
STAT: the Stack Trace Analysis Tool

Gregory L. Lee

Dorian C. Arnold

Dong H. Ahn

Bronis R. de Supinski

Barton P. Miller

Martin Schulz

STAT: the Stack Trace Analysis Tool
by Gregory L. Lee

by Dorian C. Arnold

by Dong H. Ahn

by Bronis R. de Supinski

by Barton P. Miller

by Martin Schulz

Table of Contents
Disclaimer ...v

Auspice ...v
License ..v

1. Introduction ..1
2. Overview ...3
3. Changelog..7

STAT version 2.0 ..7
4. Installing STAT ..9

Dependent Packages...9
Installation..9

5. Using the stat-cl Command..11
Description ...11
stat-cl Options..11
STAT Usage Example..12

6. Using the stat-view GUI...15
Description ...15
The stat-view Node Menu ...15
The stat-view Toolbar ...17

7. Using the stat-gui GUI..19
Description ...19
The stat-gui GUI Toolbar..19
Sample Options ...20
Equivalence Classes and Subset Debugging...21
Availability ...22

8. Setting STAT Preferences and Options ...23
Preference Files ..23
Loading and Saving Preferences...24
Environment Variables ...24

9. Tips and Tricks Using STAT ..27
Using STAT with IO Watchdog and SLURM ..27
Running STAT in a Batch Script ..27

10. Using the stat-bench Emulator..29
Description ...29
stat-bench Options ..29
stat-bench Usage Example ...31

11. Troubleshooting Guide...33
Troubleshooting...33

Bibliography ...35

iii

iv

Disclaimer

Auspice
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

License
Copyright (c) 2007-2008, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

Written by Gregory Lee [lee218@llnl.gov], Dorian Arnold, Dong Ahn, Bronis de
Supinski, Barton Miller, and Martin Schulz.

LLNL-CODE-400455.

All rights reserved.

This file is part of STAT. For details, see http://www.paradyn.org/STAT. Please
also read STAT/LICENSE.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the disclaimer below.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the disclaimer (as noted below) in the documentation
and/or other materials provided with the distribution.

Neither the name of the LLNS/LLNL nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL
SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S. Depart-
ment of Energy (DOE). This work was produced at Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National Secu-
rity, LLC nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or services
by trade name, trademark, manufacturer or otherwise does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC. The views
and opinions of authors expressed herein do not necessarily state or reflect those

v

Disclaimer

of the United States Government or Lawrence Livermore National Security, LLC,
and shall not be used for advertising or product endorsement purposes.

vi

Chapter 1. Introduction

The Stack Trace Analysis Tool (STAT) is a highly scalable, lightweight debugger
for parallel applications. STAT was initially developed as a collaboration between
the Lawrence Livermore National Laboratory and the University of Wisconsin. It
is currently open source software released under the Berkeley Software Distri-
bution (BSD) license. It builds on a highly portable, open source infrastructure,
including LaunchMON for tool daemon launching, MRNet for scalable commu-
nication, and StackWalker for obtaining stack traces.

STAT works by gathering stack traces from all of a parallel application’s pro-
cesses and merging them into a compact and intuitive form. The resulting output
indicates the location in the code that each application process is executing, which
can help narrow down a bug. Furthermore, the merging process naturally groups
processes that exhibit similar behavior into process equivalence classes. A single
representative of each equivalence can then be examined with a full-featured de-
bugger like TotalView1 or DDT2 for more in-depth analysis.

STAT has been ported to several platforms, including Linux clusters, IBM’s Blue-
gene/L and Bluegene/P machines, and Cray XT systems. It works for Message
Passing Interface (MPI) applications written in C, C++, and Fortran and also sup-
ports threads. STAT has already demonstrated scalability over 200,000 MPI tasks
and its logarithmic scaling characteristics position it well for even larger systems.

Notes
1. http://www.totalviewtech.com/

2. http://www.allinea.com/index.php?page=48

1

Chapter 1. Introduction

2

Chapter 2. Overview

STAT, the Stack Trace Analysis Tool, helps isolate bugs by gathering stack traces
from each individual process of a parallel application and merging them into a
global, yet compact representation. Each stack trace, as depicted in Figure 2-1,
captures the function calling sequence of an individual process. The nodes are
labeled with the function names and the directed edges show the function calling
sequence from caller to callee. STAT’s stack trace merging process forms a call
graph prefix tree, which can be seen in Figure 2-1. The prefix tree groups together
traces from different processes that have the same calling sequence and labels the
edges with the count and set of tasks that exhibited that calling sequence. Nodes
in the prefix tree that are visited by the same set of tasks are given the same
color, providing the user with a quick means of identifying the various process
equivalence classes.

Figure 2-1. A single stack trace (left) and a STAT merged call prefix tree (right)

STAT merges stack traces into 2D spatial and 3D spatial-temporal call prefix trees.
The 2D spatial call prefix tree (Figure 2-2) represents a single snapshot of the
entire application. The 3D spatial-temporal call prefix tree (Figure 2-3) takes a
series of snapshots from the application over time and is useful for analyzing
time-varying behavior.

