),WA2(9),WA3(9),WA4(9)
 REAL ENORM,R1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 2
 N = 9
 C
 C The following starting values provide a rough solution.
 C
 DO 10 J = 1, 9
 X(J) = -1.E0
 10 CONTINUE
 C
 LDFJAC = 9
 LR = 45
 C
 C Set XTOL to the square root of the machine precision.
 C Unless high precision solutions are required,
 C this is the recommended setting.
 C
 XTOL = SQRT(R1MACH(4))
 C
 MAXFEV = 2000
 ML = 1
 MU = 1
 EPSFCN = 0.E0
 MODE = 2
 DO 20 J = 1, 9
 DIAG(J) = 1.E0
 20 CONTINUE
 FACTOR = 1.E2
 NPRINT = 0
 C
 CALL SNSQ(FCN,JAC,IOPT,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,ML,MU,

SLATEC5 (REBAK through ZBIRY) - 288

 * EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
 * R,LR,QTF,WA1,WA2,WA3,WA4)
 FNORM = ENORM(N,FVEC)
 WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' NUMBER OF FUNCTION EVALUATIONS',I10 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
 END
 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 REAL X(N),FVEC(N)
 INTEGER K
 REAL ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
 DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
 C
 IF (IFLAG .NE. 0) GO TO 5
 C
 C Insert print statements here when NPRINT is positive.
 C
 RETURN
 5 CONTINUE
 DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.1192636E-07

 NUMBER OF FUNCTION EVALUATIONS 14

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
 -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
 -0.6657920E+00 -0.5960342E+00 -0.4164121E+00

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED DOGLEG, ENORM, FDJAC1, QFORM, QRFAC, R1MACH,
 R1MPYQ, R1UPDT, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC5 (REBAK through ZBIRY) - 289

 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 290

SNSQE

 SUBROUTINE SNSQE (FCN, JAC, IOPT, N, X, FVEC, TOL, NPRINT, INFO,
 + WA, LWA)
 ***BEGIN PROLOGUE SNSQE
 ***PURPOSE An easy-to-use code to find a zero of a system of N
 nonlinear functions in N variables by a modification of
 the Powell hybrid method.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE SINGLE PRECISION (SNSQE-S, DNSQE-D)
 ***KEYWORDS EASY-TO-USE, NONLINEAR SQUARE SYSTEM,
 POWELL HYBRID METHOD, ZEROS
 ***AUTHOR Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 1. Purpose.

 The purpose of SNSQE is to find a zero of a system of N non-
 linear functions in N variables by a modification of the Powell
 hybrid method. This is done by using the more general nonlinear
 equation solver SNSQ. The user must provide a subroutine which
 calculates the functions. The user has the option of either to
 provide a subroutine which calculates the Jacobian or to let the
 code calculate it by a forward-difference approximation. This
 code is the combination of the MINPACK codes (Argonne) HYBRD1
 and HYBRJ1.

 2. Subroutine and Type Statements.

 SUBROUTINE SNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,
 * WA,LWA)
 INTEGER IOPT,N,NPRINT,INFO,LWA
 REAL TOL
 REAL X(N),FVEC(N),WA(LWA)
 EXTERNAL FCN,JAC

 3. Parameters.

 Parameters designated as input parameters must be specified on
 entry to SNSQE and are not changed on exit, while parameters
 designated as output parameters need not be specified on entry
 and are set to appropriate values on exit from SNSQE.

 FCN is the name of the user-supplied subroutine which calculates
 the functions. FCN must be declared in an EXTERNAL statement
 in the user calling program, and should be written as follows.

 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 REAL X(N),FVEC(N)

 Calculate the functions at X and
 return this vector in FVEC.

SLATEC5 (REBAK through ZBIRY) - 291

 RETURN
 END

 The value of IFLAG should not be changed by FCN unless the
 user wants to terminate execution of SNSQE. In this case, set
 IFLAG to a negative integer.

 JAC is the name of the user-supplied subroutine which calculates
 the Jacobian. If IOPT=1, then JAC must be declared in an
 EXTERNAL statement in the user calling program, and should be
 written as follows.

 SUBROUTINE JAC(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 REAL X(N),FVEC(N),FJAC(LDFJAC,N)

 Calculate the Jacobian at X and return this
 matrix in FJAC. FVEC contains the function
 values at X and should not be altered.

 RETURN
 END

 The value of IFLAG should not be changed by JAC unless the
 user wants to terminate execution of SNSQE. In this case, set
 IFLAG to a negative integer.

 If IOPT=2, JAC can be ignored (treat it as a dummy argument).

 IOPT is an input variable which specifies how the Jacobian will
 be calculated. If IOPT=1, then the user must supply the
 Jacobian through the subroutine JAC. If IOPT=2, then the
 code will approximate the Jacobian by forward-differencing.

 N is a positive integer input variable set to the number of
 functions and variables.

 X is an array of length N. On input, X must contain an initial
 estimate of the solution vector. On output, X contains the
 final estimate of the solution vector.

 FVEC is an output array of length N which contains the functions
 evaluated at the output X.

 TOL is a non-negative input variable. Termination occurs when
 the algorithm estimates that the relative error between X and
 the solution is at most TOL. Section 4 contains more details
 about TOL.

 NPRINT is an integer input variable that enables controlled
 printing of iterates if it is positive. In this case, FCN is
 called with IFLAG = 0 at the beginning of the first iteration
 and every NPRINT iteration thereafter and immediately prior
 to return, with X and FVEC available for printing. Appropriate
 print statements must be added to FCN (see example). If NPRINT
 is not positive, no special calls of FCN with IFLAG = 0 are
 made.

 INFO is an integer output variable. If the user has terminated
 execution, INFO is set to the (negative) value of IFLAG. See

SLATEC5 (REBAK through ZBIRY) - 292

 description of FCN and JAC. Otherwise, INFO is set as follows.

 INFO = 0 improper input parameters.

 INFO = 1 algorithm estimates that the relative error between
 X and the solution is at most TOL.

 INFO = 2 number of calls to FCN has reached or exceeded
 100*(N+1) for IOPT=1 or 200*(N+1) for IOPT=2.

 INFO = 3 TOL is too small. No further improvement in the
 approximate solution X is possible.

 INFO = 4 iteration is not making good progress.

 Sections 4 and 5 contain more details about INFO.

 WA is a work array of length LWA.

 LWA is a positive integer input variable not less than
 (3*N**2+13*N))/2.

 4. Successful Completion.

 The accuracy of SNSQE is controlled by the convergence parame-
 ter TOL. This parameter is used in a test which makes a compar-
 ison between the approximation X and a solution XSOL. SNSQE
 terminates when the test is satisfied. If TOL is less than the
 machine precision (as defined by the function R1MACH(4)), then
 SNSQE attempts only to satisfy the test defined by the machine
 precision. Further progress is not usually possible. Unless
 high precision solutions are required, the recommended value
 for TOL is the square root of the machine precision.

 The test assumes that the functions are reasonably well behaved,
 and, if the Jacobian is supplied by the user, that the functions
 and the Jacobian coded consistently. If these conditions
 are not satisfied, SNSQE may incorrectly indicate convergence.
 The coding of the Jacobian can be checked by the subroutine
 CHKDER. If the Jacobian is coded correctly or IOPT=2, then
 the validity of the answer can be checked, for example, by
 rerunning SNSQE with a tighter tolerance.

 Convergence Test. If ENORM(Z) denotes the Euclidean norm of a
 vector Z, then this test attempts to guarantee that

 ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

 If this condition is satisfied with TOL = 10**(-K), then the
 larger components of X have K significant decimal digits and
 INFO is set to 1. There is a danger that the smaller compo-
 nents of X may have large relative errors, but the fast rate
 of convergence of SNSQE usually avoids this possibility.

 5. Unsuccessful Completion.

 Unsuccessful termination of SNSQE can be due to improper input
 parameters, arithmetic interrupts, an excessive number of func-

SLATEC5 (REBAK through ZBIRY) - 293

 tion evaluations, errors in the functions, or lack of good prog-
 ress.

 Improper Input Parameters. INFO is set to 0 if IOPT .LT. 1, or
 IOPT .GT. 2, or N .LE. 0, or TOL .LT. 0.E0, or
 LWA .LT. (3*N**2+13*N)/2.

 Arithmetic Interrupts. If these interrupts occur in the FCN
 subroutine during an early stage of the computation, they may
 be caused by an unacceptable choice of X by SNSQE. In this
 case, it may be possible to remedy the situation by not evalu-
 ating the functions here, but instead setting the components
 of FVEC to numbers that exceed those in the initial FVEC.

 Excessive Number of Function Evaluations. If the number of
 calls to FCN reaches 100*(N+1) for IOPT=1 or 200*(N+1) for
 IOPT=2, then this indicates that the routine is converging
 very slowly as measured by the progress of FVEC, and INFO is
 set to 2. This situation should be unusual because, as
 indicated below, lack of good progress is usually diagnosed
 earlier by SNSQE, causing termination with INFO = 4.

 Errors in the Functions. When IOPT=2, the choice of step length
 in the forward-difference approximation to the Jacobian
 assumes that the relative errors in the functions are of the
 order of the machine precision. If this is not the case,
 SNSQE may fail (usually with INFO = 4). The user should
 then either use SNSQ and set the step length or use IOPT=1
 and supply the Jacobian.

 Lack of Good Progress. SNSQE searches for a zero of the system
 by minimizing the sum of the squares of the functions. In so
 doing, it can become trapped in a region where the minimum
 does not correspond to a zero of the system and, in this situ-
 ation, the iteration eventually fails to make good progress.
 In particular, this will happen if the system does not have a
 zero. If the system has a zero, rerunning SNSQE from a dif-
 ferent starting point may be helpful.

 6. Characteristics of the Algorithm.

 SNSQE is a modification of the Powell hybrid method. Two of
 its main characteristics involve the choice of the correction as
 a convex combination of the Newton and scaled gradient direc-
 tions, and the updating of the Jacobian by the rank-1 method of
 Broyden. The choice of the correction guarantees (under reason-
 able conditions) global convergence for starting points far from
 the solution and a fast rate of convergence. The Jacobian is
 calculated at the starting point by either the user-supplied
 subroutine or a forward-difference approximation, but it is not
 recalculated until the rank-1 method fails to produce satis-
 factory progress.

 Timing. The time required by SNSQE to solve a given problem
 depends on N, the behavior of the functions, the accuracy
 requested, and the starting point. The number of arithmetic
 operations needed by SNSQE is about 11.5*(N**2) to process
 each evaluation of the functions (call to FCN) and 1.3*(N**3)
 to process each evaluation of the Jacobian (call to JAC,

SLATEC5 (REBAK through ZBIRY) - 294

 if IOPT = 1). Unless FCN and JAC can be evaluated quickly,
 the timing of SNSQE will be strongly influenced by the time
 spent in FCN and JAC.

 Storage. SNSQE requires (3*N**2 + 17*N)/2 single precision
 storage locations, in addition to the storage required by the
 program. There are no internally declared storage arrays.

 7. Example.

 The problem is to determine the values of X(1), X(2), ..., X(9),
 which solve the system of tridiagonal equations

 (3-2*X(1))*X(1) -2*X(2) = -1
 -X(I-1) + (3-2*X(I))*X(I) -2*X(I+1) = -1, I=2-8
 -X(8) + (3-2*X(9))*X(9) = -1

 PROGRAM TEST
 C
 C Driver for SNSQE example.
 C
 INTEGER J,N,IOPT,NPRINT,INFO,LWA,NWRITE
 REAL TOL,FNORM
 REAL X(9),FVEC(9),WA(180)
 REAL ENORM,R1MACH
 EXTERNAL FCN
 DATA NWRITE /6/
 C
 IOPT = 2
 N = 9
 C
 C The following starting values provide a rough solution.
 C
 DO 10 J = 1, 9
 X(J) = -1.E0
 10 CONTINUE

 LWA = 180
 NPRINT = 0
 C
 C Set TOL to the square root of the machine precision.
 C Unless high precision solutions are required,
 C this is the recommended setting.
 C
 TOL = SQRT(R1MACH(4))
 C
 CALL SNSQE(FCN,JAC,IOPT,N,X,FVEC,TOL,NPRINT,INFO,WA,LWA)
 FNORM = ENORM(N,FVEC)
 WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
 STOP
 1000 FORMAT (5X,' FINAL L2 NORM OF THE RESIDUALS',E15.7 //
 * 5X,' EXIT PARAMETER',16X,I10 //
 * 5X,' FINAL APPROXIMATE SOLUTION' // (5X,3E15.7))
 END
 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 REAL X(N),FVEC(N)

SLATEC5 (REBAK through ZBIRY) - 295

 INTEGER K
 REAL ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
 DATA ZERO,ONE,TWO,THREE /0.E0,1.E0,2.E0,3.E0/
 C
 DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
 10 CONTINUE
 RETURN
 END

 Results obtained with different compilers or machines
 may be slightly different.

 FINAL L2 NORM OF THE RESIDUALS 0.1192636E-07

 EXIT PARAMETER 1

 FINAL APPROXIMATE SOLUTION

 -0.5706545E+00 -0.6816283E+00 -0.7017325E+00
 -0.7042129E+00 -0.7013690E+00 -0.6918656E+00
 -0.6657920E+00 -0.5960342E+00 -0.4164121E+00

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED SNSQ, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 296

SOMN

 SUBROUTINE SOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 + NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 + Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)
 ***BEGIN PROLOGUE SOMN
 ***PURPOSE Preconditioned Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Preconditioned Orthomin method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SOMN-S, DOMN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
 ORTHOMIN, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
 REAL B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
 REAL P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
 REAL DZ(N), CSAV(NSAVE), RWORK(USER DEFINED)
 EXTERNAL MATVEC, MSOLVE

 CALL SOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
 $ NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
 $ Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays contain the matrix data structure for A.
 It could take any form. See "Description", below, for more
 details.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 MATVEC :EXT External.
 Name of a routine which performs the matrix vector multiply
 Y = A*X given A and X. The name of the MATVEC routine must

SLATEC5 (REBAK through ZBIRY) - 297

 be declared external in the calling program. The calling
 sequence to MATVEC is:
 CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
 Where N is the number of unknowns, Y is the product A*X
 upon return X is an input vector, NELT is the number of
 non-zeros in the SLAP IA, JA, A storage for the matrix A.
 ISYM is a flag which, if non-zero, denotest that A is
 symmetric and only the lower or upper triangle is stored.
 MSOLVE :EXT External.
 Name of a routine which solves a linear system MZ = R for
 Z given R with the preconditioning matrix M (M is supplied via
 RWORK and IWORK arrays). The name of the MSOLVE routine must
 be declared external in the calling program. The calling
 sequence to MSOLVE is:
 CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 Where N is the number of unknowns, R is the right-hand side
 vector and Z is the solution upon return. NELT, IA, JA, A and
 ISYM are defined as above. RWORK is a real array that can
 be used to pass necessary preconditioning information and/or
 workspace to MSOLVE. IWORK is an integer work array for
 the same purpose as RWORK.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize
 against. NSAVE >= 0.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.

SLATEC5 (REBAK through ZBIRY) - 298

 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of method detected.
 (p,Ap) < epsilon**2.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 R :WORK Real R(N).
 Z :WORK Real Z(N).
 P :WORK Real P(N,0:NSAVE).
 AP :WORK Real AP(N,0:NSAVE).
 EMAP :WORK Real EMAP(N,0:NSAVE).
 DZ :WORK Real DZ(N).
 CSAV :WORK Real CSAV(NSAVE)
 Real arrays used for workspace.
 RWORK :WORK Real RWORK(USER DEFINED).
 Real array that can be used for workspace in MSOLVE.
 IWORK :WORK Integer IWORK(USER DEFINED).
 Integer array that can be used for workspace in MSOLVE.

 *Description
 This routine does not care what matrix data structure is
 used for A and M. It simply calls the MATVEC and MSOLVE
 routines, with the arguments as described above. The user
 could write any type of structure and the appropriate MATVEC
 and MSOLVE routines. It is assumed that A is stored in the
 IA, JA, A arrays in some fashion and that M (or INV(M)) is
 stored in IWORK and RWORK) in some fashion. The SLAP
 routines SSDOMN and SSLUOM are examples of this procedure.

 Two examples of matrix data structures are the: 1) SLAP
 Triad format and 2) SLAP Column format.

 =================== S L A P Triad format ===================
 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

SLATEC5 (REBAK through ZBIRY) - 299

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSDOMN, SSLUOM, ISSOMN
 ***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
 G. F. Carey, Ed., Parallel Supercomputing: Methods,
 Algorithms and Applications, Wiley, 1989, pp.135-155.
 ***ROUTINES CALLED ISSOMN, R1MACH, SAXPY, SCOPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 891004 Added new reference.
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)

SLATEC5 (REBAK through ZBIRY) - 300

 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 930326 Removed unused variable. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 301

SOS

 SUBROUTINE SOS (FNC, NEQ, X, RTOLX, ATOLX, TOLF, IFLAG, RW, LRW,
 + IW, LIW)
 ***BEGIN PROLOGUE SOS
 ***PURPOSE Solve a square system of nonlinear equations.
 ***LIBRARY SLATEC
 ***CATEGORY F2A
 ***TYPE SINGLE PRECISION (SOS-S, DSOS-D)
 ***KEYWORDS BROWN'S METHOD, NEWTON'S METHOD, NONLINEAR EQUATIONS,
 ROOTS, SOLUTIONS
 ***AUTHOR Watts, H. A., (SNLA)
 ***DESCRIPTION

 SOS solves a system of NEQ simultaneous nonlinear equations in
 NEQ unknowns. That is, it solves the problem F(X)=0
 where X is a vector with components X(1),...,X(NEQ) and F
 is a vector of nonlinear functions. Each equation is of the form

 F (X(1),...,X(NEQ))=0 for K=1,...,NEQ.
 K

 The algorithm is based on an iterative method which is a
 variation of Newton's method using Gaussian elimination
 in a manner similar to the Gauss-Seidel process. Convergence
 is roughly quadratic. All partial derivatives required by
 the algorithm are approximated by first difference quotients.
 The convergence behavior of this code is affected by the
 ordering of the equations, and it is advantageous to place linear
 and mildly nonlinear equations first in the ordering.

 Actually, SOS is merely an interfacing routine for
 calling subroutine SOSEQS which embodies the solution
 algorithm. The purpose of this is to add greater
 flexibility and ease of use for the prospective user.

 SOSEQS calls the accompanying routine SOSSOL, which solves special
 triangular linear systems by back-substitution.

 The user must supply a function subprogram which evaluates the
 K-th equation only (K specified by SOSEQS) for each call
 to the subprogram.

 SOS represents an implementation of the mathematical algorithm
 described in the references below. It is a modification of the
 code SOSNLE written by H. A. Watts in 1973.

 **
 -Input-

 FNC -Name of the function program which evaluates the equations.
 This name must be in an EXTERNAL statement in the calling
 program. The user must supply FNC in the form FNC(X,K),
 where X is the solution vector (which must be dimensioned
 in FNC) and FNC returns the value of the K-th function.

 NEQ -Number of equations to be solved.

SLATEC5 (REBAK through ZBIRY) - 302

 X -Solution vector. Initial guesses must be supplied.

 RTOLX -Relative error tolerance used in the convergence criteria.
 Each solution component X(I) is checked by an accuracy test
 of the form ABS(X(I)-XOLD(I)) .LE. RTOLX*ABS(X(I))+ATOLX,
 where XOLD(I) represents the previous iteration value.
 RTOLX must be non-negative.

 ATOLX -Absolute error tolerance used in the convergence criteria.
 ATOLX must be non-negative. If the user suspects some
 solution component may be zero, he should set ATOLX to an
 appropriate (depends on the scale of the remaining variables)
 positive value for better efficiency.

 TOLF -Residual error tolerance used in the convergence criteria.
 Convergence will be indicated if all residuals (values of the
 functions or equations) are not bigger than TOLF in
 magnitude. Note that extreme care must be given in assigning
 an appropriate value for TOLF because this convergence test
 is dependent on the scaling of the equations. An
 inappropriate value can cause premature termination of the
 iteration process.

 IFLAG -Optional input indicator. You must set IFLAG=-1 if you
 want to use any of the optional input items listed below.
 Otherwise set it to zero.

 RW -A REAL work array which is split apart by SOS and used
 internally by SOSEQS.

 LRW -Dimension of the RW array. LRW must be at least
 1 + 6*NEQ + NEQ*(NEQ+1)/2

 IW -An INTEGER work array which is split apart by SOS and used
 internally by SOSEQS.

 LIW -Dimension of the IW array. LIW must be at least 3 + NEQ.

 -Optional Input-

 IW(1) -Internal printing parameter. You must set IW(1)=-1 if
 you want the intermediate solution iterates to be printed.

 IW(2) -Iteration limit. The maximum number of allowable
 iterations can be specified, if desired. To override the
 default value of 50, set IW(2) to the number wanted.

 Remember, if you tell the code that you are using one of the
 options (by setting IFLAG=-1), you must supply values
 for both IW(1) and IW(2).

 **
 -Output-

 X -Solution vector.

 IFLAG -Status indicator

 *** Convergence to a Solution ***

SLATEC5 (REBAK through ZBIRY) - 303

 1 Means satisfactory convergence to a solution was achieved.
 Each solution component X(I) satisfies the error tolerance
 test ABS(X(I)-XOLD(I)) .LE. RTOLX*ABS(X(I))+ATOLX.

 2 Means procedure converged to a solution such that all
 residuals are at most TOLF in magnitude,
 ABS(FNC(X,I)) .LE. TOLF.

 3 Means that conditions for both IFLAG=1 and IFLAG=2 hold.

 4 Means possible numerical convergence. Behavior indicates
 limiting precision calculations as a result of user asking
 for too much accuracy or else convergence is very slow.
 Residual norms and solution increment norms have
 remained roughly constant over several consecutive
 iterations.

 *** Task Interrupted ***

 5 Means the allowable number of iterations has been met
 without obtaining a solution to the specified accuracy.
 Very slow convergence may be indicated. Examine the
 approximate solution returned and see if the error
 tolerances seem appropriate.

 6 Means the allowable number of iterations has been met and
 the iterative process does not appear to be converging.
 A local minimum may have been encountered or there may be
 limiting precision difficulties.

 7 Means that the iterative scheme appears to be diverging.
 Residual norms and solution increment norms have
 increased over several consecutive iterations.

 *** Task Cannot Be Continued ***

 8 Means that a Jacobian-related matrix was singular.

 9 Means improper input parameters.

 *** IFLAG should be examined after each call to ***
 *** SOS with the appropriate action being taken. ***

 RW(1) -Contains a norm of the residual.

 IW(3) -Contains the number of iterations used by the process.

 **
 ***REFERENCES K. M. Brown, Solution of simultaneous nonlinear
 equations, Algorithm 316, Communications of the
 A.C.M. 10, (1967), pp. 728-729.
 K. M. Brown, A quadratically convergent Newton-like
 method based upon Gaussian elimination, SIAM Journal
 on Numerical Analysis 6, (1969), pp. 560-569.
 ***ROUTINES CALLED SOSEQS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC5 (REBAK through ZBIRY) - 304

 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls, changed Prologue
 comments to agree with DSOS. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 305

SPBCO

 SUBROUTINE SPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
 ***BEGIN PROLOGUE SPBCO
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 band form and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE SINGLE PRECISION (SPBCO-S, DPBCO-D, CPBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPBCO factors a real symmetric positive definite matrix
 stored in band form and estimates the condition of the matrix.

 If RCOND is not needed, SPBFA is slightly faster.
 To solve A*X = B , follow SPBCO by SPBSL.
 To compute INVERSE(A)*C , follow SPBCO by SPBSL.
 To compute DETERMINANT(A) , follow SPBCO by SPBDI.

 On Entry

 ABD REAL(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = TRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

SLATEC5 (REBAK through ZBIRY) - 306

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Band Storage

 If A is a symmetric positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J
 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses M + 1 rows of A , except for the M by M
 upper left triangle, which is ignored.

 Example: If the original matrix is

 11 12 13 0 0 0
 12 22 23 24 0 0
 13 23 33 34 35 0
 0 24 34 44 45 46
 0 0 35 45 55 56
 0 0 0 46 56 66

 then N = 6 , M = 2 and ABD should contain

 * * 13 24 35 46
 * 12 23 34 45 56
 11 22 33 44 55 66

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SPBFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 307

SPBDI

 SUBROUTINE SPBDI (ABD, LDA, N, M, DET)
 ***BEGIN PROLOGUE SPBDI
 ***PURPOSE Compute the determinant of a symmetric positive definite
 band matrix using the factors computed by SPBCO or SPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3B2
 ***TYPE SINGLE PRECISION (SPBDI-S, DPBDI-D, CPBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPBDI computes the determinant
 of a real symmetric positive definite band matrix
 using the factors computed by SPBCO or SPBFA.
 If the inverse is needed, use SPBSL N times.

 On Entry

 ABD REAL(LDA, N)
 the output from SPBCO or SPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 On Return

 DET REAL(2)
 determinant of original matrix in the form
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 308

SPBFA

 SUBROUTINE SPBFA (ABD, LDA, N, M, INFO)
 ***BEGIN PROLOGUE SPBFA
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 band form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE SINGLE PRECISION (SPBFA-S, DPBFA-D, CPBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPBFA factors a real symmetric positive definite matrix
 stored in band form.

 SPBFA is usually called by SPBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD REAL(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = TRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K if the leading minor of order K is not
 positive definite.

 Band Storage

 If A is a symmetric positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J

SLATEC5 (REBAK through ZBIRY) - 309

 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 310

SPBSL

 SUBROUTINE SPBSL (ABD, LDA, N, M, B)
 ***BEGIN PROLOGUE SPBSL
 ***PURPOSE Solve a real symmetric positive definite band system
 using the factors computed by SPBCO or SPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2
 ***TYPE SINGLE PRECISION (SPBSL-S, DPBSL-D, CPBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPBSL solves the real symmetric positive definite band
 system A*X = B
 using the factors computed by SPBCO or SPBFA.

 On Entry

 ABD REAL(LDA, N)
 the output from SPBCO or SPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 B REAL(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically, this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SPBCO(ABD,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL SPBSL(ABD,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT

SLATEC5 (REBAK through ZBIRY) - 311

 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 312

SPENC

 FUNCTION SPENC (X)
 ***BEGIN PROLOGUE SPENC
 ***PURPOSE Compute a form of Spence's integral due to K. Mitchell.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE SINGLE PRECISION (SPENC-S, DSPENC-D)
 ***KEYWORDS FNLIB, SPECIAL FUNCTIONS, SPENCE'S INTEGRAL
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate a form of Spence's function defined by
 integral from 0 to X of -LOG(1-Y)/Y DY.
 For ABS(X) .LE. 1, the uniformly convergent expansion
 SPENC = sum K=1,infinity X**K / K**2 is valid.

 Spence's function can be used to evaluate much more general integral
 forms. For example,
 integral from 0 to Z of LOG(A*X+B)/(C*X+D) DX =
 LOG(ABS(B-A*D/C))*LOG(ABS(A*(C*X+D)/(A*D-B*C)))/C
 - SPENC (A*(C*Z+D)/(A*D-B*C)) / C.

 Ref -- K. Mitchell, Philosophical Magazine, 40, p. 351 (1949).
 Stegun and Abromowitz, AMS 55, p. 1004.

 Series for SPEN on the interval 0. to 5.00000D-01
 with weighted error 6.82E-17
 log weighted error 16.17
 significant figures required 15.22
 decimal places required 16.81

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH
 ***REVISION HISTORY (YYMMDD)
 780201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 313

SPLP

 SUBROUTINE SPLP (DUSRMT, MRELAS, NVARS, COSTS, PRGOPT, DATTRV,
 + BL, BU, IND, INFO, PRIMAL, DUALS, IBASIS, WORK, LW, IWORK, LIW)
 ***BEGIN PROLOGUE SPLP
 ***PURPOSE Solve linear programming problems involving at
 most a few thousand constraints and variables.
 Takes advantage of sparsity in the constraint matrix.
 ***LIBRARY SLATEC
 ***CATEGORY G2A2
 ***TYPE SINGLE PRECISION (SPLP-S, DSPLP-D)
 ***KEYWORDS LINEAR CONSTRAINTS, LINEAR OPTIMIZATION,
 LINEAR PROGRAMMING, LP, SPARSE CONSTRAINTS
 ***AUTHOR Hanson, R. J., (SNLA)
 Hiebert, K. L., (SNLA)
 ***DESCRIPTION

 These are the short usage instructions; for details about
 other features, options and methods for defining the matrix
 A, see the extended usage instructions which are contained in
 the Long Description section below.

 |------------|
 |Introduction|
 |------------|
 The subprogram SPLP() solves a linear optimization problem.
 The problem statement is as follows

 minimize (transpose of costs)*x
 subject to A*x=w.

 The entries of the unknowns x and w may have simple lower or
 upper bounds (or both), or be free to take on any value. By
 setting the bounds for x and w, the user is imposing the con-
 straints of the problem. The matrix A has MRELAS rows and
 NVARS columns. The vectors costs, x, and w respectively
 have NVARS, NVARS, and MRELAS number of entries.

 The input for the problem includes the problem dimensions,
 MRELAS and NVARS, the array COSTS(*), data for the matrix
 A, and the bound information for the unknowns x and w, BL(*),
 BU(*), and IND(*). Only the nonzero entries of the matrix A
 are passed to SPLP().

 The output from the problem (when output flag INFO=1) includes
 optimal values for x and w in PRIMAL(*), optimal values for
 dual variables of the equations A*x=w and the simple bounds
 on x in DUALS(*), and the indices of the basic columns,
 IBASIS(*).

 |------------------------------|
Fortran Declarations Required:

 DIMENSION COSTS(NVARS),PRGOPT(*),DATTRV(*),
 *BL(NVARS+MRELAS),BU(NVARS+MRELAS),IND(NVARS+MRELAS),
 *PRIMAL(NVARS+MRELAS),DUALS(MRELAS+NVARS),IBASIS(NVARS+MRELAS),
 *WORK(LW),IWORK(LIW)

SLATEC5 (REBAK through ZBIRY) - 314

 EXTERNAL USRMAT

 The dimensions of PRGOPT(*) and DATTRV(*) must be at least 1.
 The exact lengths will be determined by user-required options and
 data transferred to the subprogram USRMAT().

 The values of LW and LIW, the lengths of the arrays WORK(*)
 and IWORK(*), must satisfy the inequalities

 LW .GE. 4*NVARS+ 8*MRELAS+LAMAT+ LBM
 LIW.GE. NVARS+11*MRELAS+LAMAT+2*LBM

 It is an error if they do not both satisfy these inequalities.
 (The subprogram will inform the user of the required lengths
 if either LW or LIW is wrong.) The values of LAMAT and LBM
 nominally are

 LAMAT=4*NVARS+7
 and LBM =8*MRELAS

 LAMAT determines the length of the sparse matrix storage area.
 The value of LBM determines the amount of storage available
 to decompose and update the active basis matrix.

 |------|
Input:

 MRELAS,NVARS

 These parameters are respectively the number of constraints (the
 linear relations A*x=w that the unknowns x and w are to satisfy)
 and the number of entries in the vector x. Both must be .GE. 1.
 Other values are errors.

 COSTS(*)

 The NVARS entries of this array are the coefficients of the
 linear objective function. The value COSTS(J) is the
 multiplier for variable J of the unknown vector x. Each
 entry of this array must be defined.

 USRMAT

 This is the name of a specific subprogram in the SPLP() package
 used to define the matrix A. In this usage mode of SPLP()
 the user places the nonzero entries of A in the
 array DATTRV(*) as given in the description of that parameter.
 The name USRMAT must appear in a Fortran EXTERNAL statement.

 DATTRV(*)

 The array DATTRV(*) contains data for the matrix A as follows:
 Each column (numbered J) requires (floating point) data con-
 sisting of the value (-J) followed by pairs of values. Each pair
 consists of the row index immediately followed by the value
 of the matrix at that entry. A value of J=0 signals that there
 are no more columns. The required length of
 DATTRV(*) is 2*no. of nonzeros + NVARS + 1.

SLATEC5 (REBAK through ZBIRY) - 315

 BL(*),BU(*),IND(*)

 The values of IND(*) are input parameters that define
 the form of the bounds for the unknowns x and w. The values for
 the bounds are found in the arrays BL(*) and BU(*) as follows.

 For values of J between 1 and NVARS,
 if IND(J)=1, then X(J) .GE. BL(J); BU(J) is not used.
 if IND(J)=2, then X(J) .LE. BU(J); BL(J) is not used.
 if IND(J)=3, then BL(J) .LE. X(J) .LE. BU(J),(BL(J)=BU(J) ok)
 if IND(J)=4, then X(J) is free to have any value,
 and BL(J), BU(J) are not used.

 For values of I between NVARS+1 and NVARS+MRELAS,
 if IND(I)=1, then W(I-NVARS) .GE. BL(I); BU(I) is not used.
 if IND(I)=2, then W(I-NVARS) .LE. BU(I); BL(I) is not used.
 if IND(I)=3, then BL(I) .LE. W(I-NVARS) .LE. BU(I),
 (BL(I)=BU(I) is ok).
 if IND(I)=4, then W(I-NVARS) is free to have any value,
 and BL(I), BU(I) are not used.

 A value of IND(*) not equal to 1,2,3 or 4 is an error. When
 IND(I)=3, BL(I) must be .LE. BU(I). The condition BL(I).GT.
 BU(I) indicates infeasibility and is an error.

 PRGOPT(*)

 This array is used to redefine various parameters within SPLP().
 Frequently, perhaps most of the time, a user will be satisfied
 and obtain the solutions with no changes to any of these
 parameters. To try this, simply set PRGOPT(1)=1.E0.

 For users with more sophisticated needs, SPLP() provides several
 options that may be used to take advantage of more detailed
 knowledge of the problem or satisfy other utilitarian needs.
 The complete description of how to use this option array to
 utilize additional subprogram features is found under the
 heading of SPLP() Subprogram Options in the Extended
 Usage Instructions.

 Briefly, the user should note the following value of the parameter
 KEY and the corresponding task or feature desired before turning
 to that document.

 Value Brief Statement of Purpose for Option
 of KEY
 ------ -------------------------------------
 50 Change from a minimization problem to a
 maximization problem.
 51 Change the amount of printed output.
 Normally, no printed output is obtained.
 52 Redefine the line length and precision used
 for the printed output.
 53 Redefine the values of LAMAT and LBM that
 were discussed above under the heading
 Fortran Declarations Required.
 54 Redefine the unit number where pages of the sparse
 data matrix A are stored. Normally, the unit
 number is 1.

SLATEC5 (REBAK through ZBIRY) - 316

 55 A computation, partially completed, is
 being continued. Read the up-to-date
 partial results from unit number 2.
 56 Redefine the unit number where the partial results
 are stored. Normally, the unit number is 2.
 57 Save partial results on unit 2 either after
 maximum iterations or at the optimum.
 58 Redefine the value for the maximum number of
 iterations. Normally, the maximum number of
 iterations is 3*(NVARS+MRELAS).
 59 Provide SPLP() with a starting (feasible)
 nonsingular basis. Normally, SPLP() starts
 with the identity matrix columns corresponding
 to the vector w.
 60 The user has provided scale factors for the
 columns of A. Normally, SPLP() computes scale
 factors that are the reciprocals of the max. norm
 of each column.
 61 The user has provided a scale factor
 for the vector costs. Normally, SPLP() computes
 a scale factor equal to the reciprocal of the
 max. norm of the vector costs after the column
 scaling for the data matrix has been applied.
 62 Size parameters, namely the smallest and
 largest magnitudes of nonzero entries in
 the matrix A, are provided. Values noted
 outside this range are to be considered errors.
 63 Redefine the tolerance required in
 evaluating residuals for feasibility.
 Normally, this value is set to RELPR,
 where RELPR = relative precision of the arithmetic.
 64 Change the criterion for bringing new variables
 into the basis from the steepest edge (best
 local move) to the minimum reduced cost.
 65 Redefine the value for the number of iterations
 between recalculating the error in the primal
 solution. Normally, this value is equal to ten.
 66 Perform "partial pricing" on variable selection.
 Redefine the value for the number of negative
 reduced costs to compute (at most) when finding
 a variable to enter the basis. Normally this
 value is set to NVARS. This implies that no
 "partial pricing" is used.
 67 Adjust the tuning factor (normally one) to apply
 to the primal and dual error estimates.
 68 Pass information to the subprogram FULMAT(),
 provided with the SPLP() package, so that a Fortran
 two-dimensional array can be used as the argument
 DATTRV(*).
 69 Pass an absolute tolerance to use for the feasibility
 test when the usual relative error test indicates
 infeasibility. The nominal value of this tolerance,
 TOLABS, is zero.

 |---------------|
Working Arrays:

 WORK(*),LW,
SLATEC5 (REBAK through ZBIRY) - 317

 IWORK(*),LIW

 The arrays WORK(*) and IWORK(*) are respectively floating point
 and type INTEGER working arrays for SPLP() and its
 subprograms. The lengths of these arrays are respectively
 LW and LIW. These parameters must satisfy the inequalities
 noted above under the heading "Fortran Declarations Required:"
 It is an error if either value is too small.

 |----------------------------|
Input/Output files required:

 Fortran unit 1 is used by SPLP() to store the sparse matrix A
 out of high-speed memory. A crude
 upper bound for the amount of information written on unit 1
 is 6*nz, where nz is the number of nonzero entries in A.

 |-------|
Output:

 INFO,PRIMAL(*),DUALS(*)

 The integer flag INFO indicates why SPLP() has returned to the
 user. If INFO=1 the solution has been computed. In this case
 X(J)=PRIMAL(J) and W(I)=PRIMAL(I+NVARS). The dual variables
 for the equations A*x=w are in the array DUALS(I)=dual for
 equation number I. The dual value for the component X(J) that
 has an upper or lower bound (or both) is returned in
 DUALS(J+MRELAS). The only other values for INFO are .LT. 0.
 The meaning of these values can be found by reading
 the diagnostic message in the output file, or by looking for
 error number = (-INFO) in the Extended Usage Instructions
 under the heading:

 List of SPLP() Error and Diagnostic Messages.

 BL(*),BU(*),IND(*)

 These arrays are output parameters only under the (unusual)
 circumstances where the stated problem is infeasible, has an
 unbounded optimum value, or both. These respective conditions
 correspond to INFO=-1,-2 or -3. See the Extended
 Usage Instructions for further details.

 IBASIS(I),I=1,...,MRELAS

 This array contains the indices of the variables that are
 in the active basis set at the solution (INFO=1). A value
 of IBASIS(I) between 1 and NVARS corresponds to the variable
 X(IBASIS(I)). A value of IBASIS(I) between NVARS+1 and NVARS+
 MRELAS corresponds to the variable W(IBASIS(I)-NVARS).

 *Long Description:

 SUBROUTINE SPLP(USRMAT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV,
 * BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW)

 |------------|
SLATEC5 (REBAK through ZBIRY) - 318

 |Introduction|
 |------------|
 The subprogram SPLP() solves a linear optimization problem.
 The problem statement is as follows

 minimize (transpose of costs)*x
 subject to A*x=w.

 The entries of the unknowns x and w may have simple lower or
 upper bounds (or both), or be free to take on any value. By
 setting the bounds for x and w, the user is imposing the con-
 straints of the problem.

 (The problem may also be stated as a maximization
 problem. This is done by means of input in the option array
 PRGOPT(*).) The matrix A has MRELAS rows and NVARS columns. The
 vectors costs, x, and w respectively have NVARS, NVARS, and
 MRELAS number of entries.

