
LLNL-MI-402630

CHAOS Porting Guide

July 2008

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

CHAOS Porting Guide

Introduction
The intent of this guide is to ease the transition from CHAOS 3 to CHAOS 4. It covers many of
the issues and questions brought up by those who ported their codes to CHAOS 4 during its
initial implementation.

CHAOS 4 enables the rollout of many Lustre and system management enhancements that should
make Lustre and the clusters more stable and easier to upgrade and allow Livermore Computing
(LC) to more easily track security enhancements as they are released. Most of the enhancements,
while benefiting everyone, are fairly invisible to the users. The enhancements and changes that
are apparent to the users are a new /usr/local organization, newer versions of most software, the
move of the X11 libraries to /usr/lib64, and an older default Python version (2.4.3). CHAOS 4 is
based on Red Hat Enterprise Linux 5. Information specific to both Yana and Hopi is also
included in this updated edition of the porting guide.

Rebuilding Required for CHAOS 4
Most CHAOS 3 executables will not work on CHAOS 4, and it is also likely that Makefiles and
build systems will have to be tweaked slightly. We strongly recommend rebuilding everything
under CHAOS 4 to ensure compatibility. CHAOS 4 brings two new SYS_TYPEs—
chaos_4_x86_64_ib and chaos_4_x86_64—to help you manage your executables.

The method by which /usr/local, /usr/local/tools, /usr/local/bin, and dotkits are being managed
and organized has changed significantly for CHAOS 4. There will now be a separate /usr/local
for each cluster, thus allowing LC to roll out /usr/local changes a cluster at a time rather than
affecting all clusters at once. In order to manage this effectively, we are packaging most of the
software in /usr/local, which has resulted in a complete reorganization of /usr/local and thus may
require path tweaks in your Makefiles and build systems for libraries and compiler executables.
Hints on how to tweak your Makefiles in response to these changes are this guide’s primary
purpose.

Compiler Changes
The default version of the various compilers advances with the release of CHAOS 4:

Compiler Path Default Version Previous Version
GNU gcc/g++/gfortran 4.1.2 3.4.4
Intel icc/icpc/ifort 9.1.052 9.1.033
PGI pgcc/pgCC/pgf77/pgf90/pgf95/pghpf 7.0.6 6.23
Pathscale pathcc/pathCC/pathf90 3.1 2.9.99

1

The default version of the compilers (and other software) can be determined by running the
command dpkg-defaults. In the output, the version with the * (asterisk) in front of it
indicates the current default version.

All compiler versions supported are now installed in /usr/local/bin with an embedded version in
their name (i.e., /usr/local/bin/mpiicc-10.1.011). By using a named compiler version, you can
prevent dotkits and default version updates from changing the compiler your code is built with.
We have removed /usr/local/tools/compilers under CHAOS 4 because it is no longer necessary.
We have also switched to full version numbers (10.1.011 instead of 10.1) in order to allow us to
install new minor compiler versions without potentially affecting current users.

All compiler versions supported are also now available via dotkits (e.g., use ic-10.1.011).
By using dotkits, you can change the version of the compiler picked up when you invoke just the
compiler name (i.e., mpiicc or icc will invoke icc version 10.1.011 after executing use ic-
10.1.011). To find the versions available for a compiler, we recommend running:

use –l <compiler>

where -l is a lowercase L. That is use -l icc for the installed versions of icc (e.g., ic-
9.1.052, ic-10.0.025, and ic-10.1.011 at the time this was written). The compilers we have
installed are from GNU (gcc/g++/g77/gfortran), Intel (icc/icpc/ifort), PGI
(pgcc/pgCC/pgf77/pgf90/pgf95/pghpf), and Pathscale (pathcc/pathCC/pathf90).

We recommend you use the same compiler on CHAOS 4 as you did on CHAOS 3. If you used
Intel 9.1 on CHAOS 3, we recommend you stay with Intel 9.1 on CHAOS 4 unless you are using
the -zero option, as described in “Known Intel Compiler Issues” below. For the Pathscale,
PGI, and GNU compilers, you may have to go to a newer compiler version (some of the older
versions are not compatible with CHAOS 4).

Known Intel Compiler Issues
For Intel compilers 10.0 and greater (10.0.025 and 10.1.011), it is recommended that the
compiler flag -nolib_inline be added in order to get consistent results with Intel 9.1
compiled code. This compiler flag prevents the inlining of intrinsic functions, which we have
found to cause numeric differences in several codes.