3

Chapter 2. Overview

Figure 2-2. A 2D spatial call prefix tree

Figure 2-3. A 3D spatial call prefix tree

Stack traces based on function names only provide a high-level overview of the
application’s execution. However, for certain bugs this view may be too coarse-
grained so STAT is also capable of gathering stack traces with more fine-grained
information. In particular, STAT can also record the program counter of each
frame or with the appropriate debug information compiled into the application
(i.e., with the "-g" compiler flag), STAT can gather the source file and line number
of each stack frame. Both of these refinements can further delineate processes and
refine the process equivalence classes.

In addition, line number information can be fed into a static code analysis engine
to derive the logical temporal order of the MPI tasks Figure 2-4. This analysis
traverses from the root of the tree towards the leaves, at each step analyzing the

4

Chapter 2. Overview

control flow of the source code and sorting sibling nodes by the amount of exe-
cution progress made through the code. For straight-line code, this simply means
that one task has made more progress if it has executed past the point of another
task, i.e., if it has a greater line number. This ordering is partial since two tasks
in different branches of an if-else are incomparable. In cases where the program
points being compared are within a loop, STAT can extract the loop ordering
variable from the application processes and further delineate tasks by execution
progress. This analysis is useful for identifying the culprit in a deadlocked or live-
locked application, where the problematic task has often either made the least or
most progress through the code, leaving the remaining tasks stuck in a barrier or
blocked pending a message. Note, this feature is still a prototype. Please contact
Greg Lee for an experimental version.

Figure 2-4. STAT’s temporal ordering analysis engine indicates that task 1 has
made the least progress. In this example, task 1 is stuck in a compute cycle,
while the other tasks are blocked in MPI communication, waiting for task 1.

5

Chapter 2. Overview

6

Chapter 3. Changelog

STAT version 2.0

• The capitalized STAT commands have been deprecated in favor of all lower-
case commands. The STAT command is now stat-cl, STATGUI is now stat-gui,
STATview is now stat-view, and STATBench is now stat-bench.

• Added count + representative level of detail.

• Added join equivalence class GUI feature.

• Added cut text GUI feature.

• Added GUI preferences menu item.

• DynInst support has been removed.

• Graphlib 2.0 required.

7

Chapter 3. Changelog

8

Chapter 4. Installing STAT

Dependent Packages
STAT has several dependencies

Table 4-1. STAT Dependent Packages

Package What It Does
Package Web Page

Graphlib Graph creation, merging, and export

https://outreach.scidac.gov/projects/stat/

Launchmon Scalable daemon co-location

http://sourceforge.net/projects/launchmon/

Libdwarf Debug information parsing (Required
by StackWalker)

http://reality.sgiweb.org/davea/dwarf.html

MRNet Scalable multicast and reduction
network

http://www.paradyn.org/mrnet/

StackWalker Lightweight stack trace sampling

http://www.paradyn.org/html/downloads.html

In addition, the STAT GUI requires Python1 with PyGTK2, both of which are com-
monly preinstalled with many Linux operating systems. The Pygments3 Python
module can optionally be installed to allow the STAT GUI to perform syntax high-
lighting of source code.

Installation
First run configure. You will need to use the --with-package options to specify the
install prefix for mrnet, graphlib, launchmon, libdwarf, and stackwalker. These
options will add the necessary includes and library search paths to the compile
options. Refer to configure --help for exact options. You may also wish to specify
the maximum number of communication processes to launch per node with the
option --with-procspernode=number, generally set to the number of cores per
node.

STAT creates wrapper scripts for the stat-cl command line and stat-gui
commands. These wrappers set appropriate paths for the launchmon and
mrnet_commnode executables, based on the the --with-launchmon and
--with-mrnet configure options, thus it is important to specify both of these even
if they share a prefix.

STAT will use StackWalker by default. However, it can use Dyninst instead if you
specify --with-dyninst to the configure script.

STAT will try to build the GUI by default. If you need to modify your PYTHON-
PATH envirnment variable to search for side installed site-packages, you can do
this by specifying STAT_PYTHONPATH=path during configure. This will add
the appropriate directory to the $PYTHONPATH environment variable within
the stat-gui script. To disable the building of the GUI, use the --enable-gui=no
configure option.

On BlueGene systems, also be sure to configure --with-bluegene. This will enable
the BGL macro for BlueGene specific compilation. Similarly, to compile on Cray
XT systems, specify --with-cray-xt.

An example configure line for Cray XT:

9

Chapter 4. Installing STAT

./configure --with-launchmon=/tmp/work/lee218/install \
--with-mrnet=/tmp/work/lee218/install \
--with-graphlib==/tmp/work/lee218/install \
--with-stackwalker=/tmp/work/lee218/install \
--with-libdwarf=/tmp/work/lee218/install \
--prefix=/tmp/work/lee218/install --with-cray-xt \
MPICC=cc MPICXX=CC MPIF77=ftn --enable-shared LD=/usr/bin/ld.x

Next you just need to run:

make
make install

Note that STAT hardcodes the paths to its daemon and filter shared object, assum-
ing that they are in $prefix/bin and $prefix/lib respectively, thus testing should
be done in the install prefix after running "make install" and the installation di-
rectory should not be moved. The path to these components can, however, be
overridden with the --daemon and --filter arguments. Further, the STAT_PREFIX
environment variable can be defined to override the hardcoded paths in STAT.

