
Apollo: Reusable Models
for Fast, Dynamic Tuning of Input-Dependent Code

David Beckingsale, Olga Pearce, Ignacio Laguna, Todd Gamblin
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94550
Email: {david, olga, ilaguna, tgamblin}@llnl.gov

Abstract—Increasing architectural diversity makes
performance portability extremely important for parallel
simulation codes. Emerging on-node parallelization frameworks
such as Kokkos and RAJA decouple the work done in kernels
from the parallelization mechanism, allowing for a single source
kernel to be tuned for different architectures at compile time.
However, computational demands in production applications
change at runtime, and performance depends both on the
architecture and the input problem, and tuning a kernel for one
set of inputs may not improve its performance on another. The
statically optimized versions need to be chosen dynamically to
obtain the best performance. Existing auto-tuning approaches
can handle slowly evolving applications effectively, but are too
slow to tune highly input-dependent kernels. We developed
Apollo, an auto-tuning extension for RAJA that uses pre-trained,
reusable models to tune input-dependent code at runtime.
Apollo is designed for highly dynamic applications; it generates
sufficiently low-overhead code to tune parameters each time
a kernel runs, making fast decisions. We apply Apollo to two
hydrodynamics benchmarks and to a production multi-physics
code, and show that it can achieve speedups from 1.2x to 4.8x.

I. INTRODUCTION

Performance portability is extremely important for modern
simulation codes. Algorithms must run efficiently on an
increasing number of target architectures, but choosing the
best threading model, block size, scheduling policy, and other
parameters for each architecture is a daunting task. Large codes
contain thousands of independent kernels, and developing and
maintaining multiple versions of each one is infeasible. Portabil-
ity frameworks such as RAJA [1] and Kokkos [2] have emerged
to fill this gap, allowing developers to separate the concerns
of tuning and correctness. Developers write one, single-source,
version of each kernel, and set architectural tuning parameters
at compile time using C++ template parameters.

The performance of modern scientific codes depends not
only on the target architecture, but also on input-dependent
aspects of the code. For example, in an adaptive mesh
refinement (AMR) simulation, a kernel may handle a wide
range of patch sizes. A small patch may not contain enough
computational work to amortize the cost of spawning a parallel
OpenMP region, so we might choose to execute it sequentially.
Moreover, such behaviors evolve over the course of a run.
These dynamic applications require on-line tuning to achieve
the best performance, as tuning parameters may need to be set
based on the state of the code each time the kernel executes.

Auto-tuning is a broad field, and there has been much
existing work on tuning the performance of codes. Extensive
work has been done in the area of compile-time auto-tuning [3],
[4], [5] and run-time adaptation [6], [7], [8], [9], [10]. Existing
approaches typically perform a large, guided search of the
performance parameter space, running many instances of the
kernel to determine the best assignment of tuning parameters.
Despite a host of techniques that prune the search space and
reduce the required number of trials, the fastest searches today
still take minutes to run, meaning existing tuning approaches
work only if the code’s behavior changes slowly.

To cope with this complex tuning problem, we use
machine-learning in an off-line training step to generate
classifiers that can rapidly predict the fastest parameter values
for a kernel at runtime. Using data collected from training runs,
we train a decision tree classifier, and generate light-weight
code for the classifier that can be used on-line to dynamically
select tuning parameters for each kernel. To the best of our
knowledge, this is the first technique to approach tuning at this
granularity with this level of generality and responsiveness.

Our work is implemented in Apollo, an extension of the
RAJA performance-portability library. This paper makes the
following contributions:

1) A novel tuning technique using simple decision tree
classifier models instead of costly search strategies;

2) An interface for collecting arbitrary training features
from kernel executions in multi-physics codes;

3) A method for dynamically selecting statically optimized
code paths at runtime; and

4) Apollo, a production-ready framework that implements
these techniques and has been tested on a real
multi-physics code.

We have used our framework in two proxy applications,
and with several different input problems in a production
multi-physics code, where Apollo achieves speedups from
1.2x to 4.8x.

II. BACKGROUND

To tune applications, we must have a way of both expressing
and selecting the possible values for a given tuning parameter.
In this paper, we focus on tuning applications that use the
RAJA performance portability framework. In the following

sections we describe RAJA, as well as the parameters we tune
and the applications to which we apply this tuning.

A. RAJA Programming Model

Supercomputing architectures are increasingly diverse,
and applications must be adapted to each architecture to
achieve the best performance. Developing and maintaining
multiple implementations of complex scientific applications
with thousands of lines of code is infeasible, so having a
single-source code at the application kernel level is essential.
RAJA allows the applications to maintain a single source
code, while allowing performance portability to different
architectures. RAJA decouples the kernels in the application
from the execution parameters, enabling static tuning of
the policy used to perform the loop iterations. RAJA uses
lightweight syntax and standard C++ features for portability
and ease of integration into existing production applications.

RAJA enforces decoupling of the kernel body from its
execution model (how the iterations are scheduled to hardware)
with C++11 lambda functions. Using a lambda function,
the kernel body and its surrounding scope is captured and
passed to RAJA’s forall execution method. The execution
method allows a single-source kernel body to be dispatched
to multiple programming model backends, determined by
the exec policy. The following listing contains an example
RAJA kernel:

RAJA::forall<exec_policy>(iset, [=](int i) {
sigxx[i] = sigyy[i] = sigzz[i] = - p(i) - q(i);

});

The exec policy is the execution policy, a template parameter
that determines how the kernel execution will be scheduled
onto the hardware. This code is translated to a specific,
specialized version of the generic forall method based on the
template parameter.The iteration pattern and range of indices
can be defined by an IndexSet object, the iset parameter.

Since a template parameter is used to specialize the forall
method for specific execution backends, the code can be both
inlined and optimized by the compiler. Note that the forall
method is also templated on the type of the lambda function.
Since each C++ lambda function has a unique type, a unique
instance of this forall function will be created for every
application kernel, meaning that the compiler can optimize
each code path.