If you need to use the -zero flag with ifort, we recommend using version 10.1.0.11 under
CHAOS 4 rather than the current 9.1 or 10.0 compilers. We have found that the compiler flag
-zero can cause an error of the form “multiple definition of 'var$485'” while linking. We are
working with Intel to resolve this issue.

Known TotalView Issues
TotalView may hang during start-up or rerun of a threaded code, for example, srun. If this
happens, ^C totalview and scancel the job step, then start a new TotalView session.

2

Man Pages for Specific Compiler Versions
In order to get a man page specific to a compiler version (e.g., Intel 10.1.011), you either must
use the package with that compiler in it (i.e., use ic-10.1.011) first before doing the man
commands (e.g., man ifort), or you need to run man on <compiler>-<version> (e.g., man
ifort-10.1.011). Otherwise, you will get the man page for the “default” version of each
compiler, which may have different compiler options than other versions.

Library Location Changes
Most of the user local packages will be located in /usr/local/tools/[package_name]-[version].
This should make it easier to determine what software is installed on a machine and what
versions are available. The utility dlocate can be used to quickly find files in these packages
(e.g., dlocate mkl.so lists the packages and directories that the mkl library is installed in).
Of course, findentry is still available and is very useful for finding libraries and missing
symbols (see “Finding Symbols and Libraries with Findentry”).

Commonly asked about library locations that have changed in CHAOS 4:

Library New Location Old Location
MKL /usr/local/tools/mkl-8.1.1.004/lib, etc. /usr/local/intel/mkl*)
ACML /usr/local/tools/acml-ifort/lib, etc. /usr/local/intel/acml, etc.
MPI /usr/local/tools/mvapich-intel/lib, etc. /usr/lib/mpi
X11 /usr/lib64 /usr/X11R6/lib64

On Linux you often also need to specify a run-time path (rpath) for shared libraries. This can be
done automatically with an LC-specific command -Wl,--auto_rpath added to your link
line. The manual/portable way to specify an rpath is -Wl,-rpath,<libpath> added to the
link line. For example, for the MKL, in addition to adding -L/usr/local/tools/mkl-
8.1.1.004/lib -lmkl -lpthread to the link line, you also need to add
-Wl,-rpath,/usr/local/tools/mkl-8.1.1.004/lib to the link line to tell it
where to find the mkl shared objects at run time (or you can add -Wl,--auto_rpath to have
the linker do this for you).

For more details, see “Verifying Correct RPATHs for Shared Libraries.”

Python Version Changes
The default version of Python on CHAOS 4 is 2.4.3 (it was 2.5 on CHAOS 3). This change is
necessary to avoid breaking Red Hat Python scripts and tools that depend on finding
Python 2.4.3 first in PATH (such as “meld”). Python 2.5 will remain accessible in
/usr/local/bin/python2.5 and also through the /usr/apps/python and /usr/apps/python2.5
directories (as well as the python25 dotkit, use python25).

3

MPI Changes
CHAOS 4 includes a new MPI (099_nodreg) and MPI shared library organization that will allow
the same executable to run on IB cluster machines (i.e., Zeus, Rhea) and standalone nodes (i.e.,
Yana, Hopi), once everything is upgraded to CHAOS 4 and uses Moab.

We strongly recommend using our MPI wrapper script to build your code, but we realize that
some codes do not for various reasons. If you do not use the MPI wrappers scripts but want to
know what we add (which changes with every MPI update), run the MPI wrapper with -show.
For example, /usr/local/bin/mpiicc-9.1.052 -show outputs the compile and link
commands needed by MPI:

Build Line:

icc-9.1.052 -i-dynamic -Wl,-rpath,/usr/local/tools/mvapich-intel/lib/shared
-DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1
-DHAVE_STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1
-I/usr/local/tools/mvapich-intel/include
-L/usr/local/tools/mvapich-intel/lib/shared -L/usr/lib64
-L/usr/local/tools/mvapich-intel/lib -lmpich

Note: If your environment or script sets the environment variable MPICH_ROOT, this will
affect the -show output and the behavior of our MPI compiler wrappers, possibly giving you
unexpected results. We have changed the location of all the MPI libraries and we recommend
unsetting MPICH_ROOT to get the new default location for your MPI libraries.

Porting Hints
The remaining information, while not new to CHAOS 4, is often very useful when porting to a
new OS version.

Finding Symbols and Libraries with Findentry
LC’s findentry is often useful when porting to a new system. To find a library, run
findentry with –l libname:

> findentry -l X11
<snip>
Mar 22 2007 /usr/lib64/libX11.so
also known as: /usr/lib64/libX11.so.6.2.0
also known as: /usr/lib64/libX11.so.6

Note: If you omit the space between -l and libname (a common issue), findentry will not
find anything.