Notes
1. http://www.python.org/

2. http://www.pygtk.org/

3. http://pygments.org/

10

Chapter 5. Using the stat-cl Command

Description
STAT (the Stack Trace Analysis Tool) is a highly scalable, lightweight tool that
gathers and merges stack traces from all of the processes of a parallel application.
After running the STAT command, STAT will create a STAT_results directory in
your current working directory. This directory will contain a subdirectory, based
on your parallel application’s executable name, with the merged stack traces in
DOT format.

stat-cl Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width

Sets the maximum tree topology fanout to width. Specify nodes to launch
communications processes on with --nodes.

-d, --depth depth

Sets the tree topology depth to depth. This option takes precedence over
the --fanout option. Specify nodes to launch communications processes on
with --nodes.

-u, --usertopology topology

Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
--fanout and --depth options. Specify nodes to launch communications
processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist

Use the specified nodes in nodelist. To be used with --fanout, --depth, or
--usertopology. Example nodes lists: host1; host1,host2; host[1,5-7,9].

-A, --appnodes

Allow tool communication processes to be co-located on nodes running ap-
plication processes.

-p, --procs processes

Sets the maximum number of communication processes to be spawned per
node to processes. This should typically be set to the number of CPUs per
node.

-j, --jobid id

Append id to the output directoory and file prefixes. This is useful for asso-
ciating STAT results with a batch job.

-r, --retries count

Attempt count retries per sample to try to get a complete stack trace.

-R, --retryfreq frequency

Wait frequency milliseconds between sample retries. To be used with the
--retries option.

-P, --withpc

Sample program counter values in addition to function names.

11

Chapter 5. Using the stat-cl Command

-i, --withline

Sample source line number in addition to function names.

-c, --comprehensive

Gather 4 traces: function only; function + line; function + PC; and 3D function
only.

-U, --countrep

only gather count and a single representative

-w, --withthreads

Sample helper threads in addition to the main thread.

-t, --traces count

Gather count traces per process.

-T, --tracefreq frequency

Wait frequency milliseconds between samples. To be used with the
--traces option.

-S, --sampleindividual

Save all individual samples in addition to the 3D trace when using --traces
option.

-C, --create arg_list

Launch the application under STAT’s control. All arguments after -C are used
to launch the app. Namely, arg_list is the command that you would nor-
mally use to launch your application.

-D, --daemon path

Specify the full path path to the STAT daemon executable. Use this only if
you wish to override the default.

-F, --filter path

Specify the full path path to the STAT filter shared object. Use this only if
you wish to override the default.

-s, --sleep time

Sleep for time seconds before attaching and gathering traces. This gives the
application time to get to a hung state.

-l, --log

[FE | BE | ALL]

Enable debug logging of the FE, BE, or ALL.

-L, --logdir log_directory

Dump logging output into log_directory. To be used with the --log op-
tion.

-M, --mrnetprintf

Use MRNet’s printf for STAT debug logging.

12

Chapter 5. Using the stat-cl Command

STAT Usage Example
The most typical usage is to invoke STAT on the job launcher’s PID:

% srun mpi_application arg1 arg2 &
[1] 16482

% ps
PID TTY TIME CMD

16755 pts/0 00:00:00 bash
16842 pts/0 00:00:00 srun
16871 pts/0 00:00:00 ps

% stat-cl 16482

You can also launch your application under STAT’s control with the -C option.
All arguments after -C are used for job launch:

% stat-cl -C srun mpi_application arg1 arg2

With the -a option (or when automatic topology is set as default), STAT will try
to automatically create a scalable topology for large scale jobs. However, if you
wish you may manually specify a topology at larger scales. For example, if you’re
running on 1024 nodes, you may want to try a fanout of sqrt(1024) = 32. You will
need to specify a list of nodes that contains enough processors to accommodate
the ceil(1024/32) = 32 communication processes being launched with the --nodes
option. Be sure that you have login permissions to the specified nodes and that
they contain the mrnet_commnode executable and the STAT_FilterDefinitions.so
library.

% stat-cl --fanout 32 --nodes atlas[1-4] --procs 8 16482

Upon successful completion, STAT will write its output to a STAT_results direc-
tory within the current working directory. Each run creates a subdirectory named
after the application with a unique integer ID. STAT’s output indicates the direc-
tory created with a message such as:

Results written to /home/user/bin/STAT_results/mpi_application.6

Within that directory will be one or more files with a .dot extension. These .dot
files can be viewed with stat-view.