 The input for the problem includes the problem dimensions,
 MRELAS and NVARS, the array COSTS(*), data for the matrix
 A, and the bound information for the unknowns x and w, BL(*),
 BU(*), and IND(*).

 The output from the problem (when output flag INFO=1) includes
 optimal values for x and w in PRIMAL(*), optimal values for
 dual variables of the equations A*x=w and the simple bounds
 on x in DUALS(*), and the indices of the basic columns in
 IBASIS(*).

 |------------------------------|
Fortran Declarations Required:

 DIMENSION COSTS(NVARS),PRGOPT(*),DATTRV(*),
 *BL(NVARS+MRELAS),BU(NVARS+MRELAS),IND(NVARS+MRELAS),
 *PRIMAL(NVARS+MRELAS),DUALS(MRELAS+NVARS),IBASIS(NVARS+MRELAS),
 *WORK(LW),IWORK(LIW)

 EXTERNAL USRMAT (or 'NAME', if user provides the subprogram)

 The dimensions of PRGOPT(*) and DATTRV(*) must be at least 1.
 The exact lengths will be determined by user-required options and
 data transferred to the subprogram USRMAT() (or 'NAME').

 The values of LW and LIW, the lengths of the arrays WORK(*)
 and IWORK(*), must satisfy the inequalities

 LW .GE. 4*NVARS+ 8*MRELAS+LAMAT+ LBM
 LIW.GE. NVARS+11*MRELAS+LAMAT+2*LBM

 It is an error if they do not both satisfy these inequalities.
 (The subprogram will inform the user of the required lengths
 if either LW or LIW is wrong.) The values of LAMAT and LBM
 nominally are

 LAMAT=4*NVARS+7
 and LBM =8*MRELAS

 These values will be as shown unless the user changes them by
SLATEC5 (REBAK through ZBIRY) - 319

 means of input in the option array PRGOPT(*). The value of LAMAT
 determines the length of the sparse matrix "staging" area.
 For reasons of efficiency the user may want to increase the value
 of LAMAT. The value of LBM determines the amount of storage
 available to decompose and update the active basis matrix.
 Due to exhausting the working space because of fill-in,
 it may be necessary for the user to increase the value of LBM.
 (If this situation occurs an informative diagnostic is printed
 and a value of INFO=-28 is obtained as an output parameter.)

 |------|
Input:

 MRELAS,NVARS

 These parameters are respectively the number of constraints (the
 linear relations A*x=w that the unknowns x and w are to satisfy)
 and the number of entries in the vector x. Both must be .GE. 1.
 Other values are errors.

 COSTS(*)

 The NVARS entries of this array are the coefficients of the
 linear objective function. The value COSTS(J) is the
 multiplier for variable J of the unknown vector x. Each
 entry of this array must be defined. This array can be changed
 by the user between restarts. See options with KEY=55,57 for
 details of checkpointing and restarting.

 USRMAT

 This is the name of a specific subprogram in the SPLP() package
 that is used to define the matrix entries when this data is passed
 to SPLP() as a linear array. In this usage mode of SPLP()
 the user gives information about the nonzero entries of A
 in DATTRV(*) as given under the description of that parameter.
 The name USRMAT must appear in a Fortran EXTERNAL statement.
 Users who are passing the matrix data with USRMAT() can skip
 directly to the description of the input parameter DATTRV(*).
 Also see option 68 for passing the constraint matrix data using
 a standard Fortran two-dimensional array.

 If the user chooses to provide a subprogram 'NAME'() to
 define the matrix A, then DATTRV(*) may be used to pass floating
 point data from the user's program unit to the subprogram
 'NAME'(). The content of DATTRV(*) is not changed in any way.

 The subprogram 'NAME'() can be of the user's choice
 but it must meet Fortran standards and it must appear in a
 Fortran EXTERNAL statement. The first statement of the subprogram
 has the form

 SUBROUTINE 'NAME'(I,J,AIJ, INDCAT, PRGOPT, DATTRV, IFLAG)

 The variables I,J, INDCAT, IFLAG(10) are type INTEGER,
 while AIJ, PRGOPT(*),DATTRV(*) are type REAL.

 The user interacts with the contents of IFLAG(*) to
 direct the appropriate action. The algorithmic steps are

SLATEC5 (REBAK through ZBIRY) - 320

 as follows.

 Test IFLAG(1).

 IF(IFLAG(1).EQ.1) THEN

 Initialize the necessary pointers and data
 for defining the matrix A. The contents
 of IFLAG(K), K=2,...,10, may be used for
 storage of the pointers. This array remains intact
 between calls to 'NAME'() by SPLP().
 RETURN

 END IF

 IF(IFLAG(1).EQ.2) THEN

 Define one set of values for I,J,AIJ, and INDCAT.
 Each nonzero entry of A must be defined this way.
 These values can be defined in any convenient order.
 (It is most efficient to define the data by
 columns in the order 1,...,NVARS; within each
 column define the entries in the order 1,...,MRELAS.)
 If this is the last matrix value to be
 defined or updated, then set IFLAG(1)=3.
 (When I and J are positive and respectively no larger
 than MRELAS and NVARS, the value of AIJ is used to
 define (or update) row I and column J of A.)
 RETURN

 END IF

 END

 Remarks: The values of I and J are the row and column
 indices for the nonzero entries of the matrix A.
 The value of this entry is AIJ.
 Set INDCAT=0 if this value defines that entry.
 Set INDCAT=1 if this entry is to be updated,
 new entry=old entry+AIJ.
 A value of I not between 1 and MRELAS, a value of J
 not between 1 and NVARS, or a value of INDCAT
 not equal to 0 or 1 are each errors.

 The contents of IFLAG(K), K=2,...,10, can be used to
 remember the status (of the process of defining the
 matrix entries) between calls to 'NAME'() by SPLP().
 On entry to 'NAME'(), only the values 1 or 2 will be
 in IFLAG(1). More than 2*NVARS*MRELAS definitions of
 the matrix elements is considered an error because
 it suggests an infinite loop in the user-written
 subprogram 'NAME'(). Any matrix element not
 provided by 'NAME'() is defined to be zero.

 The REAL arrays PRGOPT(*) and DATTRV(*) are passed as
 arguments directly from SPLP() to 'NAME'().
 The array PRGOPT(*) contains any user-defined program
 options. In this usage mode the array DATTRV(*) may
 now contain any (type REAL) data that the user needs
 to define the matrix A. Both arrays PRGOPT(*) and

SLATEC5 (REBAK through ZBIRY) - 321

 DATTRV(*) remain intact between calls to 'NAME'()
 by SPLP().
 Here is a subprogram that communicates the matrix values for A,
 as represented in DATTRV(*), to SPLP(). This subprogram,
 called USRMAT(), is included as part of the SPLP() package.
 This subprogram 'decodes' the array DATTRV(*) and defines the
 nonzero entries of the matrix A for SPLP() to store. This
 listing is presented here as a guide and example
 for the users who find it necessary to write their own subroutine
 for this purpose. The contents of DATTRV(*) are given below in
 the description of that parameter.

 SUBROUTINE USRMAT(I,J,AIJ, INDCAT,PRGOPT,DATTRV,IFLAG)
 DIMENSION PRGOPT(*),DATTRV(*),IFLAG(10)

 IF(IFLAG(1).EQ.1) THEN

 THIS IS THE INITIALIZATION STEP. THE VALUES OF IFLAG(K),K=2,3,4,
 ARE RESPECTIVELY THE COLUMN INDEX, THE ROW INDEX (OR THE NEXT COL.
 INDEX), AND THE POINTER TO THE MATRIX ENTRY'S VALUE WITHIN
 DATTRV(*). ALSO CHECK (DATTRV(1)=0.) SIGNIFYING NO DATA.
 IF(DATTRV(1).EQ.0.) THEN
 I = 0
 J = 0
 IFLAG(1) = 3
 ELSE
 IFLAG(2)=-DATTRV(1)
 IFLAG(3)= DATTRV(2)
 IFLAG(4)= 3
 END IF

 RETURN
 ELSE
 J=IFLAG(2)
 I=IFLAG(3)
 L=IFLAG(4)
 IF(I.EQ.0) THEN

 SIGNAL THAT ALL OF THE NONZERO ENTRIES HAVE BEEN DEFINED.
 IFLAG(1)=3
 RETURN
 ELSE IF(I.LT.0) THEN

 SIGNAL THAT A SWITCH IS MADE TO A NEW COLUMN.
 J=-I
 I=DATTRV(L)
 L=L+1
 END IF

 AIJ=DATTRV(L)

 UPDATE THE INDICES AND POINTERS FOR THE NEXT ENTRY.
 IFLAG(2)=J
 IFLAG(3)=DATTRV(L+1)
 IFLAG(4)=L+2

 INDCAT=0 DENOTES THAT ENTRIES OF THE MATRIX ARE ASSIGNED THE
 VALUES FROM DATTRV(*). NO ACCUMULATION IS PERFORMED.
 INDCAT=0
 RETURN

SLATEC5 (REBAK through ZBIRY) - 322

 END IF
 END

 DATTRV(*)

 If the user chooses to use the provided subprogram USRMAT() then
 the array DATTRV(*) contains data for the matrix A as follows:
 Each column (numbered J) requires (floating point) data con-
 sisting of the value (-J) followed by pairs of values. Each pair
 consists of the row index immediately followed by the value
 of the matrix at that entry. A value of J=0 signals that there
 are no more columns. (See "Example of SPLP() Usage," below.)
 The dimension of DATTRV(*) must be 2*no. of nonzeros
 + NVARS + 1 in this usage. No checking of the array
 length is done by the subprogram package.

 If the Save/Restore feature is in use (see options with
 KEY=55,57 for details of checkpointing and restarting)
 USRMAT() can be used to redefine entries of the matrix.
 The matrix entries are redefined or overwritten. No accum-
 ulation is performed.
 Any other nonzero entry of A, defined in a previous call to
 SPLP(), remain intact.

 BL(*),BU(*),IND(*)

 The values of IND(*) are input parameters that define
 the form of the bounds for the unknowns x and w. The values for
 the bounds are found in the arrays BL(*) and BU(*) as follows.

 For values of J between 1 and NVARS,
 if IND(J)=1, then X(J) .GE. BL(J); BU(J) is not used.
 if IND(J)=2, then X(J) .LE. BU(J); BL(J) is not used.
 if IND(J)=3, then BL(J) .LE. X(J) .LE. BU(J),(BL(J)=BU(J) ok)
 if IND(J)=4, then X(J) is free to have any value,
 and BL(J), BU(J) are not used.

 For values of I between NVARS+1 and NVARS+MRELAS,
 if IND(I)=1, then W(I-NVARS) .GE. BL(I); BU(I) is not used.
 if IND(I)=2, then W(I-NVARS) .LE. BU(I); BL(I) is not used.
 if IND(I)=3, then BL(I) .LE. W(I-NVARS) .LE. BU(I),
 (BL(I)=BU(I) is ok).
 if IND(I)=4, then W(I-NVARS) is free to have any value,
 and BL(I), BU(I) are not used.

 A value of IND(*) not equal to 1,2,3 or 4 is an error. When
 IND(I)=3, BL(I) must be .LE. BU(I). The condition BL(I).GT.
 BU(I) indicates infeasibility and is an error. These
 arrays can be changed by the user between restarts. See
 options with KEY=55,57 for details of checkpointing and
 restarting.

 PRGOPT(*)

 This array is used to redefine various parameters within SPLP().
 Frequently, perhaps most of the time, a user will be satisfied
 and obtain the solutions with no changes to any of these
 parameters. To try this, simply set PRGOPT(1)=1.E0.

 For users with more sophisticated needs, SPLP() provides several
SLATEC5 (REBAK through ZBIRY) - 323

 options that may be used to take advantage of more detailed
 knowledge of the problem or satisfy other utilitarian needs.
 The complete description of how to use this option array to
 utilize additional subprogram features is found under the
 heading "Usage of SPLP() Subprogram Options."

 Briefly, the user should note the following value of the parameter
 KEY and the corresponding task or feature desired before turning
 to that section.

 Value Brief Statement of Purpose for Option
 of KEY
 ------ -------------------------------------
 50 Change from a minimization problem to a
 maximization problem.
 51 Change the amount of printed output.
 Normally, no printed output is obtained.
 52 Redefine the line length and precision used
 for the printed output.
 53 Redefine the values of LAMAT and LBM that
 were discussed above under the heading
 Fortran Declarations Required.
 54 Redefine the unit number where pages of the sparse
 data matrix A are stored. Normally, the unit
 number is 1.
 55 A computation, partially completed, is
 being continued. Read the up-to-date
 partial results from unit number 2.
 56 Redefine the unit number where the partial results
 are stored. Normally, the unit number is 2.
 57 Save partial results on unit 2 either after
 maximum iterations or at the optimum.
 58 Redefine the value for the maximum number of
 iterations. Normally, the maximum number of
 iterations is 3*(NVARS+MRELAS).
 59 Provide SPLP() with a starting (feasible)
 nonsingular basis. Normally, SPLP() starts
 with the identity matrix columns corresponding
 to the vector w.
 60 The user has provided scale factors for the
 columns of A. Normally, SPLP() computes scale
 factors that are the reciprocals of the max. norm
 of each column.
 61 The user has provided a scale factor
 for the vector costs. Normally, SPLP() computes
 a scale factor equal to the reciprocal of the
 max. norm of the vector costs after the column
 scaling for the data matrix has been applied.
 62 Size parameters, namely the smallest and
 largest magnitudes of nonzero entries in
 the matrix A, are provided. Values noted
 outside this range are to be considered errors.
 63 Redefine the tolerance required in
 evaluating residuals for feasibility.
 Normally, this value is set to the value RELPR,
 where RELPR = relative precision of the arithmetic.
 64 Change the criterion for bringing new variables
 into the basis from the steepest edge (best
 local move) to the minimum reduced cost.
 65 Redefine the value for the number of iterations

SLATEC5 (REBAK through ZBIRY) - 324

 between recalculating the error in the primal
 solution. Normally, this value is equal to ten.
 66 Perform "partial pricing" on variable selection.
 Redefine the value for the number of negative
 reduced costs to compute (at most) when finding
 a variable to enter the basis. Normally this
 value is set to NVARS. This implies that no
 "partial pricing" is used.
 67 Adjust the tuning factor (normally one) to apply
 to the primal and dual error estimates.
 68 Pass information to the subprogram FULMAT(),
 provided with the SPLP() package, so that a Fortran
 two-dimensional array can be used as the argument
 DATTRV(*).
 69 Pass an absolute tolerance to use for the feasibility
 test when the usual relative error test indicates
 infeasibility. The nominal value of this tolerance,
 TOLABS, is zero.

 |---------------|
Working Arrays:

 WORK(*),LW,
 IWORK(*),LIW

 The arrays WORK(*) and IWORK(*) are respectively floating point
 and type INTEGER working arrays for SPLP() and its
 subprograms. The lengths of these arrays are respectively
 LW and LIW. These parameters must satisfy the inequalities
 noted above under the heading "Fortran Declarations Required."
 It is an error if either value is too small.

 |----------------------------|
Input/Output files required:

 Fortran unit 1 is used by SPLP() to store the sparse matrix A
 out of high-speed memory. This direct access file is opened
 within the package under the following two conditions.
 1. When the Save/Restore feature is used. 2. When the
 constraint matrix is so large that storage out of high-speed
 memory is required. The user may need to close unit 1
 (with deletion from the job step) in the main program unit
 when several calls are made to SPLP(). A crude
 upper bound for the amount of information written on unit 1
 is 6*nz, where nz is the number of nonzero entries in A.
 The unit number may be redefined to any other positive value
 by means of input in the option array PRGOPT(*).

 Fortran unit 2 is used by SPLP() only when the Save/Restore
 feature is desired. Normally this feature is not used. It is
 activated by means of input in the option array PRGOPT(*).
 On some computer systems the user may need to open unit
 2 before executing a call to SPLP(). This file is type
 sequential and is unformatted.

 Fortran unit=I1MACH(2) (check local setting) is used by SPLP()
 when the printed output feature (KEY=51) is used. Normally

SLATEC5 (REBAK through ZBIRY) - 325

 this feature is not used. It is activated by input in the
 options array PRGOPT(*). For many computer systems I1MACH(2)=6.

 |-------|
Output:

 INFO,PRIMAL(*),DUALS(*)

 The integer flag INFO indicates why SPLP() has returned to the
 user. If INFO=1 the solution has been computed. In this case
 X(J)=PRIMAL(J) and W(I)=PRIMAL(I+NVARS). The dual variables
 for the equations A*x=w are in the array DUALS(I)=dual for
 equation number I. The dual value for the component X(J) that
 has an upper or lower bound (or both) is returned in
 DUALS(J+MRELAS). The only other values for INFO are .LT. 0.
 The meaning of these values can be found by reading
 the diagnostic message in the output file, or by looking for
 error number = (-INFO) under the heading "List of SPLP() Error
 and Diagnostic Messages."
 The diagnostic messages are printed using the error processing
 subprogram XERMSG() with error category LEVEL=1.
 See the document "Brief Instr. for Using the Sandia Math.
 Subroutine Library," SAND79-2382, Nov., 1980, for further inform-
 ation about resetting the usual response to a diagnostic message.

 BL(*),BU(*),IND(*)

 These arrays are output parameters only under the (unusual)
 circumstances where the stated problem is infeasible, has an
 unbounded optimum value, or both. These respective conditions
 correspond to INFO=-1,-2 or -3. For INFO=-1 or -3 certain comp-
 onents of the vectors x or w will not satisfy the input bounds.
 If component J of X or component I of W does not satisfy its input
 bound because of infeasibility, then IND(J)=-4 or IND(I+NVARS)=-4,
 respectively. For INFO=-2 or -3 certain
 components of the vector x could not be used as basic variables
 because the objective function would have become unbounded.
 In particular if component J of x corresponds to such a variable,
 then IND(J)=-3. Further, if the input value of IND(J)
 =1, then BU(J)=BL(J);
 =2, then BL(J)=BU(J);
 =4, then BL(J)=0.,BU(J)=0.

 (The J-th variable in x has been restricted to an appropriate
 feasible value.)
 The negative output value for IND(*) allows the user to identify
 those constraints that are not satisfied or those variables that
 would cause unbounded values of the objective function. Note
 that the absolute value of IND(*), together with BL(*) and BU(*),
 are valid input to SPLP(). In the case of infeasibility the
 sum of magnitudes of the infeasible values is minimized. Thus
 one could reenter SPLP() with these components of x or w now
 fixed at their present values. This involves setting
 the appropriate components of IND(*) = 3, and BL(*) = BU(*).

 IBASIS(I),I=1,...,MRELAS

 This array contains the indices of the variables that are
 in the active basis set at the solution (INFO=1). A value

SLATEC5 (REBAK through ZBIRY) - 326

 of IBASIS(I) between 1 and NVARS corresponds to the variable
 X(IBASIS(I)). A value of IBASIS(I) between NVARS+1 and NVARS+
 MRELAS corresponds to the variable W(IBASIS(I)-NVARS).

 Computing with the Matrix A after Calling SPLP()

 Following the return from SPLP(), nonzero entries of the MRELAS
 by NVARS matrix A are available for usage by the user. The method
 for obtaining the next nonzero in column J with a row index
 strictly greater than I in value, is completed by executing

 CALL PNNZRS(I,AIJ,IPLACE,WORK,IWORK,J)

 The value of I is also an output parameter. If I.LE.0 on output,
 then there are no more nonzeroes in column J. If I.GT.0, the
 output value for component number I of column J is in AIJ. The
 parameters WORK(*) and IWORK(*) are the same arguments as in the
 call to SPLP(). The parameter IPLACE is a single INTEGER
 working variable.

 The data structure used for storage of the matrix A within SPLP()
 corresponds to sequential storage by columns as defined in
 SAND78-0785. Note that the names of the subprograms LNNZRS(),
 LCHNGS(),LINITM(),LLOC(),LRWPGE(), and LRWVIR() have been
 changed to PNNZRS(),PCHNGS(),PINITM(),IPLOC(),PRWPGE(), and
 PRWVIR() respectively. The error processing subprogram LERROR()
 is no longer used; XERMSG() is used instead.

 |-------------------------------|
Subprograms Required by SPLP()
 Called by SPLP() are SPLPMN(),SPLPUP(),SPINIT(),SPOPT(),
 SPLPDM(),SPLPCE(),SPINCW(),SPLPFL(),
 SPLPFE(),SPLPMU().

 Error Processing Subprograms XERMSG(),I1MACH(),R1MACH()

 Sparse Matrix Subprograms PNNZRS(),PCHNGS(),PRWPGE(),PRWVIR(),
 PINITM(),IPLOC()

 Mass Storage File Subprograms SOPENM(),SCLOSM(),SREADP(),SWRITP()

 Basic Linear Algebra Subprograms SCOPY(),SASUM(),SDOT()

 Sparse Matrix Basis Handling Subprograms LA05AS(),LA05BS(),
 LA05CS(),LA05ED(),MC20AS()

 Vector Output Subprograms SVOUT(),IVOUT()

 Machine-sensitive Subprograms I1MACH(),R1MACH(),
 SOPENM(),SCLOSM(),SREADP(),SWRITP().
 COMMON Block Used

 /LA05DS/ SMALL,LP,LENL,LENU,NCP,LROW,LCOL
 See the document AERE-R8269 for further details.
 |------------------------|
 |Example of SPLP() Usage|
 |------------------------|
 PROGRAM LPEX
 THE OPTIMIZATION PROBLEM IS TO FIND X1, X2, X3 THAT

SLATEC5 (REBAK through ZBIRY) - 327

 MINIMIZE X1 + X2 + X3, X1.GE.0, X2.GE.0, X3 UNCONSTRAINED.

 THE UNKNOWNS X1,X2,X3 ARE TO SATISFY CONSTRAINTS

 X1 -3*X2 +4*X3 = 5
 X1 -2*X2 .LE.3
 2*X2 - X3.GE.4

 WE FIRST DEFINE THE DEPENDENT VARIABLES
 W1=X1 -3*X2 +4*X3
 W2=X1- 2*X2
 W3= 2*X2 -X3

 WE NOW SHOW HOW TO USE SPLP() TO SOLVE THIS LINEAR OPTIMIZATION
 PROBLEM. EACH REQUIRED STEP WILL BE SHOWN IN THIS EXAMPLE.
 DIMENSION COSTS(03),PRGOPT(01),DATTRV(18),BL(06),BU(06),IND(06),
 *PRIMAL(06),DUALS(06),IBASIS(06),WORK(079),IWORK(103)

 EXTERNAL USRMAT
 MRELAS=3
 NVARS=3

 DEFINE THE ARRAY COSTS(*) FOR THE OBJECTIVE FUNCTION.
 COSTS(01)=1.
 COSTS(02)=1.
 COSTS(03)=1.

 PLACE THE NONZERO INFORMATION ABOUT THE MATRIX IN DATTRV(*).
 DEFINE COL. 1:
 DATTRV(01)=-1
 DATTRV(02)=1
 DATTRV(03)=1.
 DATTRV(04)=2
 DATTRV(05)=1.

 DEFINE COL. 2:
 DATTRV(06)=-2
 DATTRV(07)=1
 DATTRV(08)=-3.
 DATTRV(09)=2
 DATTRV(10)=-2.
 DATTRV(11)=3
 DATTRV(12)=2.

 DEFINE COL. 3:
 DATTRV(13)=-3
 DATTRV(14)=1
 DATTRV(15)=4.
 DATTRV(16)=3
 DATTRV(17)=-1.

 DATTRV(18)=0

 CONSTRAIN X1,X2 TO BE NONNEGATIVE. LET X3 HAVE NO BOUNDS.
 BL(1)=0.
 IND(1)=1
 BL(2)=0.
 IND(2)=1
 IND(3)=4

SLATEC5 (REBAK through ZBIRY) - 328

 CONSTRAIN W1=5,W2.LE.3, AND W3.GE.4.
 BL(4)=5.
 BU(4)=5.
 IND(4)=3
 BU(5)=3.
 IND(5)=2
 BL(6)=4.
 IND(6)=1

 INDICATE THAT NO MODIFICATIONS TO OPTIONS ARE IN USE.
 PRGOPT(01)=1

 DEFINE THE WORKING ARRAY LENGTHS.
 LW=079
 LIW=103
 CALL SPLP(USRMAT,MRELAS,NVARS,COSTS,PRGOPT,DATTRV,
 *BL,BU,IND,INFO,PRIMAL,DUALS,IBASIS,WORK,LW,IWORK,LIW)

 CALCULATE VAL, THE MINIMAL VALUE OF THE OBJECTIVE FUNCTION.
 VAL=SDOT(NVARS,COSTS,1,PRIMAL,1)

 STOP
 END
 |------------------------|
 |End of Example of Usage |
 |------------------------|

 |------------------------------------|
 |Usage of SPLP() Subprogram Options.|
 |------------------------------------|

 Users frequently have a large variety of requirements for linear
 optimization software. Allowing for these varied requirements
 is at cross purposes with the desire to keep the usage of SPLP()
 as simple as possible. One solution to this dilemma is as follows.
 (1) Provide a version of SPLP() that solves a wide class of
 problems and is easy to use. (2) Identify parameters within SPLP()
 that certain users may want to change. (3) Provide a means
 of changing any selected number of these parameters that does
 not require changing all of them.

 Changing selected parameters is done by requiring
 that the user provide an option array, PRGOPT(*), to SPLP().
 The contents of PRGOPT(*) inform SPLP() of just those options
 that are going to be modified within the total set of possible
 parameters that can be modified. The array PRGOPT(*) is a linked
 list consisting of groups of data of the following form

 LINK
 KEY
 SWITCH
 data set

 that describe the desired options. The parameters LINK, KEY and
 switch are each one word and are always required. The data set
 can be comprised of several words or can be empty. The number of
 words in the data set for each option depends on the value of
 the parameter KEY.

 The value of LINK points to the first entry of the next group
SLATEC5 (REBAK through ZBIRY) - 329

 of data within PRGOPT(*). The exception is when there are no more
 options to change. In that case, LINK=1 and the values for KEY,
 SWITCH and data set are not referenced. The general layout of
 PRGOPT(*) is as follows:
 ...PRGOPT(1)=LINK1 (link to first entry of next group)
 . PRGOPT(2)=KEY1 (KEY to the option change)
 . PRGOPT(3)=SWITCH1 (on/off switch for the option)
 . PRGOPT(4)=data value
 . .
 . .
 . .
 ...PRGOPT(LINK1)=LINK2 (link to first entry of next group)
 . PRGOPT(LINK1+1)=KEY2 (KEY to option change)
 . PRGOPT(LINK1+2)=SWITCH2 (on/off switch for the option)
 . PRGOPT(LINK1+3)=data value

 . .
 . .
 ...PRGOPT(LINK)=1 (no more options to change)

 A value of LINK that is .LE.0 or .GT. 10000 is an error.
 In this case SPLP() returns with an error message, INFO=-14.
 This helps prevent using invalid but positive values of LINK that
 will probably extend beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. If the value of SWITCH is
 zero then the option is turned off. For any other value of SWITCH
 the option is turned on. This is used to allow easy changing of
 options without rewriting PRGOPT(*). The order of the options is
 arbitrary and any number of options can be changed with the
 following restriction. To prevent cycling in processing of the
 option array PRGOPT(*), a count of the number of options changed
 is maintained. Whenever this count exceeds 1000 an error message
 (INFO=-15) is printed and the subprogram returns.

 In the following description of the options, the value of
 LATP indicates the amount of additional storage that a particular
 option requires. The sum of all of these values (plus one) is
 the minimum dimension for the array PRGOPT(*).

 If a user is satisfied with the nominal form of SPLP(),
 set PRGOPT(1)=1 (or PRGOPT(1)=1.E0).

 Options:

 -----KEY = 50. Change from a minimization problem to a maximization
 problem.
 If SWITCH=0 option is off; solve minimization problem.
 =1 option is on; solve maximization problem.
 data set =empty
 LATP=3

 -----KEY = 51. Change the amount of printed output. The nominal form
 of SPLP() has no printed output.
 The first level of output (SWITCH=1) includes

 (1) Minimum dimensions for the arrays COSTS(*),BL(*),BU(*),IND(*),
 PRIMAL(*),DUALS(*),IBASIS(*), and PRGOPT(*).
 (2) Problem dimensions MRELAS,NVARS.
 (3) The types of and values for the bounds on x and w,
 and the values of the components of the vector costs.

SLATEC5 (REBAK through ZBIRY) - 330

 (4) Whether optimization problem is minimization or
 maximization.
 (5) Whether steepest edge or smallest reduced cost criteria used
 for exchanging variables in the revised simplex method.

 Whenever a solution has been found, (INFO=1),

 (6) the value of the objective function,
 (7) the values of the vectors x and w,
 (8) the dual variables for the constraints A*x=w and the
 bounded components of x,
 (9) the indices of the basic variables,
 (10) the number of revised simplex method iterations,
 (11) the number of full decompositions of the basis matrix.

 The second level of output (SWITCH=2) includes all for SWITCH=1
 plus

 (12) the iteration number,
 (13) the column number to enter the basis,
 (14) the column number to leave the basis,
 (15) the length of the step taken.

 The third level of output (SWITCH=3) includes all for SWITCH=2
 plus
 (16) critical quantities required in the revised simplex method.
 This output is rather voluminous. It is intended to be used
 as a diagnostic tool in case of a failure in SPLP().

 If SWITCH=0 option is off; no printed output.
 =1 summary output.
 =2 lots of output.
 =3 even more output.
 data set =empty
 LATP=3

 -----KEY = 52. Redefine the parameter, IDIGIT, which determines the
 format and precision used for the printed output. In the printed
 output, at least ABS(IDIGIT) decimal digits per number is printed.
 If IDIGIT.LT.0, 72 printing columns are used. IF IDIGIT.GT.0, 133
 printing columns are used.
 If SWITCH=0 option is off; IDIGIT=-4.
 =1 option is on.
 data set =IDIGIT
 LATP=4

 -----KEY = 53. Redefine LAMAT and LBM, the lengths of the portions of
 WORK(*) and IWORK(*) that are allocated to the sparse matrix
 storage and the sparse linear equation solver, respectively.
 LAMAT must be .GE. NVARS+7 and LBM must be positive.
 If SWITCH=0 option is off; LAMAT=4*NVARS+7
 LBM =8*MRELAS.
 =1 option is on.
 data set =LAMAT
 LBM
 LATP=5

 -----KEY = 54. Redefine IPAGEF, the file number where the pages of the
 sparse data matrix are stored. IPAGEF must be positive and
 different from ISAVE (see option 56).

SLATEC5 (REBAK through ZBIRY) - 331

 If SWITCH=0 option is off; IPAGEF=1.
 =1 option is on.
 data set =IPAGEF
 LATP=4

 -----KEY = 55. Partial results have been computed and stored on unit
 number ISAVE (see option 56), during a previous run of
 SPLP(). This is a continuation from these partial results.
 The arrays COSTS(*),BL(*),BU(*),IND(*) do not have to have
 the same values as they did when the checkpointing occurred.
 This feature makes it possible for the user to do certain
 types of parameter studies such as changing costs and varying
 the constraints of the problem. This file is rewound both be-
 fore and after reading the partial results.
 If SWITCH=0 option is off; start a new problem.
 =1 option is on; continue from partial results
 that are stored in file ISAVE.
 data set = empty
 LATP=3

 -----KEY = 56. Redefine ISAVE, the file number where the partial
 results are stored (see option 57). ISAVE must be positive and
 different from IPAGEF (see option 54).
 If SWITCH=0 option is off; ISAVE=2.
 =1 option is on.
 data set =ISAVE
 LATP=4

 -----KEY = 57. Save the partial results after maximum number of
 iterations, MAXITR, or at the optimum. When this option is on,
 data essential to continuing the calculation is saved on a file
 using a Fortran binary write operation. The data saved includes
 all the information about the sparse data matrix A. Also saved
 is information about the current basis. Nominally the partial
 results are saved on Fortran unit 2. This unit number can be
 redefined (see option 56). If the save option is on,
 this file must be opened (or declared) by the user prior to the
 call to SPLP(). A crude upper bound for the number of words
 written to this file is 6*nz. Here nz= number of nonzeros in A.
 If SWITCH=0 option is off; do not save partial results.
 =1 option is on; save partial results.
 data set = empty
 LATP=3

 -----KEY = 58. Redefine the maximum number of iterations, MAXITR, to
 be taken before returning to the user.
 If SWITCH=0 option is off; MAXITR=3*(NVARS+MRELAS).
 =1 option is on.
 data set =MAXITR
 LATP=4

 -----KEY = 59. Provide SPLP() with exactly MRELAS indices which
 comprise a feasible, nonsingular basis. The basis must define a
 feasible point: values for x and w such that A*x=w and all the
 stated bounds on x and w are satisfied. The basis must also be
 nonsingular. The failure of either condition will cause an error
 message (INFO=-23 or =-24, respectively). Normally, SPLP() uses
 identity matrix columns which correspond to the components of w.
 This option would normally not be used when restarting from
 a previously saved run (KEY=57).

SLATEC5 (REBAK through ZBIRY) - 332

 In numbering the unknowns,
 the components of x are numbered (1-NVARS) and the components
 of w are numbered (NVARS+1)-(NVARS+MRELAS). A value for an
 index .LE. 0 or .GT. (NVARS+MRELAS) is an error (INFO=-16).
 If SWITCH=0 option is off; SPLP() chooses the initial basis.
 =1 option is on; user provides the initial basis.
 data set =MRELAS indices of basis; order is arbitrary.
 LATP=MRELAS+3

 -----KEY = 60. Provide the scale factors for the columns of the data
 matrix A. Normally, SPLP() computes the scale factors as the
 reciprocals of the max. norm of each column.
 If SWITCH=0 option is off; SPLP() computes the scale factors.
 =1 option is on; user provides the scale factors.
 data set =scaling for column J, J=1,NVARS; order is sequential.
 LATP=NVARS+3

 -----KEY = 61. Provide a scale factor, COSTSC, for the vector of
 costs. Normally, SPLP() computes this scale factor to be the
 reciprocal of the max. norm of the vector costs after the column
 scaling has been applied.
 If SWITCH=0 option is off; SPLP() computes COSTSC.
 =1 option is on; user provides COSTSC.
 data set =COSTSC
 LATP=4

 -----KEY = 62. Provide size parameters, ASMALL and ABIG, the smallest
 and largest magnitudes of nonzero entries in the data matrix A,
 respectively. When this option is on, SPLP() will check the
 nonzero entries of A to see if they are in the range of ASMALL and
 ABIG. If an entry of A is not within this range, SPLP() returns
 an error message, INFO=-22. Both ASMALL and ABIG must be positive
 with ASMALL .LE. ABIG. Otherwise, an error message is returned,
 INFO=-17.
 If SWITCH=0 option is off; no checking of the data matrix is done
 =1 option is on; checking is done.
 data set =ASMALL
 ABIG
 LATP=5

 -----KEY = 63. Redefine the relative tolerance, TOLLS, used in
 checking if the residuals are feasible. Normally,
 TOLLS=RELPR, where RELPR is the machine precision.
 If SWITCH=0 option is off; TOLLS=RELPR.
 =1 option is on.
 data set =TOLLS
 LATP=4

 -----KEY = 64. Use the minimum reduced cost pricing strategy to choose
 columns to enter the basis. Normally, SPLP() uses the steepest
 edge pricing strategy which is the best local move. The steepest
 edge pricing strategy generally uses fewer iterations than the
 minimum reduced cost pricing, but each iteration costs more in the
 number of calculations done. The steepest edge pricing is
 considered to be more efficient. However, this is very problem
 dependent. That is why SPLP() provides the option of either
 pricing strategy.
 If SWITCH=0 option is off; steepest option edge pricing is used.
 =1 option is on; minimum reduced cost pricing is used.
 data set =empty

SLATEC5 (REBAK through ZBIRY) - 333

 LATP=3

 -----KEY = 65. Redefine MXITBR, the number of iterations between
 recalculating the error in the primal solution. Normally, MXITBR
 is set to 10. The error in the primal solution is used to monitor
 the error in solving the linear system. This is an expensive
 calculation and every tenth iteration is generally often enough.
 If SWITCH=0 option is off; MXITBR=10.
 =1 option is on.
 data set =MXITBR
 LATP=4

 -----KEY = 66. Redefine NPP, the number of negative reduced costs
 (at most) to be found at each iteration of choosing
 a variable to enter the basis. Normally NPP is set
 to NVARS which implies that all of the reduced costs
 are computed at each such step. This "partial
 pricing" may very well increase the total number
 of iterations required. However it decreases the
 number of calculations at each iteration.
 therefore the effect on overall efficiency is quite
 problem-dependent.

 if SWITCH=0 option is off; NPP=NVARS
 =1 option is on.
 data set =NPP
 LATP=4

 -----KEY = 67. Redefine the tuning factor (PHI) used to scale the
 error estimates for the primal and dual linear algebraic systems
 of equations. Normally, PHI = 1.E0, but in some environments it
 may be necessary to reset PHI to the range 0.001-0.01. This is
 particularly important for machines with short word lengths.

 if SWITCH = 0 option is off; PHI=1.E0.
 = 1 option is on.
 Data Set = PHI
 LATP=4

 -----KEY = 68. Used together with the subprogram FULMAT(), provided
 with the SPLP() package, for passing a standard Fortran two-
 dimensional array containing the constraint matrix. Thus the sub-
 program FULMAT must be declared in a Fortran EXTERNAL statement.
 The two-dimensional array is passed as the argument DATTRV.
 The information about the array and problem dimensions are passed
 in the option array PRGOPT(*). It is an error if FULMAT() is
 used and this information is not passed in PRGOPT(*).

 if SWITCH = 0 option is off; this is an error is FULMAT() is
 used.
 = 1 option is on.
 Data Set = IA = row dimension of two-dimensional array.
 MRELAS = number of constraint equations.
 NVARS = number of dependent variables.
 LATP = 6
 -----KEY = 69. Normally a relative tolerance (TOLLS, see option 63)
 is used to decide if the problem is feasible. If this test fails
 an absolute test will be applied using the value TOLABS.
 Nominally TOLABS = zero.
 If SWITCH = 0 option is off; TOLABS = zero.

SLATEC5 (REBAK through ZBIRY) - 334

 = 1 option is on.
 Data set = TOLABS
 LATP = 4

 |-----------------------------|
 |Example of Option array Usage|
 |-----------------------------|
 To illustrate the usage of the option array, let us suppose that
 the user has the following nonstandard requirements:

 a) Wants to change from minimization to maximization problem.
 b) Wants to limit the number of simplex steps to 100.
 c) Wants to save the partial results after 100 steps on
 Fortran unit 2.

 After these 100 steps are completed the user wants to continue the
 problem (until completed) using the partial results saved on
 Fortran unit 2. Here are the entries of the array PRGOPT(*)
 that accomplish these tasks. (The definitions of the other
 required input parameters are not shown.)