B. Input-Dependent Parameters

In this paper we focus on input-dependent parameters,
where their best value depends on information known only
at application runtime. The most obvious tuning parameter
exposed by RAJA is the execution policy, which determines
whether a kernel is executed sequentially or in parallel using
OpenMP threads. By default, RAJA requires the execution
policy to be selected at compile time, allowing for static
tuning. However, the best execution policy may depend on
dynamic parameters, like the number of iterations required.

We also expose an additional OpenMP parameter that can
be tuned dynamically. OpenMP’s static schedule can take an

integer parameter to control how blocks of loop iterations are
shared between threads. Specifically, the parameter controls
the number of consecutive iterations that get assigned to each
thread. For example, a value of 1 would interleave the iterations
across threads. The default value is N/t where N is the
number of iterations, and t is the number of OpenMP threads.

C. Potential Benefits of Dynamic Tuning

Statically choosing an execution policy for a kernel prevents
us from making the best choice based on run-time adaption
of the code, and the static choice will not be fastest in all
cases. To determine the potential improvement of a fast,
dynamic tuning approach, we examined kernels from several
applications of interest to the U.S. Department of Energy.

a) LULESH: a proxy application that models shock
hydrodynamics developed to aid the Department of Energy’s
co-design effort[11]. LULESH has two main categories of
kernels using RAJA’s forall construct. The first category
iterates over domain elements, with problem size-dependent
iteration counts. The second category iterates over material
regions; these kernels have lower iteration counts dependent
solely on the number of material regions in the problem (the
default case has 11 iterations).

b) CleverLeaf: a shock hydrodynamics proxy application
with Adaptive Mesh Refinement developed at the University
of Warwick and the UK Atomic Weapons Establishment.
CleverLeaf uses the SAMRAI library from Lawrence
Livermore National Laboratory to add an AMR capability to
a parent shock hydrodynamics mini-application [12], working
on dynamically sized patches of data that represent areas
of interest in the physical domain with different levels of
resolution. There are 88 forall kernels in CleverLeaf, the
majority of which are over all the elements of the current
AMR patch. The other kernels in CleverLeaf iterate over the
boundary regions of these patches in strips that are 2 elements
wide in order to apply the physical boundary conditions to
the hydrodynamics problem. The main input-dependence in
CleverLeaf thus comes from the shape and size of the patches.

c) ARES: an arbitrary Lagrangian-Eulerian (ALE)
radiation hydrodynamics code capable of running small serial
applications to large, massively parallel applications[13], [14]
on millions of processors. ARES comprises several million of
lines of code, and it is used primarily in munitions modeling
and inertial confinement fusion applications. ARES also has
an AMR capability, with patches created dynamically as the
simulation evolves. One of the physics packages in ARES
has been ported to use 536 RAJA kernels that iterate over a
number of different aspects of the problem domain. ARES
contains a mixed material capability; however, the number
of material regions is not fixed and can change dynamically
during the course of a simulation as materials mix together.

The kernels in the above applications display significant per-
formance variability and the fastest execution policy can be 1-3
orders of magnitude faster than the slowest (Figure 1). There is
a great potential for performance improvement by dynamically
selecting the best policy each time a kernel executes.

Fig. 1: Runtime variation for different
execution policy choices in LULESH,
CleverLeaf, and ARES.

Kernels

0

500000

1000000

1500000

2000000

T
ot

al
ti

m
e

(µ
s)

Best OpenMP

Fig. 2: Total time spent in the eight most
variable kernels in CleverLeaf using the
dynamic fastest policy selection, compared
to statically choosing OpenMP everywhere.

Simulation
Run

Kernel Feature
Recording

Training Data Machine Learning

C++ Model

Decision Tree Classifier

Fig. 3: Workflow for dynamically tuning
applications with Apollo.

D. Static Optimization and Dynamic Policy Selection

When tuning an application to the hardware, an application
developer might select a single parameter value for the entire
run. However, due to the input-dependence, choosing a single
value will often result in significantly slower runtime when
compared to a dynamic selection of the parameters. Figure 2
shows the potential runtime if we were able to pick the best
execution policy for each unique kernel launch in CleverLeaf,
rather than statically selecting OpenMP.

One way to dynamically select execution policies at runtime
would be to use more generic execution methods. However,
we found that using a general abstract execution function
prevented the C++ compiler from performing some of the static
optimizations it could otherwise perform. We developed a ver-
sion of LULESH where all kernels shared a common OpenMP
execution function meaning that the RAJA forall method is
no longer specialized for every single kernel, and instead only
once. The result of this more general implementation was a
30% slowdown that the template-specialized implementation,
which is not acceptable for our target scientific applications.
We need a framework that allows dynamic policy selection
without limiting static code optimization.

III. APPROACH & IMPLEMENTATION

Apollo is a framework for tuning templated kernel execution
parameters at runtime. Figure 3 shows the Apollo workflow.
First, we run the application to generate training data samples.
The samples are the input to Apollo’s model-generation
framework which trains a per-kernel decision model that can
predict the fastest parameter values for each kernel execution.
These models can be linked into the application dynamically,
without recompilation. We designed Apollo’s decision models
to execute with very low overhead, and we trade the costly
on-line search used by existing auto-tuners for off-line training.

Apollo leverages RAJA’s separation of concerns. Program-
mers continue to write single-source kernels, but they no longer
need to select an optimal execution policy. Apollo selects the
fastest known template variant of the kernel at runtime, and
generates the code to perform the dynamic selection. This
provides the performance of statically optimized kernels and
selects the best kernel version for the input data. The remainder
of this section describes our implementation in detail.

A. Recording Training Data

During a training run, we collect data about each kernel
execution. This information takes the form of a tuple, or,
in machine learning parlance, a feature vector. The vector
serves as the input to our decision model. Each element of
the tuple is the value of a particular feature of the kernel. For
each feature vector, we also record the kernel’s runtime. The
features we collect are designed to characterize each kernel, as
well as to capture application-specific information that might
affect kernel performance. We collect the following distinct
categories of information about the kernel invocation:

1) Kernel features, collected from parameters passed to the
RAJA forall method;

2) Instruction features, gathered from the lambda function
that corresponds to the kernel body;

3) Measurements of the kernel runtime;
4) Application features, optionally specified by the

application developer.