4

To find which libraries have a symbol, put the symbol name (without the -l) on the command
line:

> findentry fast_lock
<snip>
entries found:
/usr/local/tools/icc-10.0.025/lib/libintlc.so.5:__fast_lock
/usr/local/tools/icc-10.0.025/lib/libirc.so:__fast_lock
/usr/local/tools/icc-10.0.025/lib/libirc.a[imalloc.o]:__fast_lock
/usr/local/tools/icc-10.1.011/lib/libirc.a[imalloc.o]:__fast_lock
/usr/local/tools/icc-10.1.011/lib/libintlc.so.5:__fast_lock
/usr/local/tools/icc-10.1.011/lib/libirc.so:__fast_lock

Mixing C and FORTRAN
If you are linking C/C++ and FORTRAN code together and need to explicitly specify the
FORTRAN (or C/C++) libraries on the link line, we recommend compiling a “hello world”
program in that language (i.e., FORTRAN) with -v to see what the compiler links in. For
example:

> ifort-10.1.011 -v hello.f
<snip>
ld /usr/lib/gcc/x86_64-redhat-linux/4.1.2/../../../../lib64/crt1.o
/usr/lib/gcc/x86_64-redhat-linux/4.1.2/../../../../lib64/crti.o
/usr/lib/gcc/x86_64-redhat-linux/4.1.2/crtbegin.o --eh-frame-hdr
-dynamic-linker /lib64/ld-linux-x86-64.so.2 -o a.out
/usr/local/tools/ifort-10.1.011/lib/for_main.o -rpath
/usr/local/tools/ifort-10.1.011/lib /var/tmp/gyllen/ifortWOp937.o
-L/usr/local/tools/ifort-10.1.011/lib
-L/usr/lib/gcc/x86_64-redhat-linux/4.1.2/
-L/usr/lib/gcc/x86_64-redhat-linux/4.1.2/../../../../lib64 -Bstatic -lifport
-lifcore -limf -lsvml -Bdynamic -lm -Bstatic -lipgo -lirc -Bdynamic -lc
-lgcc_s -lgcc -Bstatic -lirc_s -Bdynamic -ldl -lc
/usr/lib/gcc/x86_64-redhat-linux/4.1.2/crtend.o
/usr/lib/gcc/x86_64-redhat-linux/4.1.2/../../../../lib64/crtn.o

From the -v output above, it appears that

-Wl,-rpath,/usr/local/tools/ifort-10.1.011/lib -L/usr/local/tools/ifort-
10.1.011/lib

and

-Bstatic -lifport -lifcore –limf -lsvml -Bdynamic

are a good starting point for linking an Intel 10.1 compiled FORTRAN library to a C/C++
program. The -rpath command is needed to pick the right library at run time, and we need to
add -Wl, and a comma to the command to get it through the compiler (see “Verifying Correct
RPATHs for Shared Libraries” for more details). The -Bstatic ... -Bdynamic options
indicate that the Intel FORTRAN libraries should be linked in statically, and the trailing
-Bdynamic allows the other libraries to be shared libraries.

5

Thus, an Intel 10.1.011 link line with a C++ main and a FORTRAN subroutine would look like:

icpc-10.1.011 -Wl,-rpath,/usr/local/tools/ifort-10.1.011/lib
-L/usr/local/tools/ifort-10.1.011/lib -o mixed_hello c++_main.o
fortran_hello.o -Bstatic -lifport -lifcore -limf -lsvml -Bdynamic

If the above link line generated errors about unresolved externals, one would need to add other
libraries, etc., from the link line shown with -v, like -Bstatic -lipgo -lirc
-Bdynamic and -Bstatic -lirc_s -Bdynamic until those errors were resolved. In this
case, icpc-10.1.011 already added these options (as seen by running icpc-10.1.011
-v hello.cc and looking at the link line).

Verifying Correct RPATHs for Shared Libraries
The common use of shared libraries on Linux provides many benefits, but if the application
developer is not careful, they can also be a source of vexing problems. The most common shared
library problems are: (1) not finding the shared libraries at run time (preventing the application
from running at all), and (2) the much worse case of silently picking up different (and possibly
incompatible) shared libraries at run time. This section recommends ways to ensure that your
application finds and uses the expected shared libraries.

These shared library problems can occur more often on LC systems than on stand-alone Linux
systems because LC often installs many different versions of the same compiler or library in
order to give users the exact version they require. Although Linux provides methods for
differentiating shared library versions, many of these compilers and libraries do not use this
technology. As a result, on LC systems, there can be several shared libraries with exactly the
same name that are actually different from, and possibly incompatible with, each other.