13

Chapter 5. Using the stat-cl Command

14

Chapter 6. Using the stat-view GUI

Description
stat-view (Figure 6-1) is a GUI for viewing STAT outputted DOT files. stat-view
provides easy navigation of the call prefix tree and also allows manipulation of
the call tree to help focus on areas of interest. Each node in the STAT call prefix
tree represents a function call and the directed edges denote the calling sequence.
Further, the edges are labeled by the set of tasks that have taken that call path.
For simplification, stat-view will display the number of tasks in the set and trun-
cate long task lists in the main display with "..." notation. Similarly, long function
names will be truncated with "..." notation. Nodes are colored based on the set of
tasks of the incoming edge, providing a visual distinction when different tasks
take different branches.

Figure 6-1. A screenshot of the stat-view GUI.

The stat-view Node Menu
By left clicking on a node in the call prefix tree you will get a window displaying
the full list of tasks and the full frame label (Figure 6-2). This window also con-
tains buttons that allow for the manipulation of the graph from that node. Right
clicking on a node provides a pop-up menu with the same options. Note all of
these operations are performed on the current visible state of the call prefix tree.

Figure 6-2. The node pop-up window

The node operations are defined as follows:

15

Chapter 6. Using the stat-view GUI

Join Equivalence Class

collapses all of the descendent nodes with the same equivalence class into
the current node and renders in a new tab.

Collapse

hide all of the descendents of the selected node.

Collapse Depth

collapse the entire tree to the depth of the selected node.

Hide

the same as Collapse, but also hides the selected node.

Expand

show (unhide) the immediate children of the selected node.

Expand All

show (unhide) all descendents of the selected node.

Focus

hide all nodes that are neither ancestors nor descendents of the selected
node. (Note: This will not unhide any hidden ancestors.)

View Source

creates a popup window (Figure 6-3) displaying the source file (only for stack
traces with line number information). This may require the source file’s path
to be added to the search path, through File -> Add Search Paths.

Temporally Order Children

(prototype only) determine the temporal order of the node’s children (only
for stack traces with line number information). Requires the source file’s path
and all include paths to be added to the search path, through File -> Add
Search Paths.

OK

closes the pop-up window.

Figure 6-3. The source view window. The colored arrows correspond to the
nodes in the call prefix tree.

16

Chapter 6. Using the stat-view GUI

The stat-view Toolbar
The main window also has several tree manipulation options (Figure 6-4). Note
the initial click of a traversal operation operates on the original call prefix tree,
while the remaining operations are performed on the current visible state of the
call prefix tree.

Figure 6-4. The stat-view tree manipulation toolbar.

The toolbar operations are defined as follows:

Open

Open a STAT generated .dot file

Save As

Save the current graph in .dot format, which can be displayed by stat-view
or in an image format, such as PNG or PDF, which can be viewed on any
computer with an image viewer

Undo

Undo the previous operation

Redo

Redo the undone operation

Reset

Revert to the original graph

Layout

Reset the layout of the current graph and open in a new tab. This is useful
for compacting wide trees after performing some pruning operations.

[Cut] MPI

Collapse the MPI implementation frames below the MPI function call.

[Cut] Text

Collapse the frames below the specified text, which can be entered as a reg-
ular expression.

Join

Join consecutive nodes of the same equivalence class into a single node and
render in a new tab. This is useful for condensing long call sequences.

[Traverse] Eq C

Traverse the prefix tree by expanding the leaves to the next equivalence class
set. The first click will display the top-level equivalence class.

[Traverse Longest] Path

Traversal focus on the next longest call path(s). The first click will focus on
the longest path.

[Traverse Shortest] Path

Traversal focus on the next shortest call path(s). The first click will focus on
the shortest path.

17

Chapter 6. Using the stat-view GUI

[Traverse Least] Tasks

Traversal focus on the path(s) with the next least visiting tasks. The first click
will focus on the path with the least visiting tasks.

[Traverse Most] Tasks

Traversal focus on the path(s) with the next most visiting tasks. The first click
will focus on the path with the most visiting tasks.

[Traverse Least] TO

Temporal Order traversal focus on the path(s) that have made the least exe-
cution progress in the application. The first click will focus on the path that
has made the least progress.

[Traverse Most] TO

Temporal Order traversal focus on the path(s) that have made the most exe-
cution progress in the application. The first click will focus on the path that
has made the most progress.

Search

Search for call paths containing specified text, taken by specified tasks, or
from specified hosts. Search text may be a regular expression, using the syn-
tax described in http://docs.python.org/library/re.html.

[Identify] Eq C

Identify the equivalence classes of the visible graph. After clicking on this
button, a window will pop up showing the complete list of equivalence
classes.

18

Chapter 7. Using the stat-gui GUI

Description
STAT includes a graphical user interface (GUI) to run STAT and to visualize
STAT’s outputted call prefix trees (Figure 7-1). This GUI provides a variety of
operations to help focus on particular call paths and tasks of interest. It can also
be used to identify the various equivalence classes and includes an interface to
attach a heavyweight debugger to the representative subset of tasks.

Figure 7-1. A screenshot of the STAT GUI

The stat-gui GUI Toolbar
In addition to the operations provided by stat-view, stat-gui provides a toolbar
(Figure 7-2) to control STAT’s operation.