 CHANGE TO A MAXIMIZATION PROBLEM; KEY=50.
 PRGOPT(01)=4
 PRGOPT(02)=50
 PRGOPT(03)=1

 LIMIT THE NUMBER OF SIMPLEX STEPS TO 100; KEY=58.
 PRGOPT(04)=8
 PRGOPT(05)=58
 PRGOPT(06)=1
 PRGOPT(07)=100

 SAVE THE PARTIAL RESULTS, AFTER 100 STEPS, ON FORTRAN
 UNIT 2; KEY=57.
 PRGOPT(08)=11
 PRGOPT(09)=57
 PRGOPT(10)=1

 NO MORE OPTIONS TO CHANGE.
 PRGOPT(11)=1
 The user makes the CALL statement for SPLP() at this point.
 Now to restart, using the partial results after 100 steps, define
 new values for the array PRGOPT(*):

 AGAIN INFORM SPLP() THAT THIS IS A MAXIMIZATION PROBLEM.
 PRGOPT(01)=4
 PRGOPT(02)=50
 PRGOPT(03)=1

 RESTART, USING SAVED PARTIAL RESULTS; KEY=55.
 PRGOPT(04)=7
 PRGOPT(05)=55
 PRGOPT(06)=1

 NO MORE OPTIONS TO CHANGE. THE SUBPROGRAM SPLP() IS NO LONGER
 LIMITED TO 100 SIMPLEX STEPS BUT WILL RUN UNTIL COMPLETION OR
 MAX.=3*(MRELAS+NVARS) ITERATIONS.
 PRGOPT(07)=1
 The user now makes a CALL to subprogram SPLP() to compute the
 solution.

SLATEC5 (REBAK through ZBIRY) - 335

 |---|
 |End of Usage of SPLP() Subprogram Options.|
 |---|

 |--|
 |List of SPLP() Error and Diagnostic Messages.|
 |--|
 This section may be required to understand the meanings of the
 error flag =-INFO that may be returned from SPLP().

 -----1. There is no set of values for x and w that satisfy A*x=w and
 the stated bounds. The problem can be made feasible by ident-
 ifying components of w that are now infeasible and then rede-
 signating them as free variables. Subprogram SPLP() only
 identifies an infeasible problem; it takes no other action to
 change this condition. Message:
 SPLP(). THE PROBLEM APPEARS TO BE INFEASIBLE.
 ERROR NUMBER = 1

 2. One of the variables in either the vector x or w was con-
 strained at a bound. Otherwise the objective function value,
 (transpose of costs)*x, would not have a finite optimum.
 Message:
 SPLP(). THE PROBLEM APPEARS TO HAVE NO FINITE SOLN.
 ERROR NUMBER = 2

 3. Both of the conditions of 1. and 2. above have occurred.
 Message:
 SPLP(). THE PROBLEM APPEARS TO BE INFEASIBLE AND TO
 HAVE NO FINITE SOLN.
 ERROR NUMBER = 3

 -----4. The REAL and INTEGER working arrays, WORK(*) and IWORK(*),
 are not long enough. The values (I1) and (I2) in the message
 below will give you the minimum length required. Also redefine
 LW and LIW, the lengths of these arrays. Message:
 SPLP(). WORK OR IWORK IS NOT LONG ENOUGH. LW MUST BE (I1)
 AND LIW MUST BE (I2).
 IN ABOVE MESSAGE, I1= 0
 IN ABOVE MESSAGE, I2= 0
 ERROR NUMBER = 4

 -----5. and 6. These error messages often mean that one or more
 arguments were left out of the call statement to SPLP() or
 that the values of MRELAS and NVARS have been over-written
 by garbage. Messages:
 SPLP(). VALUE OF MRELAS MUST BE .GT.0. NOW=(I1).
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 5

 SPLP(). VALUE OF NVARS MUST BE .GT.0. NOW=(I1).
 IN ABOVE MESSAGE, I1= 0
 ERROR NUMBER = 6

 -----7.,8., and 9. These error messages can occur as the data matrix
 is being defined by either USRMAT() or the user-supplied sub-
 program, 'NAME'(). They would indicate a mistake in the contents
 of DATTRV(*), the user-written subprogram or that data has been
 over-written.
 Messages:

SLATEC5 (REBAK through ZBIRY) - 336

 SPLP(). MORE THAN 2*NVARS*MRELAS ITERS. DEFINING OR UPDATING
 MATRIX DATA.
 ERROR NUMBER = 7

 SPLP(). ROW INDEX (I1) OR COLUMN INDEX (I2) IS OUT OF RANGE.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, I2= 12
 ERROR NUMBER = 8

 SPLP(). INDICATION FLAG (I1) FOR MATRIX DATA MUST BE
 EITHER 0 OR 1.
 IN ABOVE MESSAGE, I1= 12
 ERROR NUMBER = 9

 -----10. and 11. The type of bound (even no bound) and the bounds
 must be specified for each independent variable. If an independent
 variable has both an upper and lower bound, the bounds must be
 consistent. The lower bound must be .LE. the upper bound.
 Messages:
 SPLP(). INDEPENDENT VARIABLE (I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 10

 SPLP(). LOWER BOUND (R1) AND UPPER BOUND (R2) FOR INDEP.
 VARIABLE (I1) ARE NOT CONSISTENT.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= -.1000000000E+01
 ERROR NUMBER = 11

 -----12. and 13. The type of bound (even no bound) and the bounds
 must be specified for each dependent variable. If a dependent
 variable has both an upper and lower bound, the bounds must be
 consistent. The lower bound must be .LE. the upper bound.
 Messages:
 SPLP(). DEPENDENT VARIABLE (I1) IS NOT DEFINED.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 12

 SPLP(). LOWER BOUND (R1) AND UPPER BOUND (R2) FOR DEP.
 VARIABLE (I1) ARE NOT CONSISTENT.
 IN ABOVE MESSAGE, I1= 1
 IN ABOVE MESSAGE, R1= 0.
 IN ABOVE MESSAGE, R2= -.1000000000E+01
 ERROR NUMBER = 13

 -----14. - 21. These error messages can occur when processing the
 option array, PRGOPT(*), supplied by the user. They would
 indicate a mistake in defining PRGOPT(*) or that data has been
 over-written. See heading Usage of SPLP()
 Subprogram Options, for details on how to define PRGOPT(*).
 Messages:
 SPLP(). THE USER OPTION ARRAY HAS UNDEFINED DATA.
 ERROR NUMBER = 14

 SPLP(). OPTION ARRAY PROCESSING IS CYCLING.
 ERROR NUMBER = 15

 SPLP(). AN INDEX OF USER-SUPPLIED BASIS IS OUT OF RANGE.
 ERROR NUMBER = 16

SLATEC5 (REBAK through ZBIRY) - 337

 SPLP(). SIZE PARAMETERS FOR MATRIX MUST BE SMALLEST AND LARGEST
 MAGNITUDES OF NONZERO ENTRIES.
 ERROR NUMBER = 17

 SPLP(). THE NUMBER OF REVISED SIMPLEX STEPS BETWEEN CHECK-POINTS
 MUST BE POSITIVE.
 ERROR NUMBER = 18

 SPLP(). FILE NUMBERS FOR SAVED DATA AND MATRIX PAGES MUST BE
 POSITIVE AND NOT EQUAL.
 ERROR NUMBER = 19

 SPLP(). USER-DEFINED VALUE OF LAMAT (I1)
 MUST BE .GE. NVARS+7.
 IN ABOVE MESSAGE, I1= 1
 ERROR NUMBER = 20

 SPLP(). USER-DEFINED VALUE OF LBM MUST BE .GE. 0.
 ERROR NUMBER = 21

 -----22. The user-option, number 62, to check the size of the matrix
 data has been used. An element of the matrix does not lie within
 the range of ASMALL and ABIG, parameters provided by the user.
 (See the heading: Usage of SPLP() Subprogram Options,
 for details about this feature.) Message:
 SPLP(). A MATRIX ELEMENT'S SIZE IS OUT OF THE SPECIFIED RANGE.
 ERROR NUMBER = 22

 -----23. The user has provided an initial basis that is singular.
 In this case, the user can remedy this problem by letting
 subprogram SPLP() choose its own initial basis. Message:
 SPLP(). A SINGULAR INITIAL BASIS WAS ENCOUNTERED.
 ERROR NUMBER = 23

 -----24. The user has provided an initial basis which is infeasible.
 The x and w values it defines do not satisfy A*x=w and the stated
 bounds. In this case, the user can let subprogram SPLP()
 choose its own initial basis. Message:
 SPLP(). AN INFEASIBLE INITIAL BASIS WAS ENCOUNTERED.
 ERROR NUMBER = 24

 -----25. Subprogram SPLP() has completed the maximum specified number
 of iterations. (The nominal maximum number is 3*(MRELAS+NVARS).)
 The results, necessary to continue on from
 this point, can be saved on Fortran unit 2 by activating option
 KEY=57. If the user anticipates continuing the calculation, then
 the contents of Fortran unit 2 must be retained intact. This
 is not done by subprogram SPLP(), so the user needs to save unit
 2 by using the appropriate system commands. Message:
 SPLP(). MAX. ITERS. (I1) TAKEN. UP-TO-DATE RESULTS
 SAVED ON FILE (I2). IF(I2)=0, NO SAVE.
 IN ABOVE MESSAGE, I1= 500
 IN ABOVE MESSAGE, I2= 2
 ERROR NUMBER = 25

 -----26. This error should never happen. Message:
 SPLP(). MOVED TO A SINGULAR POINT. THIS SHOULD NOT HAPPEN.
 ERROR NUMBER = 26

SLATEC5 (REBAK through ZBIRY) - 338

 -----27. The subprogram LA05A(), which decomposes the basis matrix,
 has returned with an error flag (R1). (See the document,
 "Fortran subprograms for handling sparse linear programming
 bases", AERE-R8269, J.K. Reid, Jan., 1976, H.M. Stationery Office,
 for an explanation of this error.) Message:
 SPLP(). LA05A() RETURNED ERROR FLAG (R1) BELOW.
 IN ABOVE MESSAGE, R1= -.5000000000E+01
 ERROR NUMBER = 27

 -----28. The sparse linear solver package, LA05*(), requires more
 space. The value of LBM must be increased. See the companion
 document, Usage of SPLP() Subprogram Options, for details on how
 to increase the value of LBM. Message:
 SPLP(). SHORT ON STORAGE FOR LA05*() PACKAGE. USE PRGOPT(*)
 TO GIVE MORE.
 ERROR NUMBER = 28

 -----29. The row dimension of the two-dimensional Fortran array,
 the number of constraint equations (MRELAS), and the number
 of variables (NVARS), were not passed to the subprogram
 FULMAT(). See KEY = 68 for details. Message:
 FULMAT() OF SPLP() PACKAGE. ROW DIM., MRELAS, NVARS ARE
 MISSING FROM PRGOPT(*).
 ERROR NUMBER = 29

 |--|
 |End of List of SPLP() Error and Diagnostic Messages. |
 |--|
 ***REFERENCES R. J. Hanson and K. L. Hiebert, A sparse linear
 programming subprogram, Report SAND81-0297, Sandia
 National Laboratories, 1981.
 ***ROUTINES CALLED SPLPMN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 811215 DATE WRITTEN
 890605 Corrected references to XERRWV. (WRB)
 890605 Removed unreferenced labels. (WRB)
 890605 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 339

SPOCO

 SUBROUTINE SPOCO (A, LDA, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE SPOCO
 ***PURPOSE Factor a real symmetric positive definite matrix
 and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPOCO-S, DPOCO-D, CPOCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPOCO factors a real symmetric positive definite matrix
 and estimates the condition of the matrix.

 If RCOND is not needed, SPOFA is slightly faster.
 To solve A*X = B , follow SPOCO by SPOSL.
 To compute INVERSE(A)*C , follow SPOCO by SPOSL.
 To compute DETERMINANT(A) , follow SPOCO by SPODI.
 To compute INVERSE(A) , follow SPOCO by SPODI.

 On Entry

 A REAL(LDA, N)
 the symmetric matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A = TRANS(R)*R
 where TRANS(R) is the transpose.
 The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that

SLATEC5 (REBAK through ZBIRY) - 340

 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SPOFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 341

SPODI

 SUBROUTINE SPODI (A, LDA, N, DET, JOB)
 ***BEGIN PROLOGUE SPODI
 ***PURPOSE Compute the determinant and inverse of a certain real
 symmetric positive definite matrix using the factors
 computed by SPOCO, SPOFA or SQRDC.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B, D3B1B
 ***TYPE SINGLE PRECISION (SPODI-S, DPODI-D, CPODI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPODI computes the determinant and inverse of a certain
 real symmetric positive definite matrix (see below)
 using the factors computed by SPOCO, SPOFA or SQRDC.

 On Entry

 A REAL(LDA, N)
 the output A from SPOCO or SPOFA
 or the output X from SQRDC.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A If SPOCO or SPOFA was used to factor A , then
 SPODI produces the upper half of INVERSE(A) .
 If SQRDC was used to decompose X , then
 SPODI produces the upper half of INVERSE(TRANS(X)*X),
 where TRANS(X) is the transpose.
 Elements of A below the diagonal are unchanged.
 If the units digit of JOB is zero, A is unchanged.

 DET REAL(2)
 determinant of A or of TRANS(X)*X if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly

SLATEC5 (REBAK through ZBIRY) - 342

 and if SPOCO or SPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 343

SPOFA

 SUBROUTINE SPOFA (A, LDA, N, INFO)
 ***BEGIN PROLOGUE SPOFA
 ***PURPOSE Factor a real symmetric positive definite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPOFA-S, DPOFA-D, CPOFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPOFA factors a real symmetric positive definite matrix.

 SPOFA is usually called by SPOCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for SPOCO) = (1 + 18/N)*(Time for SPOFA) .

 On Entry

 A REAL(LDA, N)
 the symmetric matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A = TRANS(R)*R
 where TRANS(R) is the transpose.
 The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 344

SPOFS

 SUBROUTINE SPOFS (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE SPOFS
 ***PURPOSE Solve a positive definite symmetric system of linear
 equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPOFS-S, DPOFS-D, CPOFS-C)
 ***KEYWORDS HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SPOFS solves a real positive definite symmetric
 NxN system of single precision linear equations using
 LINPACK subroutines SPOCO and SPOSL. That is, if A is an
 NxN real positive definite symmetric matrix and if X and B
 are real N-vectors, then SPOFS solves the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices R and R-TRANSPOSE. These factors are used to
 find the solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to solve only (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, and N must not have been altered by the user following
 factorization (ITASK=1). IND will not be changed by SPOFS
 in this case.

 Argument Description ***

 A REAL(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix. Only
 the upper triangle, including the diagonal, of the
 coefficient matrix need be entered and will subse-
 quently be referenced and changed by the routine.
 on return, contains in its upper triangle an upper
 triangular matrix R such that A = (R-TRANSPOSE) * R .
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (Terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1. (Terminal error message IND=-2)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK = 1, the matrix A is factored and then the

SLATEC5 (REBAK through ZBIRY) - 345

 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A.
 If ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 see error message corresponding to IND below.
 WORK REAL(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 Terminal The matrix A is computationally singular or
 is not positive definite. A solution
 has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the
 matrix A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED R1MACH, SPOCO, SPOSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800509 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 346

SPOIR

 SUBROUTINE SPOIR (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE SPOIR
 ***PURPOSE Solve a positive definite symmetric system of linear
 equations. Iterative refinement is used to obtain an error
 estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPOIR-S, CPOIR-C)
 ***KEYWORDS HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine SPOIR solves a real positive definite symmetric
 NxN system of single precision linear equations using LINPACK
 subroutines SPOFA and SPOSL. One pass of iterative refine-
 ment is used only to obtain an estimate of the accuracy. That
 is, if A is an NxN real positive definite symmetric matrix
 and if X and B are real N-vectors, then SPOIR solves the
 equation

 A*X=B.

 The matrix A is first factored into upper and lower
 triangular matrices R and R-TRANSPOSE. These
 factors are used to calculate the solution, X.
 Then the residual vector is found and used
 to calculate an estimate of the relative error, IND.
 IND estimates the accuracy of the solution only when the
 input matrix and the right hand side are represented
 exactly in the computer and does not take into account
 any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N, and WORK must not have been altered by the user
 following factorization (ITASK=1). IND will not be changed
 by SPOIR in this case.

 Argument Description ***
 A REAL(LDA,N)
 the doubly subscripted array with dimension (LDA,N)
 which contains the coefficient matrix. Only the
 upper triangle, including the diagonal, of the
 coefficient matrix need be entered. A is not
 altered by the routine.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (Terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater than
 or equal to one. (Terminal error message IND=-2)
 V REAL(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a

SLATEC5 (REBAK through ZBIRY) - 347

 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 If ITASK = 1, the matrix A is factored and then the
 linear equation is solved.
 If ITASK .GT. 1, the equation is solved using the existing
 factored matrix A (stored in WORK).
 If ITASK .LT. 1, then terminal terminal error IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X. IND=75 means
 that the solution vector X is zero.
 LT. 0 See error message corresponding to IND below.
 WORK REAL(N*(N+1))
 a singly subscripted array of dimension at least N*(N+1).

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than one.
 IND=-3 terminal ITASK is less than one.
 IND=-4 Terminal The matrix A is computationally singular
 or is not positive definite.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 Note- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED DSDOT, R1MACH, SASUM, SCOPY, SPOFA, SPOSL, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800528 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 348

SPOSL

 SUBROUTINE SPOSL (A, LDA, N, B)
 ***BEGIN PROLOGUE SPOSL
 ***PURPOSE Solve the real symmetric positive definite linear system
 using the factors computed by SPOCO or SPOFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPOSL-S, DPOSL-D, CPOSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPOSL solves the real symmetric positive definite system
 A * X = B
 using the factors computed by SPOCO or SPOFA.

 On Entry

 A REAL(LDA, N)
 the output from SPOCO or SPOFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 B REAL(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically, this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SPOCO(A,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL SPOSL(A,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC5 (REBAK through ZBIRY) - 349

 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 350

SPPCO

 SUBROUTINE SPPCO (AP, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE SPPCO
 ***PURPOSE Factor a symmetric positive definite matrix stored in
 packed form and estimate the condition number of the
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPPCO factors a real symmetric positive definite matrix
 stored in packed form
 and estimates the condition of the matrix.

 If RCOND is not needed, SPPFA is slightly faster.
 To solve A*X = B , follow SPPCO by SPPSL.
 To compute INVERSE(A)*C , follow SPPCO by SPPSL.
 To compute DETERMINANT(A) , follow SPPCO by SPPDI.
 To compute INVERSE(A) , follow SPPCO by SPPDI.

 On Entry

 AP REAL (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = TRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that

SLATEC5 (REBAK through ZBIRY) - 351

 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SPPFA, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 352

SPPDI

 SUBROUTINE SPPDI (AP, N, DET, JOB)
 ***BEGIN PROLOGUE SPPDI
 ***PURPOSE Compute the determinant and inverse of a real symmetric
 positive definite matrix using factors from SPPCO or SPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B, D3B1B
 ***TYPE SINGLE PRECISION (SPPDI-S, DPPDI-D, CPPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPPDI computes the determinant and inverse
 of a real symmetric positive definite matrix
 using the factors computed by SPPCO or SPPFA .

 On Entry

 AP REAL (N*(N+1)/2)
 the output from SPPCO or SPPFA.

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 AP the upper triangular half of the inverse .
 The strict lower triangle is unaltered.

 DET REAL(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if SPOCO or SPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC5 (REBAK through ZBIRY) - 353

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 354

SPPERM

 SUBROUTINE SPPERM (X, N, IPERM, IER)
 ***BEGIN PROLOGUE SPPERM
 ***PURPOSE Rearrange a given array according to a prescribed
 permutation vector.
 ***LIBRARY SLATEC
 ***CATEGORY N8
 ***TYPE SINGLE PRECISION (SPPERM-S, DPPERM-D, IPPERM-I, HPPERM-H)
 ***KEYWORDS APPLICATION OF PERMUTATION TO DATA VECTOR
 ***AUTHOR McClain, M. A., (NIST)
 Rhoads, G. S., (NBS)
 ***DESCRIPTION

 SPPERM rearranges the data vector X according to the
 permutation IPERM: X(I) <--- X(IPERM(I)). IPERM could come
 from one of the sorting routines IPSORT, SPSORT, DPSORT or
 HPSORT.

 Description of Parameters
 X - input/output -- real array of values to be rearranged.
 N - input -- number of values in real array X.
 IPERM - input -- permutation vector.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if IPERM is not a valid permutation.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 901004 DATE WRITTEN
 920507 Modified by M. McClain to revise prologue text.
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 355

SPPFA

 SUBROUTINE SPPFA (AP, N, INFO)
 ***BEGIN PROLOGUE SPPFA
 ***PURPOSE Factor a real symmetric positive definite matrix stored in
 packed form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPPFA-S, DPPFA-D, CPPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPPFA factors a real symmetric positive definite matrix
 stored in packed form.

 SPPFA is usually called by SPPCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for SPPCO) = (1 + 18/N)*(Time for SPPFA) .

 On Entry

 AP REAL (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = TRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K if the leading minor of order K is not
 positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC5 (REBAK through ZBIRY) - 356

 ***ROUTINES CALLED SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 357

SPPSL

 SUBROUTINE SPPSL (AP, N, B)
 ***BEGIN PROLOGUE SPPSL
 ***PURPOSE Solve the real symmetric positive definite system using
 the factors computed by SPPCO or SPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1B
 ***TYPE SINGLE PRECISION (SPPSL-S, DPPSL-D, CPPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SPPSL solves the real symmetric positive definite system
 A * X = B
 using the factors computed by SPPCO or SPPFA.

 On Entry

 AP REAL (N*(N+1)/2)
 the output from SPPCO or SPPFA.

 N INTEGER
 the order of the matrix A .

 B REAL(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically, this indicates
 singularity, but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SPPCO(AP,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL SPPSL(AP,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC5 (REBAK through ZBIRY) - 358

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 359

SPSORT

 SUBROUTINE SPSORT (X, N, IPERM, KFLAG, IER)
 ***BEGIN PROLOGUE SPSORT
 ***PURPOSE Return the permutation vector generated by sorting a given
 array and, optionally, rearrange the elements of the array.
 The array may be sorted in increasing or decreasing order.
 A slightly modified quicksort algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A1B, N6A2B
 ***TYPE SINGLE PRECISION (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
 ***KEYWORDS NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
 ***AUTHOR Jones, R. E., (SNLA)
 Rhoads, G. S., (NBS)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 SPSORT returns the permutation vector IPERM generated by sorting
 the array X and, optionally, rearranges the values in X. X may
 be sorted in increasing or decreasing order. A slightly modified
 quicksort algorithm is used.

 IPERM is such that X(IPERM(I)) is the Ith value in the rearrangement
 of X. IPERM may be applied to another array by calling IPPERM,
 SPPERM, DPPERM or HPPERM.

 The main difference between SPSORT and its active sorting equivalent
 SSORT is that the data are referenced indirectly rather than
 directly. Therefore, SPSORT should require approximately twice as
 long to execute as SSORT. However, SPSORT is more general.

 Description of Parameters
 X - input/output -- real array of values to be sorted.
 If ABS(KFLAG) = 2, then the values in X will be
 rearranged on output; otherwise, they are unchanged.
 N - input -- number of values in array X to be sorted.
 IPERM - output -- permutation array such that IPERM(I) is the
 index of the value in the original order of the
 X array that is in the Ith location in the sorted
 order.
 KFLAG - input -- control parameter:
 = 2 means return the permutation vector resulting from
 sorting X in increasing order and sort X also.
 = 1 means return the permutation vector resulting from
 sorting X in increasing order and do not sort X.
 = -1 means return the permutation vector resulting from
 sorting X in decreasing order and do not sort X.
 = -2 means return the permutation vector resulting from
 sorting X in decreasing order and sort X also.
 IER - output -- error indicator:
 = 0 if no error,
 = 1 if N is zero or negative,
 = 2 if KFLAG is not 2, 1, -1, or -2.
 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)

SLATEC5 (REBAK through ZBIRY) - 360

 761101 DATE WRITTEN
 761118 Modified by John A. Wisniewski to use the Singleton
 quicksort algorithm.
 870423 Modified by Gregory S. Rhoads for passive sorting with the
 option for the rearrangement of the original data.
 890620 Algorithm for rearranging the data vector corrected by R.
 Boisvert.
 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
 891128 Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
 920507 Modified by M. McClain to revise prologue text.
 920818 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (SMR, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 361

SPTSL

 SUBROUTINE SPTSL (N, D, E, B)
 ***BEGIN PROLOGUE SPTSL
 ***PURPOSE Solve a positive definite tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B2A
 ***TYPE SINGLE PRECISION (SPTSL-S, DPTSL-D, CPTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
 TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 SPTSL given a positive definite tridiagonal matrix and a right
 hand side will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 D REAL(N)
 is the diagonal of the tridiagonal matrix.
 On output, D is destroyed.

 E REAL(N)
 is the offdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the
 offdiagonal.

 B REAL(N)
 is the right hand side vector.

 On Return

 B contains the solution.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890505 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 362

SQRDC

 SUBROUTINE SQRDC (X, LDX, N, P, QRAUX, JPVT, WORK, JOB)
 ***BEGIN PROLOGUE SQRDC
 ***PURPOSE Use Householder transformations to compute the QR
 factorization of an N by P matrix. Column pivoting is a
 users option.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D5
 ***TYPE SINGLE PRECISION (SQRDC-S, DQRDC-D, CQRDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 QR DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SQRDC uses Householder transformations to compute the QR
 factorization of an N by P matrix X. Column pivoting
 based on the 2-norms of the reduced columns may be
 performed at the user's option.

 On Entry

 X REAL(LDX,P), where LDX .GE. N.
 X contains the matrix whose decomposition is to be
 computed.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix X.

 P INTEGER.
 P is the number of columns of the matrix X.

 JPVT INTEGER(P).
 JPVT contains integers that control the selection
 of the pivot columns. The K-th column X(K) of X
 is placed in one of three classes according to the
 value of JPVT(K).

 If JPVT(K) .GT. 0, then X(K) is an initial
 column.

 If JPVT(K) .EQ. 0, then X(K) is a free column.

 If JPVT(K) .LT. 0, then X(K) is a final column.

 Before the decomposition is computed, initial columns
 are moved to the beginning of the array X and final
 columns to the end. Both initial and final columns
 are frozen in place during the computation and only
 free columns are moved. At the K-th stage of the
 reduction, if X(K) is occupied by a free column,
 it is interchanged with the free column of largest
 reduced norm. JPVT is not referenced if
 JOB .EQ. 0.

SLATEC5 (REBAK through ZBIRY) - 363

 WORK REAL(P).
 WORK is a work array. WORK is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 If JOB .EQ. 0, no pivoting is done.
 If JOB .NE. 0, pivoting is done.

 On Return

 X X contains in its upper triangle the upper
 triangular matrix R of the QR factorization.
 Below its diagonal X contains information from
 which the orthogonal part of the decomposition
 can be recovered. Note that if pivoting has
 been requested, the decomposition is not that
 of the original matrix X but that of X
 with its columns permuted as described by JPVT.

 QRAUX REAL(P).
 QRAUX contains further information required to recover
 the orthogonal part of the decomposition.

 JPVT JPVT(K) contains the index of the column of the
 original matrix that has been interchanged into
 the K-th column, if pivoting was requested.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT, SNRM2, SSCAL, SSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 364

SQRSL

 SUBROUTINE SQRSL (X, LDX, N, K, QRAUX, Y, QY, QTY, B, RSD, XB,
 + JOB, INFO)
 ***BEGIN PROLOGUE SQRSL
 ***PURPOSE Apply the output of SQRDC to compute coordinate transfor-
 mations, projections, and least squares solutions.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D9, D2A1
 ***TYPE SINGLE PRECISION (SQRSL-S, DQRSL-D, CQRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 SOLVE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SQRSL applies the output of SQRDC to compute coordinate
 transformations, projections, and least squares solutions.
 For K .LE. MIN(N,P), let XK be the matrix

 XK = (X(JPVT(1)),X(JPVT(2)), ... ,X(JPVT(K)))

 formed from columns JPVT(1), ... ,JPVT(K) of the original
 N x P matrix X that was input to SQRDC (if no pivoting was
 done, XK consists of the first K columns of X in their
 original order). SQRDC produces a factored orthogonal matrix Q
 and an upper triangular matrix R such that

 XK = Q * (R)
 (0)

 This information is contained in coded form in the arrays
 X and QRAUX.

 On Entry

 X REAL(LDX,P)
 X contains the output of SQRDC.

 LDX INTEGER
 LDX is the leading dimension of the array X.

 N INTEGER
 N is the number of rows of the matrix XK. It must
 have the same value as N in SQRDC.

 K INTEGER
 K is the number of columns of the matrix XK. K
 must not be greater than MIN(N,P), where P is the
 same as in the calling sequence to SQRDC.

 QRAUX REAL(P)
 QRAUX contains the auxiliary output from SQRDC.

 Y REAL(N)
 Y contains an N-vector that is to be manipulated
 by SQRSL.

 JOB INTEGER

SLATEC5 (REBAK through ZBIRY) - 365

 JOB specifies what is to be computed. JOB has
 the decimal expansion ABCDE, with the following
 meaning.

 If A .NE. 0, compute QY.
 If B,C,D, or E .NE. 0, compute QTY.
 If C .NE. 0, compute B.
 If D .NE. 0, compute RSD.
 If E .NE. 0, compute XB.

 Note that a request to compute B, RSD, or XB
 automatically triggers the computation of QTY, for
 which an array must be provided in the calling
 sequence.

 On Return

 QY REAL(N).
 QY contains Q*Y, if its computation has been
 requested.

 QTY REAL(N).
 QTY contains TRANS(Q)*Y, if its computation has
 been requested. Here TRANS(Q) is the
 transpose of the matrix Q.

 B REAL(K)
 B contains the solution of the least squares problem

 minimize norm2(Y - XK*B),

 if its computation has been requested. (Note that
 if pivoting was requested in SQRDC, the J-th
 component of B will be associated with column JPVT(J)
 of the original matrix X that was input into SQRDC.)

 RSD REAL(N).
 RSD contains the least squares residual Y - XK*B,
 if its computation has been requested. RSD is
 also the orthogonal projection of Y onto the
 orthogonal complement of the column space of XK.

 XB REAL(N).
 XB contains the least squares approximation XK*B,
 if its computation has been requested. XB is also
 the orthogonal projection of Y onto the column space
 of X.

 INFO INTEGER.
 INFO is zero unless the computation of B has
 been requested and R is exactly singular. In
 this case, INFO is the index of the first zero
 diagonal element of R and B is left unaltered.

 The parameters QY, QTY, B, RSD, and XB are not referenced
 if their computation is not requested and in this case
 can be replaced by dummy variables in the calling program.
 To save storage, the user may in some cases use the same
 array for different parameters in the calling sequence. A
 frequently occurring example is when one wishes to compute

SLATEC5 (REBAK through ZBIRY) - 366

 any of B, RSD, or XB and does not need Y or QTY. In this
 case one may identify Y, QTY, and one of B, RSD, or XB, while
 providing separate arrays for anything else that is to be
 computed. Thus the calling sequence

 CALL SQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)

 will result in the computation of B and RSD, with RSD
 overwriting Y. More generally, each item in the following
 list contains groups of permissible identifications for
 a single calling sequence.

 1. (Y,QTY,B) (RSD) (XB) (QY)

 2. (Y,QTY,RSD) (B) (XB) (QY)

 3. (Y,QTY,XB) (B) (RSD) (QY)

 4. (Y,QY) (QTY,B) (RSD) (XB)

 5. (Y,QY) (QTY,RSD) (B) (XB)

 6. (Y,QY) (QTY,XB) (B) (RSD)

 In any group the value returned in the array allocated to
 the group corresponds to the last member of the group.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SCOPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 367

SROT

 SUBROUTINE SROT (N, SX, INCX, SY, INCY, SC, SS)
 ***BEGIN PROLOGUE SROT
 ***PURPOSE Apply a plane Givens rotation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A8
 ***TYPE SINGLE PRECISION (SROT-S, DROT-D, CSROT-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, PLANE ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY
 SC element of rotation matrix
 SS element of rotation matrix

 --Output--
 SX rotated vector SX (unchanged if N .LE. 0)
 SY rotated vector SY (unchanged if N .LE. 0)

 Multiply the 2 x 2 matrix (SC SS) times the 2 x N matrix (SX**T)
 (-SS SC) (SY**T)
 where **T indicates transpose. The elements of SX are in
 SX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
 LX = 1+(1-N)*INCX, and similarly for SY using LY and INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 368

SROTG

 SUBROUTINE SROTG (SA, SB, SC, SS)
 ***BEGIN PROLOGUE SROTG
 ***PURPOSE Construct a plane Givens rotation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE SINGLE PRECISION (SROTG-S, DROTG-D, CROTG-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 SA single precision scalar
 SB single precision scalar

 --Output--
 SA single precision result R
 SB single precision result Z
 SC single precision result
 SS single precision result

 Construct the Givens transformation

 (SC SS)
 G = () , SC**2 + SS**2 = 1 ,
 (-SS SC)

 which zeros the second entry of the 2-vector (SA,SB)**T.

 The quantity R = (+/-)SQRT(SA**2 + SB**2) overwrites SA in
 storage. The value of SB is overwritten by a value Z which
 allows SC and SS to be recovered by the following algorithm:

 If Z=1 set SC=0.0 and SS=1.0
 If ABS(Z) .LT. 1 set SC=SQRT(1-Z**2) and SS=Z
 If ABS(Z) .GT. 1 set SC=1/Z and SS=SQRT(1-SC**2)

 Normally, the subprogram SROT(N,SX,INCX,SY,INCY,SC,SS) will
 next be called to apply the transformation to a 2 by N matrix.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC5 (REBAK through ZBIRY) - 369

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 370

SROTM

 SUBROUTINE SROTM (N, SX, INCX, SY, INCY, SPARAM)
 ***BEGIN PROLOGUE SROTM
 ***PURPOSE Apply a modified Givens transformation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A8
 ***TYPE SINGLE PRECISION (SROTM-S, DROTM-D)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY
 SPARAM 5-element vector. SPARAM(1) is SFLAG described below.
 Locations 2-5 of SPARAM contain elements of the
 transformation matrix H described below.

 --Output--
 SX rotated vector (unchanged if N .LE. 0)
 SY rotated vector (unchanged if N .LE. 0)

 Apply the modified Givens transformation, H, to the 2 by N matrix
 (SX**T)
 (SY**T) , where **T indicates transpose. The elements of SX are
 in SX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX .GE. 0, else
 LX = 1+(1-N)*INCX, and similarly for SY using LY and INCY.

 With SPARAM(1)=SFLAG, H has one of the following forms:

 SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0

 (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
 H=() () () ()
 (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).

 See SROTMG for a description of data storage in SPARAM.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)

SLATEC5 (REBAK through ZBIRY) - 371

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 372

SROTMG

 SUBROUTINE SROTMG (SD1, SD2, SX1, SY1, SPARAM)
 ***BEGIN PROLOGUE SROTMG
 ***PURPOSE Construct a modified Givens transformation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE SINGLE PRECISION (SROTMG-S, DROTMG-D)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, MODIFIED GIVENS ROTATION, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 SD1 single precision scalar
 SD2 single precision scalar
 SX1 single precision scalar
 SY2 single precision scalar
 SPARAM S.P. 5-vector. SPARAM(1)=SFLAG defined below.
 Locations 2-5 contain the rotation matrix.

 --Output--
 SD1 changed to represent the effect of the transformation
 SD2 changed to represent the effect of the transformation
 SX1 changed to represent the effect of the transformation
 SY2 unchanged

 Construct the modified Givens transformation matrix H which zeros
 the second component of the 2-vector (SQRT(SD1)*SX1,SQRT(SD2)*
 SY2)**T.
 With SPARAM(1)=SFLAG, H has one of the following forms:

 SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0

 (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
 H=() () () ()
 (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).

 Locations 2-5 of SPARAM contain SH11, SH21, SH12, and SH22,
 respectively. (Values of 1.E0, -1.E0, or 0.E0 implied by the
 value of SPARAM(1) are not stored in SPARAM.)

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780301 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920316 Prologue corrected. (WRB)

SLATEC5 (REBAK through ZBIRY) - 373

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 374

SS2LT

 SUBROUTINE SS2LT (N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL)
 ***BEGIN PROLOGUE SS2LT
 ***PURPOSE Lower Triangle Preconditioner SLAP Set Up.
 Routine to store the lower triangle of a matrix stored
 in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SS2LT-S, DS2LT-D)
 ***KEYWORDS LINEAR SYSTEM, LOWER TRIANGLE, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NEL, IEL(NEL), JEL(NEL)
 REAL A(NELT), EL(NEL)

 CALL SS2LT(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NEL :OUT Integer.
 Number of non-zeros in the lower triangle of A. Also
 corresponds to the length of the IEL, JEL, EL arrays.
 IEL :OUT Integer IEL(NEL).
 JEL :OUT Integer JEL(NEL).
 EL :OUT Real EL(NEL).
 IEL, JEL, EL contain the lower triangle of the A matrix
 stored in SLAP Column format. See "Description", below,
 for more details bout the SLAP Column format.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix

SLATEC5 (REBAK through ZBIRY) - 375

 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 376

SS2Y

 SUBROUTINE SS2Y (N, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE SS2Y
 ***PURPOSE SLAP Triad to SLAP Column Format Converter.
 Routine to convert from the SLAP Triad to SLAP Column
 format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B9
 ***TYPE SINGLE PRECISION (SS2Y-S, DS2Y-D)
 ***KEYWORDS LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 REAL A(NELT)

 CALL SS2Y(N, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is used, this format is
 translated to the SLAP Column format by this routine.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.

 *Description:
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures. If the SLAP Triad format is give
 as input then this routine transforms it into SLAP Column
 format. The way this routine tells which format is given as
 input is to look at JA(N+1). If JA(N+1) = NELT+1 then we
 have the SLAP Column format. If that equality does not hold
 then it is assumed that the IA, JA, A arrays contain the
 SLAP Triad format.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies

SLATEC5 (REBAK through ZBIRY) - 377

 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***REFERENCES (NONE)
 ***ROUTINES CALLED QS2I1R
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC

SLATEC5 (REBAK through ZBIRY) - 378

 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Corrected C***FIRST EXECUTABLE STATEMENT line. (FNF)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 379

SSBMV

 SUBROUTINE SSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
 $ INCY)
 ***BEGIN PROLOGUE SSBMV
 ***PURPOSE Multiply a real vector by a real symmetric band matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSBMV-S, DSBMV-D, CSBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSBMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric band matrix, with k super-diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the band matrix A is being supplied as
 follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A is
 being supplied.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of super-diagonals of the
 matrix A. K must satisfy 0 .le. K.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the symmetric matrix, supplied column by
 column, with the leading diagonal of the matrix in row

SLATEC5 (REBAK through ZBIRY) - 380

 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer the upper
 triangular part of a symmetric band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the symmetric matrix, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer the lower
 triangular part of a symmetric band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - REAL array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y - REAL array of DIMENSION at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

SLATEC5 (REBAK through ZBIRY) - 381

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 382

SSCAL

 SUBROUTINE SSCAL (N, SA, SX, INCX)
 ***BEGIN PROLOGUE SSCAL
 ***PURPOSE Multiply a vector by a constant.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A6
 ***TYPE SINGLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SA single precision scale factor
 SX single precision vector with N elements
 INCX storage spacing between elements of SX

 --Output--
 SX single precision result (unchanged if N .LE. 0)

 Replace single precision SX by single precision SA*SX.
 For I = 0 to N-1, replace SX(IX+I*INCX) with SA * SX(IX+I*INCX),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 383

SSD2S

 SUBROUTINE SSD2S (N, NELT, IA, JA, A, ISYM, DINV)
 ***BEGIN PROLOGUE SSD2S
 ***PURPOSE Diagonal Scaling Preconditioner SLAP Normal Eqns Set Up.
 Routine to compute the inverse of the diagonal of the
 matrix A*A', where A is stored in SLAP-Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSD2S-S, DSD2S-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 REAL A(NELT), DINV(N)

 CALL SSD2S(N, NELT, IA, JA, A, ISYM, DINV)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 DINV :OUT Real DINV(N).
 Upon return this array holds 1./DIAG(A*A').