The kernel features describe the type of the kernel (e.g., forall),
the constraints on the number of iterations, and the index type.

Instruction features capture the frequency with which specific
instruction mnemonics occur within each lambda function, and
provide an insight into the character of the kernel. We measure
function size by recording the number of instructions in the
lambda function that represents the kernel body. We must have
instruction counts prior to making a prediction, so we collect
them from the application binary using the Dyninst library [15].

We use a lightweight annotation system, Caliper [16], to
measure the runtime of the kernels, and to store arbitrary
additional attribute-value pairs representing additional features.
Caliper provides a simple interface that allows application
developers to add semantic annotations of interest to each
kernel. For example, a developer could provide the current
time step or the dimensions of a patch in an AMR mesh.

Table I lists the features we collect. While this is a small
sample of all the runtime features we could collect in a
multi-physics code, it allows us to explore the efficacy of
our technique for improving application performance. New
features, such as additional problem-specific information from
an application input file, can be easily added to characterize
kernels and their input data more completely. However, relying

Feature Description

func Name of function
func size Total number of instructions in

kernel body
index type Type of RAJA IndexSet
loop id Address identifying kernel
num indices Number of indices in each segment
num segments Number of segments
stride Stride of indices in each segment

add, and, call, cmp, comisd,
divsd, inc, jb, lea, loop, maxsd,
minsd, mov, mulpd, nop, pop, push,
pxor, ret, sar, shl/sal, sqrtsd,
sub, test, ucomisd, unpckhpd,
unpcklpd, xor, xorps

Instruction mnemonics are grouped
to save space (for example, the
add mnemonic corresponds to add,
addpd and addsd).

timestep Current cycle
problem size Global problem size
problem name Name of the input deck
patch id Numeric ID assigned to the

AMR subdomain being processed
(CleverLeaf only).

TABLE I: Kernel (), instruction(), and application () features
collected for each RAJA kernel.

on too many parameters can perturb execution in real runs. In
practice, we use feature importance analysis to find small sets
of important features and to reduce the size of our models;
we discuss feature importance analysis in more detail in
Section IV-B. To generate a complete set of training data, a
given input problem must be run multiple times, once for
each value of the parameter we are modeling.

Execution policy is a static parameter. To allow us to vary the
execution policy dynamically, we developed a RAJA extension
which reads the execution policy from an environment variable.
Using the new generic lambda feature added to C++14, we
use the auto keyword to determine the type of the execution
policy passed into the RAJA forall method

template <typename LOOP_BODY>
void forall(policy_from_env,

Index_type begin, Index_type end,
LOOP_BODY loop_body) {

apollo::policySwitcher(POLICY, [=](auto exec_policy) {
forall(exec_policy,

begin, end,
loop_body);

});
}

The apollo::policySwitcher method implements a switch
statement that uses a policy enumerator to determine which
policy type to pass to the lambda function. This allows us to
maintain the static optimization advantages of templates, whilst
still exposing all possible template choices as dynamically
tunable parameters at runtime.

template <typename BODY>
void policySwitcher(POLICY_TYPE policy, BODY body) {
switch (policy) {
case seq_segit_seq_exec:
body(RAJA::seq_exec());
break;

case seq_segit_omp_parallel_for_exec:
body(RAJA::omp_parallel_for_exec());
break;

// other policies...
}

}

if num_indices
less than
103938

if num_indices
less than

19965

if num_indices
less than
2382100

OpenMP OpenMPSequential OpenMP

Fig. 4: Example decision tree model to predict execution policies
based on the num indices feature.

B. Building Lightweight Decision Models

We use the data set collected by our measurement framework
to build runtime auto-tuners, which select the fastest execution
model for each kernel when it is executed. We model the
problem of selecting a code variant (in this case a template
instantiation) as a classification problem. In machine learning,
the classification problem asks us to identify the category to
which a sample belongs. Our samples are the feature vectors
we collected for each kernel invocation, and we categorize
samples into groups by their fastest execution model. Using
this classifier at runtime allows us to select the best kernel
implementation for its input data.

To train a classifier, we start with the feature vectors
mentioned in Section III-A. For each training run, we collect a
set of feature vectors mapped to their runtimes. Because there
are multiple training runs with different execution models, the
same feature vector may map to many possible runtimes. We
label each unique feature vector with the execution model that
resulted in the fastest runtime. We feed these labeled feature
vectors to a learning algorithm, which trains a classifier to
select a label given a feature vector.

There are many types of classifiers in the literature. For
Apollo, we chose to use a decision tree classifier, which uses a
binary tree-like model of decisions to label samples [17], [18].
To make a prediction for an unseen sample, the tree is evaluated
from the root to a leaf, and at each node a comparison of one
feature value determines which child node to visit. We use
decision trees for two reasons. First, they are comparatively
simple, and it is very easy to convert a decision tree model into
a set of conditional statements that can be executed at runtime.
Second, it is easy to prune decision trees to create smaller, less
complex models: we simply cut the tree off at a low level and
evaluate only the first few levels of conditions. This allows us
to consider fewer input features if we need to reduce model
evaluation cost. As we add a larger number of tuning parameters
to Apollo, we may need to consider more complex classifiers.

We implemented our data processing and model generation
as a Python package, that is a complement to the runtime
C++ components in the Apollo framework. We read training
data samples into Pandas dataframes [19], process them,
then convert them to NumPy [20] arrays for use with the
scikit-learn package [21].

																			
											RAJA

Apollo Control Libraries

 Application
RAJA::forall<exec_policy>(IndexSet, [=](int i) {
 sigxx[i] = sigyy[i] = sigzz[i] = - p(i) - q(i);
});

Apollo
• Dynamically load control library

Apollo Recorder Apollo Model (Generated)
• Dynamically tune execution

policy based on runtime
information

• Record kernel features and runtimes as
training data samples

Backends: Sequential, OpenMP

Fig. 5: Apollo interface for training data collection and dynamic
kernel tuning.

