XBrail Tutorial

A flexible and scalable approach to parallel-in-time

Jacob Schroder and Rob Falgout

18th Copper Mountain Conference on Multigrid Methods
March 28th, 2017
Outline

1. Introduction
 → Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
 → Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
 → Debugging the connection to XBraid
 → Intrusiveness versus efficiency

5. A few application area highlights

Appendix: Advanced XBraid features
- Temporal adaptivity
- Shell-vectors and BDF-k
- Fortran90 Interface
- Residual and storage options
- Spatial coarsening
To interact with the tutorial, you need

- This tutorial needs a working installation of XBraid 2.1 or higher
 http://llnl.gov/casc/xbraid/
 - See the User’s manual for instructions on how to install XBraid
 - See the "Publications" page for a copy of this tutorial

- XBraid v2.1 (or higher) **required**
- GCC compiler **required**
- MPI **recommended**
- Python 2.7 (or higher) with NumPy, Matplotlib **recommended**
- hypre installation for running ex-03 **optional**
 http://llnl.gov/casc/hypre
To interact with the tutorial, you need

- Make sure you can run

```
$ cd xbraid
$ make
$ cd examples
$ make ex-01 ex-02
$ ./ex-01
  Braid: || r_1 || = 2.845538e-02, conv factor = 1.00e+00, wall time = ...
  Braid: || r_2 || = 8.621939e-04, conv factor = 3.03e-02, wall time = ...
  Braid: || r_3 || = 0.000000e+00, conv factor = 0.00e+00, wall time = ...
...
$ ./ex-02
  Braid: || r_0 || = 4.041694e+00, conv factor = 1.00e+00, wall time = ...
  Braid: || r_1 || = 1.037471e-01, conv factor = 2.57e-02, wall time = ...
  Braid: || r_2 || = 2.926906e-03, conv factor = 2.82e-02, wall time = ...
...```
Traditional time integration will become a sequential bottleneck

- Clock rates are no longer increasing – faster speed is now achieved through more concurrency
- Parallel time integration methods are needed (think exascale)!

From Kathy Yelick's talk titled “Ten Ways to Waste a Parallel Computer.”
Multigrid is well suited for exascale

- For many applications, the fastest and most scalable solvers are already multigrid methods

  - Elasticity / Plasticity
  - Quantum Chromodynamics

- Exascale solver algorithms will need to:
  - Exhibit extreme levels of parallelism (exascale → 1 billion cores)
    Spatial multigrid has already scaled to over 1 million cores
  - Minimize data movement
    Multigrid is $O(N)$ optimal
  - Exploit machine heterogeneity
    If the user’s problem can exploit heterogeneity, then so can multigrid
  - Be resilient to faults
    Multigrid has already shown good resilience (being iterative and multilevel helps)

- Apply multigrid to the temporal dimension!
Our approach for parallel-in-time

- Apply the wealth of research on parallel spatial multigrid to multigrid in time
- This is where our team has extensive experience (hypre project)

The Multigrid V-cycle

Error on the fine grid

Error approximated on a smaller coarse grid

smoothing (relaxation)

restriction

prolongation (interpolation)
Technical approach

- Consider the **general** one-step method
  \[ u_i = \Phi_i(u_{i-1}) + g_i, \quad i = 1, 2, ..., N \]

- In the linear setting (*for simplicity*), time marching \( \equiv \) forward solve
  - This is an \( O(N) \) direct method, but **sequential**

\[
Au \equiv \begin{pmatrix}
I & I & & & \\
-\Phi & I & & & \\
& \ddots & \ddots & & \\
& & -\Phi & I & \\
& & & & -\Phi & I
\end{pmatrix}
\begin{pmatrix}
u_0 \\
u_1 \\
\vdots \\
u_N
\end{pmatrix}
= \begin{pmatrix}
g_0 \\
g_1 \\
\vdots \\
g_N
\end{pmatrix}
\equiv g
\]

- We propose solving this system **iteratively** with a multigrid method
  - Extend multigrid reduction (MGR, 1979) to the time dimension
  - Coarsens only in time (non-intrusive)
  - \( O(N) \), highly parallel
Technical approach