In order to make shared library version errors as visible as possible (i.e., dying at startup versus
just silently getting the wrong library), LC intentionally put no LC-specific paths in the default
search path for shared libraries (e.g., in /etc/ld.so.conf). Our compilers and MPI wrappers have
been modified to automatically include the appropriate rpaths (run-time paths) for those shared
objects the compilers or MPI automatically include. For all other shared libraries that your code
links in that are not in /usr/lib64, you probably need to specify an rpath for them.

Rpaths may be specifed on the link line explicitly with one or more -Wl,-rpath,<path>
arguments or you can use an LC-specific linker option -Wl,--auto_rpath to help with this.
If you specify -Wl,--auto_rpath on your link line, all the -L<path> commands on the
link line will automatically be added to your rpath, which is typically what is needed to access
the proper shared library. It should be noted that the use of -Wl,--auto_rpath will encode
all -L paths into your rpath, which may include paths LC does not control (such as /usr/gapps).
(Note: The -Wl, part of all these commands tells the compiler to pass the commands to the
linker without interpretation, and the “,” after -rpath is replaced with a space.)

6

If your rpaths are not set properly, at run time you may get an error of the form:

 ./mixed_hello: error while loading shared libraries: libifport.so.5:
cannot open shared object file: No such file or directory

Although LD_LIBRARY_PATH can be used to specify where to search for shared objects, we
strongly recommend encoding the paths you need into the executable instead, either by adding
-Wl,--auto_rpath to your link line or by explicitly specifying paths with
-Wl,-rpath,<path>. By encoding the rpaths into the executable, you ensure that the
executable will work as expected regardless of how LD_LIBRARY_PATH is set.

The RPATHs for an existing executable can be queried with

readelf –a <your_exe> | grep RPATH.

For example:

> readelf -a ./mixed_hello | grep RPATH
 0x000000000000000f (RPATH) Library rpath:
[/usr/local/tools/icc-10.1.011/lib:/usr/local/tools/ifort-10.1.011/lib]

The SHARED LIBRARIES requested by an executable (or .so file) can be queried with
readelf -a <your_exe> | grep NEEDED.

For example:

> readelf -a ./mixed_hello | grep NEEDED
 0x0000000000000001 (NEEDED) Shared library: [libm.so.6]
 0x0000000000000001 (NEEDED) Shared library: [libstdc++.so.6]
 0x0000000000000001 (NEEDED) Shared library: [libgcc_s.so.1]
 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
 0x0000000000000001 (NEEDED) Shared library: [libdl.so.2]

The ACTUAL SHARED LIBRARIES used by your executable can be queried with
ldd <your_exe>. This list usually is longer than the one above because shared libraries can
pull in other shared libraries.

For example:

> ldd ./mixed_hello
 libm.so.6 => /lib64/libm.so.6 (0x00002aaaaacc6000)
 libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00002aaaaaf49000)
 libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00002aaaab249000)
 libc.so.6 => /lib64/libc.so.6 (0x00002aaaab458000)
 libdl.so.2 => /lib64/libdl.so.2 (0x00002aaaab7a8000)
 /lib64/ld-linux-x86-64.so.2 (0x00002aaaaaaab000)

If your rpath is not set properly, ldd will print put messages of the form:

7

 > ldd ./mixed_hello2
 libifport.so.5 => not found
 libifcore.so.5 => not found

The ldd output is useful in determining that your application can find all its shared libraries and
that it is picking up the versions you expect.

Yana and Hopi Specifics
On Yana and Hopi, CHAOS 4 combined with Moab brings MPI application binary compatibility
across all the Opteron clusters through the deployment of compatible cluster-specific MPI shared
libraries. This means MPI applications built on Zeus will run on Yana, and conversely, MPI
applications built on Yana will run on Zeus. (Custom MPI link lines may require some tweaking
for MPI compatibility.)

Although mpirun may still be used, srun is now the recommended method for running MPI
applications on Yana and Hopi (thus matching the method used on other Opteron clusters, such
as Zeus and Rhea). In addition, the use of srun allows pdebug nodes to be offered on Yana and
Hopi in order to allow interactive debugging of MPI jobs. Yana will start with one pdebug node
so that LC can evaluate its usefulness to Yana’s users.

New MPI Vendor on Yana and Hopi
With the update to CHAOS 4 on Yana and Hopi, the shared-memory MVAPICH-0.9.9 will
replace MPICH-1.2.7 as the default MPI. This change allows MPI applications built on one of
the CHAOS 4 InfiniBand-enabled Opteron clusters (Zeus, Atlas, Minos, Rhea) and linked to the
default MPI’s shared library to run without modification on Yana and Hopi and vice versa. Users
may no longer, therefore, need a separate application build for Yana/Hopi from Zeus/Rhea/etc.
after the CHAOS 4 upgrade.