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have

SLATEC5 (REBAK through ZBIRY) - 384

 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A*A') will not under-
 flow or overflow. This is done so that the loop vectorizes.
 Matrices with zero or near zero or very large entries will
 have numerical difficulties and must be fixed before this
 routine is called.

 ***SEE ALSO SSDCGN
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 385

SSDBCG

 SUBROUTINE SSDBCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDBCG
 ***PURPOSE Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSDBCG-S, DSDBCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
 SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL SSDBCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the

SLATEC5 (REBAK through ZBIRY) - 386

 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.

 *Description:
 This routine performs preconditioned BiConjugate gradient
 method on the Non-Symmetric positive definite linear system

SLATEC5 (REBAK through ZBIRY) - 387

 Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
 matrix A. This is the simplest of preconditioners and
 vectorizes very well.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

SLATEC5 (REBAK through ZBIRY) - 388

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SBCG, SLUBCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SBCG, SCHKW, SS2Y, SSDI, SSDS, SSMTV, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 389

SSDCG

 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDCG
 ***PURPOSE Diagonally Scaled Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the Preconditioned Conjugate
 Gradient method. The preconditioner is diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE SINGLE PRECISION (SSDCG-S, DSDCG-D)
 ***KEYWORDS ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(5*N)

 CALL SSDCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the

SLATEC5 (REBAK through ZBIRY) - 390

 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= 5*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the real workspace, RWORK.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine performs preconditioned conjugate gradient
 method on the symmetric positive definite linear system

SLATEC5 (REBAK through ZBIRY) - 391

 Ax=b. The preconditioner is M = DIAG(A), the diagonal of
 the matrix A. This is the simplest of preconditioners and
 vectorizes very well. This routine is simply a driver for
 the SCG routine. It calls the SSDS routine to set up the
 preconditioning and then calls SCG with the appropriate
 MATVEC and MSOLVE routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
SLATEC5 (REBAK through ZBIRY) - 392

 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCG, SSICCG
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 ***ROUTINES CALLED SCG, SCHKW, SS2Y, SSDI, SSDS, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 393

SSDCGN

 SUBROUTINE SSDCGN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDCGN
 ***PURPOSE Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
 Routine to solve a general linear system Ax = b using
 diagonal scaling with the Conjugate Gradient method
 applied to the the normal equations, viz., AA'y = b,
 where x = A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSDCGN-S, DSDCGN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL SSDCGN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the

SLATEC5 (REBAK through ZBIRY) - 394

 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
SLATEC5 (REBAK through ZBIRY) - 395

 This routine is simply a driver for the SCGN routine. It
 calls the SSD2S routine to set up the preconditioning and
 then calls SCGN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

SLATEC5 (REBAK through ZBIRY) - 396

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCGN, SSD2S, SSMV, SSMTV, SSDI
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCGN, SCHKW, SS2Y, SSD2S, SSDI, SSMTV, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 397

SSDCGS

 SUBROUTINE SSDCGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDCGS
 ***PURPOSE Diagonally Scaled CGS Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient Squared method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSDCGS-S, DSDCGS-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
 SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)

 CALL SSDCGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-
 ative method. ITOL=2 is *STRONGLY* recommended.

SLATEC5 (REBAK through ZBIRY) - 398

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= 8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.

SLATEC5 (REBAK through ZBIRY) - 399

 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine performs preconditioned BiConjugate gradient
 method on the Non-Symmetric positive definite linear system
 Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
 matrix A. This is the simplest of preconditioners and
 vectorizes very well.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

SLATEC5 (REBAK through ZBIRY) - 400

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCGS, SLUBCG
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 ***ROUTINES CALLED SCGS, SCHKW, SS2Y, SSDI, SSDS, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 401

SSDGMR

 SUBROUTINE SSDGMR(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 + TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDGMR
 ***PURPOSE Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
 This routine uses the generalized minimum residual
 (GMRES) method with diagonal scaling to solve possibly
 non-symmetric linear systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSDGMR-S, DSDGMR-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL
 INTEGER ITMAX, ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL SSDGMR(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 Must be greater than 1.
 ITOL :IN Integer.
 Flag to indicate the type of convergence criterion used.

SLATEC5 (REBAK through ZBIRY) - 402

 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISSGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning begin
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11
 then this common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :IN Integer.
 Maximum number of iterations. This routine uses the default
 of NRMAX = ITMAX/NSAVE to determine when each restart
 should occur. See the description of NRMAX and MAXL in
 SGMRES for a full and frightfully interesting discussion of
 this topic.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows...
 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 for left preconditioning.

SLATEC5 (REBAK through ZBIRY) - 403

 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine SPIGMR failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Inconsistent ITOL and JPRE values.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array of size LENW.
 LENW :IN Integer.
 Length of the real workspace, RWORK.
 LENW >= 1 + N*(NSAVE+7) + NSAVE*(NSAVE+3).
 For the recommended values of NSAVE (10), RWORK has size at
 least 131 + 17*N.
 IWORK :INOUT Integer IWORK(USER DEFINED >= 30).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace IWORK. LENIW >= 30.

 *Description:
 SSDGMR solves a linear system A*X = B rewritten in the form:

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

 with left preconditioning, where A is an n-by-n real matrix,
SLATEC5 (REBAK through ZBIRY) - 404

 X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is the diagonal of A. It uses
 preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 is a driver routine which assumes a SLAP matrix data
 structure and sets up the necessary information to do
 diagonal preconditioning and calls the main GMRES routine
 SGMRES for the solution of the linear system. SGMRES
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when SSDGMR is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by GMRES:
 SGMRES Contains the matrix structure independent driver
 routine for GMRES.
 SPIGMR Contains the main iteration loop for GMRES.
 SORTH Orthogonalizes a new vector against older basis vectors.
 SHEQR Computes a QR decomposition of a Hessenberg matrix.
 SHELS Solves a Hessenberg least-squares system, using QR
 factors.
 RLCALC Computes the scaled residual RL.
 XLCALC Computes the solution XL.
 ISSGMR User-replaceable stopping routine.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies

SLATEC5 (REBAK through ZBIRY) - 405

 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that

SLATEC5 (REBAK through ZBIRY) - 406

 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 ***ROUTINES CALLED SCHKW, SGMRES, SS2Y, SSDI, SSDS, SSMV
 ***REVISION HISTORY (YYMMDD)
 880615 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 407

SSDI

 SUBROUTINE SSDI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSDI
 ***PURPOSE Diagonal Matrix Vector Multiply.
 Routine to calculate the product X = DIAG*B, where DIAG
 is a diagonal matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSDI-S, DSDI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IWORK(10)
 REAL B(N), X(N), A(NELT), RWORK(USER DEFINED)

 CALL SSDI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Vector to multiply the diagonal by.
 X :OUT Real X(N).
 Result of DIAG*B.
 NELT :DUMMY Integer.
 IA :DUMMY Integer IA(NELT).
 JA :DUMMY Integer JA(NELT).
 A :DUMMY Real A(NELT).
 ISYM :DUMMY Integer.
 These are for compatibility with SLAP MSOLVE calling sequence.
 RWORK :IN Real RWORK(USER DEFINED).
 Work array holding the diagonal of some matrix to scale
 B by. This array must be set by the user or by a call
 to the SLAP routine SSDS or SSD2S. The length of RWORK
 must be >= IWORK(4)+N.
 IWORK :IN Integer IWORK(10).
 IWORK(4) holds the offset into RWORK for the diagonal matrix
 to scale B by. This is usually set up by the SLAP pre-
 conditioner setup routines SSDS or SSD2S.

 *Description:
 This routine is supplied with the SLAP package to perform
 the MSOLVE operation for iterative drivers that require
 diagonal Scaling (e.g., SSDCG, SSDBCG). It conforms
 to the SLAP MSOLVE CALLING CONVENTION and hence does not
 require an interface routine as do some of the other pre-
 conditioners supplied with SLAP.

 ***SEE ALSO SSDS, SSD2S
 ***REFERENCES (NONE)

SLATEC5 (REBAK through ZBIRY) - 408

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 409

SSDOMN

 SUBROUTINE SSDOMN(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSDOMN
 ***PURPOSE Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Orthomin method with diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSDOMN-S, DSDOMN-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR
 REAL RWORK(7*N+3*N*NSAVE+NSAVE)

 CALL SSDOMN(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen, it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.

SLATEC5 (REBAK through ZBIRY) - 410

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of method detected.
 (p,Ap) < epsilon**2.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK.
 LENW >= 7*N+NSAVE*(3*N+1).
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 This routine is simply a driver for the SOMN routine. It
 calls the SSDS routine to set up the preconditioning and
 then calls SOMN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the

SLATEC5 (REBAK through ZBIRY) - 411

 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 In this format only the non-zeros are stored. They may
 appear in *ANY* order. The user supplies three arrays of
 length NELT, where NELT is the number of non-zeros in the
 matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
 the user puts the row and column index of that matrix
 element in the IA and JA arrays. The value of the non-zero
 matrix element is placed in the corresponding location of
 the A array. This is an extremely easy data structure to
 generate. On the other hand it is not too efficient on
 vector computers for the iterative solution of linear
 systems. Hence, SLAP changes this input data structure to
 the SLAP Column format for the iteration (but does not
 change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 In this format the non-zeros are stored counting down
 columns (except for the diagonal entry, which must appear
 first in each "column") and are stored in the real array A.
 In other words, for each column in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have JA(N+1)
 = NELT+1, where N is the number of columns in the matrix and
 NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
SLATEC5 (REBAK through ZBIRY) - 412

 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SOMN, SSLUOM
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCHKW, SOMN, SS2Y, SSDI, SSDS, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 413

SSDS

 SUBROUTINE SSDS (N, NELT, IA, JA, A, ISYM, DINV)
 ***BEGIN PROLOGUE SSDS
 ***PURPOSE Diagonal Scaling Preconditioner SLAP Set Up.
 Routine to compute the inverse of the diagonal of a matrix
 stored in the SLAP Column format.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSDS-S, DSDS-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 REAL A(NELT), DINV(N)

 CALL SSDS(N, NELT, IA, JA, A, ISYM, DINV)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 DINV :OUT Real DINV(N).
 Upon return this array holds 1./DIAG(A).

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have

SLATEC5 (REBAK through ZBIRY) - 414

 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A) will not underflow
 or overflow. This is done so that the loop vectorizes.
 Matrices with zero or near zero or very large entries will
 have numerical difficulties and must be fixed before this
 routine is called.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 415

SSDSCL

 SUBROUTINE SSDSCL(N, NELT, IA, JA, A, ISYM, X, B, DINV, JOB,
 + ITOL)
 ***BEGIN PROLOGUE SSDSCL
 ***PURPOSE Diagonal Scaling of system Ax = b.
 This routine scales (and unscales) the system Ax = b
 by symmetric diagonal scaling.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSDSCL-S, DSDSCL-D)
 ***KEYWORDS DIAGONAL, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 This routine scales (and unscales) the system Ax = b by symmetric
 diagonal scaling. The new system is:
 -1/2 -1/2 1/2 -1/2
 D AD (D x) = D b
 when scaling is selected with the JOB parameter. When unscaling
 is selected this process is reversed. The true solution is also
 scaled or unscaled if ITOL is set appropriately, see below.

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, JOB, ITOL
 REAL A(NELT), X(N), B(N), DINV(N)

 CALL SSDSCL(N, NELT, IA, JA, A, ISYM, X, B, DINV, JOB, ITOL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 X :INOUT Real X(N).
 Initial guess that will be later used in the iterative
 solution.
 of the scaled system.
 B :INOUT Real B(N).
 Right hand side vector.
 DINV :INOUT Real DINV(N).
 Upon return this array holds 1./DIAG(A).
 This is an input if JOB = 0.

SLATEC5 (REBAK through ZBIRY) - 416

 JOB :IN Integer.
 Flag indicating whether to scale or not.
 JOB non-zero means do scaling.
 JOB = 0 means do unscaling.
 ITOL :IN Integer.
 Flag indicating what type of error estimation to do in the
 iterative method. When ITOL = 11 the exact solution from
 common block SSLBLK will be used. When the system is scaled
 then the true solution must also be scaled. If ITOL is not
 11 then this vector is not referenced.

 *Common Blocks:
 SOLN :INOUT Real SOLN(N). COMMON BLOCK /SSLBLK/
 The true solution, SOLN, is scaled (or unscaled) if ITOL is
 set to 11, see above.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format all of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the diagonal of A is all non-zero
 and that the operation DINV = 1.0/DIAG(A) will not under-
 flow or overflow. This is done so that the loop vectorizes.
 Matrices with zero or near zero or very large entries will

SLATEC5 (REBAK through ZBIRY) - 417

 have numerical difficulties and must be fixed before this
 routine is called.

 ***SEE ALSO SSDCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS SSLBLK
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Added C***FIRST EXECUTABLE STATEMENT line. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 418

SSGS

 SUBROUTINE SSGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSGS
 ***PURPOSE Gauss-Seidel Method Iterative Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 Gauss-Seidel iteration.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSGS-S, DSGS-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+2*N+1), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+3*N)

 CALL SSGS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC5 (REBAK through ZBIRY) - 419

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+3*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= NL+N+11.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).

SLATEC5 (REBAK through ZBIRY) - 420

 *Description
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35

SLATEC5 (REBAK through ZBIRY) - 421

 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSJAC, SIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCHKW, SIR, SS2LT, SS2Y, SSLI, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 422

SSICCG

 SUBROUTINE SSICCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSICCG
 ***PURPOSE Incomplete Cholesky Conjugate Gradient Sparse Ax=b Solver.
 Routine to solve a symmetric positive definite linear
 system Ax = b using the incomplete Cholesky
 Preconditioned Conjugate Gradient method.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2B4
 ***TYPE SINGLE PRECISION (SSICCG-S, DSICCG-D)
 ***KEYWORDS INCOMPLETE CHOLESKY, ITERATIVE PRECONDITION, SLAP, SPARSE,
 SYMMETRIC LINEAR SYSTEM
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+2*N+1), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+5*N)

 CALL SSICCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand

SLATEC5 (REBAK through ZBIRY) - 423

 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+5*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.

SLATEC5 (REBAK through ZBIRY) - 424

 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= NL+N+11.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).

 *Description:
 This routine performs preconditioned conjugate gradient
 method on the symmetric positive definite linear system
 Ax=b. The preconditioner is the incomplete Cholesky (IC)
 factorization of the matrix A. See SSICS for details about
 the incomplete factorization algorithm. One should note
 here however, that the IC factorization is a slow process
 and that one should save factorizations for reuse, if
 possible. The MSOLVE operation (handled in SSLLTI) does
 vectorize on machines with hardware gather/scatter and is
 quite fast.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in

SLATEC5 (REBAK through ZBIRY) - 425

 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCG, SSLLTI
 ***REFERENCES 1. Louis Hageman and David Young, Applied Iterative
 Methods, Academic Press, New York, 1981.
 2. Concus, Golub and O'Leary, A Generalized Conjugate
 Gradient Method for the Numerical Solution of
 Elliptic Partial Differential Equations, in Sparse
 Matrix Computations, Bunch and Rose, Eds., Academic
 Press, New York, 1979.
 ***ROUTINES CALLED SCG, SCHKW, SS2Y, SSICS, SSLLTI, SSMV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 900805 Changed XERRWV calls to calls to XERMSG. (RWC)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 426

SSICO

 SUBROUTINE SSICO (A, LDA, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE SSICO
 ***PURPOSE Factor a symmetric matrix by elimination with symmetric
 pivoting and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SSICO factors a real symmetric matrix by elimination with
 symmetric pivoting and estimates the condition of the matrix.

 If RCOND is not needed, SSIFA is slightly faster.
 To solve A*X = B , follow SSICO by SSISL.
 To compute INVERSE(A)*C , follow SSICO by SSISL.
 To compute INVERSE(A) , follow SSICO by SSIDI.
 To compute DETERMINANT(A) , follow SSICO by SSIDI.
 To compute INERTIA(A), follow SSICO by SSIDI.

 On Entry

 A REAL(LDA, N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 Output

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if

SLATEC5 (REBAK through ZBIRY) - 427

 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SSCAL, SSIFA
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 428

SSICS

 SUBROUTINE SSICS(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL, D,
 + R, IWARN)
 ***BEGIN PROLOGUE SSICS
 ***PURPOSE Incompl. Cholesky Decomposition Preconditioner SLAP Set Up.
 Routine to generate the Incomplete Cholesky decomposition,
 L*D*L-trans, of a symmetric positive definite matrix, A,
 which is stored in SLAP Column format. The unit lower
 triangular matrix L is stored by rows, and the inverse of
 the diagonal matrix D is stored.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSICS-S, DSICS-D)
 ***KEYWORDS INCOMPLETE CHOLESKY FACTORIZATION,
 ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NEL, IEL(NEL), JEL(NEL), IWARN
 REAL A(NELT), EL(NEL), D(N), R(N)

 CALL SSICS(N, NELT, IA, JA, A, ISYM, NEL, IEL, JEL, EL, D, R,
 $ IWARN)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NEL :OUT Integer.
 Number of non-zeros in the lower triangle of A. Also
 corresponds to the length of the IEL, JEL, EL arrays.
 IEL :OUT Integer IEL(NEL).
 JEL :OUT Integer JEL(NEL).
 EL :OUT Real EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of the
 incomplete decomposition of the A matrix stored in SLAP
 Row format. The Diagonal of ones *IS* stored. See
 "Description", below for more details about the SLAP Row fmt.
 D :OUT Real D(N)

SLATEC5 (REBAK through ZBIRY) - 429

 Upon return this array holds D(I) = 1./DIAG(A).
 R :WORK Real R(N).
 Temporary real workspace needed for the factorization.
 IWARN :OUT Integer.
 This is a warning variable and is zero if the IC factoriza-
 tion goes well. It is set to the row index corresponding to
 the last zero pivot found. See "Description", below.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in
 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

SLATEC5 (REBAK through ZBIRY) - 430

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format some of the "inner loops" of this
 routine should vectorize on machines with hardware support
 for vector gather/scatter operations. Your compiler may
 require a compiler directive to convince it that there are
 no implicit vector dependencies. Compiler directives for
 the Alliant FX/Fortran and CRI CFT/CFT77 compilers are
 supplied with the standard SLAP distribution.

 The IC factorization does not always exist for SPD matrices.
 In the event that a zero pivot is found it is set to be 1.0
 and the factorization proceeds. The integer variable IWARN
 is set to the last row where the Diagonal was fudged. This
 eventuality hardly ever occurs in practice.

 ***SEE ALSO SCG, SSICCG
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 900805 Changed XERRWV calls to calls to XERMSG. (RWC)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 431

SSIDI

 SUBROUTINE SSIDI (A, LDA, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE SSIDI
 ***PURPOSE Compute the determinant, inertia and inverse of a real
 symmetric matrix using the factors from SSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A, D3B1A
 ***TYPE SINGLE PRECISION (SSIDI-S, DSIDI-D, CHIDI-C, CSIDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSIDI computes the determinant, inertia and inverse
 of a real symmetric matrix using the factors from SSIFA.

 On Entry

 A REAL(LDA,N)
 the output from SSIFA.

 LDA INTEGER
 the leading dimension of the array A.

 N INTEGER
 the order of the matrix A.

 KPVT INTEGER(N)
 the pivot vector from SSIFA.

 WORK REAL(N)
 work vector. Contents destroyed.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 If C .NE. 0, the inverse is computed,
 If B .NE. 0, the determinant is computed,
 If A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 A contains the upper triangle of the inverse of
 the original matrix. The strict lower triangle
 is never referenced.

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)
 the inertia of the original matrix.

SLATEC5 (REBAK through ZBIRY) - 432

 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero may occur if the inverse is requested
 and SSICO has set RCOND .EQ. 0.0
 or SSIFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SCOPY, SDOT, SSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 433

SSIEV

 SUBROUTINE SSIEV (A, LDA, N, E, WORK, JOB, INFO)
 ***BEGIN PROLOGUE SSIEV
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix.
 ***LIBRARY SLATEC
 ***CATEGORY D4A1
 ***TYPE SINGLE PRECISION (SSIEV-S, CHIEV-C)
 ***KEYWORDS COMPLEX HERMITIAN, EIGENVALUES, EIGENVECTORS, MATRIX,
 SYMMETRIC
 ***AUTHOR Kahaner, D. K., (NBS)
 Moler, C. B., (U. of New Mexico)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 Abstract
 SSIEV computes the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix.

 Call Sequence Parameters-
 (The values of parameters marked with * (star) will be changed
 by SSIEV.)

 A* REAL (LDA,N)
 real symmetric input matrix.
 Only the diagonal and upper triangle of A must be input,
 as SSIEV copies the upper triangle to the lower.
 That is, the user must define A(I,J), I=1,..N, and J=I,.
 ..,N.
 On return from SSIEV, if the user has set JOB
 = 0 the lower triangle of A has been altered.
 = nonzero the N eigenvectors of A are stored in its
 first N columns. See also INFO below.

 LDA INTEGER
 set by the user to
 the leading dimension of the array A.

 N INTEGER
 set by the user to
 the order of the matrix A and
 the number of elements in E.

 E* REAL (N)
 on return from SSIEV, E contains the N
 eigenvalues of A. See also INFO below.

 WORK* REAL (2*N)
 temporary storage vector. Contents changed by SSIEV.

 JOB INTEGER
 set by user on input
 = 0 only calculate eigenvalues of A.
 = nonzero calculate eigenvalues and eigenvectors of A.

 INFO* INTEGER
 on return from SSIEV, the value of INFO is

SLATEC5 (REBAK through ZBIRY) - 434

 = 0 for normal return.
 = K if the eigenvalue iteration fails to converge.
 eigenvalues and vectors 1 through K-1 are correct.

 Error Messages-
 No. 1 recoverable N is greater than LDA
 No. 2 recoverable N is less than one

 ***REFERENCES (NONE)
 ***ROUTINES CALLED IMTQL2, TQLRAT, TRED1, TRED2, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 435

SSIFA

 SUBROUTINE SSIFA (A, LDA, N, KPVT, INFO)
 ***BEGIN PROLOGUE SSIFA
 ***PURPOSE Factor a real symmetric matrix by elimination with
 symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSIFA-S, DSIFA-D, CHIFA-C, CSIFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSIFA factors a real symmetric matrix by elimination
 with symmetric pivoting.

 To solve A*X = B , follow SSIFA by SSISL.
 To compute INVERSE(A)*C , follow SSIFA by SSISL.
 To compute DETERMINANT(A) , follow SSIFA by SSIDI.
 To compute INERTIA(A) , follow SSIFA by SSIDI.
 To compute INVERSE(A) , follow SSIFA by SSIDI.

 On Entry

 A REAL(LDA,N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that SSISL or SSIDI may
 divide by zero if called.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED ISAMAX, SAXPY, SSWAP
 ***REVISION HISTORY (YYMMDD)

SLATEC5 (REBAK through ZBIRY) - 436

 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 437

SSILUR

 SUBROUTINE SSILUR(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSILUR
 ***PURPOSE Incomplete LU Iterative Refinement Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 the incomplete LU decomposition with iterative refinement.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSILUR-S, DSILUR-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+4*N)

 CALL SSILUR(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC5 (REBAK through ZBIRY) - 438

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+NU+4*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.

SLATEC5 (REBAK through ZBIRY) - 439

 LENIW :IN Integer.
 Length of integer workspace, IWORK. LENIW >= NL+NU+4*N+10.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description
 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

SLATEC5 (REBAK through ZBIRY) - 440

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSJAC, SSGS, SIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCHKW, SIR, SS2Y, SSILUS, SSLUI, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 441

SSILUS

 SUBROUTINE SSILUS(N, NELT, IA, JA, A, ISYM, NL, IL, JL, L, DINV,
 + NU, IU, JU, U, NROW, NCOL)
 ***BEGIN PROLOGUE SSILUS
 ***PURPOSE Incomplete LU Decomposition Preconditioner SLAP Set Up.
 Routine to generate the incomplete LDU decomposition of a
 matrix. The unit lower triangular factor L is stored by
 rows and the unit upper triangular factor U is stored by
 columns. The inverse of the diagonal matrix D is stored.
 No fill in is allowed.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSILUS-S, DSILUS-D)
 ***KEYWORDS INCOMPLETE LU FACTORIZATION, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 INTEGER NL, IL(NL), JL(NL), NU, IU(NU), JU(NU)
 INTEGER NROW(N), NCOL(N)
 REAL A(NELT), L(NL), DINV(N), U(NU)

 CALL SSILUS(N, NELT, IA, JA, A, ISYM, NL, IL, JL, L,
 $ DINV, NU, IU, JU, U, NROW, NCOL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of elements in arrays IA, JA, and A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 NL :OUT Integer.
 Number of non-zeros in the L array.
 IL :OUT Integer IL(NL).
 JL :OUT Integer JL(NL).
 L :OUT Real L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Row format. The Diagonal of ones *IS* stored. See
 "DESCRIPTION", below for more details about the SLAP format.
 NU :OUT Integer.

SLATEC5 (REBAK through ZBIRY) - 442

 Number of non-zeros in the U array.
 IU :OUT Integer IU(NU).
 JU :OUT Integer JU(NU).
 U :OUT Real U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The Diagonal of ones *IS* stored. See
 "Description", below for more details about the SLAP
 format.
 NROW :WORK Integer NROW(N).
 NROW(I) is the number of non-zero elements in the I-th row
 of L.
 NCOL :WORK Integer NCOL(N).
 NCOL(I) is the number of non-zero elements in the I-th
 column of U.

 *Description
 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the SSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which

SLATEC5 (REBAK through ZBIRY) - 443

 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in
 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ***SEE ALSO SILUR
 ***REFERENCES 1. Gene Golub and Charles Van Loan, Matrix Computations,
 Johns Hopkins University Press, Baltimore, Maryland,
 1983.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of reference. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 444

SSISL

 SUBROUTINE SSISL (A, LDA, N, KPVT, B)
 ***BEGIN PROLOGUE SSISL
 ***PURPOSE Solve a real symmetric system using the factors obtained
 from SSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSISL solves the real symmetric system
 A * X = B
 using the factors computed by SSIFA.

 On Entry

 A REAL(LDA,N)
 the output from SSIFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 KPVT INTEGER(N)
 the pivot vector from SSIFA.

 B REAL(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if SSICO has set RCOND .EQ. 0.0
 or SSIFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SSIFA(A,LDA,N,KPVT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL SSISL(A,LDA,N,KPVT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC5 (REBAK through ZBIRY) - 445

 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 446

SSJAC

 SUBROUTINE SSJAC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSJAC
 ***PURPOSE Jacobi's Method Iterative Sparse Ax = b Solver.
 Routine to solve a general linear system Ax = b using
 Jacobi iteration.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSJAC-S, DSJAC-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL SSJAC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.

SLATEC5 (REBAK through ZBIRY) - 447

 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= 4*N.
 IWORK :WORK Integer IWORK(LENIW).
 Used to hold pointers into the real workspace, RWORK.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK. LENIW >= 10.

 *Description:
 Jacobi's method solves the linear system Ax=b with the
 basic iterative method (where A = L + D + U):

SLATEC5 (REBAK through ZBIRY) - 448

 n+1 -1 n n
 X = D (B - LX - UX)

 n -1 n
 = X + D (B - AX)

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which one
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a

SLATEC5 (REBAK through ZBIRY) - 449

 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SSGS, SIR
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCHKW, SIR, SS2Y, SSDI, SSDS, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910506 Corrected error in C***ROUTINES CALLED list. (FNF)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 450

SSLI

 SUBROUTINE SSLI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSLI
 ***PURPOSE SLAP MSOLVE for Lower Triangle Matrix.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes L B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A3
 ***TYPE SINGLE PRECISION (SSLI-S, DSLI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for SSLI2:
 IWORK(1) = NEL
 IWORK(2) = Starting location of IEL in IWORK.
 IWORK(3) = Starting location of JEL in IWORK.
 IWORK(4) = Starting location of EL in RWORK.
 See the DESCRIPTION of SSLI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SSLI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 451

SSLI2

 SUBROUTINE SSLI2 (N, B, X, NEL, IEL, JEL, EL)
 ***BEGIN PROLOGUE SSLI2
 ***PURPOSE SLAP Lower Triangle Matrix Backsolve.
 Routine to solve a system of the form Lx = b , where L
 is a lower triangular matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A3
 ***TYPE SINGLE PRECISION (SSLI2-S, DSLI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NEL, IEL(NEL), JEL(NEL)
 REAL B(N), X(N), EL(NEL)

 CALL SSLI2(N, B, X, NEL, IEL, JEL, EL)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right hand side vector.
 X :OUT Real X(N).
 Solution to Lx = b.
 NEL :IN Integer.
 Number of non-zeros in the EL array.
 IEL :IN Integer IEL(NEL).
 JEL :IN Integer JEL(NEL).
 EL :IN Real EL(NEL).
 IEL, JEL, EL contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in
 SLAP Row format. The diagonal of ones *IS* stored. This
 structure can be set up by the SS2LT routine. See the
 "Description", below, for more details about the SLAP Row
 format.

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SIR iteration routine
 for the driver routine SSGS. It must be called via the SLAP
 MSOLVE calling sequence convention interface routine SSLI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real

SLATEC5 (REBAK through ZBIRY) - 452

 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in
 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP Row format the "inner loop" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO SSLI
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 453

SSLLTI

 SUBROUTINE SSLLTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSLLTI
 ***PURPOSE SLAP MSOLVE for LDL' (IC) Factorization.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes (LDL') B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSLLTI-S, DSLLTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for SLLTI2:
 IWORK(1) = NEL
 IWORK(2) = Starting location of IEL in IWORK.
 IWORK(3) = Starting location of JEL in IWORK.
 IWORK(4) = Starting location of EL in RWORK.
 IWORK(5) = Starting location of DINV in RWORK.
 See the DESCRIPTION of SLLTI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SLLTI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 910502 Corrected conversion error. (FNF)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 454

SSLUBC

 SUBROUTINE SSLUBC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSLUBC
 ***PURPOSE Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient method with Incomplete LU
 decomposition preconditioning.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSLUBC-S, DSLUBC-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL SSLUBC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand

SLATEC5 (REBAK through ZBIRY) - 455

 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+NU+8*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:

SLATEC5 (REBAK through ZBIRY) - 456

 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description:
 This routine is simply a driver for the SBCGN routine. It
 calls the SSILUS routine to set up the preconditioning and
 then calls SBCGN with the appropriate MATVEC, MTTVEC and
 MSOLVE, MTSOLV routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.

SLATEC5 (REBAK through ZBIRY) - 457

 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SBCG, SSDBCG
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SBCG, SCHKW, SS2Y, SSILUS, SSLUI, SSLUTI, SSMTV,
 SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 458

SSLUCN

 SUBROUTINE SSLUCN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSLUCN
 ***PURPOSE Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
 Routine to solve a general linear system Ax = b using the
 incomplete LU decomposition with the Conjugate Gradient
 method applied to the normal equations, viz., AA'y = b,
 x = A'y.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSLUCN-S, DSLUCN-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL SSLUCN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the

SLATEC5 (REBAK through ZBIRY) - 459

 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace.
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+NU+8*N.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace.
 Upon return the following locations of IWORK hold information

SLATEC5 (REBAK through ZBIRY) - 460

 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.
 NL is the number of non-zeros in the lower triangle of the
 matrix (including the diagonal).
 NU is the number of non-zeros in the upper triangle of the
 matrix (including the diagonal).

 *Description:
 This routine is simply a driver for the SCGN routine. It
 calls the SSILUS routine to set up the preconditioning and then
 calls SCGN with the appropriate MATVEC and MSOLVE routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.

SLATEC5 (REBAK through ZBIRY) - 461

 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCGN, SDCGN, SSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCGN, SCHKW, SS2Y, SSILUS, SSMMTI, SSMTV, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 462

SSLUCS

 SUBROUTINE SSLUCS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSLUCS
 ***PURPOSE Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
 Routine to solve a linear system Ax = b using the
 BiConjugate Gradient Squared method with Incomplete LU
 decomposition preconditioning.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSLUCS-S, DSLUCS-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)

 CALL SSLUCS(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.
 This routine must calculate the residual from R = A*X - B.
 This is unnatural and hence expensive for this type of iter-

SLATEC5 (REBAK through ZBIRY) - 463

 ative method. ITOL=2 is *STRONGLY* recommended.
 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv time a vector is the pre-
 conditioning step. This is the *NATURAL* stopping for this
 iterative method and is *STRONGLY* recommended.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Breakdown of the method detected.
 (r0,r) approximately 0.
 IERR = 6 => Stagnation of the method detected.
 (r0,v) approximately 0.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 LENW :IN Integer.
 Length of the real workspace, RWORK. LENW >= NL+NU+8*N.
 IWORK :WORK Integer IWORK(LENIW).
 Integer array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.

 *Description:
 This routine is simply a driver for the SCGSN routine. It
 calls the SSILUS routine to set up the preconditioning and

SLATEC5 (REBAK through ZBIRY) - 464

 then calls SCGSN with the appropriate MATVEC, MTTVEC and
 MSOLVE, MTSOLV routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
SLATEC5 (REBAK through ZBIRY) - 465

 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SCGS, SSDCGS
 ***REFERENCES 1. P. Sonneveld, CGS, a fast Lanczos-type solver
 for nonsymmetric linear systems, Delft University
 of Technology Report 84-16, Department of Mathe-
 matics and Informatics, Delft, The Netherlands.
 2. E. F. Kaasschieter, The solution of non-symmetric
 linear systems by biconjugate gradients or conjugate
 gradients squared, Delft University of Technology
 Report 86-21, Department of Mathematics and Informa-
 tics, Delft, The Netherlands.
 ***ROUTINES CALLED SCGS, SCHKW, SS2Y, SSILUS, SSLUI, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 466

SSLUGM

 SUBROUTINE SSLUGM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL,
 + TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSLUGM
 ***PURPOSE Incomplete LU GMRES Iterative Sparse Ax=b Solver.
 This routine uses the generalized minimum residual
 (GMRES) method with incomplete LU factorization for
 preconditioning to solve possibly non-symmetric linear
 systems of the form: Ax = b.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSLUGM-S, DSLUGM-D)
 ***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
 Hindmarsh, Alan, (LLNL), alanh@llnl.gov
 Seager, Mark K., (LLNL), seager@llnl.gov
 Lawrence Livermore National Laboratory
 PO Box 808, L-60
 Livermore, CA 94550 (510) 423-3141
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL
 INTEGER ITMAX, ITER, IERR, IUNIT, LENW, IWORK(LENIW), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR, RWORK(LENW)

 CALL SSLUGM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE,
 $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
 $ RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 Must be greater than 1.
 ITOL :IN Integer.

SLATEC5 (REBAK through ZBIRY) - 467

 Flag to indicate the type of convergence criterion used.
 ITOL=0 Means the iteration stops when the test described
 below on the residual RL is satisfied. This is
 the "Natural Stopping Criteria" for this routine.
 Other values of ITOL cause extra, otherwise
 unnecessary, computation per iteration and are
 therefore much less efficient. See ISSGMR (the
 stop test routine) for more information.
 ITOL=1 Means the iteration stops when the first test
 described below on the residual RL is satisfied,
 and there is either right or no preconditioning
 being used.
 ITOL=2 Implies that the user is using left
 preconditioning, and the second stopping criterion
 below is used.
 ITOL=3 Means the iteration stops when the third test
 described below on Minv*Residual is satisfied, and
 there is either left or no preconditioning begin
 used.
 ITOL=11 is often useful for checking and comparing
 different routines. For this case, the user must
 supply the "exact" solution or a very accurate
 approximation (one with an error much less than
 TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the
 difference between the iterative approximation and
 the user-supplied solution divided by the 2-norm
 of the user-supplied solution is less than TOL.
 Note that this requires the user to set up the
 "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling
 routine. The routine with this declaration should
 be loaded before the stop test so that the correct
 length is used by the loader. This procedure is
 not standard Fortran and may not work correctly on
 your system (although it has worked on every
 system the authors have tried). If ITOL is not 11
 then this common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described below. If TOL is set
 to zero on input, then a default value of 500*(the smallest
 positive magnitude, machine epsilon) is used.
 ITMAX :IN Integer.
 Maximum number of iterations. This routine uses the default
 of NRMAX = ITMAX/NSAVE to determine the when each restart
 should occur. See the description of NRMAX and MAXL in
 SGMRES for a full and frightfully interesting discussion of
 this topic.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL. Letting norm() denote the Euclidean
 norm, ERR is defined as follows...
 If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 for right or no preconditioning, and
 ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),

SLATEC5 (REBAK through ZBIRY) - 468

 for left preconditioning.
 If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
 since right or no preconditioning
 being used.
 If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
 norm(SB*(M-inverse)*B),
 since left preconditioning is being
 used.
 If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
 i=1,n
 If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient storage allocated for
 RGWK or IGWK.
 IERR = 2 => Routine SPIGMR failed to reduce the norm
 of the current residual on its last call,
 and so the iteration has stalled. In
 this case, X equals the last computed
 approximation. The user must either
 increase MAXL, or choose a different
 initial guess.
 IERR =-1 => Insufficient length for RGWK array.
 IGWK(6) contains the required minimum
 length of the RGWK array.
 IERR =-2 => Inconsistent ITOL and JPRE values.
 For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
 left-hand-side of the relevant stopping test defined
 below associated with the residual for the current
 approximation X(L).
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array of size LENW.
 LENW :IN Integer.
 Length of the real workspace, RWORK.
 LENW >= 1 + N*(NSAVE+7) + NSAVE*(NSAVE+3)+NL+NU.
 Here NL is the number of non-zeros in the lower triangle of
 the matrix (including the diagonal) and NU is the number of
 non-zeros in the upper triangle of the matrix (including the
 diagonal).
 For the recommended values, RWORK has size at least
 131 + 17*N + NL + NU.
 IWORK :INOUT Integer IWORK(LENIW).
 Used to hold pointers into the RWORK array.
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+32.

 *Description:
 SSLUGM solves a linear system A*X = B rewritten in the form:

 (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,
SLATEC5 (REBAK through ZBIRY) - 469

 with right preconditioning, or

 (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

 with left preconditioning, where A is an n-by-n real matrix,
 X and B are N-vectors, SB and SX are diagonal scaling
 matrices, and M is the Incomplete LU factorization of A. It
 uses preconditioned Krylov subpace methods based on the
 generalized minimum residual method (GMRES). This routine
 is a driver routine which assumes a SLAP matrix data
 structure and sets up the necessary information to do
 diagonal preconditioning and calls the main GMRES routine
 SGMRES for the solution of the linear system. SGMRES
 optionally performs either the full orthogonalization
 version of the GMRES algorithm or an incomplete variant of
 it. Both versions use restarting of the linear iteration by
 default, although the user can disable this feature.

 The GMRES algorithm generates a sequence of approximations
 X(L) to the true solution of the above linear system. The
 convergence criteria for stopping the iteration is based on
 the size of the scaled norm of the residual R(L) = B -
 A*X(L). The actual stopping test is either:

 norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

 for right preconditioning, or

 norm(SB*(M-inverse)*(B-A*X(L))) .le.
 TOL*norm(SB*(M-inverse)*B),

 for left preconditioning, where norm() denotes the Euclidean
 norm, and TOL is a positive scalar less than one input by
 the user. If TOL equals zero when SSLUGM is called, then a
 default value of 500*(the smallest positive magnitude,
 machine epsilon) is used. If the scaling arrays SB and SX
 are used, then ideally they should be chosen so that the
 vectors SX*X(or SX*M*X) and SB*B have all their components
 approximately equal to one in magnitude. If one wants to
 use the same scaling in X and B, then SB and SX can be the
 same array in the calling program.