19

Chapter 7. Using the stat-gui GUI

Figure 7-2. The STAT GUI toolbar.

Attach

Attach to your parallel application and gather an initial sample.

ReAttach

Reattach to the previous parallel application and gather an initial sample.

Detach

Detach from your parallel application.

Pause

Put the application in a stopped state.

Resume

Set the application running.

Sample

Gather and merge a single stack trace from each task in your parallel appli-
cation. The application is left in a stopped state upon sampling.

Sample Multiple

Gather and merge multiple stack traces from each task in your parallel ap-
plication over time. The application is left in a stopped state upon sampling.

Sample Options
STAT has several options for stack trace sampling (Figure 7-3).

20

Chapter 7. Using the stat-gui GUI

Figure 7-3. The stat-gui operation toolbar.

These options are defined as follows:

With Threads

Sample helper threads in addition to the main thread.

function only | function and pc | function and line

Sample traces with function name only, or function name with the CPU pro-
gram counter, or function name with the source file and line number.

full list | count and representative

Sample traces with the full task list or just the count and a single representa-
tive.

Run Time Before Sample

Resume the application and let it run for the specified amount of time before
gathering the sample

Retries/Retry Frequency (Advanced)

Sometimes a process may be in a state (i.e., function prologue or epilogue)
such that a complete stack trace may not be obtainable. This option controls
how many times to retry sampling and how often to wait between retries to
try and get a complete trace.

Traces/Trace Frequency

When sampling multiple traces over time, these options specify how many
traces to gather per process and how long to wait between samples.

Gather Individual Samples

When sampling multiple traces over time, this option enables STAT to gather
all of the intermediate 2D prefix trees in addition to the fully merged 3D
prefix tree.

Clear On Sample

When sampling multiple traces over time, STAT accumulates the traces that
are gathered. This option determines whether to clear the accumulated traces
when gathering additional traces.

21

Chapter 7. Using the stat-gui GUI

Equivalence Classes and Subset Debugging
stat-gui can also serve as an interface to attach a full-featured debugger such as
TotalView or DDT to a subset of application tasks. This interface can be accessed
through the "identify equivalence classes" Eq C button, which will pop up the
equivalence classes window (Figure 7-4). You can then select a single represen-
tative, all, or none of an equivalence classes’ tasks to form a subset of tasks. The
Attach to Subset buttons will launch the specified debugger and attach to the
subset of tasks (note, this detaches STAT from the application). The Debugger
Options button allows you to modify the debugger path.

Figure 7-4. The equivalence classes window. The colored task lists correspond
to the nodes in the prefix tree.

Availability
The STAT GUI is available on all Peloton and TLCC systems (i.e., Opteron x86_64
machines) and BlueGene systems in /usr/local/bin/stat-gui. Man pages are also
available (man stat-gui).

22

Chapter 8. Setting STAT Preferences and Options

Preference Files
Several files can influence how STAT runs. The first such file is
$prefix/etc/STAT/nodes.txt, which specifies a list of hostnames, one hostname
per line, on which to launch MRNet communication processes. This file is
designed to be shared by all users and should point to shared resources that all
users have remote shell access to, such as login nodes. Note that (except on Cray
XT) STAT will test access to a node before trying to launch communication
processes, so it is OK to list nodes that may be down or unaccessible. Also note
that nodes.txt will not be used if the -A or "Share App Nodes" option is enabled.

STAT GUI preferences can be set with an installation specific STAT.conf or
user specific .STATrc file. The installation specific file should be placed in
$prefix/etc/STAT/STAT.conf, while the user specific file should be placed in
$HOME/.STATrc. Options specified in the user’s .STATrc file will always take
precedence over the STAT installation’s .STATrc file. Each preference file
specifies one option per line of the format:

Option = Value

Here is a list of options:

Remote Host = hostname

Sets the default remote host to hostname to search for the job launcher pro-
cess.

Remote Host Shell = rsh|ssh

Sets the default remote host shell to rsh or ssh to get a process listing on
remote hosts.

Job Launcher = regex

Sets the default regular expression to regex (i.e., "mpirun|srun") for filtering
the process listing for the job launcher process.

Tool Daemon Path = path

Use the STAT deamon executable installed in path instead of the default.

Filter Path = path

Use the STAT filter shared object installed in path instead of the default.

Communication Nodes = nodelist

Use the nodes listed in nodelist for MRNet communication processes.

Share App Nodes = true|false

Controls whether to allow communication processes to be co-located on
nodes running application processes. Not supported on BlueGene systems.

Communication Processes per Node = count

Launch no more than count MRNet communication processes per node.

Num Traces = count

Gather count stack trace when sampling multiple.

Trace Frequency (ms) = count

Let the process run count milliseconds between multiple samples.

Num Retries = count

Attempt count retries to try to obtain a complete stack trace.

23

Chapter 8. Setting STAT Preferences and Options

Retry Frequency (ms) = count

Let the process run count milliseconds between retries.

With Threads = true|false

Controls whether to gather stack traces from threads.

Sample Type = function only|function and pc|function and line

Controls the granularity of the nodes in the gathered stack traces.

