

LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

LLNL-MI-401783

Requesting Nodes, Processors,
and Tasks in Moab

D.A Lipari

March 29, 2012

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Introduction

This document explains the differences between requesting nodes, tasks, and processors for jobs
running on LC Linux clusters. The discussion does not pertain to jobs running on any of the
BlueGene clusters. For running jobs on BlueGene, see Running Jobs on BlueGene for a similar
discussion.

In the discussion below, the terms “nodes,” “processors,” and “tasks” have special meaning for
Moab. Nodes refer to the collection of processing resources associated with one IP address. On
each node is a collection of sockets, with each socket containing one or more cores. For certain
architectures, each core can run one or multiple hardware threads. The term processor refers to
one core, whether or not that core runs multiple threads. A task is an execution of a user’s code,
whether or not that code spawns multiple threads. Typically, the SLURM resource manager will
launch one or many tasks across one or multiple nodes.

Note that these definitions are slightly different from SLURM’s definition. The following
discussion pertains to submitting jobs to Moab using msub. A brief comparison of Moab and
SLURM is included at the end of this document.

Submitting Jobs to Moab

Moab has always offered the option for a job to request a specific number of nodes (i.e., msub
-l nodes=<n>) on LC parallel clusters. LC policy on parallel clusters is to allocate entire
nodes to jobs for their exclusive use, i.e., only one job can be running on any node at any time.

In contrast, LC policy constrains jobs running on its capacity clusters (Aztec and Inca) to just
one node. Jobs submitted to those machines instead request tasks (i.e., msub -l ttc=<t>),
and Moab allocates one processor per task requested. (ttc stands for total task count.) Hence,
Moab could schedule 12 one-task jobs per Aztec or Inca node, or one 12-task job, or anywhere in
between. As such, Aztec and Inca are the only machines that allow multiple jobs to run on one
node.

LC’s various parallel clusters have differing numbers of processors per node. Users can submit
jobs to a grid of Linux clusters and specify multiple clusters as potential targets. For example:

msub -l partition=clusterA:clusterB:clusterC

Moab will place the job in a queue and run the job on the first available cluster from the list of
candidates.

Past Problem Now Solved

Some parallel jobs launch a specific number of tasks (assuming a one task to one processor
relationship for this example), and the number of nodes needed to provide those processors is
irrelevant. Hence, users would like to submit jobs to Moab using the following command form

msub -l procs=<p>

and have Moab decide whether to allocate X nodes of cluster A or Y nodes of cluster B to
provide those processors. Moab v5.3 was unable to provide this flexibility.

Moab v6.1 offers the msub -l procs=<p> option without the need to specify a node count.
If one cluster has 8-processor nodes and a second cluster has 16-processor nodes, Moab will
allocate more or less nodes for the job depending on which cluster was selected to run the job.

2

Recommendations

The following tables provide a summary of how to allocate nodes and processors using Moab’s
msub command. The first table provides the simplest command forms, with “Yes” or “No”
indicating whether that form is appropriate for a specific cluster. The second table displays
accepted (but unnecessarily complicated) command forms.

Recommended Command Forms Parallel Clusters Aztec/Inca
msub -l ttc=<t> No Yes
msub -l nodes=<n> Yes No
msub -l procs=<p> Yes Yes

Accepted Command Forms Parallel Clusters Aztec/Inca
msub -l nodes=1,procs=<p> same as

msub -l procs=<p>
same as
msub -l ttc=<p>

msub -l nodes=<n>,procs=<p>
where n > 1

same as
msub -l procs=<p> Invalid

msub -l nodes=1,ttc=<t> same as
msub -l nodes=1

same as
msub -l ttc=<t>

msub -l nodes=<n>,ttc=<t>
where n > 1

same as
msub -l nodes=<n> Invalid

Moab and SLURM

Moab’s msub command requests a node/processor resource allocation. After scheduling the
resources, Moab dispatches the job request to SLURM, which runs the job across those allocated
resources.

There is a strict relationship between the resources Moab allocates and SLURM’s launching of
the user’s executables across those resources. SLURM’s srun command is used to launch the
job’s tasks. The srun command offers a set of node/task options that mirror those of msub
described above.

There are obvious constraints. For example, a job cannot request a one-node allocation from
Moab and then use srun to launch tasks across multiple nodes. The table below provides some
valid and invalid examples of the required consistencies between msub and srun options on the
Aztec and Inca clusters.

#MSUB -l ttc=8
srun -n8 a.out

Correct. Uses 8 processes on 8 processors.

#MSUB -l ttc=4
srun -n8 a.out

Incorrect. Uses 8 processes on only 4 processors.

#MSUB -l ttc=4
srun -n8 -O a.out

This command will work because the -O option permits SLURM to
oversubscribe a node’s processors. However, using more tasks than
processors is not recommended and can degrade performance.

#MSUB -l ttc=64
srun -n64 a.out

Incorrect if 64 is more than the number of physical processors on a
node.

(no specification for -l ttc)
srun -n2 a.out

Incorrect. The #MSUB -l ttc= option isn’t specified, so the default of 1
is less than required by the -n2 tasks specified with srun.

#MSUB -l ttc=8
srun -n2 a.out

This is OK and might be used if each of 2 tasks spawns 4 threads.

3

Further Reading

After Moab allocates the node/processor resources to the job, you can use srun to alter the
default one-to-one relationship between tasks and processors. Information on the following
options is available in the srun man page.

srun --cpus-per-task
srun --ntasks-per-node