- Relaxation is highly parallel
  - Alternates between $F$-points and $C$-points
  - $F$-point relaxation = integration over each coarse time interval

- Coarse system is a time rediscretization
  - Approximate impractical $\Phi^m$ with $\Phi_\Delta$ a rediscretization with $\Delta T$

\[
A_\Delta = \begin{pmatrix}
I \\
-\Phi^m & I \\
\vdots & \ddots & \ddots \\
-\Phi^m & I
\end{pmatrix} \quad \Rightarrow \quad A_\Delta = \begin{pmatrix}
I \\
-\Phi_\Delta & I \\
\vdots & \ddots & \ddots \\
-\Phi_\Delta & I
\end{pmatrix}
\]

- Apply recursively for multilevel hierarchy
Parallel decomposition

- Our code **XBraid** is agnostic to spatial decomposition and only parallelizes in time

Serial time stepping

- Negative: Parallelize in space only
- Positive: Store only one time step

Multigrid in time

- Positive: Parallelize in space and time
- Negative: Store several time steps
Properties of the approach

- Expose concurrency in the time dimension with multigrid
- Non-intrusive, with unchanged time discretization
- Converges to same solution as sequential time stepping

- Only store C-points to minimize storage
- Optimal for variety of parabolic problems
  - Converges in \( \sim 10 \) iterations for any coarsening factor
  - Larger factors require larger (sequential) F-relaxation intervals

- Extends to nonlinear problems with FAS formulation
- In simple two-level setting, our method is equivalent to parareal
  - This is a popular method, typically not viewed as multigrid

- Many active research topics
  - Adaptivity in time, moving meshes and multistep methods all possible
  - Space-time coarsening possible (stability on coarse time-grids for explicit schemes)
Huge parallel speedups available, but in a new way

- Time stepping is already $O(N)$
- Useful only beyond a crossover
- Need 10-100x more parallelism just to break even

The more time steps, the more speedup potential
- Applications that require lots of time steps will benefit first
- Speedups (so far) up to 52x on 100K total cores

3D Heat Equation: $33^3 \times 4097$, 8 procs in space, 6x speedup
XBraid: open source, non-intrusive and flexible

- Overlap communication and computation
  - Consider relaxation over a processor’s portion of the time interval
  - Start computation with right-most interval to overlap comm/comp

1) Post receive
2) Compute and send
3) Compute other points, moving right to left

- Code stores only $C$-points to minimize storage
  - Ability to coarsen by large factors means fewer parallel resources
  - Memory multiplier per processor
    $\sim O(\log N)$ with time coarsening, $O(1)$ with space-time coarsening
XBraid: open source, non-intrusive and flexible

- User defines two objects:
  - App and Vector

- User also writes several wrapper routines:
  - Step, Init, Clone, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize
  - For optional spatial coarsening: Coarsen, Refine

- Example: Step(app, u, status)
  - Advances vector u from time t_start to t_stop
  - Returns a target refinement factor
Outline

1. Introduction
   → Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
   → Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
   → Debugging the connection to XBraid
   → Intrusiveness versus efficiency

5. A few application area highlights

Appendix: Advanced XBraid features
- Temporal adaptivity
- Shell-vectors and BDF-k
- Fortran90 Interface
- Residual and storage options
- Spatial coarsening
Simplest Example: Scalar ODE

- File: examples/ex-01.c
- Solves: $u_t = \lambda u$
- First, you must define your app and vector structures

This is your simulation application structure. Place any time-independent data here, which is needed to take a time step.

Here, we only need the MPI rank in the App structure (for later file output).