Edge Type = full list|count and representative

Controls the granularity of the edges in the gathered stack traces.

DDT Path = path

Use the DDT executable installed in path for subset debugging.

DDT LaunchMON Prefix = path

Use the LaunchMON installation in path for improved DDT subset attach-
ing, otherwise attach via hostname:PID pairs.

TotalView Path = path

Use the TotalView executable installed in path for subset debugging.

Log Dir = directory

Write STAT debug logs to directory.

Log Frontend = true|false

Controls whether to enable debug logging of the STAT frontend.

Log Backend = true|false

Controls whether to enable debug logging of the STAT backend.

Loading and Saving Preferences
Options from a STAT session can be saved to a preferences file that can be loaded
on subsequent sessions. This can be accessed through the File -> Load Prefer-
ences and File -> Save Preferences menu items.

Environment Variables
Several environment variables influence STAT and its dependent packages. Note
that dependent package environment variables are prefixed with "STAT_" to
avoid conflict with other tools using that package. The STAT process will then
set the appropriate (i.e., without "STAT_") environment variable to pass the
value to the dependent package.

STAT_PREFIX=directory

Use directory as the installation prefix instead of the compile-time
STAT_PREFIX macro when looking for STAT components and configuration
files.

STAT_CONNECTION_TIMEOUT=time

Wait time seconds for daemons to connect to MRNet. Upon timeout, run
with the available subset.

24

Chapter 8. Setting STAT Preferences and Options

STAT_DAEMON_PATH=path

Use the STAT daemon executable path instead of the default. path must be
set to the full path of the STATD executable.

STAT_FILTER_PATH=path

Use the STAT filter shared object path instead of the default. path must be
set to the full path of the STAT_FilterDefinitions.so shared object file.

STAT_MRNET_OUTPUT_LEVEL=level

Enable MRNet debug logging at level (0-5).

STAT_MRNET_PORT_BASE=port

Set the MRNet base port number to port.

STAT_MRNET_STARTUP_TIMEOUT=seconds

Set the MRNet connection timeout to seconds.

STAT_MRNET_DEBUG_LOG_DIRECTORY=directory

Write MRNet debug log files to directory.

STAT_OUTPUT_REDIRECT_DIR=directory

Redirect stdout and stderr to a set of hostname specific files in directory.

STAT_SW_DEBUG_LOG_DIR=directory

Enable StackWalker debug logging to a set of hostname specific files in
directory.

STAT_MRN_COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full
path of the mrnet_commnode executable. (Deprecated along with MRNet’s
MRN_COMM_PATH)

STAT_MRNET_COMM_PATH=path

Use the mrnet_commnode executable path. path must be set to the full path
of the mrnet_commnode executable.

STAT_XPLAT_RSH=path

Use the remote shell path for launching mrnet_commnode processes.

STAT_PROCS_PER_NODE=count

Allow up to count communication processes to be launched per node.

STAT_LMON_LAUNCHMON_ENGINE_PATH=path

Use the launchmon executable path. path must be set to the full path of the
launchmon executable.

STAT_LMON_REMOTE_LOGIN=command

Use the remote shell command for LaunchMON remote debugging.

STAT_LMON_DEBUG_BES=value

Launch the backends under a debugger’s control if value is set (must be
enabled in LaunchMON configuration).

25

Chapter 8. Setting STAT Preferences and Options

26

Chapter 9. Tips and Tricks Using STAT

Using STAT with IO Watchdog and SLURM
STAT can be used in conjunction with the IO Watchdog1 utility, which monitors
application output to detect hangs. To enable STAT with the IO Watchdog, add
the following to the file $HOME/.io-watchdogrc

search /usr/local/tools/io-watchdog/actions
timeout = 20m
actions = STAT, kill

You will then need to run your application with the --io-watchdog srun option:

% srun --io-watchdog mpi_application

When STAT is invoked, it will create a STAT_results directory in the current work-
ing directory, as it would in a typical STAT run. The outputted .dot files can then
be viewed with STATview. For more details about using IO Watchdog, refer to
the IO Watchdog README file in /usr/local/tools/io-watchdog/README.

Running STAT in a Batch Script
A good way to run STAT is at the end of a batch script. For example, if an applica-
tion is estimated to take 10 hours to run and 12 hours are allocated, then you may
consider your application hung if it is still running up to the 12th hour. In such a
situation, one may choose to run STAT in the last 10 minutes of the allocation to
get diagnostic information about the job.

The following example script demonstrates how one might setup STAT to catch
a hung job in a batch script.