If you are rebuilding your MPI application on Yana or Hopi, be aware that rebuilding all code is
required because the MPI header files between the two MPI vendors are not compatible.

Known MPI Compatibility Issues between Serial and InfiniBand Clusters
Using MPI compiler wrappers (such as mpiicc, mpipathcc, etc.) with the default MPI version is
the best way to guarantee compatibility between serial clusters (Yana, Hopi) and Infiniband
clusters (Zeus, Rhea). Cross-cluster compatibility for non-standard MPI versions may be
possible but most likely will not be implemented unless specifically requested via the LC
Hotline.

The most common cause of serial cluster MPI incompatibility is custom MPI link lines that link
either to static MPI libraries or to InfiniBand-specific shared libraries, such as ibverbs or ibumad.
To fix these MPI incompatibilities, make sure the MPI library directory ends with “/lib/shared”
and not “/lib” and that -libverbs and -libumad are not specified. For example, to link to
icc’s shared-library version of MPI, the following link should be used:

-L/usr/local/tools/mvapich-intel/lib/shared -Wl, rpath,/usr/local/
tools/mvapich-intel/lib/shared -lmpich

8

See Section “8c. Using MPI without MPI Wrapper Scripts” in
/usr/local/docs/chaos4_x86_64.basics for more details on this topic.

Use srun Instead of mpirun on Yana and Hopi
Because SLURM is now available, MPI jobs can be launched on Yana and Hopi just as on Zeus
and Atlas. In fact, while mpirun is still available, run is now the recommended method to
launch MPI jobs on Yana and Hopi. With srun, use -n # to specify number of MPI tasks
(instead of -np # with mpirun). For example, to launch mpiBench with two MPI tasks, use:

 srun -n 2 ./mpiBench

In batch scripts, the srun -n # option can be omitted when using all the requested processors
for MPI. For example, if -np 4 is used in a psub script, srun ./mpiBench will run on all
four processors allocated by the batch script.

For interactive debugging of MPI applications using the pdebug pool (i.e., outside of a batch
script), pass -p pdebug to srun. For example, to run a two-processor MPI job (mpiBench) in
the pdebug pool, use:

 srun -p pdebug -n 2 ./mpiBench

Also, TotalView sessions may be launched in the same way as on other clusters in the pdebug
pool:
 totalview srun -a -p pdebug -n 2 ./mpiBench

Currently srun cannot be used to run MPI jobs on the login node, so mpirun must be used in
this case. LC is working to restore the ability to run serial MPI jobs on Yana without mpirun (or
srun) and will release this feature as soon as it is fully implemented (early July 2008).

More details on using srun (and Moab) on Yana and Hopi can be found online in “Using Moab
on LC’s Yana and Hopi Clusters” at https://computing.llnl.gov/jobs/moab/yanahopiMPI.pdf.

Using Dotkits
In CHAOS 4, many software items are packaged using Dotkit. If you do not find the necessary
tool or software version, you may need to use a Dotkit to add it to your path.

To find the appropriate Dotkit, use the use -l command for a list of all Dotkit packages and
use <package name> to use one of the Dotkit packages. The Dotkit will update your
current login session to put the specified tools into your default path.

If you want to add the use of a Dotkit to your login files (i.e., .cshrc, .profile, etc.) it is very
important to use the quiet mode, e.g., use -q, otherwise, it may interfere with the execution of
other commands, such as xemacs and scp. (Outputting text to the screen in your login files in
general will also cause the same problems.)

9

Detailed Dotkit usage information is available at
https://computing.llnl.gov/?set=jobs&page=dotkit and in Section “15. Dotkit on the LC
Systems” in /user/local/docs/chaos4_x86_64.basics.

10

	Introduction
	Rebuilding Required for CHAOS 4
	Compiler Changes
	Known Intel Compiler Issues
	Known TotalView Issues
	Man Pages for Specific Compiler Versions
	Library Location Changes
	Python Version Changes
	MPI Changes
	Porting Hints
	Finding Symbols and Libraries with Findentry
	Mixing C and FORTRAN
	Verifying Correct RPATHs for Shared Libraries

	Yana and Hopi Specifics
	New MPI Vendor on Yana and Hopi
	Known MPI Compatibility Issues between Serial and InfiniBand Clusters
	Use srun Instead of mpirun on Yana and Hopi

	Using Dotkits