```c
typedef struct _braid_App_struct{
 int rank;
} my_App;

typedef struct _braid_Vector_struct{
 double value;
} my_Vector;
```
Simplest Example: Scalar ODE

- File: examples/ex-01.c  Solves: $u_t = \lambda u$
- First, you must define your `app` and `vector` structures

This is your state vector structure. It holds any time-dependent information that should stay with a vector, e.g. mesh information and unknowns.

For this problem, the vector is one double.

```c
typedef struct _braid_App_struct{
 int rank;
} my_App;

typedef struct _braid_Vector_struct{
 double value;
} my_Vector;
```
Define the \texttt{Step()} function

- File: \texttt{examples/ex-01.c}
- Solves: $u_t = \lambda u$

\begin{verbatim}
int my_Step(braid_App app,
    braid_Vector ustop,
    braid_Vector fstop,
    braid_Vector u,
    braid_StepStatus status)
{
    double tstart;
    double tstop;
    braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

    (u->value) = 1./(1. + tstop-tstart)*(u->value);

    return 0;
}
\end{verbatim}
Define the `Step()` function

- **File:** examples/ex-01.c

**Solves:** \( u_t = \lambda u \)

The **app** structure is passed into every user-written function.

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

 (u->value) = 1./(1. + tstop-tstart)*(u->value);

 return 0;
}
```
Define the \texttt{Step()} function

- File: \texttt{examples/ex-01.c} \hspace{1cm} Solves: $u_t = \lambda u$

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

 (u->value) = 1./(1. + tstop-tstart)*(u->value);

 return 0;
}
```

Vector at $t_{\text{stop}}$ from previous XBraid iteration (initial guess for implicit solvers)

$u_{\text{tstop}} = \ldots$
Define the `Step()` function

- File: `examples/ex-01.c`  
  Solves: $u_t = \lambda u$

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);
 (u->value) = 1. / (1. + tstop-tstart) * (u->value);
 return 0;
}
```
**Define the `Step()` function**

- **File:** examples/ex-01.c  
  **Solves:** \( u_t = \lambda u \)

---

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);
 (u->value) = 1./(1. + tstop-tstart)*(u->value);
 return 0;
}
```

Ignore by default. (XBraid forcing term, only needed if residual option is used)
Define the `Step()` function

- **File:** examples/ex-01.c  
  **Solves:** $u_t = \lambda u$

Status structures can be queried for various information (level, iteration, etc...)

```c
int my_Step(braid_App app,
 braid_Vector ust,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

 (u->value) = 1./(1. + tstop-tstart)*(u->value);

 return 0;
}
```
Define the \texttt{Step()} function

- **File:** examples/ex-01.c  \hspace{1cm} **Solves:** $u_t = \lambda u$

For instance, to get $t_{\text{start}}$, $t_{\text{stop}}$

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);

 (u->value) = 1./(1. + tstop-tstart)*(u->value);

 return 0;
}
```

For instance, to get $t_{\text{start}}$, $t_{\text{stop}}$.
Define the `Step()` function

- **File:** `examples/ex-01.c`  
  **Solves:** \( u_t = \lambda u \)

**Take backward Euler step**

```c
int my_Step(braid_App app,
 braid_Vector ustop,
 braid_Vector fstop,
 braid_Vector u,
 braid_StepStatus status)
{
 double tstart;
 double tstop;
 braid_StepStatusGetTstartTstop(status, &tstart, &tstop);
 (u->value) = 1./(1. + tstop-tstart)*(u->value);

 return 0;
}
```

Take backward Euler step

\[ u_t = \lambda u \]
Define other wrapper functions

- **File:** examples/ex-01.c  
  **Solves:** $u_t = \lambda u$

- **Define functions:** Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

---

Again, we see the app structure being passed in

```c
int my_Sum(braid_App app,
 double alpha,
 braid_Vector x,
 double beta,
 braid_Vector y)
{
 (y->value) = alpha*(x->value) + beta*(y->value);
 return 0;
}
```
Define other wrapper functions