C. Dynamically Tuning Application Parameters

Apollo uses a decision tree to generate code for run-time
auto-tuning. This approach differs from existing auto-tuning
frameworks in several respects. First, most existing frameworks
select the fastest version of each kernel by executing it many
times with different tuning parameters. This precludes any
input-dependent optimizations, as it selects a kernel version
before run-time, when the kernel’s inputs are known. Second,
frameworks that can adapt at runtime search the tuning
parameter space at run-time, which incurs high overhead and
does not allow kernels to adapt quickly to changing inputs.
The tuning parameter space can be very large, and even
sophisticated search methods can take minutes to converge.

Apollo’s tuners trade costly on-line search for off-line
training. Training can be expensive, but it is performed off-line
before the program runs. Decision trees encode the knowledge
required to make a tuning decision quickly at runtime, and
they can use measured features to make decisions at runtime.
Instead of exploring the tuning parameter space, Apollo can
select a kernel variant directly based on the run-time values
of features. This allows kernels to quickly adapt to their input
data with only a few conditional evaluations. For example,
Apollo kernels can use differently optimized code variants for
each differently-sized patch of data in an AMR simulation.

Apollo generates a tuning model from a decision tree
using a simple code generation algorithm. We traverse the
decision tree generated by our training algorithm and generate
nested conditional statements that test the values of features
corresponding to each node. Internal nodes in the tree become
if statements, and the leaves become assignments that select
a kernel variant or parameter value to be used at runtime.

We developed a simple interface that enables Apollo to tune
RAJA-exposed kernel execution parameters without further
modifications to the application (Figure 5). In RAJA, we have
added apollo::begin() and apollo::end() hooks before
and after each RAJA loop template. Through this interface,
RAJA interfaces with one of two Apollo components:

1) Recorder: Collects kernel features and measures the
execution item to use as training data;

2) Tuner: Selects kernel execution parameters at runtime.

Because Apollo components are decoupled from the application,
we can choose which Apollo component (recorder or tuner)
to load at runtime. We can run the same executable in either
recording or tuning mode. The control code looks like this:

template <typename EXEC_POLICY_T, typename INDEXSET_T, typename LOOP_BODY>
void forall(const INDEXSET_T& iset, LOOP_BODY loop_body) {
// Delegate begin hook to control library
if (apollo::controlLibraryLoaded()) {
apollo::begin_forall_iset(static_cast<IndexSet>(iset),

(void*) &LOOP_BODY::operator());
}
// Execute RAJA forall kernel
forall(EXEC_POLICY_T(), iset, loop_body);

// Delegate end hook to control library
if (apollo::controlLibraryLoaded()) {
apollo::end_forall_iset(static_cast<IndexSet>(iset));

}
}

The Apollo calls pass the IndexSet object and the kernel
body (as a lambda function) to the loaded Apollo component.
The recorder simply stores observed feature values in a file to
be used as training inputs. The tuner contains a function with
the generated conditional code from our decision tree. It uses
runtime feature information to tune the execution parameters.
With this design, the decision model is not tightly coupled
with the code, and we can re-train our decision model on
new recording data without recompiling the application. This
allows us to generate new, finely tuned decision models over
time as the inputs to our application codes change.

When a kernel is executed, the begin call of the Apollo
interface uses the predicted parameter values to tune the
RAJA execution policies. A simple model generated to tune
execution policies looks like this:

void apollo_begin_forall_iset(const RAJA::IndexSet& iset, void*) {
RAJA::apollo::model_params p;
const int num_indices = iset.getLength();

if (num_indices <= 103938.0) {
if (num_indices <= 19965.5) {

p.policy = seq_exec;
} else {
p.policy = omp_exec;

}
// rest of tree

// Write predicted model parameters to the blackboard.
RAJA::apollo::set_model_params(p);

}

Again, Apollo uses the models learned offline to dynamically
tune application parameters. Learning offline allows us to
amortize the cost of modeling over a number of runs, and
remove the cost of constructing the model from the runtime
overhead of the framework. In Section IV, we show how these
models can speed up all three of our target applications.

IV. RESULTS

To evaluate Apollo’s tuning capabilities, we apply it to
the three applications described in Section II-C: LULESH,
CleverLeaf, and ARES. All three of these applications
exhibit input-dependent performance characteristics, and both
CleverLeaf and ARES use adaptive mesh refinement (AMR).

To examine input-dependence of our results, we tested
our applications on a range of input problems. We ran the

Sedov blastwave problem [22], a common hydrodynamics
test problem, in all three applications. In CleverLeaf we also
simulate Sod’s shock tube problem [23], and a version of the
triple point shock interaction problem presented in [24]. In this
problem, a shock generates a large amount of vorticity and
creates a complex area of interest which will be covered with
a large number of subdomain patches by the AMR algorithm.

In ARES, the Sedov blastwave problem is simulated with
a full mixed material capability. This adds an additional layer
of input-dependent behavior to a code since additional logic is
required to correctly simulate this mixed cell. The Jet problem
is a simple shaped charge deck, and the Hotspot problem
simulates the ignition of an inertial confinement fusion capsule.
Both these problems use multiple materials and additional
physics simulation capability enabled. This additional physics
capability requires a different layout of simulation data in
memory and presents more complex patterns of mixed cells
throughout the simulation domain.

a) Training Data: In all three applications, we run each
problem configuration at a range of global problem sizes,
capturing the range of computational performance attributed
to hardware specifications such as cache size. For each
problem and size combination we perform a single run for
each possible parameter value, giving a total of 46 executions
per problem and size combination. The parameter values are:
{OpenMP, Sequential} for policies, and {1, 2, 4, 8, 16, 32,
64, 128, 256, 512, 1024} for chunk sizes. Each training run
was performed on a single, dedicated node. The training runs
we performed generated 1.7 GB of data, containing over 4.7
million samples. The total duration of all collected training
samples (kernel executions) was 3 hours and 12 minutes,
collected in under 5 hours. All experiments were performed on
a commodity cluster system at Lawrence Livermore National
Laboratory. Each node contained two Intel E5-2670 “Sandy
Bridge” CPUs running at 2.6 GHz, and 32 GB of RAM with
a peak memory bandwidth of 51.2 GB/s.