 The following is a list of the other routines and their
 functions used by GMRES:
 SGMRES Contains the matrix structure independent driver
 routine for GMRES.
 SPIGMR Contains the main iteration loop for GMRES.
 SORTH Orthogonalizes a new vector against older basis vectors.
 SHEQR Computes a QR decomposition of a Hessenberg matrix.
 SHELS Solves a Hessenberg least-squares system, using QR
 factors.
 RLCALC Computes the scaled residual RL.
 XLCALC Computes the solution XL.
 ISSGMR User-replaceable stopping routine.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on

SLATEC5 (REBAK through ZBIRY) - 470

 is being used and act accordingly.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
SLATEC5 (REBAK through ZBIRY) - 471

 The SLAP Triad format (IA, JA, A) is modified internally to be
 the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
 Matrix Methods in Stiff ODE Systems, Lawrence Liver-
 more National Laboratory Report UCRL-95088, Rev. 1,
 Livermore, California, June 1987.
 ***ROUTINES CALLED SCHKW, SGMRES, SS2Y, SSILUS, SSLUI, SSMV
 ***REVISION HISTORY (YYMMDD)
 880615 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 920929 Corrected format of references. (FNF)
 921019 Corrected NEL to NL. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 472

SSLUI

 SUBROUTINE SSLUI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSLUI
 ***PURPOSE SLAP MSOLVE for LDU Factorization.
 This routine acts as an interface between the SLAP generic
 MSOLVE calling convention and the routine that actually
 -1
 computes (LDU) B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSLUI-S, DSLUI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for SSLUI2:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of SSLUI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SSLUI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 473

SSLUI2

 SUBROUTINE SSLUI2 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE SSLUI2
 ***PURPOSE SLAP Backsolve for LDU Factorization.
 Routine to solve a system of the form L*D*U X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSLUI2-S, DSLUI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 REAL B(N), X(N), L(NL), DINV(N), U(NU)

 CALL SSLUI2(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right hand side.
 X :OUT Real X(N).
 Solution of L*D*U x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Real L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Real DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Real U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SIR and SBCG

SLATEC5 (REBAK through ZBIRY) - 474

 iteration routines for the drivers SSILUR and SSLUBC. It
 must be called via the SLAP MSOLVE calling sequence
 convention interface routine SSLUI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the SSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in

SLATEC5 (REBAK through ZBIRY) - 475

 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO SSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 476

SSLUI4

 SUBROUTINE SSLUI4 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE SSLUI4
 ***PURPOSE SLAP Backsolve for LDU Factorization.
 Routine to solve a system of the form (L*D*U)' X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix and '
 denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSLUI4-S, DSLUI4-D)
 ***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
 SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 REAL B(N), X(N), L(NL), DINV(N), U(NU)

 CALL SSLUI4(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right hand side.
 X :OUT Real X(N).
 Solution of (L*D*U)trans x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Real L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Real DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Real U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine

SLATEC5 (REBAK through ZBIRY) - 477

 to perform the MTSOLV operation in the SBCG iteration
 routine for the driver SSLUBC. It must be called via the
 SLAP MTSOLV calling sequence convention interface routine
 SSLUTI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the SSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always

SLATEC5 (REBAK through ZBIRY) - 478

 have IA(N+1) = NELT+1, where N is the number of rows in
 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO SSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 479

SSLUOM

 SUBROUTINE SSLUOM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 + TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
 ***BEGIN PROLOGUE SSLUOM
 ***PURPOSE Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
 Routine to solve a general linear system Ax = b using
 the Orthomin method with Incomplete LU decomposition.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2A4, D2B4
 ***TYPE SINGLE PRECISION (SSLUOM-S, DSLUOM-D)
 ***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
 NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
 INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
 REAL B(N), X(N), A(NELT), TOL, ERR
 REAL RWORK(NL+NU+7*N+3*N*NSAVE+NSAVE)

 CALL SSLUOM(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
 $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)

 *Arguments:
 N :IN Integer.
 Order of the matrix.
 B :IN Real B(N).
 Right-hand side vector.
 X :INOUT Real X(N).
 On input X is your initial guess for solution vector.
 On output X is the final approximate solution.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :INOUT Integer IA(NELT).
 JA :INOUT Integer JA(NELT).
 A :INOUT Real A(NELT).
 These arrays should hold the matrix A in either the SLAP
 Triad format or the SLAP Column format. See "Description",
 below. If the SLAP Triad format is chosen, it is changed
 internally to the SLAP Column format.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.
 NSAVE :IN Integer.
 Number of direction vectors to save and orthogonalize against.
 ITOL :IN Integer.
 Flag to indicate type of convergence criterion.
 If ITOL=1, iteration stops when the 2-norm of the residual
 divided by the 2-norm of the right-hand side is less than TOL.

SLATEC5 (REBAK through ZBIRY) - 480

 If ITOL=2, iteration stops when the 2-norm of M-inv times the
 residual divided by the 2-norm of M-inv times the right hand
 side is less than TOL, where M-inv is the inverse of the
 diagonal of A.
 ITOL=11 is often useful for checking and comparing different
 routines. For this case, the user must supply the "exact"
 solution or a very accurate approximation (one with an error
 much less than TOL) through a common block,
 COMMON /SSLBLK/ SOLN()
 If ITOL=11, iteration stops when the 2-norm of the difference
 between the iterative approximation and the user-supplied
 solution divided by the 2-norm of the user-supplied solution
 is less than TOL. Note that this requires the user to set up
 the "COMMON /SSLBLK/ SOLN(LENGTH)" in the calling routine.
 The routine with this declaration should be loaded before the
 stop test so that the correct length is used by the loader.
 This procedure is not standard Fortran and may not work
 correctly on your system (although it has worked on every
 system the authors have tried). If ITOL is not 11 then this
 common block is indeed standard Fortran.
 TOL :INOUT Real.
 Convergence criterion, as described above. (Reset if IERR=4.)
 ITMAX :IN Integer.
 Maximum number of iterations.
 ITER :OUT Integer.
 Number of iterations required to reach convergence, or
 ITMAX+1 if convergence criterion could not be achieved in
 ITMAX iterations.
 ERR :OUT Real.
 Error estimate of error in final approximate solution, as
 defined by ITOL.
 IERR :OUT Integer.
 Return error flag.
 IERR = 0 => All went well.
 IERR = 1 => Insufficient space allocated for WORK or IWORK.
 IERR = 2 => Method failed to converge in ITMAX steps.
 IERR = 3 => Error in user input.
 Check input values of N, ITOL.
 IERR = 4 => User error tolerance set too tight.
 Reset to 500*R1MACH(3). Iteration proceeded.
 IERR = 5 => Preconditioning matrix, M, is not positive
 definite. (r,z) < 0.
 IERR = 6 => Breakdown of the method detected.
 (p,Ap) < epsilon**2.
 IERR = 7 => Incomplete factorization broke down and was
 fudged. Resulting preconditioning may be less
 than the best.
 IUNIT :IN Integer.
 Unit number on which to write the error at each iteration,
 if this is desired for monitoring convergence. If unit
 number is 0, no writing will occur.
 RWORK :WORK Real RWORK(LENW).
 Real array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 LENW :IN Integer.
 Length of the real workspace, RWORK.
 LENW >= NL+NU+4*N+NSAVE*(3*N+1)
 IWORK :WORK Integer IWORK(LENIW)

SLATEC5 (REBAK through ZBIRY) - 481

 Integer array used for workspace. NL is the number of non-
 zeros in the lower triangle of the matrix (including the
 diagonal). NU is the number of non-zeros in the upper
 triangle of the matrix (including the diagonal).
 Upon return the following locations of IWORK hold information
 which may be of use to the user:
 IWORK(9) Amount of Integer workspace actually used.
 IWORK(10) Amount of Real workspace actually used.
 LENIW :IN Integer.
 Length of the integer workspace, IWORK.
 LENIW >= NL+NU+4*N+12.

 *Description:
 This routine is simply a driver for the SOMN routine. It
 calls the SSILUS routine to set up the preconditioning and
 then calls SOMN with the appropriate MATVEC and MSOLVE
 routines.

 The Sparse Linear Algebra Package (SLAP) utilizes two matrix
 data structures: 1) the SLAP Triad format or 2) the SLAP
 Column format. The user can hand this routine either of the
 of these data structures and SLAP will figure out which on
 is being used and act accordingly.

 =================== S L A P Triad format ===================

 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero

SLATEC5 (REBAK through ZBIRY) - 482

 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Side Effects:
 The SLAP Triad format (IA, JA, A) is modified internally to
 be the SLAP Column format. See above.

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.

 ***SEE ALSO SOMN, SSDOMN
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SCHKW, SOMN, SS2Y, SSILUS, SSLUI, SSMV
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890921 Removed TeX from comments. (FNF)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920407 COMMON BLOCK renamed SSLBLK. (WRB)
 920511 Added complete declaration section. (WRB)
 921019 Corrected NEL to NL. (FNF)
 921113 Corrected C***CATEGORY line. (FNF)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 483

SSLUTI

 SUBROUTINE SSLUTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSLUTI
 ***PURPOSE SLAP MTSOLV for LDU Factorization.
 This routine acts as an interface between the SLAP generic
 MTSOLV calling convention and the routine that actually
 -T
 computes (LDU) B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSLUTI-S, DSLUTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for SSLUI4:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of SSLUI4 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SSLUI4
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 484

SSMMI2

 SUBROUTINE SSMMI2 (N, B, X, IL, JL, L, DINV, IU, JU, U)
 ***BEGIN PROLOGUE SSMMI2
 ***PURPOSE SLAP Backsolve for LDU Factorization of Normal Equations.
 To solve a system of the form (L*D*U)*(L*D*U)' X = B,
 where L is a unit lower triangular matrix, D is a diagonal
 matrix, and U is a unit upper triangular matrix and '
 denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSMMI2-S, DSMMI2-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
 REAL B(N), X(N), L(NL), DINV(N), U(NU)

 CALL SSMMI2(N, B, X, IL, JL, L, DINV, IU, JU, U)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 B :IN Real B(N).
 Right hand side.
 X :OUT Real X(N).
 Solution of (L*D*U)(L*D*U)trans x = b.
 IL :IN Integer IL(NL).
 JL :IN Integer JL(NL).
 L :IN Real L(NL).
 IL, JL, L contain the unit lower triangular factor of the
 incomplete decomposition of some matrix stored in SLAP Row
 format. The diagonal of ones *IS* stored. This structure
 can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NL is the number of non-zeros in the L array.)
 DINV :IN Real DINV(N).
 Inverse of the diagonal matrix D.
 IU :IN Integer IU(NU).
 JU :IN Integer JU(NU).
 U :IN Real U(NU).
 IU, JU, U contain the unit upper triangular factor of the
 incomplete decomposition of some matrix stored in SLAP
 Column format. The diagonal of ones *IS* stored. This
 structure can be set up by the SSILUS routine. See the
 "Description", below for more details about the SLAP
 format. (NU is the number of non-zeros in the U array.)

 *Description:
 This routine is supplied with the SLAP package as a routine
 to perform the MSOLVE operation in the SBCGN iteration

SLATEC5 (REBAK through ZBIRY) - 485

 routine for the driver SSLUCN. It must be called via the
 SLAP MSOLVE calling sequence convention interface routine
 SSMMTI.
 **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
 **** SLAP MSOLVE CALLING CONVENTION ****

 IL, JL, L should contain the unit lower triangular factor of
 the incomplete decomposition of the A matrix stored in SLAP
 Row format. IU, JU, U should contain the unit upper factor
 of the incomplete decomposition of the A matrix stored in
 SLAP Column format This ILU factorization can be computed by
 the SSILUS routine. The diagonals (which are all one's) are
 stored.

 =================== S L A P Column format ==================

 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 ==================== S L A P Row format ====================

 This routine requires that the matrix A be stored in the
 SLAP Row format. In this format the non-zeros are stored
 counting across rows (except for the diagonal entry, which
 must appear first in each "row") and are stored in the real
 array A. In other words, for each row in the matrix put the
 diagonal entry in A. Then put in the other non-zero
 elements going across the row (except the diagonal) in
 order. The JA array holds the column index for each
 non-zero. The IA array holds the offsets into the JA, A
 arrays for the beginning of each row. That is,
 JA(IA(IROW)), A(IA(IROW)) points to the beginning of the
 IROW-th row in JA and A. JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
 points to the end of the IROW-th row. Note that we always
 have IA(N+1) = NELT+1, where N is the number of rows in

SLATEC5 (REBAK through ZBIRY) - 486

 the matrix and NELT is the number of non-zeros in the
 matrix.

 Here is an example of the SLAP Row storage format for a 5x5
 Matrix (in the A and JA arrays '|' denotes the end of a row):

 5x5 Matrix SLAP Row format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
 |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| IA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 ***SEE ALSO SSILUS
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 487

SSMMTI

 SUBROUTINE SSMMTI (N, B, X, NELT, IA, JA, A, ISYM, RWORK, IWORK)
 ***BEGIN PROLOGUE SSMMTI
 ***PURPOSE SLAP MSOLVE for LDU Factorization of Normal Equations.
 This routine acts as an interface between the SLAP generic
 MMTSLV calling convention and the routine that actually
 -1
 computes [(LDU)*(LDU)'] B = X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D2E
 ***TYPE SINGLE PRECISION (SSMMTI-S, DSMMTI-D)
 ***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION
 It is assumed that RWORK and IWORK have initialized with
 the information required for SSMMI2:
 IWORK(1) = Starting location of IL in IWORK.
 IWORK(2) = Starting location of JL in IWORK.
 IWORK(3) = Starting location of IU in IWORK.
 IWORK(4) = Starting location of JU in IWORK.
 IWORK(5) = Starting location of L in RWORK.
 IWORK(6) = Starting location of DINV in RWORK.
 IWORK(7) = Starting location of U in RWORK.
 See the DESCRIPTION of SSMMI2 for details.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED SSMMI2
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 921113 Corrected C***CATEGORY line. (FNF)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 488

SSMTV

 SUBROUTINE SSMTV (N, X, Y, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE SSMTV
 ***PURPOSE SLAP Column Format Sparse Matrix Transpose Vector Product.
 Routine to calculate the sparse matrix vector product:
 Y = A'*X, where ' denotes transpose.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSMTV-S, DSMTV-D)
 ***KEYWORDS MATRIX TRANSPOSE VECTOR MULTIPLY, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 REAL X(N), Y(N), A(NELT)

 CALL SSMTV(N, X, Y, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 X :IN Real X(N).
 The vector that should be multiplied by the transpose of
 the matrix.
 Y :OUT Real Y(N).
 The product of the transpose of the matrix and the vector.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),

SLATEC5 (REBAK through ZBIRY) - 489

 A(JA(ICOL)) points to the beginning of the ICOL-th column in
 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the matrix A is stored in SLAP
 Column format. It does not check for this (for speed) and
 evil, ugly, ornery and nasty things will happen if the matrix
 data structure is, in fact, not SLAP Column. Beware of the
 wrong data structure!!!

 ***SEE ALSO SSMV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 490

SSMV

 SUBROUTINE SSMV (N, X, Y, NELT, IA, JA, A, ISYM)
 ***BEGIN PROLOGUE SSMV
 ***PURPOSE SLAP Column Format Sparse Matrix Vector Product.
 Routine to calculate the sparse matrix vector product:
 Y = A*X.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSMV-S, DSMV-D)
 ***KEYWORDS MATRIX VECTOR MULTIPLY, SLAP, SPARSE
 ***AUTHOR Greenbaum, Anne, (Courant Institute)
 Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
 REAL X(N), Y(N), A(NELT)

 CALL SSMV(N, X, Y, NELT, IA, JA, A, ISYM)

 *Arguments:
 N :IN Integer.
 Order of the Matrix.
 X :IN Real X(N).
 The vector that should be multiplied by the matrix.
 Y :OUT Real Y(N).
 The product of the matrix and the vector.
 NELT :IN Integer.
 Number of Non-Zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP Column
 format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the upper
 or lower triangle of the matrix is stored.

 *Description
 =================== S L A P Column format ==================
 This routine requires that the matrix A be stored in the
 SLAP Column format. In this format the non-zeros are stored
 counting down columns (except for the diagonal entry, which
 must appear first in each "column") and are stored in the
 real array A. In other words, for each column in the matrix
 put the diagonal entry in A. Then put in the other non-zero
 elements going down the column (except the diagonal) in
 order. The IA array holds the row index for each non-zero.
 The JA array holds the offsets into the IA, A arrays for the
 beginning of each column. That is, IA(JA(ICOL)),
 A(JA(ICOL)) points to the beginning of the ICOL-th column in

SLATEC5 (REBAK through ZBIRY) - 491

 IA and A. IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1) points to the
 end of the ICOL-th column. Note that we always have
 JA(N+1) = NELT+1, where N is the number of columns in the
 matrix and NELT is the number of non-zeros in the matrix.

 Here is an example of the SLAP Column storage format for a
 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
 column):

 5x5 Matrix SLAP Column format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
 |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
 | 0 0 33 0 35| JA: 1 4 6 8 9 12
 | 0 0 0 44 0|
 |51 0 53 0 55|

 With the SLAP format the "inner loops" of this routine
 should vectorize on machines with hardware support for
 vector gather/scatter operations. Your compiler may require
 a compiler directive to convince it that there are no
 implicit vector dependencies. Compiler directives for the
 Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
 with the standard SLAP distribution.

 *Cautions:
 This routine assumes that the matrix A is stored in SLAP
 Column format. It does not check for this (for speed) and
 evil, ugly, ornery and nasty things will happen if the matrix
 data structure is, in fact, not SLAP Column. Beware of the
 wrong data structure!!!

 ***SEE ALSO SSMTV
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 492

SSORT

 SUBROUTINE SSORT (X, Y, N, KFLAG)
 ***BEGIN PROLOGUE SSORT
 ***PURPOSE Sort an array and optionally make the same interchanges in
 an auxiliary array. The array may be sorted in increasing
 or decreasing order. A slightly modified QUICKSORT
 algorithm is used.
 ***LIBRARY SLATEC
 ***CATEGORY N6A2B
 ***TYPE SINGLE PRECISION (SSORT-S, DSORT-D, ISORT-I)
 ***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
 ***AUTHOR Jones, R. E., (SNLA)
 Wisniewski, J. A., (SNLA)
 ***DESCRIPTION

 SSORT sorts array X and optionally makes the same interchanges in
 array Y. The array X may be sorted in increasing order or
 decreasing order. A slightly modified quicksort algorithm is used.

 Description of Parameters
 X - array of values to be sorted (usually abscissas)
 Y - array to be (optionally) carried along
 N - number of values in array X to be sorted
 KFLAG - control parameter
 = 2 means sort X in increasing order and carry Y along.
 = 1 means sort X in increasing order (ignoring Y)
 = -1 means sort X in decreasing order (ignoring Y)
 = -2 means sort X in decreasing order and carry Y along.

 ***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
 for sorting with minimal storage, Communications of
 the ACM, 12, 3 (1969), pp. 185-187.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 761101 DATE WRITTEN
 761118 Modified to use the Singleton quicksort algorithm. (JAW)
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced statement labels. (WRB)
 891024 Changed category. (WRB)
 891024 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901012 Declared all variables; changed X,Y to SX,SY. (M. McClain)
 920501 Reformatted the REFERENCES section. (DWL, WRB)
 920519 Clarified error messages. (DWL)
 920801 Declarations section rebuilt and code restructured to use
 IF-THEN-ELSE-ENDIF. (RWC, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 493

SSPCO

 SUBROUTINE SSPCO (AP, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE SSPCO
 ***PURPOSE Factor a real symmetric matrix stored in packed form
 by elimination with symmetric pivoting and estimate the
 condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 SSPCO factors a real symmetric matrix stored in packed
 form by elimination with symmetric pivoting and estimates
 the condition of the matrix.

 If RCOND is not needed, SSPFA is slightly faster.
 To solve A*X = B , follow SSPCO by SSPSL.
 To compute INVERSE(A)*C , follow SSPCO by SSPSL.
 To compute INVERSE(A) , follow SSPCO by SSPDI.
 To compute DETERMINANT(A) , follow SSPCO by SSPDI.
 To compute INERTIA(A), follow SSPCO by SSPDI.

 On Entry

 AP REAL (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working

SLATEC5 (REBAK through ZBIRY) - 494

 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SDOT, SSCAL, SSPFA
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 495

SSPDI

 SUBROUTINE SSPDI (AP, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE SSPDI
 ***PURPOSE Compute the determinant, inertia, inverse of a real
 symmetric matrix stored in packed form using the factors
 from SSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A, D3B1A
 ***TYPE SINGLE PRECISION (SSPDI-S, DSPDI-D, CHPDI-C, CSPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSPDI computes the determinant, inertia and inverse
 of a real symmetric matrix using the factors from SSPFA,
 where the matrix is stored in packed form.

 On Entry

 AP REAL (N*(N+1)/2)
 the output from SSPFA.

 N INTEGER
 the order of the matrix A.

 KPVT INTEGER(N)
 the pivot vector from SSPFA.

 WORK REAL(N)
 work vector. Contents ignored.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 If C .NE. 0, the inverse is computed,
 If B .NE. 0, the determinant is computed,
 If A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 AP contains the upper triangle of the inverse of
 the original matrix, stored in packed form.
 The columns of the upper triangle are stored
 sequentially in a one-dimensional array.

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)
 the inertia of the original matrix.

SLATEC5 (REBAK through ZBIRY) - 496

 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero will occur if the inverse is requested
 and SSPCO has set RCOND .EQ. 0.0
 or SSPFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SCOPY, SDOT, SSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 497

SSPEV

 SUBROUTINE SSPEV (A, N, E, V, LDV, WORK, JOB, INFO)
 ***BEGIN PROLOGUE SSPEV
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix stored in packed form.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A1
 ***TYPE SINGLE PRECISION (SSPEV-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK, PACKED, SYMMETRIC
 ***AUTHOR Kahaner, D. K., (NBS)
 Moler, C. B., (U. of New Mexico)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 Abstract
 SSPEV computes the eigenvalues and, optionally, the eigenvectors
 of a real symmetric matrix stored in packed form.

 Call Sequence Parameters-
 (The values of parameters marked with * (star) will be changed
 by SSPEV.)

 A* REAL(N*(N+1)/2)
 real symmetric packed input matrix. Contains upper
 triangle and diagonal of A, by column (elements
 11, 12, 22, 13, 23, 33, ...).

 N INTEGER
 set by the user to
 the order of the matrix A.

 E* REAL(N)
 on return from SSPEV, E contains the eigenvalues of A.
 See also INFO below.

 V* REAL(LDV,N)
 on return from SSPEV, if the user has set JOB
 = 0 V is not referenced.
 = nonzero the N eigenvectors of A are stored in the
 first N columns of V. See also INFO below.

 LDV INTEGER
 set by the user to
 the leading dimension of the array V if JOB is also
 set nonzero. In that case, N must be .LE. LDV.
 If JOB is set to zero, LDV is not referenced.

 WORK* REAL(2N)
 temporary storage vector. Contents changed by SSPEV.

 JOB INTEGER
 set by the user to
 = 0 eigenvalues only to be calculated by SSPEV.
 Neither V nor LDV are referenced.
 = nonzero eigenvalues and vectors to be calculated.
 In this case, A & V must be distinct arrays.
 Also, if LDA .GT. LDV, SSPEV changes all the

SLATEC5 (REBAK through ZBIRY) - 498

 elements of A thru column N. If LDA < LDV,
 SSPEV changes all the elements of V through
 column N. If LDA=LDV, only A(I,J) and V(I,
 J) for I,J = 1,...,N are changed by SSPEV.

 INFO* INTEGER
 on return from SSPEV, the value of INFO is
 = 0 for normal return.
 = K if the eigenvalue iteration fails to converge.
 Eigenvalues and vectors 1 through K-1 are correct.

 Error Messages-
 No. 1 recoverable N is greater than LDV and JOB is nonzero
 No. 2 recoverable N is less than one

 ***REFERENCES (NONE)
 ***ROUTINES CALLED IMTQL2, TQLRAT, TRBAK3, TRED3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 499

SSPFA

 SUBROUTINE SSPFA (AP, N, KPVT, INFO)
 ***BEGIN PROLOGUE SSPFA
 ***PURPOSE Factor a real symmetric matrix stored in packed form by
 elimination with symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSPFA-S, DSPFA-D, CHPFA-C, CSPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSPFA factors a real symmetric matrix stored in
 packed form by elimination with symmetric pivoting.

 To solve A*X = B , follow SSPFA by SSPSL.
 To compute INVERSE(A)*C , follow SSPFA by SSPSL.
 To compute DETERMINANT(A) , follow SSPFA by SSPDI.
 To compute INERTIA(A) , follow SSPFA by SSPDI.
 To compute INVERSE(A) , follow SSPFA by SSPDI.

 On Entry

 AP REAL (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that SSPSL or SSPDI may
 divide by zero if called.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

SLATEC5 (REBAK through ZBIRY) - 500

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED ISAMAX, SAXPY, SSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 501

SSPMV

 SUBROUTINE SSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE SSPMV
 ***PURPOSE Perform the matrix-vector operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSPMV-S, DSPMV-D, CSPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSPMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 AP - REAL array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)

SLATEC5 (REBAK through ZBIRY) - 502

 and a(3, 1) respectively, and so on.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - REAL array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 503

SSPR

 SUBROUTINE SSPR (UPLO, N, ALPHA, X, INCX, AP)
 ***BEGIN PROLOGUE SSPR
 ***PURPOSE Performs the symmetric rank 1 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSPR-S)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSPR performs the symmetric rank 1 operation

 A := alpha*x*x' + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 504

 AP - REAL array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 505

SSPR2

 SUBROUTINE SSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
 ***BEGIN PROLOGUE SSPR2
 ***PURPOSE Perform the symmetric rank 2 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSPR2-S, DSPR2-D, CSPR2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSPR2 performs the symmetric rank 2 operation

 A := alpha*x*y' + alpha*y*x' + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n symmetric matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 506

 Y - REAL array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 AP - REAL array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the symmetric matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 507

SSPSL

 SUBROUTINE SSPSL (AP, N, KPVT, B)
 ***BEGIN PROLOGUE SSPSL
 ***PURPOSE Solve a real symmetric system using the factors obtained
 from SSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2B1A
 ***TYPE SINGLE PRECISION (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 SSISL solves the real symmetric system
 A * X = B
 using the factors computed by SSPFA.

 On Entry

 AP REAL(N*(N+1)/2)
 the output from SSPFA.

 N INTEGER
 the order of the matrix A .

 KPVT INTEGER(N)
 the pivot vector from SSPFA.

 B REAL(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if SSPCO has set RCOND .EQ. 0.0
 or SSPFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL SSPFA(AP,N,KPVT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL SSPSL(AP,N,KPVT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC5 (REBAK through ZBIRY) - 508

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 509

SSVDC

 SUBROUTINE SSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB,
 + INFO)
 ***BEGIN PROLOGUE SSVDC
 ***PURPOSE Perform the singular value decomposition of a rectangular
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D6
 ***TYPE SINGLE PRECISION (SSVDC-S, DSVDC-D, CSVDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX,
 SINGULAR VALUE DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 SSVDC is a subroutine to reduce a real NxP matrix X by orthogonal
 transformations U and V to diagonal form. The elements S(I) are
 the singular values of X. The columns of U are the corresponding
 left singular vectors, and the columns of V the right singular
 vectors.

 On Entry

 X REAL(LDX,P), where LDX .GE. N.
 X contains the matrix whose singular value
 decomposition is to be computed. X is
 destroyed by SSVDC.

 LDX INTEGER
 LDX is the leading dimension of the array X.

 N INTEGER
 N is the number of rows of the matrix X.

 P INTEGER
 P is the number of columns of the matrix X.

 LDU INTEGER
 LDU is the leading dimension of the array U.
 (See below).

 LDV INTEGER
 LDV is the leading dimension of the array V.
 (See below).

 WORK REAL(N)
 work is a scratch array.

 JOB INTEGER
 JOB controls the computation of the singular
 vectors. It has the decimal expansion AB
 with the following meaning

 A .EQ. 0 Do not compute the left singular
 vectors.
 A .EQ. 1 Return the N left singular vectors
 in U.
 A .GE. 2 Return the first MIN(N,P) singular

SLATEC5 (REBAK through ZBIRY) - 510

 vectors in U.
 B .EQ. 0 Do not compute the right singular
 vectors.
 B .EQ. 1 Return the right singular vectors
 in V.

 On Return

 S REAL(MM), where MM=MIN(N+1,P).
 The first MIN(N,P) entries of S contain the
 singular values of X arranged in descending
 order of magnitude.

 E REAL(P).
 E ordinarily contains zeros. However, see the
 discussion of INFO for exceptions.

 U REAL(LDU,K), where LDU .GE. N. If JOBA .EQ. 1, then
 K .EQ. N. If JOBA .GE. 2 , then
 K .EQ. MIN(N,P).
 U contains the matrix of right singular vectors.
 U is not referenced if JOBA .EQ. 0. If N .LE. P
 or if JOBA .EQ. 2, then U may be identified with X
 in the subroutine call.

 V REAL(LDV,P), where LDV .GE. P.
 V contains the matrix of right singular vectors.
 V is not referenced if JOB .EQ. 0. If P .LE. N,
 then V may be identified with X in the
 subroutine call.

 INFO INTEGER.
 the singular values (and their corresponding
 singular vectors) S(INFO+1),S(INFO+2),...,S(M)
 are correct (here M=MIN(N,P)). Thus if
 INFO .EQ. 0, all the singular values and their
 vectors are correct. In any event, the matrix
 B = TRANS(U)*X*V is the bidiagonal matrix
 with the elements of S on its diagonal and the
 elements of E on its super-diagonal (TRANS(U)
 is the transpose of U). Thus the singular
 values of X and B are the same.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT, SNRM2, SROT, SROTG, SSCAL, SSWAP
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 511

SSWAP

 SUBROUTINE SSWAP (N, SX, INCX, SY, INCY)
 ***BEGIN PROLOGUE SSWAP
 ***PURPOSE Interchange two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE SINGLE PRECISION (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I)
 ***KEYWORDS BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SX single precision vector with N elements
 INCX storage spacing between elements of SX
 SY single precision vector with N elements
 INCY storage spacing between elements of SY

 --Output--
 SX input vector SY (unchanged if N .LE. 0)
 SY input vector SX (unchanged if N .LE. 0)

 Interchange single precision SX and single precision SY.
 For I = 0 to N-1, interchange SX(LX+I*INCX) and SY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 512

SSYMM

 SUBROUTINE SSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE SSYMM
 ***PURPOSE Multiply a real general matrix by a real symmetric matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (SSYMM-S, DSYMM-D, CSYMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 SSYMM performs one of the matrix-matrix operations

 C := alpha*A*B + beta*C,

 or

 C := alpha*B*A + beta*C,

 where alpha and beta are scalars, A is a symmetric matrix and B and
 C are m by n matrices.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether the symmetric matrix A
 appears on the left or right in the operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the symmetric matrix A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part of the
 symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of the
 symmetric matrix is to be referenced.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix C.
 M must be at least zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 513

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix C.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, ka), where ka is
 m when SIDE = 'L' or 'l' and is n otherwise.
 Before entry with SIDE = 'L' or 'l', the m by m part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading m by m upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading m by m lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Before entry with SIDE = 'R' or 'r', the n by n part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading n by n upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, n).
 Unchanged on exit.

 B - REAL array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - REAL array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.

SLATEC5 (REBAK through ZBIRY) - 514

 On exit, the array C is overwritten by the m by n updated
 matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 515

SSYMV

 SUBROUTINE SSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE SSYMV
 ***PURPOSE Multiply a real vector by a real symmetric matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSYMV-S, DSYMV-D, CSYMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSYMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 516

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - REAL array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 517

SSYR

 SUBROUTINE SSYR (UPLO, N, ALPHA, X, INCX, A, LDA)
 ***BEGIN PROLOGUE SSYR
 ***PURPOSE Perform symmetric rank 1 update of a real symmetric matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSYR-S)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSYR performs the symmetric rank 1 operation

 A := alpha*x*x' + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 518

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 519

SSYR2

 SUBROUTINE SSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE SSYR2
 ***PURPOSE Perform symmetric rank 2 update of a real symmetric matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 SSYR2 performs the symmetric rank 2 operation

 A := alpha*x*y' + alpha*y*x' + A,

 where alpha is a scalar, x and y are n element vectors and A is an n
 by n symmetric matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 520

 Y - REAL array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 521

SSYR2K

 SUBROUTINE SSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE SSYR2K
 ***PURPOSE Perform symmetric rank 2k update of a real symmetric matrix
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C, SSYR2K-S)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 SSYR2K performs one of the symmetric rank 2k operations

 C := alpha*A*B' + alpha*B*A' + beta*C,

 or

 C := alpha*A'*B + alpha*B'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A and B are n by k matrices in the first case and k by n
 matrices in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
 beta*C.

 TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
 beta*C.

 TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
 beta*C.

 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 522

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrices A and B, and on entry with
 TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
 of rows of the matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 B - REAL array of DIMENSION (LDB, kb), where kb is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array B must contain the matrix B, otherwise
 the leading k by n part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDB must be at least max(1, n), otherwise LDB must
 be at least max(1, k).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - REAL array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower

SLATEC5 (REBAK through ZBIRY) - 523

 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 524

SSYRK

 SUBROUTINE SSYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
 ***BEGIN PROLOGUE SSYRK
 ***PURPOSE Perform symmetric rank k update of a real symmetric matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (SSYRK-S, DSYRK-D, CSYRK-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 SSYRK performs one of the symmetric rank k operations

 C := alpha*A*A' + beta*C,

 or

 C := alpha*A'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A is an n by k matrix in the first case and a k by n matrix
 in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANS = 'T' or 't' C := alpha*A'*A + beta*C.

 TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.

SLATEC5 (REBAK through ZBIRY) - 525

 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrix A, and on entry with
 TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
 of rows of the matrix A. K must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - REAL array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment

SLATEC5 (REBAK through ZBIRY) - 526

 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 527

STBMV

 SUBROUTINE STBMV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE STBMV
 ***PURPOSE Multiply a real vector by a real triangular band matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STBMV-S, DTBMV-D, CTBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STBMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with (k + 1) diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 528

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 529

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 530

STBSV

 SUBROUTINE STBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE STBSV
 ***PURPOSE Solve a real triangular banded system of linear equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STBSV-S, DTBSV-D, CTBSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STBSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular band matrix, with (k + 1)
 diagonals.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit

SLATEC5 (REBAK through ZBIRY) - 531

 triangular.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
SLATEC5 (REBAK through ZBIRY) - 532

 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 533

STEPS

 SUBROUTINE STEPS (F, NEQN, Y, X, H, EPS, WT, START, HOLD, K,
 + KOLD, CRASH, PHI, P, YP, PSI, ALPHA, BETA, SIG, V, W, G,
 + PHASE1, NS, NORND, KSTEPS, TWOU, FOURU, XOLD, KPREV, IVC, IV,
 + KGI, GI, RPAR, IPAR)
 ***BEGIN PROLOGUE STEPS
 ***PURPOSE Integrate a system of first order ordinary differential
 equations one step.
 ***LIBRARY SLATEC (DEPAC)
 ***CATEGORY I1A1B
 ***TYPE SINGLE PRECISION (STEPS-S, DSTEPS-D)
 ***KEYWORDS ADAMS METHOD, DEPAC, INITIAL VALUE PROBLEMS, ODE,
 ORDINARY DIFFERENTIAL EQUATIONS, PREDICTOR-CORRECTOR
 ***AUTHOR Shampine, L. F., (SNLA)
 Gordon, M. K., (SNLA)
 MODIFIED BY H.A. WATTS
 ***DESCRIPTION

 Written by L. F. Shampine and M. K. Gordon

 Abstract

 Subroutine STEPS is normally used indirectly through subroutine
 DEABM . Because DEABM suffices for most problems and is much
 easier to use, using it should be considered before using STEPS
 alone.

 Subroutine STEPS integrates a system of NEQN first order ordinary
 differential equations one step, normally from X to X+H, using a
 modified divided difference form of the Adams Pece formulas. Local
 extrapolation is used to improve absolute stability and accuracy.
 The code adjusts its order and step size to control the local error
 per unit step in a generalized sense. Special devices are included
 to control roundoff error and to detect when the user is requesting
 too much accuracy.

 This code is completely explained and documented in the text,
 Computer Solution of Ordinary Differential Equations, The Initial
 Value Problem by L. F. Shampine and M. K. Gordon.
 Further details on use of this code are available in "Solving
 Ordinary Differential Equations with ODE, STEP, and INTRP",
 by L. F. Shampine and M. K. Gordon, SLA-73-1060.

 The parameters represent --
 F -- subroutine to evaluate derivatives
 NEQN -- number of equations to be integrated
 Y(*) -- solution vector at X
 X -- independent variable
 H -- appropriate step size for next step. Normally determined by
 code
 EPS -- local error tolerance
 WT(*) -- vector of weights for error criterion
 START -- logical variable set .TRUE. for first step, .FALSE.
 otherwise
 HOLD -- step size used for last successful step
 K -- appropriate order for next step (determined by code)

SLATEC5 (REBAK through ZBIRY) - 534

 KOLD -- order used for last successful step
 CRASH -- logical variable set .TRUE. when no step can be taken,
 .FALSE. otherwise.
 YP(*) -- derivative of solution vector at X after successful
 step
 KSTEPS -- counter on attempted steps
 TWOU -- 2.*U where U is machine unit roundoff quantity
 FOURU -- 4.*U where U is machine unit roundoff quantity
 RPAR,IPAR -- parameter arrays which you may choose to use
 for communication between your program and subroutine F.
 They are not altered or used by STEPS.
 The variables X,XOLD,KOLD,KGI and IVC and the arrays Y,PHI,ALPHA,G,
 W,P,IV and GI are required for the interpolation subroutine SINTRP.
 The remaining variables and arrays are included in the call list
 only to eliminate local retention of variables between calls.

 Input to STEPS

 First call --

 The user must provide storage in his calling program for all arrays
 in the call list, namely

 DIMENSION Y(NEQN),WT(NEQN),PHI(NEQN,16),P(NEQN),YP(NEQN),PSI(12),
 1 ALPHA(12),BETA(12),SIG(13),V(12),W(12),G(13),GI(11),IV(10),
 2 RPAR(*),IPAR(*)

 Note

 The user must also declare START , CRASH , PHASE1 and NORND
 logical variables and F an EXTERNAL subroutine, supply the
 subroutine F(X,Y,YP) to evaluate
 DY(I)/DX = YP(I) = F(X,Y(1),Y(2),...,Y(NEQN))
 and initialize only the following parameters.
 NEQN -- number of equations to be integrated
 Y(*) -- vector of initial values of dependent variables
 X -- initial value of the independent variable
 H -- nominal step size indicating direction of integration
 and maximum size of step. Must be variable
 EPS -- local error tolerance per step. Must be variable
 WT(*) -- vector of non-zero weights for error criterion
 START -- .TRUE.
 YP(*) -- vector of initial derivative values
 KSTEPS -- set KSTEPS to zero
 TWOU -- 2.*U where U is machine unit roundoff quantity
 FOURU -- 4.*U where U is machine unit roundoff quantity
 Define U to be the machine unit roundoff quantity by calling
 the function routine R1MACH, U = R1MACH(4), or by
 computing U so that U is the smallest positive number such
 that 1.0+U .GT. 1.0.