#!/bin/sh

perform your batch script prologue/setup here

stat_wait_time_minutes=120
application_exited=0

#run the application and get the launcher PID
srun mpi_ringtopo &
pid=$!

periodically check for application exit
for i in ‘seq ${stat_wait_time_minutes}‘
do

sleep 60
ps -p ${pid}
if test $? -eq 1
then

the application exited, so we’re done!
application_exited=1
break

fi
done

if the application is still running then invoke STAT
if test ${application_exited} -eq 0
then

/usr/local/bin/stat-cl -c ${pid}
waitpid ${pid} # alternatively you may want to ‘kill -TERM ${pid}‘

fi

27

Chapter 9. Tips and Tricks Using STAT

perform your batch script epilogue/cleanup here

Within the for loop, the script will check every minute (sleep for 60 seconds be-
tween checks) to see if the application is still running by running ‘ps‘ on the PID
of the job launcher. If the application has exited, the script will break from the
loop and perform any remaining operations in the batch script. If the wait time,
120 minutes in this example, expires then STAT will be run to gather stack traces
from the application. The wait time should be set such that STAT has enough time
to run (i.e., 10 minutes to be safe) within the batch script’s allocated time. Note
the -c option to STAT gathers a "comprehensive" set of stack traces, with varying
levels of detail. After STAT completes, the script then waits for the application
to exit. Alternatively, you may want to kill the application if it isn’t making any
progress.

Notes
1. http://code.google.com/p/io-watchdog/

28

Chapter 10. Using the stat-bench Emulator

Description
The Stack Trace Analysis Tool is a highly scalable, lightweight tool that gathers
and merges stack traces from all of the processes of a parallel application. stat-
bench is a benchmark that can emulate STAT’s performance. By utilizing your en-
tire parallel allocation (launching one stat-bench daemon emulator per core) and
generating artificial stack traces, stat-bench is able model STAT’s performance us-
ing less resources than an actual STAT run requires. With various options, you can
also map stat-bench to your target machine architecture and target application.
After completion, stat-bench will create a STAT_results directory in your current
working directory. This directory will contain a subdirectory for the current run,
with the merged stack traces in DOT format as well as a performance results text
file. An example stat-bench generated prefix tree emulating 1M (1024*1024) tasks
can be seen in Figure 10-1.

Figure 10-1. A stat-bench generated prefix tree emulating over 1 million tasks.

stat-bench Options

-a, --autotopo

let STAT automatically create topology.

-f, --fanout width

Sets the maximum tree topology fanout to width. Specify nodes to launch
communications processes on with --nodes.

-d, --depth depth

Sets the tree topology depth to depth. This option takes precedence over
the --fanout option. Specify nodes to launch communications processes on

29

Chapter 10. Using the stat-bench Emulator

with --nodes.

-u, --usertopology topology

Specify the number of communication nodes per layer in the tree topology,
separated by dashes, with topology. This option takes precedence over the
--fanout and --depth options. Specify nodes to launch communications
processes on with --nodes. Example topologies: 4, 4-16, 5-20-75.

-n, --nodes nodelist

Use the specified nodes in nodelist. To be used with --fanout, --depth, or
--usertopology options. Example nodes lists: host1; host1,host2; host[1,5-
7,9].

-A, --appnodes

Allow tool communication processes to be co-located on nodes running ap-
plication processes.

-p, --procs processes

Sets the maximum number of communication processes to be spawned per
node to processes. This should typically be set to the number of CPUs per
node.

-D, --daemon path

Specify the full path path to the STATBenchD daemon executable. Use this
only if you wish to override the default.

-F, --filter path

Specify the full path path to the stat-bench filter shared object. Use this only
if you wish to override the default.

-t, --traces count

Gather count traces per process.

-i, --iters count

Perform count gathers.

-n, --numtasks count

Emulate count tasks per daemon.

-m, --maxdepth depth

Generate traces with a maximum depth of depth.

-b, --branch width

Generate traces with a max branching factor of width.

-e, --eqclasses count

Generate traces within count equivalence classes.

-U, --countrep

only gather count and a single representative

-l, --log

[FE | BE | ALL]

Enable debug logging of the FE, BE, or ALL.

30

Chapter 10. Using the stat-bench Emulator

-L, --logdir log_directory

Dump logging output into log_directory. To be used with the --log op-
tion.

-M, --mrnetprintf

Use MRNet’s printf for STAT debug logging.

stat-bench Usage Example
In the simplest form, you can invoke stat-bench, from within a parallel allocation,
with no arguments. This will run through with the default settings:

% stat-bench

To model your target machine architecture, you can specify the number of tasks
to emulate per daemon. For instance if your target machine has 16-way SMP
compute nodes:

% stat-bench --numtasks 16

You may also want to model a specific application. For instance, you may have a
climate modeling code with 5 distinct task behaviors, or equivalence classes. You
can also specify the maximum call depth of your application, the average branch-
ing factor from a given function, and the number of distinct traces expected per
task:

% stat-bench --eqclasses 5 --maxdepth 17 --branch 5 --traces 4

At larger scales, you may want to employ a more scalable tree topology. For ex-
ample, if you’re running 1024 daemon emulators, you may want to try a fanout of
sqrt(1024) = 32. You will need to specify a list of nodes that contains enough pro-
cessors to accommodate the ceil(1024/32) = 32 communication processes being
launched. Be sure that you have login permissions to the specified nodes and that
they contain the mrnet_commnode executable and the STAT_FilterDefinitions.so
library:

% stat-bench --fanout 32 --nodes atlas[1-4] --procs 8

31

Chapter 10. Using the stat-bench Emulator

32

Chapter 11. Troubleshooting Guide

Troubleshooting

stack walks not making it to _start

Processes can be in portions of code from which a debugger cannot walk the
stack (i.e., function prologue or epilogue). Try the -r option to enable STAT to let
the process run a bit and then retry the stack sample.

stack walks with line number information returning ??