A. Model Accuracy Analysis

For our first experiments, we evaluate the accuracy of our
decision tree models for tuning two parameters: execution
policy and OpenMP chunk size, measuring how often the
models pick the fastest parameter value. We build a single
model that takes as input all available features for each
application and parameter combination. The model is trained
to make decisions regardless of the input problem – that is, we
did not use any features specific to a particular input deck. We
use 10-fold cross validation, where the input cases are divided
into 10 equal sets, with 10 models created using rotating groups
of 9 sets as training data, and testing our classifier on the tenth
set. Reported scores are the mean accuracy of the ten models.
Table II shows the results for each application. Apollo selects
the best parallel execution model (RAJA execution policy)
92% of the time, on average, across all three applications and
problem configurations. The chunk size models are significantly
less accurate; as low as 21% in the case of CleverLeaf.

Application Execution Policy Chunk Size

LULESH 98% 38%
CleverLeaf 92% 21%

ARES 96% 36%

TABLE II: Model accuracy: the percentage of time that Apollo
selected the correct execution policy or chunk size.

We can also look at the runtime of the predicted parameter
values compared to the best possible choice, helping us quantify
the case where the model might make an incorrect choice, but
pick the second best value. In this case, the accuracy of the
model would be penalized, although the overall runtime of
the set of parameter values selected might remain close to the
best. Figure 6 contains the relative speedups for each kernel
when dynamically tuning the execution policy values using the
model, compared to the best possible choices, and the default
static selection of OpenMP everywhere. Figure 7 shows the
relative speedups for each kernel when tuning the OpenMP
chunk size, compared to a default static selection of 128.

The runtimes of the predicted policies are close to best,
matching the statistical accuracy of the model. For all three
applications, using the predicted policies results in a mean
speedup when considering all kernels. For both LULESH and
CleverLeaf, the predicted policies always beat the default con-
figuration for the 8 most variable kernels in both applications. In
ARES, one kernel shows a slowdown when using the predicted
policy, but the remaining 7 most variable kernels all show a
significant speedup. The runtimes of the predicted chunk sizes
are close to the best for LULESH and CleverLeaf, despite
the model only picking the fastest size 36% and 22% of the
time respectively. This result shows that even in the case of an
incorrect decision, the models often pick parameter values that
perform well. In the case of ARES, the predicted chunk sizes
are far worse that the default or best in most cases. We present
this result to show how our approach can be applied to multiple
parameters, but will focus the remainder of the paper exclu-
sively on the more accurate models for tuning execution policy.

B. Tuning Model Reduction

Apollo can use a large number of features to make run-time
tuning decisions, but this requires us to measure each input
feature, and doing so can be costly. Decision tree models
can be reduced to focus on the most important features by
simply removing deeper levels of the tree. This reduces the
accuracy of the model, but it also decreases the measurement
cost of each decision. In this section we analyze the impact of
decision trees constructed using a reduced subset of features,
and a reduced decision tree depth.

Figure 8 show the normalized importance of the top 5
features for each application. The number of indices and
timestep are important in all applications. The problem name is
also an effective feature in CleverLeaf and ARES, highlighting
the input-dependent nature of the decisions. We also see
instruction count features appearing. The movsd feature is a
scalar load, showing the impact of a kernels memory demands
on the execution policy choice.

Kernel

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
el

at
iv

e
R

u
n

ti
m

e

Predicted Default Best

(a) LULESH.

Kernel

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
el

at
iv

e
R

u
n

ti
m

e

(b) CleverLeaf.

Kernel

0

5

10

15

20

R
el

at
iv

e
R

u
n

ti
m

e

(c) ARES.

Fig. 6: Relative runtimes of predicted execution policies compared to the best possible combination and a static choice of OpenMP for
the eight kernels that consume the most time in each application.

Kernel

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

R
el

at
iv

e
R

u
n

ti
m

e

Predicted Default Best

(a) LULESH.

Kernel

0

1

2

3

4

5

R
el

at
iv

e
R

u
n

ti
m

e

(b) CleverLeaf.

Kernel

0
2
4
6
8

10
12
14
16

R
el

at
iv

e
R

u
n

ti
m

e

(c) ARES.

Fig. 7: Relative runtimes of predicted chunk sizes compared to the best possible combination and a default static choice of 128 for the
eight kernels that consume the most time in each application.

(a) LULESH. (b) CleverLeaf. (c) ARES.

Fig. 8: Normalized importance of the top 5 features in the models generated for LULESH, Cleverleaf and ARES.

To examine the impact of the features used in the models on
their accuracy, we build and evaluate models using subsets of
up to ten of the most important features identified in Figure 8.
We can see in Figure 9 that accuracy is stabilized when using
4 features, with accuracy scores nearing those achieved using
all features.

The second aspect we consider when generating lightweight,
responsive models for use at runtime is the depth of the
decision tree used, which directly corresponds to model
complexity. Using the five most important features for every
model, Figure 10 shows the accuracy of each model at a range
of decision tree depths (1 through 25). We can see that using
the top five features and a tree depth of 15 produces models
whose accuracy for LULESH and ARES is within 0.1% of
the models using all available features, and for CleverLeaf,
is within 8% of the model using all available features.

C. Online Auto-Tuning with Generated Models

To showcase how our technique can speed up the execution
of real kernels, we built tuning models for all three applications,
and tested them on all input problem configurations. In this
section we present the speedups we achieved by dynamically
selecting statically optimized kernel variants. The decision
models are evaluated every time a RAJA kernel is invoked,
and the selected parameter will be set to the value predicted by
the model. In the previous section we determined a lightweight

model configuration with fewer features (5) and reduced tree
depth (15), and we use that configuration to generate the
models we use here. Note that for each application, the same
model is re-used across input decks, and across MPI ranks
for the parallel runs of CleverLeaf and ARES.