 STEPS requires that the L2 norm of the vector with components
 LOCAL ERROR(L)/WT(L) be less than EPS for a successful step. The
 array WT allows the user to specify an error test appropriate
 for his problem. For example,
 WT(L) = 1.0 specifies absolute error,
 = ABS(Y(L)) error relative to the most recent value of the
 L-th component of the solution,
 = ABS(YP(L)) error relative to the most recent value of
 the L-th component of the derivative,

SLATEC5 (REBAK through ZBIRY) - 535

 = MAX(WT(L),ABS(Y(L))) error relative to the largest
 magnitude of L-th component obtained so far,
 = ABS(Y(L))*RELERR/EPS + ABSERR/EPS specifies a mixed
 relative-absolute test where RELERR is relative
 error, ABSERR is absolute error and EPS =
 MAX(RELERR,ABSERR) .

 Subsequent calls --

 Subroutine STEPS is designed so that all information needed to
 continue the integration, including the step size H and the order
 K , is returned with each step. With the exception of the step
 size, the error tolerance, and the weights, none of the parameters
 should be altered. The array WT must be updated after each step
 to maintain relative error tests like those above. Normally the
 integration is continued just beyond the desired endpoint and the
 solution interpolated there with subroutine SINTRP . If it is
 impossible to integrate beyond the endpoint, the step size may be
 reduced to hit the endpoint since the code will not take a step
 larger than the H input. Changing the direction of integration,
 i.e., the sign of H , requires the user set START = .TRUE. before
 calling STEPS again. This is the only situation in which START
 should be altered.

 Output from STEPS

 Successful Step --

 The subroutine returns after each successful step with START and
 CRASH set .FALSE. . X represents the independent variable
 advanced one step of length HOLD from its value on input and Y
 the solution vector at the new value of X . All other parameters
 represent information corresponding to the new X needed to
 continue the integration.

 Unsuccessful Step --

 When the error tolerance is too small for the machine precision,
 the subroutine returns without taking a step and CRASH = .TRUE. .
 An appropriate step size and error tolerance for continuing are
 estimated and all other information is restored as upon input
 before returning. To continue with the larger tolerance, the user
 just calls the code again. A restart is neither required nor
 desirable.

 ***REFERENCES L. F. Shampine and M. K. Gordon, Solving ordinary
 differential equations with ODE, STEP, and INTRP,
 Report SLA-73-1060, Sandia Laboratories, 1973.
 ***ROUTINES CALLED HSTART, R1MACH
 ***REVISION HISTORY (YYMMDD)
 740101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 536

STIN

 SUBROUTINE STIN (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE STIN
 ***PURPOSE Read in SLAP Triad Format Linear System.
 Routine to read in a SLAP Triad format matrix and right
 hand side and solution to the system, if known.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE SINGLE PRECISION (STIN-S, DTIN-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 REAL A(NELT), SOLN(N), RHS(N)

 CALL STIN(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :OUT Integer
 Order of the Matrix.
 NELT :INOUT Integer.
 On input NELT is the maximum number of non-zeros that
 can be stored in the IA, JA, A arrays.
 On output NELT is the number of non-zeros stored in A.
 IA :OUT Integer IA(NELT).
 JA :OUT Integer JA(NELT).
 A :OUT Real A(NELT).
 On output these arrays hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :OUT Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :OUT Real SOLN(N).
 The solution to the linear system, if present. This array
 is accessed if and only if JOB to read it in, see below.
 If the user requests that SOLN be read in, but it is not in
 the file, then it is simply zeroed out.
 RHS :OUT Real RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to read it in, see below.
 If the user requests that RHS be read in, but it is not in
 the file, then it is simply zeroed out.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :INOUT Integer.
 Flag indicating what I/O operations to perform.

SLATEC5 (REBAK through ZBIRY) - 537

 On input JOB indicates what Input operations to try to
 perform.
 JOB = 0 => Read only the matrix.
 JOB = 1 => Read matrix and RHS (if present).
 JOB = 2 => Read matrix and SOLN (if present).
 JOB = 3 => Read matrix, RHS and SOLN (if present).
 On output JOB indicates what operations were actually
 performed.
 JOB = 0 => Read in only the matrix.
 JOB = 1 => Read in the matrix and RHS.
 JOB = 2 => Read in the matrix and SOLN.
 JOB = 3 => Read in the matrix, RHS and SOLN.

 *Description:
 The format for the input is as follows. On the first line
 are counters and flags: N, NELT, ISYM, IRHS, ISOLN. N, NELT
 and ISYM are described above. IRHS is a flag indicating if
 the RHS was written out (1 is yes, 0 is no). ISOLN is a
 flag indicating if the SOLN was written out (1 is yes, 0 is
 no). The format for the fist line is: 5i10. Then comes the
 NELT Triad's IA(I), JA(I) and A(I), I = 1, NELT. The format
 for these lines is : 1X,I5,1X,I5,1X,E16.7. Then comes
 RHS(I), I = 1, N, if IRHS = 1. Then comes SOLN(I), I = 1,
 N, if ISOLN = 1. The format for these lines is: 1X,E16.7.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)

SLATEC5 (REBAK through ZBIRY) - 538

 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 539

STOUT

 SUBROUTINE STOUT (N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)
 ***BEGIN PROLOGUE STOUT
 ***PURPOSE Write out SLAP Triad Format Linear System.
 Routine to write out a SLAP Triad format matrix and right
 hand side and solution to the system, if known.
 ***LIBRARY SLATEC (SLAP)
 ***CATEGORY N1
 ***TYPE SINGLE PRECISION (STOUT-S, DTOUT-D)
 ***KEYWORDS DIAGNOSTICS, LINEAR SYSTEM, SLAP SPARSE
 ***AUTHOR Seager, Mark K., (LLNL)
 Lawrence Livermore National Laboratory
 PO BOX 808, L-60
 Livermore, CA 94550 (510) 423-3141
 seager@llnl.gov
 ***DESCRIPTION

 *Usage:
 INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, IUNIT, JOB
 REAL A(NELT), SOLN(N), RHS(N)

 CALL STOUT(N, NELT, IA, JA, A, ISYM, SOLN, RHS, IUNIT, JOB)

 *Arguments:
 N :IN Integer
 Order of the Matrix.
 NELT :IN Integer.
 Number of non-zeros stored in A.
 IA :IN Integer IA(NELT).
 JA :IN Integer JA(NELT).
 A :IN Real A(NELT).
 These arrays should hold the matrix A in the SLAP
 Triad format. See "Description", below.
 ISYM :IN Integer.
 Flag to indicate symmetric storage format.
 If ISYM=0, all non-zero entries of the matrix are stored.
 If ISYM=1, the matrix is symmetric, and only the lower
 triangle of the matrix is stored.
 SOLN :IN Real SOLN(N).
 The solution to the linear system, if known. This array
 is accessed if and only if JOB is set to print it out,
 see below.
 RHS :IN Real RHS(N).
 The right hand side vector. This array is accessed if and
 only if JOB is set to print it out, see below.
 IUNIT :IN Integer.
 Fortran logical I/O device unit number to write the matrix
 to. This unit must be connected in a system dependent fashion
 to a file or the console or you will get a nasty message
 from the Fortran I/O libraries.
 JOB :IN Integer.
 Flag indicating what I/O operations to perform.
 JOB = 0 => Print only the matrix.
 = 1 => Print matrix and RHS.
 = 2 => Print matrix and SOLN.
 = 3 => Print matrix, RHS and SOLN.

SLATEC5 (REBAK through ZBIRY) - 540

 *Description:
 The format for the output is as follows. On the first line
 are counters and flags: N, NELT, ISYM, IRHS, ISOLN. N, NELT
 and ISYM are described above. IRHS is a flag indicating if
 the RHS was written out (1 is yes, 0 is no). ISOLN is a
 flag indicating if the SOLN was written out (1 is yes, 0 is
 no). The format for the fist line is: 5i10. Then comes the
 NELT Triad's IA(I), JA(I) and A(I), I = 1, NELT. The format
 for these lines is : 1X,I5,1X,I5,1X,E16.7. Then comes
 RHS(I), I = 1, N, if IRHS = 1. Then comes SOLN(I), I = 1,
 N, if ISOLN = 1. The format for these lines is: 1X,E16.7.

 =================== S L A P Triad format ===================
 This routine requires that the matrix A be stored in the
 SLAP Triad format. In this format only the non-zeros are
 stored. They may appear in *ANY* order. The user supplies
 three arrays of length NELT, where NELT is the number of
 non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
 each non-zero the user puts the row and column index of that
 matrix element in the IA and JA arrays. The value of the
 non-zero matrix element is placed in the corresponding
 location of the A array. This is an extremely easy data
 structure to generate. On the other hand it is not too
 efficient on vector computers for the iterative solution of
 linear systems. Hence, SLAP changes this input data
 structure to the SLAP Column format for the iteration (but
 does not change it back).

 Here is an example of the SLAP Triad storage format for a
 5x5 Matrix. Recall that the entries may appear in any order.

 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
 1 2 3 4 5 6 7 8 9 10 11
 |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
 |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
 | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
 | 0 0 0 44 0|
 |51 0 53 0 55|

 *Cautions:
 This routine will attempt to write to the Fortran logical output
 unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
 this logical unit is attached to a file or terminal before calling
 this routine with a non-zero value for IUNIT. This routine does
 not check for the validity of a non-zero IUNIT unit number.
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 871119 DATE WRITTEN
 881213 Previous REVISION DATE
 890915 Made changes requested at July 1989 CML Meeting. (MKS)
 890922 Numerous changes to prologue to make closer to SLATEC
 standard. (FNF)
 890929 Numerous changes to reduce SP/DP differences. (FNF)
 910411 Prologue converted to Version 4.0 format. (BAB)
 920511 Added complete declaration section. (WRB)
 930701 Updated CATEGORY section. (FNF, WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 541

STPMV

 SUBROUTINE STPMV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE STPMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STPMV-S, DTPMV-D, CTPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STPMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 542

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - REAL array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 543

STPSV

 SUBROUTINE STPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE STPSV
 ***PURPOSE Solve one of the systems of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STPSV-S, DTPSV-D, CTPSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STPSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC5 (REBAK through ZBIRY) - 544

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - REAL array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 545

STRCO

 SUBROUTINE STRCO (T, LDT, N, RCOND, Z, JOB)
 ***BEGIN PROLOGUE STRCO
 ***PURPOSE Estimate the condition number of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3
 ***TYPE SINGLE PRECISION (STRCO-S, DTRCO-D, CTRCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 TRIANGULAR MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 STRCO estimates the condition of a real triangular matrix.

 On Entry

 T REAL(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 0 T is lower triangular.
 = nonzero T is upper triangular.

 On Return

 RCOND REAL
 an estimate of the reciprocal condition of T .
 For the system T*X = B , relative perturbations
 in T and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then T may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z REAL(N)
 a work vector whose contents are usually unimportant.
 If T is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SASUM, SAXPY, SSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN

SLATEC5 (REBAK through ZBIRY) - 546

 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 547

STRDI

 SUBROUTINE STRDI (T, LDT, N, DET, JOB, INFO)
 ***BEGIN PROLOGUE STRDI
 ***PURPOSE Compute the determinant and inverse of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3, D3A3
 ***TYPE SINGLE PRECISION (STRDI-S, DTRDI-D, CTRDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 TRIANGULAR
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 STRDI computes the determinant and inverse of a real
 triangular matrix.

 On Entry

 T REAL(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 010 no det, inverse of lower triangular.
 = 011 no det, inverse of upper triangular.
 = 100 det, no inverse.
 = 110 det, inverse of lower triangular.
 = 111 det, inverse of upper triangular.

 On Return

 T inverse of original matrix if requested.
 Otherwise unchanged.

 DET REAL(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 INFO INTEGER
 INFO contains zero if the system is nonsingular
 and the inverse is requested.
 Otherwise INFO contains the index of
 a zero diagonal element of T.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SSCAL

SLATEC5 (REBAK through ZBIRY) - 548

 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 549

STRMM

 SUBROUTINE STRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE STRMM
 ***PURPOSE Multiply a real general matrix by a real triangular matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (STRMM-S, DTRMM-D, CTRMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 STRMM performs one of the matrix-matrix operations

 B := alpha*op(A)*B, or B := alpha*B*op(A),

 where alpha is a scalar, B is an m by n matrix, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) multiplies B from
 the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = A'.

SLATEC5 (REBAK through ZBIRY) - 550

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - REAL array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B, and on exit is overwritten by the
 transformed matrix.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 551

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 552

STRMV

 SUBROUTINE STRMV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE STRMV
 ***PURPOSE Multiply a real vector by a real triangular matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STRMV-S, DTRMV-D, CTRMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STRMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := A'*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC5 (REBAK through ZBIRY) - 553

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 554

STRSL

 SUBROUTINE STRSL (T, LDT, N, B, JOB, INFO)
 ***BEGIN PROLOGUE STRSL
 ***PURPOSE Solve a system of the form T*X=B or TRANS(T)*X=B, where
 T is a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2A3
 ***TYPE SINGLE PRECISION (STRSL-S, DTRSL-D, CTRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, TRIANGULAR LINEAR SYSTEM,
 TRIANGULAR MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 STRSL solves systems of the form

 T * X = B
 or
 TRANS(T) * X = B

 where T is a triangular matrix of order N. Here TRANS(T)
 denotes the transpose of the matrix T.

 On Entry

 T REAL(LDT,N)
 T contains the matrix of the system. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 B REAL(N).
 B contains the right hand side of the system.

 JOB INTEGER
 JOB specifies what kind of system is to be solved.
 If JOB is

 00 solve T*X=B, T lower triangular,
 01 solve T*X=B, T upper triangular,
 10 solve TRANS(T)*X=B, T lower triangular,
 11 solve TRANS(T)*X=B, T upper triangular.

 On Return

 B B contains the solution, if INFO .EQ. 0.
 Otherwise B is unaltered.

 INFO INTEGER
 INFO contains zero if the system is nonsingular.
 Otherwise INFO contains the index of
 the first zero diagonal element of T.

SLATEC5 (REBAK through ZBIRY) - 555

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED SAXPY, SDOT
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 556

STRSM

 SUBROUTINE STRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE STRSM
 ***PURPOSE Solve a real triangular system of equations with multiple
 right-hand sides.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE SINGLE PRECISION (STRSM-S, DTRSM-D, CTRSM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 STRSM solves one of the matrix equations

 op(A)*X = alpha*B, or X*op(A) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A'.

 The matrix X is overwritten on B.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) appears on the left
 or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

SLATEC5 (REBAK through ZBIRY) - 557

 TRANSA = 'C' or 'c' op(A) = A'.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - REAL array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the right-hand side matrix B, and on exit is
 overwritten by the solution matrix X.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared

SLATEC5 (REBAK through ZBIRY) - 558

 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 559

STRSV

 SUBROUTINE STRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE STRSV
 ***PURPOSE Solve a real triangular system of linear equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE SINGLE PRECISION (STRSV-S, DTRSV-D, CTRSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 STRSV solves one of the systems of equations

 A*x = b, or A'*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' A'*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC5 (REBAK through ZBIRY) - 560

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - REAL array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - REAL array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 561

TINVIT

 SUBROUTINE TINVIT (NM, N, D, E, E2, M, W, IND, Z, IERR, RV1, RV2,
 + RV3, RV4, RV6)
 ***BEGIN PROLOGUE TINVIT
 ***PURPOSE Compute the eigenvectors of symmetric tridiagonal matrix
 corresponding to specified eigenvalues, using inverse
 iteration.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C3
 ***TYPE SINGLE PRECISION (TINVIT-S)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the inverse iteration tech-
 nique in the ALGOL procedure TRISTURM by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).

 This subroutine finds those eigenvectors of a TRIDIAGONAL
 SYMMETRIC matrix corresponding to specified eigenvalues,
 using inverse iteration.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E,
 with zeros corresponding to negligible elements of E.
 E(I) is considered negligible if it is not larger than
 the product of the relative machine precision and the sum
 of the magnitudes of D(I) and D(I-1). E2(1) must contain
 0.0e0 if the eigenvalues are in ascending order, or 2.0e0
 if the eigenvalues are in descending order. If BISECT,
 TRIDIB, or IMTQLV has been used to find the eigenvalues,
 their output E2 array is exactly what is expected here.
 E2 is a one-dimensional REAL array, dimensioned E2(N).

 M is the number of specified eigenvalues for which eigenvectors
 are to be determined. M is an INTEGER variable.

 W contains the M eigenvalues in ascending or descending order.
 W is a one-dimensional REAL array, dimensioned W(M).

 IND contains in its first M positions the submatrix indices

SLATEC5 (REBAK through ZBIRY) - 562

 associated with the corresponding eigenvalues in W --
 1 for eigenvalues belonging to the first submatrix from
 the top, 2 for those belonging to the second submatrix, etc.
 If BISECT or TRIDIB has been used to determine the
 eigenvalues, their output IND array is suitable for input
 to TINVIT. IND is a one-dimensional INTEGER array,
 dimensioned IND(M).

 On Output

 ** All input arrays are unaltered.**

 Z contains the associated set of orthonormal eigenvectors.
 Any vector which fails to converge is set to zero.
 Z is a two-dimensional REAL array, dimensioned Z(NM,M).

 IERR is an INTEGER flag set to
 Zero for normal return,
 -J if the eigenvector corresponding to the J-th
 eigenvalue fails to converge in 5 iterations.

 RV1, RV2 and RV3 are one-dimensional REAL arrays used for
 temporary storage. They are used to store the main diagonal
 and the two adjacent diagonals of the triangular matrix
 produced in the inverse iteration process. RV1, RV2 and
 RV3 are dimensioned RV1(N), RV2(N) and RV3(N).

 RV4 and RV6 are one-dimensional REAL arrays used for temporary
 storage. RV4 holds the multipliers of the Gaussian
 elimination process. RV6 holds the approximate eigenvectors
 in this process. RV4 and RV6 are dimensioned RV4(N) and
 RV6(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 563

TQL1

 SUBROUTINE TQL1 (N, D, E, IERR)
 ***BEGIN PROLOGUE TQL1
 ***PURPOSE Compute the eigenvalues of symmetric tridiagonal matrix by
 the QL method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (TQL1-S)
 ***KEYWORDS EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX, EISPACK,
 QL METHOD
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TQL1,
 NUM. MATH. 11, 293-306(1968) by Bowdler, Martin, Reinsch, and
 Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).

 This subroutine finds the eigenvalues of a SYMMETRIC
 TRIDIAGONAL matrix by the QL method.

 On Input

 N is the order of the matrix. N is an INTEGER variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 On Output

 D contains the eigenvalues in ascending order. If an
 error exit is made, the eigenvalues are correct and
 ordered for indices 1, 2, ..., IERR-1, but may not be
 the smallest eigenvalues.

 E has been destroyed.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.

SLATEC5 (REBAK through ZBIRY) - 564

 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 565

TQL2

 SUBROUTINE TQL2 (NM, N, D, E, Z, IERR)
 ***BEGIN PROLOGUE TQL2
 ***PURPOSE Compute the eigenvalues and eigenvectors of symmetric
 tridiagonal matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (TQL2-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TQL2,
 NUM. MATH. 11, 293-306(1968) by Bowdler, Martin, Reinsch, and
 Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).

 This subroutine finds the eigenvalues and eigenvectors
 of a SYMMETRIC TRIDIAGONAL matrix by the QL method.
 The eigenvectors of a FULL SYMMETRIC matrix can also
 be found if TRED2 has been used to reduce this
 full matrix to tridiagonal form.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 Z contains the transformation matrix produced in the
 reduction by TRED2, if performed. If the eigenvectors
 of the tridiagonal matrix are desired, Z must contain
 the identity matrix. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 On Output

 D contains the eigenvalues in ascending order. If an
 error exit is made, the eigenvalues are correct but
 unordered for indices 1, 2, ..., IERR-1.

 E has been destroyed.

 Z contains orthonormal eigenvectors of the symmetric
 tridiagonal (or full) matrix. If an error exit is made,
 Z contains the eigenvectors associated with the stored

SLATEC5 (REBAK through ZBIRY) - 566

 eigenvalues.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 567

TQLRAT

 SUBROUTINE TQLRAT (N, D, E2, IERR)
 ***BEGIN PROLOGUE TQLRAT
 ***PURPOSE Compute the eigenvalues of symmetric tridiagonal matrix
 using a rational variant of the QL method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (TQLRAT-S)
 ***KEYWORDS EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX, EISPACK,
 QL METHOD
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TQLRAT.

 This subroutine finds the eigenvalues of a SYMMETRIC
 TRIDIAGONAL matrix by the rational QL method.

 On Input

 N is the order of the matrix. N is an INTEGER variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E2 contains the squares of the subdiagonal elements of the
 symmetric tridiagonal matrix in its last N-1 positions.
 E2(1) is arbitrary. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

 On Output

 D contains the eigenvalues in ascending order. If an
 error exit is made, the eigenvalues are correct and
 ordered for indices 1, 2, ..., IERR-1, but may not be
 the smallest eigenvalues.

 E2 has been destroyed.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after 30 iterations.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 C. H. Reinsch, Eigenvalues of a real, symmetric, tri-
 diagonal matrix, Algorithm 464, Communications of the
 ACM 16, 11 (November 1973), pp. 689.

SLATEC5 (REBAK through ZBIRY) - 568

 ***ROUTINES CALLED PYTHAG, R1MACH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 569

TRBAK1

 SUBROUTINE TRBAK1 (NM, N, A, E, M, Z)
 ***BEGIN PROLOGUE TRBAK1
 ***PURPOSE Form the eigenvectors of real symmetric matrix from
 the eigenvectors of a symmetric tridiagonal matrix formed
 by TRED1.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (TRBAK1-S)
 ***KEYWORDS EIGENVECTORS OF A REAL SYMMETRIC MATRIX, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TRBAK1,
 NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine forms the eigenvectors of a REAL SYMMETRIC
 matrix by back transforming those of the corresponding
 symmetric tridiagonal matrix determined by TRED1.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains information about the orthogonal transformations
 used in the reduction by TRED1 in its strict lower
 triangle. A is a two-dimensional REAL array, dimensioned
 A(NM,N).

 E contains the subdiagonal elements of the tridiagonal matrix
 in its last N-1 positions. E(1) is arbitrary. These
 elements provide the remaining information about the
 orthogonal transformations. E is a one-dimensional REAL
 array, dimensioned E(N).

 M is the number of columns of Z to be back transformed.
 M is an INTEGER variable.

 Z contains the eigenvectors to be back transformed in its
 first M columns. Z is a two-dimensional REAL array,
 dimensioned Z(NM,M).

 On Output

 Z contains the transformed eigenvectors in its first M columns.

 Note that TRBAK1 preserves vector Euclidean norms.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

SLATEC5 (REBAK through ZBIRY) - 570

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 571

TRBAK3

 SUBROUTINE TRBAK3 (NM, N, NV, A, M, Z)
 ***BEGIN PROLOGUE TRBAK3
 ***PURPOSE Form the eigenvectors of a real symmetric matrix from the
 eigenvectors of a symmetric tridiagonal matrix formed
 by TRED3.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (TRBAK3-S)
 ***KEYWORDS EIGENVECTORS OF A REAL SYMMETRIC MATRIX, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TRBAK3,
 NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine forms the eigenvectors of a REAL SYMMETRIC
 matrix by back transforming those of the corresponding
 symmetric tridiagonal matrix determined by TRED3.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 NV is an INTEGER variable set equal to the dimension of the
 array A as specified in the calling program. NV must not
 be less than N*(N+1)/2.

 A contains information about the orthogonal transformations
 used in the reduction by TRED3 in its first N*(N+1)/2
 positions. A is a one-dimensional REAL array, dimensioned
 A(NV).

 M is the number of columns of Z to be back transformed.
 M is an INTEGER variable.

 Z contains the eigenvectors to be back transformed in its
 first M columns. Z is a two-dimensional REAL array,
 dimensioned Z(NM,M).

 On Output

 Z contains the transformed eigenvectors in its first M columns.

 Note that TRBAK3 preserves vector Euclidean norms.

 Questions and comments should be directed to b. s. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,

SLATEC5 (REBAK through ZBIRY) - 572

 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 573

TRED1

 SUBROUTINE TRED1 (NM, N, A, D, E, E2)
 ***BEGIN PROLOGUE TRED1
 ***PURPOSE Reduce a real symmetric matrix to symmetric tridiagonal
 matrix using orthogonal similarity transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (TRED1-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TRED1,
 NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine reduces a REAL SYMMETRIC matrix
 to a symmetric tridiagonal matrix using
 orthogonal similarity transformations.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the real symmetric input matrix. Only the lower
 triangle of the matrix need be supplied. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 On Output

 A contains information about the orthogonal transformations
 used in the reduction in its strict lower triangle. The
 full upper triangle of A is unaltered.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is set
 to zero. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E.
 E2 may coincide with E if the squares are not needed.
 E2 is a one-dimensional REAL array, dimensioned E2(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-

SLATEC5 (REBAK through ZBIRY) - 574

 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 575

TRED2

 SUBROUTINE TRED2 (NM, N, A, D, E, Z)
 ***BEGIN PROLOGUE TRED2
 ***PURPOSE Reduce a real symmetric matrix to a symmetric tridiagonal
 matrix using and accumulating orthogonal transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (TRED2-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TRED2,
 NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine reduces a REAL SYMMETRIC matrix to a
 symmetric tridiagonal matrix using and accumulating
 orthogonal similarity transformations.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the real symmetric input matrix. Only the lower
 triangle of the matrix need be supplied. A is a two-
 dimensional REAL array, dimensioned A(NM,N).

 On Output

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is set
 to zero. E is a one-dimensional REAL array, dimensioned
 E(N).

 Z contains the orthogonal transformation matrix produced in
 the reduction. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 A and Z may coincide. If distinct, A is unaltered.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.

SLATEC5 (REBAK through ZBIRY) - 576

 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 577

TRED3

 SUBROUTINE TRED3 (N, NV, A, D, E, E2)
 ***BEGIN PROLOGUE TRED3
 ***PURPOSE Reduce a real symmetric matrix stored in packed form to
 symmetric tridiagonal matrix using orthogonal
 transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (TRED3-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure TRED3,
 NUM. MATH. 11, 181-195(1968) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).

 This subroutine reduces a REAL SYMMETRIC matrix, stored as
 a one-dimensional array, to a symmetric tridiagonal matrix
 using orthogonal similarity transformations.

 On Input

 N is the order of the matrix A. N is an INTEGER variable.

 NV is an INTEGER variable set equal to the dimension of the
 array A as specified in the calling program. NV must not
 be less than N*(N+1)/2.

 A contains the lower triangle, stored row-wise, of the real
 symmetric packed matrix. A is a one-dimensional REAL
 array, dimensioned A(NV).

 On Output

 A contains information about the orthogonal transformations
 used in the reduction in its first N*(N+1)/2 positions.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is set
 to zero. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E.
 E2 may coincide with E if the squares are not needed.
 E2 is a one-dimensional REAL array, dimensioned E2(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,

SLATEC5 (REBAK through ZBIRY) - 578

 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 579

TRI3

 SUBROUTINE TRI3 (M, A, B, C, K, Y1, Y2, Y3, TCOS, D, W1, W2, W3)
 ***BEGIN PROLOGUE TRI3
 ***SUBSIDIARY
 ***PURPOSE Subsidiary to GENBUN
 ***LIBRARY SLATEC
 ***TYPE SINGLE PRECISION (TRI3-S, CMPTR3-C)
 ***AUTHOR (UNKNOWN)
 ***DESCRIPTION

 Subroutine to solve three linear systems whose common coefficient
 matrix is a rational function in the matrix given by

 TRIDIAGONAL (...,A(I),B(I),C(I),...)

 ***SEE ALSO GENBUN
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900402 Added TYPE section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 580

TRIDIB

 SUBROUTINE TRIDIB (N, EPS1, D, E, E2, M11, M, LB, UB, W, IND,
 + IERR, RV4, RV5)
 ***BEGIN PROLOGUE TRIDIB
 ***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
 in a given interval using Sturm sequencing.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (TRIDIB-S)
 ***KEYWORDS EIGENVALUES OF A REAL SYMMETRIC MATRIX, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure BISECT,
 NUM. MATH. 9, 386-393(1967) by Barth, Martin, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 249-256(1971).

 This subroutine finds those eigenvalues of a TRIDIAGONAL
 SYMMETRIC matrix between specified boundary indices,
 using bisection.

 On Input

 N is the order of the matrix. N is an INTEGER variable.

 EPS1 is an absolute error tolerance for the computed eigen-
 values. If the input EPS1 is non-positive, it is reset for
 each submatrix to a default value, namely, minus the product
 of the relative machine precision and the 1-norm of the
 submatrix. EPS1 is a REAL variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E.
 E2(1) is arbitrary. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

 M11 specifies the lower boundary index for the set of desired
 eigenvalues. M11 is an INTEGER variable.

 M specifies the number of eigenvalues desired. The upper
 boundary index M22 is then obtained as M22=M11+M-1.
 M is an INTEGER variable.

 On Output

 EPS1 is unaltered unless it has been reset to its
 (last) default value.

 D and E are unaltered.

SLATEC5 (REBAK through ZBIRY) - 581

 Elements of E2, corresponding to elements of E regarded
 as negligible, have been replaced by zero causing the
 matrix to split into a direct sum of submatrices.
 E2(1) is also set to zero.

 LB and UB define an interval containing exactly the desired
 eigenvalues. LB and UB are REAL variables.

 W contains, in its first M positions, the eigenvalues
 between indices M11 and M22 in ascending order.
 W is a one-dimensional REAL array, dimensioned W(M).

 IND contains in its first M positions the submatrix indices
 associated with the corresponding eigenvalues in W --
 1 for eigenvalues belonging to the first submatrix from
 the top, 2 for those belonging to the second submatrix, etc.
 IND is an one-dimensional INTEGER array, dimensioned IND(M).

 IERR is an INTEGER flag set to
 Zero for normal return,
 3*N+1 if multiple eigenvalues at index M11 make
 unique selection of LB impossible,
 3*N+2 if multiple eigenvalues at index M22 make
 unique selection of UB impossible.

 RV4 and RV5 are one-dimensional REAL arrays used for temporary
 storage of the lower and upper bounds for the eigenvalues in
 the bisection process. RV4 and RV5 are dimensioned RV4(N)
 and RV5(N).

 Note that subroutine TQL1, IMTQL1, or TQLRAT is generally faster
 than TRIDIB, if more than N/4 eigenvalues are to be found.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 582

TSTURM

 SUBROUTINE TSTURM (NM,N, EPS1, D, E, E2, LB, MM, M, W, Z,
 + IERR, RV1, RV2, RV3, RV4, RV5, RV6)
 ***BEGIN PROLOGUE TSTURM
 ***PURPOSE Find those eigenvalues of a symmetric tridiagonal matrix
 in a given interval and their associated eigenvectors by
 Sturm sequencing.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (TSTURM-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine finds those eigenvalues of a TRIDIAGONAL
 SYMMETRIC matrix which lie in a specified interval and their
 associated eigenvectors, using bisection and inverse iteration.

 On Input

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix. N is an INTEGER variable.
 N must be less than or equal to NM.

 EPS1 is an absolute error tolerance for the computed eigen-
 values. It should be chosen so that the accuracy of these
 eigenvalues is commensurate with relative perturbations of
 the order of the relative machine precision in the matrix
 elements. If the input EPS1 is non-positive, it is reset
 for each submatrix to a default value, namely, minus the
 product of the relative machine precision and the 1-norm of
 the submatrix. EPS1 is a REAL variable.

 D contains the diagonal elements of the symmetric tridiagonal
 matrix. D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the symmetric
 tridiagonal matrix in its last N-1 positions. E(1) is
 arbitrary. E is a one-dimensional REAL array, dimensioned
 E(N).

 E2 contains the squares of the corresponding elements of E.
 E2(1) is arbitrary. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

 LB and UB define the interval to be searched for eigenvalues.
 If LB is not less than UB, no eigenvalues will be found.
 LB and UB are REAL variables.

 MM should be set to an upper bound for the number of
 eigenvalues in the interval. MM is an INTEGER variable.
 WARNING - If more than MM eigenvalues are determined to lie
 in the interval, an error return is made with no values or
 vectors found.

SLATEC5 (REBAK through ZBIRY) - 583

 On Output

 EPS1 is unaltered unless it has been reset to its
 (last) default value.

 D and E are unaltered.

 Elements of E2, corresponding to elements of E regarded as
 negligible, have been replaced by zero causing the matrix to
 split into a direct sum of submatrices. E2(1) is also set
 to zero.

 M is the number of eigenvalues determined to lie in (LB,UB).
 M is an INTEGER variable.

 W contains the M eigenvalues in ascending order if the matrix
 does not split. If the matrix splits, the eigenvalues are
 in ascending order for each submatrix. If a vector error
 exit is made, W contains those values already found. W is a
 one-dimensional REAL array, dimensioned W(MM).

 Z contains the associated set of orthonormal eigenvectors.
 If an error exit is made, Z contains those vectors already
 found. Z is a one-dimensional REAL array, dimensioned
 Z(NM,MM).

 IERR is an INTEGER flag set to
 Zero for normal return,
 3*N+1 if M exceeds MM no eigenvalues or eigenvectors
 are computed,
 4*N+J if the eigenvector corresponding to the J-th
 eigenvalue fails to converge in 5 iterations, then
 the eigenvalues and eigenvectors in W and Z should
 be correct for indices 1, 2, ..., J-1.

 RV1, RV2, RV3, RV4, RV5, and RV6 are temporary storage arrays,
 dimensioned RV1(N), RV2(N), RV3(N), RV4(N), RV5(N), and
 RV6(N).

 The ALGOL procedure STURMCNT contained in TRISTURM
 appears in TSTURM in-line.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 584

ULSIA

 SUBROUTINE ULSIA (A, MDA, M, N, B, MDB, NB, RE, AE, KEY, MODE,
 + NP, KRANK, KSURE, RNORM, W, LW, IWORK, LIW, INFO)
 ***BEGIN PROLOGUE ULSIA
 ***PURPOSE Solve an underdetermined linear system of equations by
 performing an LQ factorization of the matrix using
 Householder transformations. Emphasis is put on detecting
 possible rank deficiency.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE SINGLE PRECISION (ULSIA-S, DULSIA-D)
 ***KEYWORDS LINEAR LEAST SQUARES, LQ FACTORIZATION,
 UNDERDETERMINED LINEAR SYSTEM
 ***AUTHOR Manteuffel, T. A., (LANL)
 ***DESCRIPTION

 ULSIA computes the minimal length solution(s) to the problem AX=B
 where A is an M by N matrix with M.LE.N and B is the M by NB
 matrix of right hand sides. User input bounds on the uncertainty
 in the elements of A are used to detect numerical rank deficiency.
 The algorithm employs a row and column pivot strategy to
 minimize the growth of uncertainty and round-off errors.

 ULSIA requires (MDA+1)*N + (MDB+1)*NB + 6*M dimensioned space

 **
 * *
 * WARNING - All input arrays are changed on exit. *
 * *
 **

 Input..

 A(,) Linear coefficient matrix of AX=B, with MDA the
 MDA,M,N actual first dimension of A in the calling program.
 M is the row dimension (no. of EQUATIONS of the
 problem) and N the col dimension (no. of UNKNOWNS).
 Must have MDA.GE.M and M.LE.N.

 B(,) Right hand side(s), with MDB the actual first
 MDB,NB dimension of B in the calling program. NB is the
 number of M by 1 right hand sides. Since the
 solution is returned in B, must have MDB.GE.N. If
 NB = 0, B is never accessed.

 **
 * *
 * Note - Use of RE and AE are what make this *
 * code significantly different from *
 * other linear least squares solvers. *
 * However, the inexperienced user is *
 * advised to set RE=0.,AE=0.,KEY=0. *
 * *
 **

 RE(),AE(),KEY
 RE() RE() is a vector of length N such that RE(I) is

SLATEC5 (REBAK through ZBIRY) - 585

 the maximum relative uncertainty in row I of
 the matrix A. The values of RE() must be between
 0 and 1. A minimum of 10*machine precision will
 be enforced.

 AE() AE() is a vector of length N such that AE(I) is
 the maximum absolute uncertainty in row I of
 the matrix A. The values of AE() must be greater
 than or equal to 0.

 KEY For ease of use, RE and AE may be input as either
 vectors or scalars. If a scalar is input, the algo-
 rithm will use that value for each column of A.
 The parameter KEY indicates whether scalars or
 vectors are being input.
 KEY=0 RE scalar AE scalar
 KEY=1 RE vector AE scalar
 KEY=2 RE scalar AE vector
 KEY=3 RE vector AE vector

 MODE The integer MODE indicates how the routine
 is to react if rank deficiency is detected.
 If MODE = 0 return immediately, no solution
 1 compute truncated solution
 2 compute minimal length least squares sol
 The inexperienced user is advised to set MODE=0

 NP The first NP rows of A will not be interchanged
 with other rows even though the pivot strategy
 would suggest otherwise.
 The inexperienced user is advised to set NP=0.

 WORK() A real work array dimensioned 5*M. However, if
 RE or AE have been specified as vectors, dimension
 WORK 4*M. If both RE and AE have been specified
 as vectors, dimension WORK 3*M.

 LW Actual dimension of WORK

 IWORK() Integer work array dimensioned at least N+M.

 LIW Actual dimension of IWORK.

 INFO Is a flag which provides for the efficient
 solution of subsequent problems involving the
 same A but different B.
 If INFO = 0 original call
 INFO = 1 subsequent calls
 On subsequent calls, the user must supply A, KRANK,
 LW, IWORK, LIW, and the first 2*M locations of WORK
 as output by the original call to ULSIA. MODE must
 be equal to the value of MODE in the original call.
 If MODE.LT.2, only the first N locations of WORK
 are accessed. AE, RE, KEY, and NP are not accessed.

SLATEC5 (REBAK through ZBIRY) - 586

 Output..

 A(,) Contains the lower triangular part of the reduced
 matrix and the transformation information. It togeth
 with the first M elements of WORK (see below)
 completely specify the LQ factorization of A.

 B(,) Contains the N by NB solution matrix for X.

 KRANK,KSURE The numerical rank of A, based upon the relative
 and absolute bounds on uncertainty, is bounded
 above by KRANK and below by KSURE. The algorithm
 returns a solution based on KRANK. KSURE provides
 an indication of the precision of the rank.

 RNORM() Contains the Euclidean length of the NB residual
 vectors B(I)-AX(I), I=1,NB. If the matrix A is of
 full rank, then RNORM=0.0.

 WORK() The first M locations of WORK contain values
 necessary to reproduce the Householder
 transformation.

 IWORK() The first N locations contain the order in
 which the columns of A were used. The next
 M locations contain the order in which the
 rows of A were used.