- File: examples/ex-01.c
- Define functions: Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

This function carries out a simple AXPY operation

```c
int my_Sum(braid_App app,
 double alpha,
 braid_Vector x,
 double beta,
 braid_Vector y)
{
 (y->value) = alpha*(x->value) + beta*(y->value);
 return 0;
}
```

Solves: $u_t = \lambda u$
Define other wrapper functions

- File: examples/ex-01.c  
  Solves: $u_t = \lambda u$
- Define functions: Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

This function is how the user accesses the solution
- By default, it is called at the end of the simulation for every time point
- Using `braid_AccessSetLevel()` allows for more frequent access

```c
int my_Access(braid_App app,
 braid_Vector u,
 braid_AccessStatus astatus)
{
 int index; char filename[255]; FILE *file;
 braid_AccessStatusGetTIndex(astatus, &index);
 sprintf(filename, "%s.%04d.%03d", "ex-01.out", index, app->rank);
 file = fopen(filename, "w");
 fprintf(file, "%.14e\n", (u->value));
 fflush(file); fclose(file); return 0;
}
```
Define other wrapper functions

- File: examples/ex-01.c  
  Solves: $u_t = \lambda u$

- Define functions: Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

Here, we just write a single solution value to individual files

```c
int my_Access(braid_App app,
 braid_Vector u,
 braid_AccessStatus astatus)
{
 int index; char filename[255]; FILE *file;
 braid_AccessStatusGetTIndex(astatus, &index);
 sprintf(filename, "%s.%04d.%03d", "ex-01.out", index, app->rank);
 file = fopen(filename, "w");
 fprintf(file, "%14le\n", (u->value));
 fflush(file); fclose(file); return 0;
}
```
Define other wrapper functions

- File: examples/ex-01.c
- Solves: $u_t = \lambda u$
- Define functions: Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

The Buf* functions tell XBraid how to pack, unpack and size MPI Buffers
Define other wrapper functions

- **File:** examples/ex-01.c  
  **Solves:** $u_t = \lambda u$

- **Define functions:** Init, Clone, Free, Sum, SpatialNorm, Access, BufPack, BufUnpack, BufSize

```c
int my_BufPack(braid_App app, braid_Vector u, void *buffer, braid_BufferStatus bstatus)
{
 double *dbufuffer = buffer;
 dbuffer[0] = (u->value);
 braid_BufferStatusSetSize(bstatus, sizeof(double));
 return 0;
}
```

BufPack() flattens the vector $u$ into buffer $u_t = u$
Define other wrapper functions

- **File:** examples/ex-01.c  
  **Solves:** $u_t = \lambda u$

- **Define functions:** Init, Clone, Free, Sum, SpatialNorm, Access, **BufPack**, BufUnpack, BufSize

```
int my_BufPack(braid_App app,
 braid_Vector u,
 void *buffer,
 braid_BufferStatus bstatus)
{
 double *dbuffer = buffer;
 dbuffer[0] = (u->value);
 braid_BufferStatusSetSize(bstatus, sizeof(double));

 return 0;
}
```

Packing this buffer entails just setting a single double value.
Define other wrapper functions

- **File**: examples/ex-01.c
  **Solves**: $u_t = \lambda u$

- **Define functions**: Init, Clone, Free, Sum, SpatialNorm, Access, **BufPack**, BufUnpack, BufSize

This is an example of returning a value (the buffer size) with a status structure

```c
int my_BufPack(braid_App app,
 braid_Vector u,
 void *buffer,
 braid_BufferStatus bstatus)
{
 double *dbuffer = buffer;
 dbuffer[0] = (u->value);
 braid_BufferStatusSetSize(bstatus, sizeof(double));
 return 0;
}
```
Initialize App and XBraid