Since evaluating the model at runtime adds overhead, we
perform a comparison between a static parameter choice and
the model choice for a range of problem sizes. In LULESH and
CleverLeaf, the default execution policy is OpenMP everywhere,
as chosen by the developers of the RAJA versions of these
applications. ARES is a more complex code, and the developers
have manually assigned kernels in the code as being more appro-
priate for serial or OpenMP execution (regardless of input data),
and the default version of ARES uses these policy selections.

Figure 11 shows the speedup with Apollo in all three
applications running on a single node. For CleverLeaf, our
dynamic tuning is the most successful, speeding up execution
by up to 4.8x. Apollo achieves a speedup of 3.36x for
LULESH and 1.15x for ARES. The speedup comes mainly
from avoiding the overhead of spawning OpenMP regions for
very small patches, and our models are able to determine from
the patch size and other features when it is faster to run a loop
sequentially than to pay for the overhead of using threads.

While we only train our models on single-node runs, we
can use our tuning models in larger, multi-process runs. This

1 2 3 4 5 6 7 8 9 10

Number of Features

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
u

ra
cy

ARES LULESH CleverLeaf

Fig. 9: Model accuracy using
subsets of the most important
features identified in Figure 8.

0 5 10 15 20 25

Depth of Decision Tree

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

ARES LULESH CleverLeaf

Fig. 10: Model accuracy at various
decision tree depths. Each model
is built using the 5 most important
features, identified in Figure 8.

Sed
ov

0

1

2

3

4

5

6

S
p

ee
d

u
p

LULESH

Sod

Trip
le

Poi
nt

Sed
ov

Input Deck

CleverLeaf

Sed
ov Je

t

Hot
sp

ot
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ARES

Fig. 11: Speedups when dynamically tuning
execution policies in all three applications.

16 32 64 12
8

25
6

Processing Cores

0
1
2
3
4
5

S
p

ee
d

u
p

(a) Sod’s shock tube.
16 32 64 12

8

25
6

Processing Cores

0
1
2
3
4

S
p

ee
d

u
p

(b) Triple Point interacting
blastwaves.

16 32 64 12
8

25
6

Processing Cores

0.0
0.5
1.0
1.5
2.0
2.5

S
p

ee
d

u
p

(c) Sedov’s blastwave.

Fig. 12: Runtimes and speedups when dynamically tuning parallel runs of CleverLeaf for the three different input problems.

16 32 64 12
8

25
6

Processing Cores

0
100
200
300
400
500
600
700
800
900

R
u

n
ti

m
e

(s
) Policy Default

(a) Runtimes.

16 32 64 12
8

25
6

Processing Cores

0.0

0.4

0.8

1.2

S
p

ee
d

u
p

(b) Speedups.

Fig. 13: Dynamically tuning the ARES Hotspot problem in parallel.

is important, since CleverLeaf and ARES use adaptive mesh
refinement, and while the overall refinement of the mesh is
deterministic for our runs, the sizes of refined patches created
in a distributed run are not the same as those created in a
sequential run. Each node in an MPI-parallel run may have
a very different workload. This is the kind of input-dependent
behavior our models are designed to optimize.

Figure 12 shows the runtimes and speedups of dynamically
tuning CleverLeaf for all three input problems. We use a larger
initial problem size in each case and we strong scale up to 256
cores. In all cases, tuning with Apollo is significantly faster
than using the default RAJA execution policy. Figure 12 also
shows a visualization of the mesh configuration and density
field for a subset of the problem space at the final time of the
simulation. Since the best parameter value is largely dependent
on the subdomain size, these visualizations explains some of
the speedups provided when dynamically tuning with Apollo’s
models. For example, the curved shock in the Sedov problem
generates many small subdomains which Apollo correctly runs
serially, beating the default execution policies by up to 2.3x.

Whilst Figures 12a and 12b show consistent speedups values
between 4-5x and 3-4x, the Sedov problem in Figure 12c
shows speedups from 1.29x on 16 cores to 2.3x on 256 cores.

L C A
Sedov Sod Sedov Triple Pt Sedov Jet Hotspot

L Sedov 0.99 0.93 0.91 0.72 0.90 0.98 0.69

C
Sod 0.14 0.99 0.91 0.76 0.89 0.97 0.69
Sedov 0.86 0.86 0.99 0.75 0.90 0.98 0.69
Triple Pt 0.83 0.86 0.77 0.92 0.89 0.97 0.69

A
Sedov 0.14 0.40 0.29 0.40 0.99 0.81 0.49
Jet 0.14 0.93 0.91 0.72 0.90 0.99 0.70
Hotspot 0.14 0.93 0.91 0.72 0.89 0.83 0.78

TABLE III: Accuracy breakdown of dynamically tuning using
different training (rows) and test (columns) set combinations for
LULESH (L), CleverLeaf (C), and ARES (A).

That is, Apollo gets more improvement out of this problem
as we strong scale. In strong scaling, the adaptively refined
mesh is subdivided into increasingly smaller and smaller
subdomains, and Apollo is able to speed up execution for
more patches at the strong scaling limit. The same trend is
visible in Figure 13. Using Apollo, ARES runs from 8% faster
on 16 cores up to 15% faster on 256 cores. Note that ARES
is a production multi-physics code, and the Hotspot deck
exercises many different physics modules. Our speedups with
Apollo are measured in wall clock time for the entire ARES
run, but only a single physics component has been modified
to work with RAJA (and therefore Apollo).

D. Cross-Application Predictions

Our tuning models so far have been built and applied to
single applications independently. An important aspect of our
work is the ability to generate tuning models that can be used to
dynamically tune other applications. In Table III we show a first
step in this direction, where we evaluate each model on a test set
taken from a single application and input problem combination.

From these results we can see that in many cases, Apollo’s
models are applicable across both applications and input decks.
Of particular interest to us is the fact that the models learned
from LULESH are effective when applied to CleverLeaf and
ARES. LULESH is a mini-app containing less than 40 unique
kernels, but the range of training data collected appears to
cover the performance space containing the kernels from both
CleverLeaf and ARES. Conversely, models produced with
CleverLeaf and ARES do not perform well for LULESH. We
attribute this drop in accuracy to the narrower range of iteration
counts observed in these applications, since each problem
configuration was run with fewer global problem sizes.