 INFO Flag to indicate status of computation on completion
 -1 Parameter error(s)
 0 - Rank deficient, no solution
 1 - Rank deficient, truncated solution
 2 - Rank deficient, minimal length least squares sol
 3 - Numerical rank 0, zero solution
 4 - Rank .LT. NP
 5 - Full rank

 ***REFERENCES T. Manteuffel, An interval analysis approach to rank
 determination in linear least squares problems,
 Report SAND80-0655, Sandia Laboratories, June 1980.
 ***ROUTINES CALLED R1MACH, U11US, U12US, XERMSG
 ***REVISION HISTORY (YYMMDD)
 810801 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 891009 Removed unreferenced variable. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Fixed an error message. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 587

WNNLS

 SUBROUTINE WNNLS (W, MW, ME, MA, N, L, PRGOPT, X, RNORM, MODE,
 + IWORK, WORK)
 ***BEGIN PROLOGUE WNNLS
 ***PURPOSE Solve a linearly constrained least squares problem with
 equality constraints and nonnegativity constraints on
 selected variables.
 ***LIBRARY SLATEC
 ***CATEGORY K1A2A
 ***TYPE SINGLE PRECISION (WNNLS-S, DWNNLS-D)
 ***KEYWORDS CONSTRAINED LEAST SQUARES, CURVE FITTING, DATA FITTING,
 EQUALITY CONSTRAINTS, INEQUALITY CONSTRAINTS,
 NONNEGATIVITY CONSTRAINTS, QUADRATIC PROGRAMMING
 ***AUTHOR Hanson, R. J., (SNLA)
 Haskell, K. H., (SNLA)
 ***DESCRIPTION

 Abstract

 This subprogram solves a linearly constrained least squares
 problem. Suppose there are given matrices E and A of
 respective dimensions ME by N and MA by N, and vectors F
 and B of respective lengths ME and MA. This subroutine
 solves the problem

 EX = F, (equations to be exactly satisfied)

 AX = B, (equations to be approximately satisfied,
 in the least squares sense)

 subject to components L+1,...,N nonnegative

 Any values ME.GE.0, MA.GE.0 and 0.LE. L .LE.N are permitted.

 The problem is reposed as problem WNNLS

 (WT*E)X = (WT*F)
 (A) (B), (least squares)
 subject to components L+1,...,N nonnegative.

 The subprogram chooses the heavy weight (or penalty parameter) WT.

 The parameters for WNNLS are

 INPUT..

 W(*,*),MDW, The array W(*,*) is double subscripted with first
 ME,MA,N,L dimensioning parameter equal to MDW. For this
 discussion let us call M = ME + MA. Then MDW
 must satisfy MDW.GE.M. The condition MDW.LT.M
 is an error.

 The array W(*,*) contains the matrices and vectors

 (E F)
 (A B)

SLATEC5 (REBAK through ZBIRY) - 588

 in rows and columns 1,...,M and 1,...,N+1
 respectively. Columns 1,...,L correspond to
 unconstrained variables X(1),...,X(L). The
 remaining variables are constrained to be
 nonnegative. The condition L.LT.0 or L.GT.N is
 an error.

 PRGOPT(*) This real-valued array is the option vector.
 If the user is satisfied with the nominal
 subprogram features set

 PRGOPT(1)=1 (or PRGOPT(1)=1.0)

 Otherwise PRGOPT(*) is a linked list consisting of
 groups of data of the following form

 LINK
 KEY
 DATA SET

 The parameters LINK and KEY are each one word.
 The DATA SET can be comprised of several words.
 The number of items depends on the value of KEY.
 The value of LINK points to the first
 entry of the next group of data within
 PRGOPT(*). The exception is when there are
 no more options to change. In that
 case LINK=1 and the values KEY and DATA SET
 are not referenced. The general layout of
 PRGOPT(*) is as follows.

 ...PRGOPT(1)=LINK1 (link to first entry of next group)
 . PRGOPT(2)=KEY1 (key to the option change)
 . PRGOPT(3)=DATA VALUE (data value for this change)
 . .
 . .
 . .
 ...PRGOPT(LINK1)=LINK2 (link to the first entry of
 . next group)
 . PRGOPT(LINK1+1)=KEY2 (key to the option change)
 . PRGOPT(LINK1+2)=DATA VALUE

 . .
 . .
 ...PRGOPT(LINK)=1 (no more options to change)

 Values of LINK that are nonpositive are errors.
 A value of LINK.GT.NLINK=100000 is also an error.
 This helps prevent using invalid but positive
 values of LINK that will probably extend
 beyond the program limits of PRGOPT(*).
 Unrecognized values of KEY are ignored. The
 order of the options is arbitrary and any number
 of options can be changed with the following
 restriction. To prevent cycling in the
 processing of the option array a count of the
 number of options changed is maintained.
 Whenever this count exceeds NOPT=1000 an error
 message is printed and the subprogram returns.

SLATEC5 (REBAK through ZBIRY) - 589

 OPTIONS..

 KEY=6
 Scale the nonzero columns of the
 entire data matrix
 (E)
 (A)
 to have length one. The DATA SET for
 this option is a single value. It must
 be nonzero if unit length column scaling is
 desired.

 KEY=7
 Scale columns of the entire data matrix
 (E)
 (A)
 with a user-provided diagonal matrix.
 The DATA SET for this option consists
 of the N diagonal scaling factors, one for
 each matrix column.

 KEY=8
 Change the rank determination tolerance from
 the nominal value of SQRT(SRELPR). This quantity
 can be no smaller than SRELPR, The arithmetic-
 storage precision. The quantity used
 here is internally restricted to be at
 least SRELPR. The DATA SET for this option
 is the new tolerance.

 KEY=9
 Change the blow-up parameter from the
 nominal value of SQRT(SRELPR). The reciprocal of
 this parameter is used in rejecting solution
 components as too large when a variable is
 first brought into the active set. Too large
 means that the proposed component times the
 reciprocal of the parameter is not less than
 the ratio of the norms of the right-side
 vector and the data matrix.
 This parameter can be no smaller than SRELPR,
 the arithmetic-storage precision.

 For example, suppose we want to provide
 a diagonal matrix to scale the problem
 matrix and change the tolerance used for
 determining linear dependence of dropped col
 vectors. For these options the dimensions of
 PRGOPT(*) must be at least N+6. The FORTRAN
 statements defining these options would
 be as follows.

 PRGOPT(1)=N+3 (link to entry N+3 in PRGOPT(*))
 PRGOPT(2)=7 (user-provided scaling key)

 CALL SCOPY(N,D,1,PRGOPT(3),1) (copy the N
 scaling factors from a user array called D(*)
 into PRGOPT(3)-PRGOPT(N+2))

 PRGOPT(N+3)=N+6 (link to entry N+6 of PRGOPT(*))
SLATEC5 (REBAK through ZBIRY) - 590

 PRGOPT(N+4)=8 (linear dependence tolerance key)
 PRGOPT(N+5)=... (new value of the tolerance)

 PRGOPT(N+6)=1 (no more options to change)

 IWORK(1), The amounts of working storage actually allocated
 IWORK(2) for the working arrays WORK(*) and IWORK(*),
 respectively. These quantities are compared with
 the actual amounts of storage needed for WNNLS().
 Insufficient storage allocated for either WORK(*)
 or IWORK(*) is considered an error. This feature
 was included in WNNLS() because miscalculating
 the storage formulas for WORK(*) and IWORK(*)
 might very well lead to subtle and hard-to-find
 execution errors.

 The length of WORK(*) must be at least

 LW = ME+MA+5*N
 This test will not be made if IWORK(1).LE.0.

 The length of IWORK(*) must be at least

 LIW = ME+MA+N
 This test will not be made if IWORK(2).LE.0.

 OUTPUT..

 X(*) An array dimensioned at least N, which will
 contain the N components of the solution vector
 on output.

 RNORM The residual norm of the solution. The value of
 RNORM contains the residual vector length of the
 equality constraints and least squares equations.

 MODE The value of MODE indicates the success or failure
 of the subprogram.

 MODE = 0 Subprogram completed successfully.

 = 1 Max. number of iterations (equal to
 3*(N-L)) exceeded. Nearly all problems
 should complete in fewer than this
 number of iterations. An approximate
 solution and its corresponding residual
 vector length are in X(*) and RNORM.

 = 2 Usage error occurred. The offending
 condition is noted with the error
 processing subprogram, XERMSG().

 User-designated
 Working arrays..

 WORK(*) A real-valued working array of length at least
 M + 5*N.

 IWORK(*) An integer-valued working array of length at least
SLATEC5 (REBAK through ZBIRY) - 591

 M+N.

 ***REFERENCES K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Report SAND77-0552, Sandia
 Laboratories, June 1978.
 K. H. Haskell and R. J. Hanson, Selected algorithms for
 the linearly constrained least squares problem - a
 users guide, Report SAND78-1290, Sandia Laboratories,
 August 1979.
 K. H. Haskell and R. J. Hanson, An algorithm for
 linear least squares problems with equality and
 nonnegativity constraints, Mathematical Programming
 21 (1981), pp. 98-118.
 R. J. Hanson and K. H. Haskell, Two algorithms for the
 linearly constrained least squares problem, ACM
 Transactions on Mathematical Software, September 1982.
 C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974.
 ***ROUTINES CALLED WNLSM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790701 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 890618 Completely restructured and revised. (WRB & RWC)
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 592

XADD

 SUBROUTINE XADD (X, IX, Y, IY, Z, IZ, IERROR)
 ***BEGIN PROLOGUE XADD
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XADD-S, DXADD-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 REAL X, Y, Z
 INTEGER IX, IY, IZ

 FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
 (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
 BEFORE RETURNING. THE INPUT OPERANDS
 NEED NOT BE IN ADJUSTED FORM, BUT THEIR
 PRINCIPAL PARTS MUST SATISFY
 RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
 RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).

 ***SEE ALSO XSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XADJ
 ***COMMON BLOCKS XBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 593

XADJ

 SUBROUTINE XADJ (X, IX, IERROR)
 ***BEGIN PROLOGUE XADJ
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XADJ-S, DXADJ-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 REAL X
 INTEGER IX

 TRANSFORMS (X,IX) SO THAT
 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
 ON MOST COMPUTERS THIS TRANSFORMATION DOES
 NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
 THE NUMBER BASE OF SINGLE-PRECISION ARITHMETIC.

 ***SEE ALSO XSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***COMMON BLOCKS XBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 594

XC210

 SUBROUTINE XC210 (K, Z, J, IERROR)
 ***BEGIN PROLOGUE XC210
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XC210-S, DXC210-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 INTEGER K, J
 REAL Z

 GIVEN K THIS SUBROUTINE COMPUTES J AND Z
 SUCH THAT RADIX**K = Z*10**J, WHERE Z IS IN
 THE RANGE 1/10 .LE. Z .LT. 1.
 THE VALUE OF Z WILL BE ACCURATE TO FULL
 SINGLE-PRECISION PROVIDED THE NUMBER
 OF DECIMAL PLACES IN THE LARGEST
 INTEGER PLUS THE NUMBER OF DECIMAL
 PLACES CARRIED IN SINGLE-PRECISION DOES NOT
 EXCEED 60. XC210 IS CALLED BY SUBROUTINE
 XCON WHEN NECESSARY. THE USER SHOULD
 NEVER NEED TO CALL XC210 DIRECTLY.

 ***SEE ALSO XSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***COMMON BLOCKS XBLK3
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 595

XCON

 SUBROUTINE XCON (X, IX, IERROR)
 ***BEGIN PROLOGUE XCON
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XCON-S, DXCON-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 REAL X
 INTEGER IX

 CONVERTS (X,IX) = X*RADIX**IX
 TO DECIMAL FORM IN PREPARATION FOR
 PRINTING, SO THAT (X,IX) = X*10**IX
 WHERE 1/10 .LE. ABS(X) .LT. 1
 IS RETURNED, EXCEPT THAT IF
 (ABS(X),IX) IS BETWEEN RADIX**(-2L)
 AND RADIX**(2L) THEN THE REDUCED
 FORM WITH IX = 0 IS RETURNED.

 ***SEE ALSO XSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED XADJ, XC210, XRED
 ***COMMON BLOCKS XBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 596

XERCLR

 SUBROUTINE XERCLR
 ***BEGIN PROLOGUE XERCLR
 ***PURPOSE Reset current error number to zero.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XERCLR-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 This routine simply resets the current error number to zero.
 This may be necessary in order to determine that a certain
 error has occurred again since the last time NUMXER was
 referenced.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 597

XERDMP

 SUBROUTINE XERDMP
 ***BEGIN PROLOGUE XERDMP
 ***PURPOSE Print the error tables and then clear them.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XERDMP-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XERDMP prints the error tables, then clears them.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED XERSVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Changed call of XERSAV to XERSVE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 598

XERMAX

 SUBROUTINE XERMAX (MAX)
 ***BEGIN PROLOGUE XERMAX
 ***PURPOSE Set maximum number of times any error message is to be
 printed.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XERMAX-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XERMAX sets the maximum number of times any message
 is to be printed. That is, non-fatal messages are
 not to be printed after they have occurred MAX times.
 Such non-fatal messages may be printed less than
 MAX times even if they occur MAX times, if error
 suppression mode (KONTRL=0) is ever in effect.

 Description of Parameter
 --Input--
 MAX - the maximum number of times any one message
 is to be printed.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 599

XERMSG

 SUBROUTINE XERMSG (LIBRAR, SUBROU, MESSG, NERR, LEVEL)
 ***BEGIN PROLOGUE XERMSG
 ***PURPOSE Process error messages for SLATEC and other libraries.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XERMSG-A)
 ***KEYWORDS ERROR MESSAGE, XERROR
 ***AUTHOR Fong, Kirby, (NMFECC at LLNL)
 ***DESCRIPTION

 XERMSG processes a diagnostic message in a manner determined by the
 value of LEVEL and the current value of the library error control
 flag, KONTRL. See subroutine XSETF for details.

 LIBRAR A character constant (or character variable) with the name
 of the library. This will be 'SLATEC' for the SLATEC
 Common Math Library. The error handling package is
 general enough to be used by many libraries
 simultaneously, so it is desirable for the routine that
 detects and reports an error to identify the library name
 as well as the routine name.

 SUBROU A character constant (or character variable) with the name
 of the routine that detected the error. Usually it is the
 name of the routine that is calling XERMSG. There are
 some instances where a user callable library routine calls
 lower level subsidiary routines where the error is
 detected. In such cases it may be more informative to
 supply the name of the routine the user called rather than
 the name of the subsidiary routine that detected the
 error.

 MESSG A character constant (or character variable) with the text
 of the error or warning message. In the example below,
 the message is a character constant that contains a
 generic message.

 CALL XERMSG ('SLATEC', 'MMPY',
 *'THE ORDER OF THE MATRIX EXCEEDS THE ROW DIMENSION',
 *3, 1)

 It is possible (and is sometimes desirable) to generate a
 specific message--e.g., one that contains actual numeric
 values. Specific numeric values can be converted into
 character strings using formatted WRITE statements into
 character variables. This is called standard Fortran
 internal file I/O and is exemplified in the first three
 lines of the following example. You can also catenate
 substrings of characters to construct the error message.
 Here is an example showing the use of both writing to
 an internal file and catenating character strings.

 CHARACTER*5 CHARN, CHARL
 WRITE (CHARN,10) N
 WRITE (CHARL,10) LDA
 10 FORMAT(I5)

SLATEC5 (REBAK through ZBIRY) - 600

 CALL XERMSG ('SLATEC', 'MMPY', 'THE ORDER'//CHARN//
 * ' OF THE MATRIX EXCEEDS ITS ROW DIMENSION OF'//
 * CHARL, 3, 1)

 There are two subtleties worth mentioning. One is that
 the // for character catenation is used to construct the
 error message so that no single character constant is
 continued to the next line. This avoids confusion as to
 whether there are trailing blanks at the end of the line.
 The second is that by catenating the parts of the message
 as an actual argument rather than encoding the entire
 message into one large character variable, we avoid
 having to know how long the message will be in order to
 declare an adequate length for that large character
 variable. XERMSG calls XERPRN to print the message using
 multiple lines if necessary. If the message is very long,
 XERPRN will break it into pieces of 72 characters (as
 requested by XERMSG) for printing on multiple lines.
 Also, XERMSG asks XERPRN to prefix each line with ' * '
 so that the total line length could be 76 characters.
 Note also that XERPRN scans the error message backwards
 to ignore trailing blanks. Another feature is that
 the substring '$$' is treated as a new line sentinel
 by XERPRN. If you want to construct a multiline
 message without having to count out multiples of 72
 characters, just use '$$' as a separator. '$$'
 obviously must occur within 72 characters of the
 start of each line to have its intended effect since
 XERPRN is asked to wrap around at 72 characters in
 addition to looking for '$$'.

 NERR An integer value that is chosen by the library routine's
 author. It must be in the range -99 to 999 (three
 printable digits). Each distinct error should have its
 own error number. These error numbers should be described
 in the machine readable documentation for the routine.
 The error numbers need be unique only within each routine,
 so it is reasonable for each routine to start enumerating
 errors from 1 and proceeding to the next integer.

 LEVEL An integer value in the range 0 to 2 that indicates the
 level (severity) of the error. Their meanings are

 -1 A warning message. This is used if it is not clear
 that there really is an error, but the user's attention
 may be needed. An attempt is made to only print this
 message once.

 0 A warning message. This is used if it is not clear
 that there really is an error, but the user's attention
 may be needed.

 1 A recoverable error. This is used even if the error is
 so serious that the routine cannot return any useful
 answer. If the user has told the error package to
 return after recoverable errors, then XERMSG will
 return to the Library routine which can then return to
 the user's routine. The user may also permit the error
 package to terminate the program upon encountering a
 recoverable error.

SLATEC5 (REBAK through ZBIRY) - 601

 2 A fatal error. XERMSG will not return to its caller
 after it receives a fatal error. This level should
 hardly ever be used; it is much better to allow the
 user a chance to recover. An example of one of the few
 cases in which it is permissible to declare a level 2
 error is a reverse communication Library routine that
 is likely to be called repeatedly until it integrates
 across some interval. If there is a serious error in
 the input such that another step cannot be taken and
 the Library routine is called again without the input
 error having been corrected by the caller, the Library
 routine will probably be called forever with improper
 input. In this case, it is reasonable to declare the
 error to be fatal.

 Each of the arguments to XERMSG is input; none will be modified by
 XERMSG. A routine may make multiple calls to XERMSG with warning
 level messages; however, after a call to XERMSG with a recoverable
 error, the routine should return to the user. Do not try to call
 XERMSG with a second recoverable error after the first recoverable
 error because the error package saves the error number. The user
 can retrieve this error number by calling another entry point in
 the error handling package and then clear the error number when
 recovering from the error. Calling XERMSG in succession causes the
 old error number to be overwritten by the latest error number.
 This is considered harmless for error numbers associated with
 warning messages but must not be done for error numbers of serious
 errors. After a call to XERMSG with a recoverable error, the user
 must be given a chance to call NUMXER or XERCLR to retrieve or
 clear the error number.
 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED FDUMP, J4SAVE, XERCNT, XERHLT, XERPRN, XERSVE
 ***REVISION HISTORY (YYMMDD)
 880101 DATE WRITTEN
 880621 REVISED AS DIRECTED AT SLATEC CML MEETING OF FEBRUARY 1988.
 THERE ARE TWO BASIC CHANGES.
 1. A NEW ROUTINE, XERPRN, IS USED INSTEAD OF XERPRT TO
 PRINT MESSAGES. THIS ROUTINE WILL BREAK LONG MESSAGES
 INTO PIECES FOR PRINTING ON MULTIPLE LINES. '$$' IS
 ACCEPTED AS A NEW LINE SENTINEL. A PREFIX CAN BE
 ADDED TO EACH LINE TO BE PRINTED. XERMSG USES EITHER
 ' ***' OR ' * ' AND LONG MESSAGES ARE BROKEN EVERY
 72 CHARACTERS (AT MOST) SO THAT THE MAXIMUM LINE
 LENGTH OUTPUT CAN NOW BE AS GREAT AS 76.
 2. THE TEXT OF ALL MESSAGES IS NOW IN UPPER CASE SINCE THE
 FORTRAN STANDARD DOCUMENT DOES NOT ADMIT THE EXISTENCE
 OF LOWER CASE.
 880708 REVISED AFTER THE SLATEC CML MEETING OF JUNE 29 AND 30.
 THE PRINCIPAL CHANGES ARE
 1. CLARIFY COMMENTS IN THE PROLOGUES
 2. RENAME XRPRNT TO XERPRN
 3. REWORK HANDLING OF '$$' IN XERPRN TO HANDLE BLANK LINES
 SIMILAR TO THE WAY FORMAT STATEMENTS HANDLE THE /
 CHARACTER FOR NEW RECORDS.
 890706 REVISED WITH THE HELP OF FRED FRITSCH AND REG CLEMENS TO
 CLEAN UP THE CODING.
 890721 REVISED TO USE NEW FEATURE IN XERPRN TO COUNT CHARACTERS IN

SLATEC5 (REBAK through ZBIRY) - 602

 PREFIX.
 891013 REVISED TO CORRECT COMMENTS.
 891214 Prologue converted to Version 4.0 format. (WRB)
 900510 Changed test on NERR to be -9999999 < NERR < 99999999, but
 NERR .ne. 0, and on LEVEL to be -2 < LEVEL < 3. Added
 LEVEL=-1 logic, changed calls to XERSAV to XERSVE, and
 XERCTL to XERCNT. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 603

XGETF

 SUBROUTINE XGETF (KONTRL)
 ***BEGIN PROLOGUE XGETF
 ***PURPOSE Return the current value of the error control flag.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XGETF-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XGETF returns the current value of the error control flag
 in KONTRL. See subroutine XSETF for flag value meanings.
 (KONTRL is an output parameter only.)

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 604

XGETUA

 SUBROUTINE XGETUA (IUNITA, N)
 ***BEGIN PROLOGUE XGETUA
 ***PURPOSE Return unit number(s) to which error messages are being
 sent.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XGETUA-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XGETUA may be called to determine the unit number or numbers
 to which error messages are being sent.
 These unit numbers may have been set by a call to XSETUN,
 or a call to XSETUA, or may be a default value.

 Description of Parameters
 --Output--
 IUNIT - an array of one to five unit numbers, depending
 on the value of N. A value of zero refers to the
 default unit, as defined by the I1MACH machine
 constant routine. Only IUNIT(1),...,IUNIT(N) are
 defined by XGETUA. The values of IUNIT(N+1),...,
 IUNIT(5) are not defined (for N .LT. 5) or altered
 in any way by XGETUA.
 N - the number of units to which copies of the
 error messages are being sent. N will be in the
 range from 1 to 5.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 605

XGETUN

 SUBROUTINE XGETUN (IUNIT)
 ***BEGIN PROLOGUE XGETUN
 ***PURPOSE Return the (first) output file to which error messages
 are being sent.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3C
 ***TYPE ALL (XGETUN-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XGETUN gets the (first) output file to which error messages
 are being sent. To find out if more than one file is being
 used, one must use the XGETUA routine.

 Description of Parameter
 --Output--
 IUNIT - the logical unit number of the (first) unit to
 which error messages are being sent.
 A value of zero means that the default file, as
 defined by the I1MACH routine, is being used.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 606

XLEGF

 SUBROUTINE XLEGF (DNU1, NUDIFF, MU1, MU2, THETA, ID, PQA, IPQA,
 1 IERROR)
 ***BEGIN PROLOGUE XLEGF
 ***PURPOSE Compute normalized Legendre polynomials and associated
 Legendre functions.
 ***LIBRARY SLATEC
 ***CATEGORY C3A2, C9
 ***TYPE SINGLE PRECISION (XLEGF-S, DXLEGF-D)
 ***KEYWORDS LEGENDRE FUNCTIONS
 ***AUTHOR Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 XLEGF: Extended-range Single-precision Legendre Functions

 A feature of the XLEGF subroutine for Legendre functions is
 the use of extended-range arithmetic, a software extension of
 ordinary floating-point arithmetic that greatly increases the
 exponent range of the representable numbers. This avoids the
 need for scaling the solutions to lie within the exponent range
 of the most restrictive manufacturer's hardware. The increased
 exponent range is achieved by allocating an integer storage
 location together with each floating-point storage location.

 The interpretation of the pair (X,I) where X is floating-point
 and I is integer is X*(IR**I) where IR is the internal radix of
 the computer arithmetic.

 This subroutine computes one of the following vectors:

 1. Legendre function of the first kind of negative order, either
 a. P(-MU1,NU,X), P(-MU1-1,NU,X), ..., P(-MU2,NU,X) or
 b. P(-MU,NU1,X), P(-MU,NU1+1,X), ..., P(-MU,NU2,X)
 2. Legendre function of the second kind, either
 a. Q(MU1,NU,X), Q(MU1+1,NU,X), ..., Q(MU2,NU,X) or
 b. Q(MU,NU1,X), Q(MU,NU1+1,X), ..., Q(MU,NU2,X)
 3. Legendre function of the first kind of positive order, either
 a. P(MU1,NU,X), P(MU1+1,NU,X), ..., P(MU2,NU,X) or
 b. P(MU,NU1,X), P(MU,NU1+1,X), ..., P(MU,NU2,X)
 4. Normalized Legendre polynomials, either
 a. PN(MU1,NU,X), PN(MU1+1,NU,X), ..., PN(MU2,NU,X) or
 b. PN(MU,NU1,X), PN(MU,NU1+1,X), ..., PN(MU,NU2,X)

 where X = COS(THETA).

 The input values to XLEGF are DNU1, NUDIFF, MU1, MU2, THETA,
 and ID. These must satisfy

 DNU1 is REAL and greater than or equal to -0.5;
 NUDIFF is INTEGER and non-negative;
 MU1 is INTEGER and non-negative;
 MU2 is INTEGER and greater than or equal to MU1;
 THETA is REAL and in the half-open interval (0,PI/2];
 ID is INTEGER and equal to 1, 2, 3 or 4;

 and additionally either NUDIFF = 0 or MU2 = MU1.

SLATEC5 (REBAK through ZBIRY) - 607

 If ID=1 and NUDIFF=0, a vector of type 1a above is computed
 with NU=DNU1.

 If ID=1 and MU1=MU2, a vector of type 1b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=2 and NUDIFF=0, a vector of type 2a above is computed
 with NU=DNU1.

 If ID=2 and MU1=MU2, a vector of type 2b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=3 and NUDIFF=0, a vector of type 3a above is computed
 with NU=DNU1.

 If ID=3 and MU1=MU2, a vector of type 3b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 If ID=4 and NUDIFF=0, a vector of type 4a above is computed
 with NU=DNU1.

 If ID=4 and MU1=MU2, a vector of type 4b above is computed
 with NU1=DNU1, NU2=DNU1+NUDIFF and MU=MU1.

 In each case the vector of computed Legendre function values
 is returned in the extended-range vector (PQA(I),IPQA(I)). The
 length of this vector is either MU2-MU1+1 or NUDIFF+1.

 Where possible, XLEGF returns IPQA(I) as zero. In this case the
 value of the Legendre function is contained entirely in PQA(I),
 so it can be used in subsequent computations without further
 consideration of extended-range arithmetic. If IPQA(I) is nonzero,
 then the value of the Legendre function is not representable in
 floating-point because of underflow or overflow. The program that
 calls XLEGF must test IPQA(I) to ensure correct usage.

 IERROR is an error indicator. If no errors are detected, IERROR=0
 when control returns to the calling routine. If an error is detected,
 IERROR is returned as nonzero. The calling routine must check the
 value of IERROR.

 If IERROR=110 or 111, invalid input was provided to XLEGF.
 If IERROR=101,102,103, or 104, invalid input was provided to XSET.
 If IERROR=105 or 106, an internal consistency error occurred in
 XSET (probably due to a software malfunction in the library routine
 I1MACH).
 If IERROR=107, an overflow or underflow of an extended-range number
 was detected in XADJ.
 If IERROR=108, an overflow or underflow of an extended-range number
 was detected in XC210.

 ***SEE ALSO XSET
 ***REFERENCES Olver and Smith, Associated Legendre Functions on the
 Cut, J Comp Phys, v 51, n 3, Sept 1983, pp 502--518.
 Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math
 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED XERMSG, XPMU, XPMUP, XPNRM, XPQNU, XQMU, XQNU,
 XRED, XSET
 ***REVISION HISTORY (YYMMDD)

SLATEC5 (REBAK through ZBIRY) - 608

 820728 DATE WRITTEN
 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 609

XNRMP

 SUBROUTINE XNRMP (NU, MU1, MU2, DARG, MODE, DPN, IPN, ISIG,
 1 IERROR)
 ***BEGIN PROLOGUE XNRMP
 ***PURPOSE Compute normalized Legendre polynomials.
 ***LIBRARY SLATEC
 ***CATEGORY C3A2, C9
 ***TYPE SINGLE PRECISION (XNRMP-S, DXNRMP-D)
 ***KEYWORDS LEGENDRE FUNCTIONS
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 SUBROUTINE TO CALCULATE NORMALIZED LEGENDRE POLYNOMIALS
 (DXNRMP is double-precision version)
 XNRMP calculates normalized Legendre polynomials of varying
 order and fixed argument and degree. The order MU and degree
 NU are non-negative integers and the argument is real. Because
 the algorithm requires the use of numbers outside the normal
 machine range, this subroutine employs a special arithmetic
 called extended-range arithmetic. See J.M. Smith, F.W.J. Olver,
 and D.W. Lozier, Extended-Range Arithmetic and Normalized
 Legendre Polynomials, ACM Transactions on Mathematical Soft-
 ware, 93-105, March 1981, for a complete description of the
 algorithm and special arithmetic. Also see program comments
 in XSET.

 The normalized Legendre polynomials are multiples of the
 associated Legendre polynomials of the first kind where the
 normalizing coefficients are chosen so as to make the integral
 from -1 to 1 of the square of each function equal to 1. See
 E. Jahnke, F. Emde and F. Losch, Tables of Higher Functions,
 McGraw-Hill, New York, 1960, p. 121.

 The input values to XNRMP are NU, MU1, MU2, SARG, and MODE.
 These must satisfy
 1. NU .GE. 0 specifies the degree of the normalized Legendre
 polynomial that is wanted.
 2. MU1 .GE. 0 specifies the lowest-order normalized Legendre
 polynomial that is wanted.
 3. MU2 .GE. MU1 specifies the highest-order normalized Leg-
 endre polynomial that is wanted.
 4a. MODE = 1 and -1.0 .LE. SARG .LE. 1.0 specifies that
 Normalized Legendre(NU, MU, SARG) is wanted for MU = MU1,
 MU1 + 1, ..., MU2.
 4b. MODE = 2 and -3.14159... .LT. SARG .LT. 3.14159... spec-
 ifies that Normalized Legendre(NU, MU, COS(SARG)) is want-
 ed for MU = MU1, MU1 + 1, ..., MU2.

 The output of XNRMP consists of the two vectors SPN and IPN
 and the error estimate ISIG. The computed values are stored as
 extended-range numbers such that
 (SPN(1),IPN(1))=NORMALIZED LEGENDRE(NU,MU1,X)
 (SPN(2),IPN(2))=NORMALIZED LEGENDRE(NU,MU1+1,X)
 .
 .
 (SPN(K),IPN(K))=NORMALIZED LEGENDRE(NU,MU2,X)

SLATEC5 (REBAK through ZBIRY) - 610

 where K = MU2 - MU1 + 1 and X = SARG or COS(SARG) according
 to whether MODE = 1 or 2. Finally, ISIG is an estimate of the
 number of decimal digits lost through rounding errors in the
 computation. For example if SARG is accurate to 12 significant
 decimals, then the computed function values are accurate to
 12 - ISIG significant decimals (except in neighborhoods of
 zeros).

 The interpretation of (SPN(I),IPN(I)) is SPN(I)*(IR**IPN(I))
 where IR is the internal radix of the computer arithmetic. When
 IPN(I) = 0 the value of the normalized Legendre polynomial is
 contained entirely in SPN(I) and subsequent single-precision
 computations can be performed without further consideration of
 extended-range arithmetic. However, if IPN(I) .NE. 0 the corre-
 sponding value of the normalized Legendre polynomial cannot be
 represented in single-precision because of overflow or under-
 flow. THE USER MUST TEST IPN(I) IN HIS/HER PROGRAM. In the case
 that IPN(I) is nonzero, the user should try using double pre-
 cision if it has a wider exponent range. If double precision
 fails, the user could rewrite his/her program to use extended-
 range arithmetic.

 The interpretation of (SPN(I),IPN(I)) can be changed to
 SPN(I)*(10**IPN(I)) by calling the extended-range subroutine
 XCON. This should be done before printing the computed values.
 As an example of usage, the Fortran coding
 J = K
 DO 20 I = 1, K
 CALL XCON(SPN(I), IPN(I),IERROR)
 IF (IERROR.NE.0) RETURN
 PRINT 10, SPN(I), IPN(I)
 10 FORMAT(1X, E30.8 , I15)
 IF ((IPN(I) .EQ. 0) .OR. (J .LT. K)) GO TO 20
 J = I - 1
 20 CONTINUE
 will print all computed values and determine the largest J
 such that IPN(1) = IPN(2) = ... = IPN(J) = 0. Because of the
 change of representation caused by calling XCON, (SPN(I),
 IPN(I)) for I = J+1, J+2, ... cannot be used in subsequent
 extended-range computations.

 IERROR is an error indicator. If no errors are detected,
 IERROR=0 when control returns to the calling routine. If
 an error is detected, IERROR is returned as nonzero. The
 calling routine must check the value of IERROR.

 If IERROR=112 or 113, invalid input was provided to XNRMP.
 If IERROR=101,102,103, or 104, invalid input was provided
 to XSET.
 If IERROR=105 or 106, an internal consistency error occurred
 in XSET (probably due to a software malfunction in the
 library routine I1MACH).
 If IERROR=107, an overflow or underflow of an extended-range
 number was detected in XADJ.
 If IERROR=108, an overflow or underflow of an extended-range
 number was detected in XC210.

 ***SEE ALSO XSET
 ***REFERENCES Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math

SLATEC5 (REBAK through ZBIRY) - 611

 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED XADD, XADJ, XERMSG, XRED, XSET
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 612

XRED

 SUBROUTINE XRED (X, IX, IERROR)
 ***BEGIN PROLOGUE XRED
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XRED-S, DXRED-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION
 REAL X
 INTEGER IX

 IF
 RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
 THEN XRED TRANSFORMS (X,IX) SO THAT IX=0.
 IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
 THEN XRED TAKES NO ACTION.
 THIS SUBROUTINE IS USEFUL IF THE
 RESULTS OF EXTENDED-RANGE CALCULATIONS
 ARE TO BE USED IN SUBSEQUENT ORDINARY
 SINGLE-PRECISION CALCULATIONS.

 ***SEE ALSO XSET
 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***COMMON BLOCKS XBLK2
 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 613

XSET

 SUBROUTINE XSET (IRAD, NRADPL, DZERO, NBITS, IERROR)
 ***BEGIN PROLOGUE XSET
 ***PURPOSE To provide single-precision floating-point arithmetic
 with an extended exponent range.
 ***LIBRARY SLATEC
 ***CATEGORY A3D
 ***TYPE SINGLE PRECISION (XSET-S, DXSET-D)
 ***KEYWORDS EXTENDED-RANGE SINGLE-PRECISION ARITHMETIC
 ***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
 Smith, John M., (NBS and George Mason University)
 ***DESCRIPTION

 SUBROUTINE XSET MUST BE CALLED PRIOR TO CALLING ANY OTHER
 EXTENDED-RANGE SUBROUTINE. IT CALCULATES AND STORES SEVERAL
 MACHINE-DEPENDENT CONSTANTS IN COMMON BLOCKS. THE USER MUST
 SUPPLY FOUR CONSTANTS THAT PERTAIN TO HIS PARTICULAR COMPUTER.
 THE CONSTANTS ARE

 IRAD = THE INTERNAL BASE OF SINGLE-PRECISION
 ARITHMETIC IN THE COMPUTER.
 NRADPL = THE NUMBER OF RADIX PLACES CARRIED IN
 THE SINGLE-PRECISION REPRESENTATION.
 DZERO = THE SMALLEST OF 1/DMIN, DMAX, DMAXLN WHERE
 DMIN = THE SMALLEST POSITIVE SINGLE-PRECISION
 NUMBER OR AN UPPER BOUND TO THIS NUMBER,
 DMAX = THE LARGEST SINGLE-PRECISION NUMBER
 OR A LOWER BOUND TO THIS NUMBER,
 DMAXLN = THE LARGEST SINGLE-PRECISION NUMBER
 SUCH THAT LOG10(DMAXLN) CAN BE COMPUTED BY THE
 FORTRAN SYSTEM (ON MOST SYSTEMS DMAXLN = DMAX).
 NBITS = THE NUMBER OF BITS (EXCLUSIVE OF SIGN) IN
 AN INTEGER COMPUTER WORD.

 ALTERNATIVELY, ANY OR ALL OF THE CONSTANTS CAN BE GIVEN
 THE VALUE 0 (0.0 FOR DZERO). IF A CONSTANT IS ZERO, XSET TRIES
 TO ASSIGN AN APPROPRIATE VALUE BY CALLING I1MACH
 (SEE P.A.FOX, A.D.HALL, N.L.SCHRYER, ALGORITHM 528 FRAMEWORK
 FOR A PORTABLE LIBRARY, ACM TRANSACTIONS ON MATH SOFTWARE,
 V.4, NO.2, JUNE 1978, 177-188).

 THIS IS THE SETTING-UP SUBROUTINE FOR A PACKAGE OF SUBROUTINES
 THAT FACILITATE THE USE OF EXTENDED-RANGE ARITHMETIC. EXTENDED-RANGE
 ARITHMETIC ON A PARTICULAR COMPUTER IS DEFINED ON THE SET OF NUMBERS
 OF THE FORM

 (X,IX) = X*RADIX**IX

 WHERE X IS A SINGLE-PRECISION NUMBER CALLED THE PRINCIPAL PART,
 IX IS AN INTEGER CALLED THE AUXILIARY INDEX, AND RADIX IS THE
 INTERNAL BASE OF THE SINGLE-PRECISION ARITHMETIC. OBVIOUSLY,
 EACH REAL NUMBER IS REPRESENTABLE WITHOUT ERROR BY MORE THAN ONE
 EXTENDED-RANGE FORM. CONVERSIONS BETWEEN DIFFERENT FORMS ARE
 ESSENTIAL IN CARRYING OUT ARITHMETIC OPERATIONS. WITH THE CHOICE
 OF RADIX WE HAVE MADE, AND THE SUBROUTINES WE HAVE WRITTEN, THESE
 CONVERSIONS ARE PERFORMED WITHOUT ERROR (AT LEAST ON MOST COMPUTERS).
 (SEE SMITH, J.M., OLVER, F.W.J., AND LOZIER, D.W., EXTENDED-RANGE

SLATEC5 (REBAK through ZBIRY) - 614

 ARITHMETIC AND NORMALIZED LEGENDRE POLYNOMIALS, ACM TRANSACTIONS ON
 MATHEMATICAL SOFTWARE, MARCH 1981).

 AN EXTENDED-RANGE NUMBER (X,IX) IS SAID TO BE IN ADJUSTED FORM IF
 X AND IX ARE ZERO OR

 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L

 IS SATISFIED, WHERE L IS A COMPUTER-DEPENDENT INTEGER DEFINED IN THIS
 SUBROUTINE. TWO EXTENDED-RANGE NUMBERS IN ADJUSTED FORM CAN BE ADDED,
 SUBTRACTED, MULTIPLIED OR DIVIDED (IF THE DIVISOR IS NONZERO) WITHOUT
 CAUSING OVERFLOW OR UNDERFLOW IN THE PRINCIPAL PART OF THE RESULT.
 WITH PROPER USE OF THE EXTENDED-RANGE SUBROUTINES, THE ONLY OVERFLOW
 THAT CAN OCCUR IS INTEGER OVERFLOW IN THE AUXILIARY INDEX. IF THIS
 IS DETECTED, THE SOFTWARE CALLS XERROR (A GENERAL ERROR-HANDLING
 FORTRAN SUBROUTINE PACKAGE).