- **File**: examples/ex-01.c  
  **Solves**: $u_t = \lambda u$
- The next step is to setup XBraid in `main()`

```c
int main()
{
 ...
 braid_Core core;
 ntime = 10;
 tstart = 0.0; tstop = 5.0;
 ...
 app = (my_App *) malloc(sizeof(my_App));
 app->rank) = rank;
 ...
 braid_Init(MPI_COMM_WORLD, MPI_COMM_WORLD, tstart, tstop,
 ntime, app, my_Step, my_Init, my_Clone,
 my_Free, my_Sum, my_SpatialNorm,
 my_Access, my_BufSize, my_BufPack,
 my_BufUnpack, &core);
}```
Initialize App and XBraid

- File: examples/ex-01.c Solves: $u_t = \lambda u$
- The next step is to setup XBraid in `main()`

```c
int main()
...
  braid_Core core;
  ntime = 10;
  tstart = 0.0; tstop = 5.0;
  ...
  app = (my_App *) malloc(sizeof(my_App));
  (app->rank) = rank;
  ...
  braid_Init(MPI_COMM_WORLD, MPI_COMM_WORLD, tstart, tstop,
            ntime, app, my_Step, my_Init, my_Clone,
            my_Free, my_Sum, my_SpatialNorm,
            my_Access, my_BufSize, my_BufPack,
            my_BufUnpack, &core);
```

`braid_Core` is the core data structure, holding all of XBraid’s internals.
Initialize App and XBraid

- **File:** examples/ex-01.c
 Solves: $u_t = \lambda u$

- The next step is to setup XBraid in `main()`

```c
int main()
{
    ... 
    braid_Core core;
    ntime = 10;
    tstart = 0.0; tstop = 5.0;
    ...
    app = (my_App *) malloc(sizeof(my_App));
    (app->rank) = rank;
    ...
    braid_Init(MPI_COMM_WORLD, MPI_COMM_WORLD, tstart, tstop,
                ntime, app, my_Step, my_Init, my_Clone,
                my_Free, my_Sum, my_SpatialNorm,
                my_Access, my_BufSize, my_BufPack,
                my_BufUnpack, &core);
}
```
Initialize App and XBraid

- File: examples/ex-01.c
 Solves: $u_t = \lambda u$
- The next step is to setup XBraid in main()

```c
int main()
{
  ...
  braid_Core core;
  ntime = 10;
  tstart = 0.0; tstop = 5.0;
  ...
  app = (my_App *) malloc(sizeof(my_App));
  (app->rank) = rank;
  ...
  braid_Init(MPI_COMM_WORLD, MPI_COMM_WORLD, tstart, tstop,
             ntime, app, my_Step, my_Init, my_Clone,
             my_Free, my_Sum, my_SpatialNorm,
             my_Access, my_BufSize, my_BufPack,
             my_BufUnpack, &core);
}
```
Initialize App and XBraid

- **File:** examples/ex-01.c
 Solves: $u_t = \lambda u$
- **The next step is to setup XBraid in** `main()`

```c
int main()
{
    ...
    braid_Core    core;
    ntime  = 10;
    tstart = 0.0; tstop  = 5.0;
    ...
    app = (my_App *) malloc(sizeof(my_App));
    (app->rank) = rank;
    ...
    braid_Init(MPI_COMM_WORLD, MPI_COMM_WORLD, tstart, tstop,
               ntime, app, my_Step, my_Init, my_Clone,
               my_Free, my_Sum, my_SpatialNorm,
               my_Access, my_BufSize, my_BufPack,
               my_BufUnpack, &core);
}
```
Set XBraid options and run

- **File:** examples/ex-01.c
 Solves: $u_t = \lambda u$

- The next step is to setup XBraid in `main()`

Set all the XBraid options that you want