V. RELATED WORK

The field of auto-tuning comprises many techniques. The
overarching goal is to understand the effects of a set of
tuning parameters on a piece of code, and to select the tuning
parameters that minimize the code’s running time. Loosely
speaking, we can divide auto-tuning techniques into three
categories according to how they select optimal parameters.
Empirical techniques directly run many variants of a code
block and select the fastest based on actual running time.
Analytical techniques use a (usually human-generated) model
to predict the code’s run time, and select based on the results
of the model. Statistical techniques are similar, but they derive
models using machine-learning techniques. Table IV contains
a sample of existing approaches and their categories, as well
as when they tune and cost of each tuning decision.

a) Empirical Techniques: Some of the most successful
techniques are tuners for numerical libraries, such as
ATLAS [3] and FFTW [4]. These libraries run many small
tests to find good tuning parameters for specialized numerical
algorithms. Oski [31] similarly tunes sparse linear algebra
kernels at runtime, and Spiral performs similar optimizations
for signal processing [5].

Frameworks like OpenTuner [30] and Orio [29] are general
approaches for arbitrary kernels and tuning parameters. They
focus on intelligently searching a large, multi-dimensional
tuning parameter space. The ActiveHarmony project [25],
[6] uses heavily optimized, parallel search algorithms to
empirically tune applications on-line. It can adapt dynamically
to slowly changing applications, but re-tuning takes several
minutes, even with parallel search.

b) Analytical Techniques: Analytical modeling has
proven to be a useful in the past as a way to optimize serial
code, and recently, analytical modeling techniques have
been revived for parallel performance prediction [27], [32],
[28], [26] Analytical models can be used to predict scaling
performance for the application, but they do not directly relate
to any tuning parameters and cannot be used for tuning.

c) Statistical Techniques: Empirical tuning is costly
because it requires potentially many runs of kernels with
different parameters. Rather than running directly, some tools
train a model to estimate the runtime of a code block, and they
use statistical regression or other machine learning techniques
to build their estimators. This approach has been applied to

compiler optimizations [33], [34], GPU power modeling [35],
[36], concurrency throttling [37], thread mapping [38], and
tuning filter banks in signal processing algorithms [26]. Feature
importance analysis, has also been used to diagnose the causes
of performance variation in communication-bound codes. [39].
Muralidharan and Ding [9], [10] both use machine learning
models, but focus on code variants for input-dependent
algorithm choices. Our approach is much finer-grained and
makes thousands of decisions during each application timestep,
requiring lightweight models compiled to machine code.

d) Apollo: Our approach, Apollo, is a dynamic, low-
overhead, data-driven auto-tuning framework. Like ActiveHar-
mony, Apollo tunes codes on-line, but it uses off-line training to
build statistical classifiers that directly select values for tuning
parameters. This approach allows Apollo to respond quickly to
changes in the input data that kernels process. We can recognize,
for instance, that particular runtime policies work best for par-
ticular array sizes or data properties. Our approach also allows
Apollo models to execute quickly. Prior papers present results
from benchmarks [9], [10], but Apollo tunes over 500 kernels
in a production multi-physics application with real inputs.

VI. CONCLUSIONS

In this paper, we introduced Apollo, a lightweight auto-
tuning framework for adaptive, input-dependent codes. Rather
than using costly on-line search, Apollo uses off-line training to
generate pluggable tuning models that can be used at run-time.
Apollo allows users to preserve the benefits of statically
optimized C++ templates, while still allowing dynamic
selection of execution models. While Apollo is implemented
in RAJA, the techniques for separating the concerns of
implementation and tuning are general, and we plan to apply
these techniques to other performance portability frameworks.
Apollo is designed so that decision models can be re-trained
and re-loaded over time without rebuilding production
applications. We showed that Apollo can generate auto-tuners
that select the fastest execution policy 98% of the time and
achieve speedups of 1.2x-4.8x for adaptive proxy applications
and a multi-million line production multi-physics code.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-723337).

SOFTWARE

Our model generation and analysis framework, Apollo, is
available on GitHub at https://github.com/LLNL/Apollo.

REFERENCES

[1] R. D. Hornung and J. A. Keasler, “The RAJA Poratability Layer:
Overview and Status,” Lawrence Livermore National Laboratory, Tech.
Rep. LLNL-TR-661403, Sep. 2014.

[2] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, pp.
3202–3216, Dec. 2014.

Package & Domain Model Tuning Style peed Technique

ActiveHarmony (application kernels) [6], [25] Empirical Dynamic (run-time) Slow Search
Apollo (application kernels) Statistical Dynamic (run-time) Fast Classifier
ATLAS (dense linear algebra) [3] Empirical Static (off-line) Fast Search
Bergstra, et al. (image filters) [26] Statistical Static (off-line) Fast Search
Calotoiu, et al. (MPI scaling) [27] Analytical Dynamic (run-time) N/A N/A
FFTW (FFT) [4] Empirical Static (off-line) Slow Search
Hoefler, et al. (application runtime) [28] Analytical Dynamic (run-time) N/A N/A
Orio (application kernels) [29] Empirical Static (off-line) Slow Search
OpenTuner (application kernels) [30] Empirical Static (off-line) Slow Search
Oski (sparse linear algebra)[31] Empirical Dynamic (run-time) Slow Search
PEMOGEN (application kernels)[32] Analytical Dynamic (run-time) N/A N/A
Nitro (code variants)[9] Statistical Dynamic (run-time) Slow Classifier
Ding, et al. (code variants)[10] Statistical Dynamic (run-time) Slow Classifier

TABLE IV: Sample of auto-tuning and modeling techniques using empirical, analytical and statistical (machine learning) approaches.

[3] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, Jan. 2001.

[4] M. Frigo and S. G. Johnson, “The Design and Implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[5] M. Püschel et al., “Spiral: A Generator for Platform-Adapted Libraries
of Signal Processing Alogorithms,” International Journal of High Per-
formance Computing Applications, vol. 18, no. 1, pp. 21–45, Feb. 2004.