 MULTIPLICATION AND DIVISION IS PERFORMED BY SETTING

 (X,IX)*(Y,IY) = (X*Y,IX+IY)
 OR
 (X,IX)/(Y,IY) = (X/Y,IX-IY).

 PRE-ADJUSTMENT OF THE OPERANDS IS ESSENTIAL TO AVOID
 OVERFLOW OR UNDERFLOW OF THE PRINCIPAL PART. SUBROUTINE
 XADJ (SEE BELOW) MAY BE CALLED TO TRANSFORM ANY EXTENDED-
 RANGE NUMBER INTO ADJUSTED FORM.

 ADDITION AND SUBTRACTION REQUIRE THE USE OF SUBROUTINE XADD
 (SEE BELOW). THE INPUT OPERANDS NEED NOT BE IN ADJUSTED FORM.
 HOWEVER, THE RESULT OF ADDITION OR SUBTRACTION IS RETURNED
 IN ADJUSTED FORM. THUS, FOR EXAMPLE, IF (X,IX),(Y,IY),
 (U,IU), AND (V,IV) ARE IN ADJUSTED FORM, THEN

 (X,IX)*(Y,IY) + (U,IU)*(V,IV)

 CAN BE COMPUTED AND STORED IN ADJUSTED FORM WITH NO EXPLICIT
 CALLS TO XADJ.

 WHEN AN EXTENDED-RANGE NUMBER IS TO BE PRINTED, IT MUST BE
 CONVERTED TO AN EXTENDED-RANGE FORM WITH DECIMAL RADIX. SUBROUTINE
 XCON IS PROVIDED FOR THIS PURPOSE.

 THE SUBROUTINES CONTAINED IN THIS PACKAGE ARE

 SUBROUTINE XADD
 USAGE
 CALL XADD(X,IX,Y,IY,Z,IZ,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 FORMS THE EXTENDED-RANGE SUM (Z,IZ) =
 (X,IX) + (Y,IY). (Z,IZ) IS ADJUSTED
 BEFORE RETURNING. THE INPUT OPERANDS
 NEED NOT BE IN ADJUSTED FORM, BUT THEIR
 PRINCIPAL PARTS MUST SATISFY
 RADIX**(-2L).LE.ABS(X).LE.RADIX**(2L),
 RADIX**(-2L).LE.ABS(Y).LE.RADIX**(2L).

 SUBROUTINE XADJ
 USAGE

SLATEC5 (REBAK through ZBIRY) - 615

 CALL XADJ(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 TRANSFORMS (X,IX) SO THAT
 RADIX**(-L) .LE. ABS(X) .LT. RADIX**L.
 ON MOST COMPUTERS THIS TRANSFORMATION DOES
 NOT CHANGE THE MANTISSA OF X PROVIDED RADIX IS
 THE NUMBER BASE OF SINGLE-PRECISION ARITHMETIC.

 SUBROUTINE XC210
 USAGE
 CALL XC210(K,Z,J,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 GIVEN K THIS SUBROUTINE COMPUTES J AND Z
 SUCH THAT RADIX**K = Z*10**J, WHERE Z IS IN
 THE RANGE 1/10 .LE. Z .LT. 1.
 THE VALUE OF Z WILL BE ACCURATE TO FULL
 SINGLE-PRECISION PROVIDED THE NUMBER
 OF DECIMAL PLACES IN THE LARGEST
 INTEGER PLUS THE NUMBER OF DECIMAL
 PLACES CARRIED IN SINGLE-PRECISION DOES NOT
 EXCEED 60. XC210 IS CALLED BY SUBROUTINE
 XCON WHEN NECESSARY. THE USER SHOULD
 NEVER NEED TO CALL XC210 DIRECTLY.

 SUBROUTINE XCON
 USAGE
 CALL XCON(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 CONVERTS (X,IX) = X*RADIX**IX
 TO DECIMAL FORM IN PREPARATION FOR
 PRINTING, SO THAT (X,IX) = X*10**IX
 WHERE 1/10 .LE. ABS(X) .LT. 1
 IS RETURNED, EXCEPT THAT IF
 (ABS(X),IX) IS BETWEEN RADIX**(-2L)
 AND RADIX**(2L) THEN THE REDUCED
 FORM WITH IX = 0 IS RETURNED.

 SUBROUTINE XRED
 USAGE
 CALL XRED(X,IX,IERROR)
 IF (IERROR.NE.0) RETURN
 DESCRIPTION
 IF
 RADIX**(-2L) .LE. (ABS(X),IX) .LE. RADIX**(2L)
 THEN XRED TRANSFORMS (X,IX) SO THAT IX=0.
 IF (X,IX) IS OUTSIDE THE ABOVE RANGE,
 THEN XRED TAKES NO ACTION.
 THIS SUBROUTINE IS USEFUL IF THE
 RESULTS OF EXTENDED-RANGE CALCULATIONS
 ARE TO BE USED IN SUBSEQUENT ORDINARY
 SINGLE-PRECISION CALCULATIONS.

 ***REFERENCES Smith, Olver and Lozier, Extended-Range Arithmetic and
 Normalized Legendre Polynomials, ACM Trans on Math
 Softw, v 7, n 1, March 1981, pp 93--105.
 ***ROUTINES CALLED I1MACH, XERMSG
 ***COMMON BLOCKS XBLK1, XBLK2, XBLK3

SLATEC5 (REBAK through ZBIRY) - 616

 ***REVISION HISTORY (YYMMDD)
 820712 DATE WRITTEN
 881020 Revised to meet SLATEC CML recommendations. (DWL and JMS)
 901019 Revisions to prologue. (DWL and WRB)
 901106 Changed all specific intrinsics to generic. (WRB)
 Corrected order of sections in prologue and added TYPE
 section. (WRB)
 CALLs to XERROR changed to CALLs to XERMSG. (WRB)
 920127 Revised PURPOSE section of prologue. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 617

XSETF

 SUBROUTINE XSETF (KONTRL)
 ***BEGIN PROLOGUE XSETF
 ***PURPOSE Set the error control flag.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3A
 ***TYPE ALL (XSETF-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XSETF sets the error control flag value to KONTRL.
 (KONTRL is an input parameter only.)
 The following table shows how each message is treated,
 depending on the values of KONTRL and LEVEL. (See XERMSG
 for description of LEVEL.)

 If KONTRL is zero or negative, no information other than the
 message itself (including numeric values, if any) will be
 printed. If KONTRL is positive, introductory messages,
 trace-backs, etc., will be printed in addition to the message.

 ABS(KONTRL)
 LEVEL 0 1 2
 value
 2 fatal fatal fatal

 1 not printed printed fatal

 0 not printed printed printed

 -1 not printed printed printed
 only only
 once once

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Change call to XERRWV to XERMSG. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 618

XSETUA

 SUBROUTINE XSETUA (IUNITA, N)
 ***BEGIN PROLOGUE XSETUA
 ***PURPOSE Set logical unit numbers (up to 5) to which error
 messages are to be sent.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3B
 ***TYPE ALL (XSETUA-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XSETUA may be called to declare a list of up to five
 logical units, each of which is to receive a copy of
 each error message processed by this package.
 The purpose of XSETUA is to allow simultaneous printing
 of each error message on, say, a main output file,
 an interactive terminal, and other files such as graphics
 communication files.

 Description of Parameters
 --Input--
 IUNIT - an array of up to five unit numbers.
 Normally these numbers should all be different
 (but duplicates are not prohibited.)
 N - the number of unit numbers provided in IUNIT
 must have 1 .LE. N .LE. 5.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Change call to XERRWV to XERMSG. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 619

XSETUN

 SUBROUTINE XSETUN (IUNIT)
 ***BEGIN PROLOGUE XSETUN
 ***PURPOSE Set output file to which error messages are to be sent.
 ***LIBRARY SLATEC (XERROR)
 ***CATEGORY R3B
 ***TYPE ALL (XSETUN-A)
 ***KEYWORDS ERROR, XERROR
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 XSETUN sets the output file to which error messages are to
 be sent. Only one file will be used. See XSETUA for
 how to declare more than one file.

 Description of Parameter
 --Input--
 IUNIT - an input parameter giving the logical unit number
 to which error messages are to be sent.

 ***REFERENCES R. E. Jones and D. K. Kahaner, XERROR, the SLATEC
 Error-handling Package, SAND82-0800, Sandia
 Laboratories, 1982.
 ***ROUTINES CALLED J4SAVE
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 620

ZAIRY

 SUBROUTINE ZAIRY (ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
 ***BEGIN PROLOGUE ZAIRY
 ***PURPOSE Compute the Airy function Ai(z) or its derivative dAi/dz
 for complex argument z. A scaling option is available
 to help avoid underflow and overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10D
 ***TYPE COMPLEX (CAIRY-C, ZAIRY-C)
 ***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
 BESSEL FUNCTION OF ORDER TWO THIRDS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZAIRY computes the complex Airy function Ai(z)
 or its derivative dAi/dz on ID=0 or ID=1 respectively. On
 KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz
 is provided to remove the exponential decay in -pi/3<arg(z)
 <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where
 zeta=(2/3)*z**(3/2).

 While the Airy functions Ai(z) and dAi/dz are analytic in
 the whole z-plane, the corresponding scaled functions defined
 for KODE=2 have a cut along the negative real axis.

 Input
 ZR - DOUBLE PRECISION real part of argument Z
 ZI - DOUBLE PRECISION imag part of argument Z
 ID - Order of derivative, ID=0 or ID=1
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 AI=Ai(z) on ID=0
 AI=dAi/dz on ID=1
 at z=Z
 =2 returns
 AI=exp(zeta)*Ai(z) on ID=0
 AI=exp(zeta)*dAi/dz on ID=1
 at z=Z where zeta=(2/3)*z**(3/2)

 Output
 AIR - DOUBLE PRECISION real part of result
 AII - DOUBLE PRECISION imag part of result
 NZ - Underflow indicator
 NZ=0 Normal return
 NZ=1 AI=0 due to underflow in
 -pi/3<arg(Z)<pi/3 on KODE=1
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large with KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has less than half precision)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision)
 IERR=5 Algorithmic error - NO COMPUTATION

SLATEC5 (REBAK through ZBIRY) - 621

 (Termination condition not met)

 *Long Description:

 Ai(z) and dAi/dz are computed from K Bessel functions by

 Ai(z) = c*sqrt(z)*K(1/3,zeta)
 dAi/dz = -c* z *K(2/3,zeta)
 c = 1/(pi*sqrt(3))
 zeta = (2/3)*z**(3/2)

 when abs(z)>1 and from power series when abs(z)<=1.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z is large, losses
 of significance by argument reduction occur. Consequently, if
 the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
 then losses exceeding half precision are likely and an error
 flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is
 double precision unit roundoff limited to 18 digits precision.
 Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
 all significance is lost and IERR=4. In order to use the INT
 function, ZETA must be further restricted not to exceed
 U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
 must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
 and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
 precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
 This makes U2 limiting is single precision and U3 limiting
 in double precision. This means that the magnitude of Z
 cannot exceed approximately 3.4E+4 in single precision and
 2.1E+6 in double precision. This also means that one can
 expect to retain, in the worst cases on 32-bit machines,
 no digits in single precision and only 6 digits in double
 precision.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of

SLATEC5 (REBAK through ZBIRY) - 622

 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 3. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 4. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZACAI, ZBKNU, ZEXP, ZSQRT
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 930122 Added ZEXP and ZSQRT to EXTERNAL statement. (RWC)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 623

ZBESH

 SUBROUTINE ZBESH (ZR, ZI, FNU, KODE, M, N, CYR, CYI, NZ, IERR)
 ***BEGIN PROLOGUE ZBESH
 ***PURPOSE Compute a sequence of the Hankel functions H(m,a,z)
 for superscript m=1 or 2, real nonnegative orders a=b,
 b+1,... where b>0, and nonzero complex argument z. A
 scaling option is available to help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESH-C, ZBESH-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF THE THIRD KIND, H BESSEL FUNCTIONS,
 HANKEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBESH computes an N member sequence of complex
 Hankel (Bessel) functions CY(L)=H(M,FNU+L-1,Z) for super-
 script M=1 or 2, real nonnegative orders FNU+L-1, L=1,...,
 N, and complex nonzero Z in the cut plane -pi<arg(Z)<=pi
 where Z=ZR+i*ZI. On KODE=2, CBESH returns the scaled
 functions

 CY(L) = H(M,FNU+L-1,Z)*exp(-(3-2*M)*Z*i), i**2=-1

 which removes the exponential behavior in both the upper
 and lower half planes. Definitions and notation are found
 in the NBS Handbook of Mathematical Functions (Ref. 1).

 Input
 ZR - DOUBLE PRECISION real part of nonzero argument Z
 ZI - DOUBLE PRECISION imag part of nonzero argument Z
 FNU - DOUBLE PRECISION initial order, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=H(M,FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=H(M,FNU+L-1,Z)*exp(-(3-2M)*Z*i),
 L=1,...,N
 M - Superscript of Hankel function, M=1 or 2
 N - Number of terms in the sequence, N>=1

 Output
 CYR - DOUBLE PRECISION real part of result vector
 CYI - DOUBLE PRECISION imag part of result vector
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L (if M=1 and
 Im(Z)>0 or if M=2 and Im(Z)<0, then
 CY(L)=0 for L=1,...,NZ; in the com-
 plementary half planes, the underflows
 may not be in an uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION

SLATEC5 (REBAK through ZBIRY) - 624

 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 The computation is carried out by the formula

 H(m,a,z) = (1/t)*exp(-a*t)*K(a,z*exp(-t))
 t = (3-2*m)*i*pi/2

 where the K Bessel function is computed as described in the
 prologue to CBESK.

 Exponential decay of H(m,a,z) occurs in the upper half z
 plane for m=1 and the lower half z plane for m=2. Exponential
 growth occurs in the complementary half planes. Scaling
 by exp(-(3-2*m)*z*i) removes the exponential behavior in the
 whole z plane as z goes to infinity.

 For negative orders, the formula

 H(m,-a,z) = H(m,a,z)*exp((3-2*m)*a*pi*i)

 can be used.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
 precision unit roundoff limited to 18 digits precision. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may

SLATEC5 (REBAK through ZBIRY) - 625

 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZACON, ZBKNU, ZBUNK, ZUOIK
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 626

ZBESI

 SUBROUTINE ZBESI (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
 ***BEGIN PROLOGUE ZBESI
 ***PURPOSE Compute a sequence of the Bessel functions I(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10B4
 ***TYPE COMPLEX (CBESI-C, ZBESI-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, I BESSEL FUNCTIONS,
 MODIFIED BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBESI computes an N-member sequence of complex
 Bessel functions CY(L)=I(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESI returns
 the scaled functions

 CY(L) = exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N and X=Re(Z)

 which removes the exponential growth in both the left and
 right half-planes as Z goes to infinity.

 Input
 ZR - DOUBLE PRECISION real part of argument Z
 ZI - DOUBLE PRECISION imag part of argument Z
 FNU - DOUBLE PRECISION initial order, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=I(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N
 where X=Re(Z)
 N - Number of terms in the sequence, N>=1

 Output
 CYR - DOUBLE PRECISION real part of result vector
 CYI - DOUBLE PRECISION imag part of result vector
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0, L=N-NZ+1,...,N
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large on KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION

SLATEC5 (REBAK through ZBIRY) - 627

 (Termination condition not met)

 *Long Description:

 The computation of I(a,z) is carried out by the power series
 for small abs(z), the asymptotic expansion for large abs(z),
 the Miller algorithm normalized by the Wronskian and a
 Neumann series for intermediate magnitudes of z, and the
 uniform asymptotic expansions for I(a,z) and J(a,z) for
 large orders a. Backward recurrence is used to generate
 sequences or reduce orders when necessary.

 The calculations above are done in the right half plane and
 continued into the left half plane by the formula

 I(a,z*exp(t)) = exp(t*a)*I(a,z), Re(z)>0
 t = i*pi or -i*pi

 For negative orders, the formula

 I(-a,z) = I(a,z) + (2/pi)*sin(pi*a)*K(a,z)

 can be used. However, for large orders close to integers the
 the function changes radically. When a is a large positive
 integer, the magnitude of I(-a,z)=I(a,z) is a large
 negative power of ten. But when a is not an integer,
 K(a,z) dominates in magnitude with a large positive power of
 ten and the most that the second term can be reduced is by
 unit roundoff from the coefficient. Thus, wide changes can
 occur within unit roundoff of a large integer for a. Here,
 large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
 precision unit roundoff limited to 18 digits precision. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur

SLATEC5 (REBAK through ZBIRY) - 628

 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 629

ZBESJ

 SUBROUTINE ZBESJ (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
 ***BEGIN PROLOGUE ZBESJ
 ***PURPOSE Compute a sequence of the Bessel functions J(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESJ-C, ZBESJ-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF THE FIRST KIND, J BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBESJ computes an N member sequence of complex
 Bessel functions CY(L)=J(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESJ returns
 the scaled functions

 CY(L) = exp(-abs(Y))*J(FNU+L-1,Z), L=1,...,N and Y=Im(Z)

 which remove the exponential growth in both the upper and
 lower half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 ZR - DOUBLE PRECISION real part of argument Z
 ZI - DOUBLE PRECISION imag part of argument Z
 FNU - DOUBLE PRECISION initial order, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=J(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=J(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
 where Y=Im(Z)
 N - Number of terms in the sequence, N>=1

 Output
 CYR - DOUBLE PRECISION real part of result vector
 CYI - DOUBLE PRECISION imag part of result vector
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0, L=N-NZ+1,...,N
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Im(Z) too large on KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because

SLATEC5 (REBAK through ZBIRY) - 630

 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 The computation is carried out by the formulae

 J(a,z) = exp(a*pi*i/2)*I(a,-i*z), Im(z)>=0

 J(a,z) = exp(-a*pi*i/2)*I(a, i*z), Im(z)<0

 where the I Bessel function is computed as described in the
 prologue to CBESI.

 For negative orders, the formula

 J(-a,z) = J(a,z)*cos(a*pi) - Y(a,z)*sin(a*pi)

 can be used. However, for large orders close to integers, the
 the function changes radically. When a is a large positive
 integer, the magnitude of J(-a,z)=J(a,z)*cos(a*pi) is a
 large negative power of ten. But when a is not an integer,
 Y(a,z) dominates in magnitude with a large positive power of
 ten and the most that the second term can be reduced is by
 unit roundoff from the coefficient. Thus, wide changes can
 occur within unit roundoff of a large integer for a. Here,
 large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
 precision unit roundoff limited to 18 digits precision. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,

SLATEC5 (REBAK through ZBIRY) - 631

 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 632

ZBESK

 SUBROUTINE ZBESK (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
 ***BEGIN PROLOGUE ZBESK
 ***PURPOSE Compute a sequence of the Bessel functions K(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10B4
 ***TYPE COMPLEX (CBESK-C, ZBESK-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, K BESSEL FUNCTIONS,
 MODIFIED BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBESK computes an N member sequence of complex
 Bessel functions CY(L)=K(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z.NE.0 in the cut
 plane -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESJ
 returns the scaled functions

 CY(L) = exp(Z)*K(FNU+L-1,Z), L=1,...,N

 which remove the exponential growth in both the left and
 right half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 ZR - DOUBLE PRECISION real part of nonzero argument Z
 ZI - DOUBLE PRECISION imag part of nonzero argument Z
 FNU - DOUBLE PRECISION initial order, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=K(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=K(FNU+L-1,Z)*EXP(Z), L=1,...,N
 N - Number of terms in the sequence, N>=1

 Output
 CYR - DOUBLE PRECISION real part of result vector
 CYI - DOUBLE PRECISION imag part of result vector
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L (if Re(Z)>0
 then CY(L)=0 for L=1,...,NZ; in the
 complementary half plane the underflows
 may not be in an uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less

SLATEC5 (REBAK through ZBIRY) - 633

 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 Equations of the reference are implemented to compute K(a,z)
 for small orders a and a+1 in the right half plane Re(z)>=0.
 Forward recurrence generates higher orders. The formula

 K(a,z*exp((t)) = exp(-t)*K(a,z) - t*I(a,z), Re(z)>0
 t = i*pi or -i*pi

 continues K to the left half plane.

 For large orders, K(a,z) is computed by means of its uniform
 asymptotic expansion.

 For negative orders, the formula

 K(-a,z) = K(a,z)

 can be used.

 CBESK assumes that a significant digit sinh function is
 available.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
 precision unit roundoff limited to 18 digits precision. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger

SLATEC5 (REBAK through ZBIRY) - 634

 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZACON, ZBKNU, ZBUNK, ZUOIK
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 635

ZBESY

 SUBROUTINE ZBESY (ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, CWRKR,
 + CWRKI, IERR)
 ***BEGIN PROLOGUE ZBESY
 ***PURPOSE Compute a sequence of the Bessel functions Y(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESY-C, ZBESY-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF SECOND KIND, WEBER'S FUNCTION,
 Y BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBESY computes an N member sequence of complex
 Bessel functions CY(L)=Y(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi where Z=ZR+i*ZI. On KODE=2, CBESY returns
 the scaled functions

 CY(L) = exp(-abs(Y))*Y(FNU+L-1,Z), L=1,...,N, Y=Im(Z)

 which remove the exponential growth in both the upper and
 lower half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 ZR - DOUBLE PRECISION real part of nonzero argument Z
 ZI - DOUBLE PRECISION imag part of nonzero argument Z
 FNU - DOUBLE PRECISION initial order, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=Y(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=Y(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
 where Y=Im(Z)
 N - Number of terms in the sequence, N>=1
 CWRKR - DOUBLE PRECISION work vector of dimension N
 CWRKI - DOUBLE PRECISION work vector of dimension N

 Output
 CYR - DOUBLE PRECISION real part of result vector
 CYI - DOUBLE PRECISION imag part of result vector
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L, usually on
 KODE=2 (the underflows may not be in an
 uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION

SLATEC5 (REBAK through ZBIRY) - 636

 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 The computation is carried out by the formula

 Y(a,z) = (H(1,a,z) - H(2,a,z))/(2*i)

 where the Hankel functions are computed as described in CBESH.

 For negative orders, the formula

 Y(-a,z) = Y(a,z)*cos(a*pi) + J(a,z)*sin(a*pi)

 can be used. However, for large orders close to half odd
 integers the function changes radically. When a is a large
 positive half odd integer, the magnitude of Y(-a,z)=J(a,z)*
 sin(a*pi) is a large negative power of ten. But when a is
 not a half odd integer, Y(a,z) dominates in magnitude with a
 large positive power of ten and the most that the second term
 can be reduced is by unit roundoff from the coefficient.
 Thus, wide changes can occur within unit roundoff of a large
 half odd integer. Here, large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is double
 precision unit roundoff limited to 18 digits precision. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may

SLATEC5 (REBAK through ZBIRY) - 637

 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZBESH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 638

ZBIRY

 SUBROUTINE ZBIRY (ZR, ZI, ID, KODE, BIR, BII, IERR)
 ***BEGIN PROLOGUE ZBIRY
 ***PURPOSE Compute the Airy function Bi(z) or its derivative dBi/dz
 for complex argument z. A scaling option is available
 to help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10D
 ***TYPE COMPLEX (CBIRY-C, ZBIRY-C)
 ***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
 BESSEL FUNCTION OF ORDER TWO THIRDS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 A DOUBLE PRECISION ROUTINE
 On KODE=1, ZBIRY computes the complex Airy function Bi(z)
 or its derivative dBi/dz on ID=0 or ID=1 respectively.
 On KODE=2, a scaling option exp(abs(Re(zeta)))*Bi(z) or
 exp(abs(Re(zeta)))*dBi/dz is provided to remove the
 exponential behavior in both the left and right half planes
 where zeta=(2/3)*z**(3/2).

 The Airy functions Bi(z) and dBi/dz are analytic in the
 whole z-plane, and the scaling option does not destroy this
 property.

 Input
 ZR - DOUBLE PRECISION real part of argument Z
 ZI - DOUBLE PRECISION imag part of argument Z
 ID - Order of derivative, ID=0 or ID=1
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 BI=Bi(z) on ID=0
 BI=dBi/dz on ID=1
 at z=Z
 =2 returns
 BI=exp(abs(Re(zeta)))*Bi(z) on ID=0
 BI=exp(abs(Re(zeta)))*dBi/dz on ID=1
 at z=Z where zeta=(2/3)*z**(3/2)

 Output
 BIR - DOUBLE PRECISION real part of result
 BII - DOUBLE PRECISION imag part of result
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large with KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has less than half precision)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

SLATEC5 (REBAK through ZBIRY) - 639

 Bi(z) and dBi/dz are computed from I Bessel functions by

 Bi(z) = c*sqrt(z)*(I(-1/3,zeta) + I(1/3,zeta))
 dBi/dz = c* z *(I(-2/3,zeta) + I(2/3,zeta))
 c = 1/sqrt(3)
 zeta = (2/3)*z**(3/2)

 when abs(z)>1 and from power series when abs(z)<=1.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z is large, losses
 of significance by argument reduction occur. Consequently, if
 the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
 then losses exceeding half precision are likely and an error
 flag IERR=3 is triggered where UR=MAX(D1MACH(4),1.0D-18) is
 double precision unit roundoff limited to 18 digits precision.
 Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
 all significance is lost and IERR=4. In order to use the INT
 function, ZETA must be further restricted not to exceed
 U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
 must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
 and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
 precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
 This makes U2 limiting is single precision and U3 limiting
 in double precision. This means that the magnitude of Z
 cannot exceed approximately 3.4E+4 in single precision and
 2.1E+6 in double precision. This also means that one can
 expect to retain, in the worst cases on 32-bit machines,
 no digits in single precision and only 6 digits in double
 precision.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 3. D. E. Amos, A Subroutine Package for Bessel Functions

SLATEC5 (REBAK through ZBIRY) - 640

 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 4. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED D1MACH, I1MACH, ZABS, ZBINU, ZDIV, ZSQRT
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 930122 Added ZSQRT to EXTERNAL statement. (RWC)
 END PROLOGUE

SLATEC5 (REBAK through ZBIRY) - 641

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes. (C) Copyright 1996 The Regents of the University of California. All rights reserved.

SLATEC5 (REBAK through ZBIRY) - 642

Structural Keyword Index

Keyword Description
-------- ------------
entire This entire document.
title The name of this document.
scope Topics covered in SLATEC5.
availability Machines on which these routines run.
who Who to contact for assistance.
introduction Brief overview of SLATEC5; and
 other SLATEC documentation.
index This structural keyword index.
date The latest revision date for SLATEC5.
revisions Revision history of this document.

In addition, the name of every subroutine described in SLATEC5 is the keyword and link for retrieving
its description. Included are:

--
Routine Gams Function
Name Cat. Performed
--

REBAK eispack
REBAKB eispack
REDUC eispack
REDUC2 eispack
RF c elementary-functions, special-functions
RFFTB1 j1 fast-fourier-transforms
RFFTF1 j1 fast-fourier-transforms
RFFTI1 j1 fast-fourier-transforms
RG eispack
RGAUSS l pseudo-random-numbers
RGG eispack
RJ c elementary-functions, special-functions
RPQR79 f nonlinear-equations
RPZERO f nonlinear-equations
RS eispack
RSB eispack
RSG eispack
RSGAB eispack
RSGBA eispack
RSP eispack
RST eispack
RT eispack
RUNIF l pseudo-random-numbers
SASUM d1a vector-operations
SAXPY d1a vector-operations
SBCG d2 linear-equations
SBHIN n data-handling
SBHIN n data-handling
SBOCLS k approximation
SBOLS k approximation
SCASUM d1a vector-operations

SLATEC5 (REBAK through ZBIRY) - 643

SCG d2 linear-equations
SCGN d2 linear-equations
SCGS d2 linear-equations
SCHDC linpack cholesky-operations
SCHDD linpack cholesky-operations
SCHEX linpack cholesky-operations
SCHUD linpack cholesky-operations
SCNRM2 d1a vector-operations
SCOPY d1a vector-operations
SCOPYM d1a vector-operations
SCOV k approximation
SCPPLT n data-handling
SCPPLT n data-handling
SDASSL i1 ordinary-differential-equations
SDOT d1a vector-operations
SDRIV1 i1 ordinary-differential-equations
SDRIV2 i1 ordinary-differential-equations
SDRIV3 i1 ordinary-differential-equations
SDSDOT d1a vector-operations
SEPELI i2 partial-differential-equations
SEPX4 i2 partial-differential-equations
SGBCO linpack general-band
SGBDI linpack general-band
SGBFA linpack general-band
SGBSL linpack general-band
SGECO linpack general
SGEDI linpack general
SGEEV d4 eigenvalues, eigenvectors
SGEFA linpack general
SGEFS d2 linear-equations
SGEIR d2 linear-equations
SGEMM d1b matrix-operations
SGEMV d1b matrix-operations
SGER d1b matrix-operations
SGESL linpack general
SGLSS d9 overdetermined-systems, least-squares
SGMRES d2 linear-equations
SGTSL linpack general-tridiagonal
SINDG c elementary-functions, special-functions
SINQB j1 fast-fourier-transforms
SINQF j1 fast-fourier-transforms
SINQI j1 fast-fourier-transforms
SINT j1 fast-fourier-transforms
SINTI j1 fast-fourier-transforms
SINTRP i1 ordinary-differential-equations
SIR d2 linear-equations
SLLTI2 d2 linear-equations
SLPDOC d2 linear-equations
SNBCO d2 linear-equations
SNBDI d3 determinants
SNBFA d2 linear-equations
SNBFS d2 linear-equations
SNBIR d2 linear-equations
SNBSL d2 linear-equations
SNLS1 k approximation
SNLS1E k approximation
SNRM2 d1a vector-operations
SNSQ f nonlinear-equations
SNSQE f nonlinear-equations
SOMN d2 linear-equations

SLATEC5 (REBAK through ZBIRY) - 644

SOS f nonlinear-equations
SPBCO linpack hermitian-positive-definite-band
SPBDI linpack hermitian-positive-definite-band
SPBFA linpack hermitian-positive-definite-band
SPBSL linpack hermitian-positive-definite-band
SPENC c elementary-functions, special-functions
SPLP g optimization
SPOCO linpack hermitian-positive-definite
SPODI linpack hermitian-positive-definite
SPOFA linpack hermitian-positive-definite
SPOFS d2 linear-equations
SPOIR d2 linear-equations
SPOSL linpack hermitian-positive-definite
SPPCO linpack hermitian-positive-definite
SPPDI linpack hermitian-positive-definite
SPPERM n data-handling
SPPFA linpack hermitian-positive-definite
SPPSL linpack hermitian-positive-definite
SPSORT n data-handling
SPTSL linpack positive-definite-tridiagonal
SQRDC d5 qr-decomposition
SQRSL d5 qr-decomposition
SROT d1a vector-operations
SROTG d1a vector-operations
SROTM d1a vector-operations
SROTMG d1a vector-operations
SS2LT d2 linear-equations
SS2Y d1b matrix-operations
SSBMV d1b matrix-operations
SSCAL d1a vector-operations
SSD2S d2 linear-equations
SSDBCG d2 linear-equations
SSDCG d2 linear-equations
SSDCGN d2 linear-equations
SSDCGS d2 linear-equations
SSDGMR d2 linear-equations
SSDI d1b matrix-operations
SSDOMN d2 linear-equations
SSDS d2 linear-equations
SSDSCL d2 linear-equations
SSGS d2 linear-equations
SSICCG d2 linear-equations
SSICO linpack symmetric
SSICS d2 linear-equations
SSIDI linpack symmetric
SSIEV d4 eigenvalues, eigenvectors
SSIFA linpack symmetric
SSILUR d2 linear-equations
SSILUS d2 linear-equations
SSISL linpack symmetric
SSJAC d2 linear-equations
SSLI d2 linear-equations
SSLI2 d2 linear-equations
SSLLTI d2 linear-equations
SSLUBC d2 linear-equations
SSLUCN d2 linear-equations
SSLUCS d2 linear-equations
SSLUGM d2 linear-equations
SSLUI d2 linear-equations
SSLUI2 d2 linear-equations

SLATEC5 (REBAK through ZBIRY) - 645

SSLUI4 d2 linear-equations
SSLUOM d2 linear-equations
SSLUTI d2 linear-equations
SSMMI2 d2 linear-equations
SSMMTI d2 linear-equations
SSMTV d1b matrix-operations
SSMV d1b matrix-operations
SSORT n data-handling
SSPCO linpack symmetric
SSPDI linpack symmetric
SSPEV d4 eigenvalues, eigenvectors
SSPFA linpack symmetric
SSPMV d1b matrix-operations
SSPR d1b matrix-operations
SSPR2 d1b matrix-operations
SSPSL linpack symmetric
SSVDC d6 singular-value-decomposition
SSWAP d1a vector-operations
SSYMM d1b matrix-operations
SSYMV d1b matrix-operations
SSYR d1b matrix-operations
SSYR2 d1b matrix-operations
SSYR2K d1b matrix-operations
SSYRK d1b matrix-operations
STBMV d1b matrix-operations
STBSV d1b matrix-operations
STEPS i1 ordinary-differential-equations
STIN n data-handling
STOUT n data-handling
STPMV d1b matrix-operations
STPSV d1b matrix-operations
STRCO linpack triangular
STRDI linpack triangular
STRMM d1b matrix-operations
STRMV d1b matrix-operations
STRSL linpack triangular
STRSM d1b matrix-operations
STRSV d1b matrix-operations
TINVIT eispack
TQL1 eispack
TQL2 eispack
TQLRAT eispack
TRBAK1 eispack
TRBAK3 eispack
TRED1 eispack
TRED2 eispack
TRED3 eispack
TRIDIB eispack
TSTURM eispack
ULSIA d9 overdetermined-systems, least-squares
WNNLS k approximation
XADD a arithmetic-functions
XADJ a arithmetic-functions
XC210 a arithmetic-functions
XCON a arithmetic-functions
XERCLR r3 diagnostics, error-handling
XERDMP r3 diagnostics, error-handling
XERMAX r3 diagnostics, error-handling
XGETF r3 diagnostics, error-handling
XGETUA r3 diagnostics, error-handling

SLATEC5 (REBAK through ZBIRY) - 646

XGETUN r3 diagnostics, error-handling
XLEGF c elementary-functions, special functions
XNRMP c elementary-functions, special functions
XRED a arithmetic-functions
XSET a arithmetic-functions
XSETF r3 diagnostics, error-handling
XSETUA r3 diagnostics, error-handling
XSETUN r3 diagnostics, error-handling
ZAIRY c elementary-functions, special-functions
ZBESH c elementary-functions, special-functions
ZBESI c elementary-functions, special-functions
ZBESJ c elementary-functions, special-functions
ZBESK c elementary-functions, special-functions
ZBESY c elementary-functions, special-functions
ZBIRY c elementary-functions, special-functions

SLATEC5 (REBAK through ZBIRY) - 647

Date and Revisions

Revision Keyword
date affected Description of changes
-------- -------- ----------------------

07May96 entire Text updated for SLATEC version 4.1.
 Adapted for LC (from NERSC).

31Oct91 background New keyword for document comparisons.
 loading-slatec New loading instructions for UNICOS, CSOS.
 entire Text upgraded to cover SLATEC version 4.0.

30Nov87 entire Text upgraded to cover SLATEC version 3.1.
 Page index added;
 keyword index expanded.

26Oct82 entire First edition of new writeup.

TRG (07May96)

UCID-19631,19632,19633
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (07May96) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLATEC5 (REBAK through ZBIRY) - 648

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	Using SLATEC Documentation
	Loading SLATEC Under UNICOS

	Subroutine Descriptions
	REBAK
	REBAKB
	REDUC
	REDUC2
	RF
	RFFTB1
	RFFTF1
	RFFTI1
	RG
	RGAUSS
	RGG
	RJ
	RPQR79
	RPZERO
	RS
	RSB
	RSG
	RSGAB
	RSGBA
	RSP
	RST
	RT
	RUNIF
	SASUM
	SAXPY
	SBCG
	SBHIN
	SBOCLS
	SBOLS
	SCASUM
	SCG
	SCGN
	SCGS
	SCHDC
	SCHDD
	SCHEX
	SCHUD
	SCNRM2
	SCOPY
	SCOPYM
	SCOV
	SCPPLT
	SDASSL
	SDOT
	SDRIV1
	SDRIV2
	SDRIV3
	SDSDOT
	SEPELI
	SEPX4
	SGBCO
	SGBDI
	SGBFA
	SGBMV
	SGBSL
	SGECO
	SGEDI
	SGEEV
	SGEFA
	SGEFS
	SGEIR
	SGEMM
	SGEMV
	SGER
	SGESL
	SGLSS
	SGMRES
	SGTSL
	SINDG
	SINQB
	SINQF
	SINQI
	SINT
	SINTI
	SINTRP
	SIR
	SLLTI2
	SLPDOC
	SNBCO
	SNBDI
	SNBFA
	SNBFS
	SNBIR
	SNBSL
	SNLS1
	SNLS1E
	SNRM2
	SNSQ
	SNSQE
	SOMN
	SOS
	SPBCO
	SPBDI
	SPBFA
	SPBSL
	SPENC
	SPLP
	SPOCO
	SPODI
	SPOFA
	SPOFS
	SPOIR
	SPOSL
	SPPCO
	SPPDI
	SPPERM
	SPPFA
	SPPSL
	SPSORT
	SPTSL
	SQRDC
	SQRSL
	SROT
	SROTG
	SROTM
	SROTMG
	SS2LT
	SS2Y
	SSBMV
	SSCAL
	SSD2S
	SSDBCG
	SSDCG
	SSDCGN
	SSDCGS
	SSDGMR
	SSDI
	SSDOMN
	SSDS
	SSDSCL
	SSGS
	SSICCG
	SSICO
	SSICS
	SSIDI
	SSIEV
	SSIFA
	SSILUR
	SSILUS
	SSISL
	SSJAC
	SSLI
	SSLI2
	SSLLTI
	SSLUBC
	SSLUCN
	SSLUCS
	SSLUGM
	SSLUI
	SSLUI2
	SSLUI4
	SSLUOM
	SSLUTI
	SSMMI2
	SSMMTI
	SSMTV
	SSMV
	SSORT
	SSPCO
	SSPDI
	SSPEV
	SSPFA
	SSPMV
	SSPR
	SSPR2
	SSPSL
	SSVDC
	SSWAP
	SSYMM
	SSYMV
	SSYR
	SSYR2
	SSYR2K
	SSYRK
	STBMV
	STBSV
	STEPS
	STIN
	STOUT
	STPMV
	STPSV
	STRCO
	STRDI
	STRMM
	STRMV
	STRSL
	STRSM
	STRSV
	TINVIT
	TQL1
	TQL2
	TQLRAT
	TRBAK1
	TRBAK3
	TRED1
	TRED2
	TRED3
	TRI3
	TRIDIB
	TSTURM
	ULSIA
	WNNLS
	XADD
	XADJ
	XC210
	XCON
	XERCLR
	XERDMP
	XERMAX
	XERMSG
	XGETF
	XGETUA
	XGETUN
	XLEGF
	XNRMP
	XRED
	XSET
	XSETF
	XSETUA
	XSETUN
	ZAIRY
	ZBESH
	ZBESI
	ZBESJ
	ZBESK
	ZBESY
	ZBIRY

	Disclaimer
	Structural Keyword Index
	Date and Revisions