Stack traces with line number information requires your code to be compiled with
debug information (i.e., with the -g flag).

/usr/lib/python2.6/site-packages/gtk-2.0/gtk/__init__.py :72: GtkWarning:
could not open display

Be sure to enable X-forwarding and to set your $DISPLAY environment variable.

STATview requires gtk

STAT requires the pygtk module to be installed. If it is side-installed, but sure to
set your $PYTHONPATH environment variable to the directory containing the
pygtk module.

ImportError: No module named STAT

Make sure to run ‘make install‘ to install STAT.py in the lib/python[version]/site-
packages directory or set your $PYTHONPATH environment variable to the di-
rectory containing STAT.py

(ERROR): LaunchMON Engine invocation failed, exiting: No such file or
directory

Make sure the launchmon executable is in your $PATH or set the
$STAT_LMON_LAUNCHMON_ENGINE_PATH engine path to the full path to
the executable.

OptionParsing (ERROR): unknown launcher: a.out

You need to attach to your mpirun or equivalent parallel job launch process.

OptionParsing (ERROR): the path[/usr/local/bin/STATD] does not exit.

STAT looks for its components in the configured $prefix. Be sure to run ‘make
install‘ or set STAT_DAEMON_PATH to the full path to the STATD executable.

LaunchMON prints a usage message.

This is typically a mismatch in versions of the LaunchMON
API and the LaunchMON engine. Make sure to set your
$STAT_LMON_LAUNCHMON_ENGINE_PATH enviornment variable to the
full path to the appropriate launchmon executable.

(ERROR): accepting a connection with an engine timed out

STAT may need additional time to launch all of its daemons. You may need to set
your $LMON_FE_ENGINE_TIMEOUT to a larger value, such as 600.

33

Chapter 11. Troubleshooting Guide

34

Bibliography

Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit,
Barton P. Miller, and Martin Schulz, “Scalable Temporal Order Analysis for
Large Scale Debugging,” Supercomputing 2009, Portland, Oregon, Novem-
ber 2009.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Matthew
Legendre, Barton P. Miller, Martin Schulz, and Ben Liblit, “Lessons Learned
at 208K: Towards Debugging Millions of Cores,” Supercomputing 2008,
Austin, Texas, November 2008.

Dong H. Ahn, Dorian C. Arnold, Bronis R. de Supinski, Gregory L. Lee, Bar-
ton P. Miller, and Martin Schulz, “Overcoming Scalability Challenges for
Tool Daemon Launching,” 37th Internation Conference on Parallel Processing
(ICPP-08), Portland, Oregon, September, 2008.

Gregory L. Lee, Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Barton P.
Miller, and Martin Schulz, “Benchmarking the Stack Trace Analysis Tool for
BlueGene/L,” International Conference on Parallel Computing (Parco) 2007,
Aachen and Julich, Germany, September 2007.

Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Bar-
ton P. Miller, and Martin Schulz, “Stack Trace Analysis for Large Scale Ap-
plications,” International Parallel & Distributed Processing Symposium, Long
Beach, California, March 2007.

Notes
1. ftp://ftp.cs.wisc.edu/paradyn/papers/Miller09ScalableDebugging.pdf

2. ftp://ftp.cs.wisc.edu/paradyn/papers/Lee08ScalingSTAT.pdf

3. ftp://ftp.cs.wisc.edu/paradyn/papers/Ahn08LaunchMON.pdf

4. ftp://ftp.cs.wisc.edu/paradyn/papers/Lee07STATBench.pdf

5. ftp://ftp.cs.wisc.edu/paradyn/papers/Arnold06STAT.pdf

35

36

	STAT: the Stack Trace Analysis Tool
	Table of Contents
	Disclaimer
	Auspice
	License

	Chapter 1. Introduction
	Chapter 2. Overview
	Chapter 3. Changelog
	STAT version 2.0

	Chapter 4. Installing STAT
	Dependent Packages
	Installation

	Chapter 5. Using the statcl Command
	Description
	statcl Options
	STAT Usage Example

	Chapter 6. Using the statview GUI
	Description
	The statview Node Menu
	The statview Toolbar

	Chapter 7. Using the statgui GUI
	Description
	The statgui GUI Toolbar
	Sample Options
	Equivalence Classes and Subset Debugging
	Availability

	Chapter 8. Setting STAT Preferences and Options
	Preference Files
	Loading and Saving Preferences
	Environment Variables

	Chapter 9. Tips and Tricks Using STAT
	Using STAT with IO Watchdog and SLURM
	Running STAT in a Batch Script

	Chapter 10. Using the statbench Emulator
	Description
	statbench Options
	statbench Usage Example

	Chapter 11. Troubleshooting Guide
	Troubleshooting

	Bibliography