[6] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active Harmony:
Towards Automated Performance Tuning,” in Supercomputing 2002
(SC’02), Nov. 2002, p. 44.

[7] I.-H. Chung and J. K. Hollingsworth, “Using Information from Prior
Runs to Improve Automated Tuning Systems,” in Supercomputing 2004
(SC’04), Nov. 2004, pp. 30–30.

[8] ——, “A Case Study Using Automatic Performance Tuning for
Large-Scale Scientific Programs,” Proceedings of the 15th IEEE
International Symposium on High Performance Distributed Computing,
pp. 45–56, Jun. 2006.

[9] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro,
“Nitro: A Framework for Adaptive Code Variant Tuning,” in Proceedings
of the IEEE International Symposium on Parallel & Distributed
Processing, May 2014, pp. 501–512.

[10] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), Jun. 2015, pp. 379–390.

[11] I. Karlin et al., “Exploring Traditional and Emerging Parallel
Programming Models Using a Proxy Application,” in Proceedings of
the 27th IEEE International Symposium on Parallel & Distributed
Processing, May 2013, pp. 919–932.

[12] D. A. Beckingsale, W. Gaudin, A. Herdman, and S. Jarvis, “Resident
Block-Structured Adaptive Mesh Refinement on Thousands of Graphics
Processing Units,” in Proceedings of the 44th International Conference
on Parallel Processing, Aug. 2015, pp. 61–70.

[13] R. Darlington, T. McAbee, and G. Rodrigue, “A Study of ALE
Simulations of Rayleigh-Taylor Instability,” Computer Physics
Communications, vol. 135, pp. 58–73, 2001.

[14] B. E. Morgan and J. A. Greenough, “Large-Eddy and Unsteady RANS
Simulations of a Shock-Accelerated Heavy Gas Cylinder,” Shock Waves,
Apr. 2015.

[15] Dyninst. [Online]. Available: http://www.dyninst.org
[16] Caliper. [Online]. Available: https://github.com/LLNL/Caliper
[17] J. Quinlan, “Simplifying decision trees,” International Journal of

Man-Machine Studies, vol. 27, no. 3, pp. 221 – 234, 1987.
[18] P. E. Utgoff, “Incremental induction of decision trees,” Machine

Learning, vol. 4, no. 2, pp. 161–186, 1989.
[19] pandas: Python Data Analysis Library. [Online]. Available:

http://pandas.pydata.org
[20] NumPy. [Online]. Available: http://www.numpy.org
[21] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” The

Journal of Machine Learning Research, vol. 12, Feb. 2011.
[22] L. I. Sedov, “Propagation of strong shock waves,” Journal of Applied

Mathematics and Mechanics, vol. 10, pp. 241–250, 1946.
[23] G. A. Sod, “A Survey of Several Finite Difference Methods for Systems

of Nonlinear Hyperbolic Conservation Laws,” Journal of Computational
Physics, vol. 27, no. 1, pp. 1–31, Apr. 1978.

[24] S. Galera, P.-H. Maire, and J. Breil, “A two-dimensional unstructured
cell-centered multi-material ALE scheme using VOF interface
reconstruction,” Journal of Computational Physics, vol. 229, no. 16, pp.
5755–5787, Aug. 2010.

[25] J. K. Hollingsworth and P. J. Keleher, “Prediction and adaptation in
Active Harmony,” in Proceedings of the 7th International Symposium
on High Performance Distributed Computing, Jul. 1998, pp. 180–188.

[26] J. Bergstra, N. Pinto, and D. Cox, “Machine learning for predictive
auto-tuning with boosted regression trees,” in Proceedings of Innovative
Parallel Computing, May 2012, pp. 1–9.

[27] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Supercomputing 2013 (SC’13), Nov. 2013, pp. 1–12.

[28] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling
for systematic performance tuning,” in Supercomputing 2011 (SC’11),
2011, pp. 1–12.

[29] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in IEEE International Symposium on
Parallel & Distributed Processing, May 2009, pp. 1–11.

[30] J. Ansel et al., “OpenTuner,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation Techniques, New
York, New York, USA, 2014, pp. 303–316.

[31] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library
of automatically tuned sparse matrix kernels,” Journal of Physics:
Conference Series, vol. 16, no. 1, pp. 521–530, Aug. 2005.

[32] A. Bhattacharyya and T. Hoefler, “PEMOGEN: Automatic Adaptive
Performance Modeling during Program Runtime,” in Proceedings of the
23rd International Conference on Parallel Architectures and Compilation
Techniques, Aug. 2014, pp. 393–404.

[33] E. Park, J. Cavazos, L. N. Pouchet, and C. Bastoul, “Predictive
modeling in a polyhedral optimization space,” in Proceedings of the
9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, Apr. 2011, pp. 119–129.

[34] F. Agakov et al., “Using Machine Learning to Focus Iterative
Optimization,” in Proceedings of the International Symposium on Code
Generation and Optimization, Mar. 2006, pp. 295–305.

[35] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning,”
in Proceedings of the 21st IEEE International Symposium on High
Performance Computer Architecture, Feb. 2015, pp. 564–576.

[36] S. Song, C. Su, and B. Rountree, “A simplified and accurate model
of power-performance efficiency on emergent GPU architectures,” in
Proceedings of the 27th IEEE International Symposium on Parallel &
Distributed Processing, May 2013, pp. 673–686.

[37] M. A. Curtis-Maury et al., “Identifying energy-efficient concurrency
levels using machine learning,” in Proceedings of the IEEE Conference
on Cluster Computing, Sep. 2007, pp. 488–495.

[38] C. Su, D. Li, D. S. Nikolopoulos, K. W. Cameron, B. R. de Supinski,
and E. A. Leon, “Model-based, memory-centric performance and power
optimization on NUMA multiprocessors,” in Proceedings of the IEEE
International Symposium on Workload Characterization, Nov. 2012, pp.
164–173.

[39] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale, “Predicting
application performance using supervised learning on communication
features,” in Supercomputing 2013 (SC’13), Nov. 2013, pp. 1–12.