```c
int main()
{
  ...  
  braid_SetPrintLevel( core, 1);
  braid_SetMaxLevels(core, 2);
  braid_SetAbsTol(core, 1.0e-06);
  braid_SetCFactor(core, -1, 2);

  braid_Drive(core);

  braid_Destroy(core);
}
```
Set XBraid options and run

- File: examples/ex-01.c
- Solves: $u_t = \lambda u$
- The next step is to setup XBraid in `main()`

```c
int main()
{
  ...
  braid_SetPrintLevel(core, 1);
  braid_SetMaxLevels(core, 2);
  braid_SetAbsTol(core, 1.0e-06);
  braid_SetCFactor(core, -1, 2);
  braid_Drive(core);
  braid_Destroy(core);
}
```
Set XBraid options and run

- **File:** examples/ex-01.c
 Solves: \(u_t = \lambda u \)
- **The next step is to setup XBraid in** `main()`

```c
int main()
{
  ...
  braid_SetPrintLevel( core, 1);
  braid_SetMaxLevels(core, 2);
  braid_SetAbsTol(core, 1.0e-06);
  braid_SetCFactor(core, -1, 2);

  braid_Drive(core);

  braid_Destroy(core);
}```
Output

- **File:** `examples/ex-01.c`
- **Finally!** We can run the example.

```bash
$ cd examples
$ make ex-01
$./ex-01
$ cat ex-01.out.00*

1.00000000000000e+00
6.66666666666667e-01
4.44444444444444e-01
2.96296296296296e-01
1.97530864197531e-01
1.31687242798354e-01
8.77914951989026e-02
5.85276634659351e-02
3.90184423106234e-02
2.60122948737489e-02
1.73415299158326e-02
```

Solves: \( u_t = \lambda u \)
Outline

1. **Introduction**
   → Tutorial software requirements and XBraid overview

2. **Simplest example of solving a scalar ODE**
   with examples/ex-01
   → Defining the App and vector structures, writing wrapper functions, running XBraid

3. **Explore more XBraid settings**
   in examples/ex-01-expanded.c

4. **Porting a user-code to XBraid**
   with examples/ex-02
   → Debugging the connection to XBraid
   → Intrusiveness versus efficiency

5. **A few application area highlights**

---

**Appendix:** Advanced XBraid features

- Temporal adaptivity
- Shell-vectors and BDF-k
- Fortran90 Interface

- Residual and storage options
- Spatial coarsening
Moving to ex-01-expanded.c

- **File:** examples/ex-01-expanded.c  
  **Solves:** $u_t = \lambda u$

- Adds more XBraid features and a command line interface to ex-01.c

Let’s experiment with these options!

```
$ cd examples
$ make ex-01-expanded
$./ex-01-expanded -help

- ntime <ntime> : set num time points
- ml <max_levels> : set max levels
- nu <nrelax> : set num F-C relaxations
- nu0 <nrelax> : set num F-C relaxations on level 0
- tol <tol> : set stopping tolerance
- cf <cfactor> : set coarsening factor
- mi <max_iter> : set max iterations
- fmg : use FMG cycling
- res : use my residual
- tg <mydt> : use user-specified time grid
 1 - uniform time grid
 2 - nonuniform time grid
```
Examine the standard XBraid output

- **File:** examples/ex-01-expanded.c  **Solves:** $u_t = \lambda u$

Residual history is printed out, along with convergence factors and wall times

```
$./ex-01-expanded
Braid: Begin simulation, 10 time steps
Braid: || r_0 || not available, wall time = 1.81e-04
Braid: || r_1 || = 2.845538e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 8.621939e-04, conv factor = 3.03e-02, wall time = ...
Braid: || r_3 || = 0.000000e+00, conv factor = 0.00e+00, wall time = ...

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? = 0
storage = -1

stopping tolerance = 1.000000e-06
use relative tol? = 0
max iterations = 100
iterations = 4
residual norm = 0.000000e+00
 --> 2-norm TemporalNorm
```
Examine the standard XBraid output

- **File:** examples/ex-01-expanded.c  **Solves:** $u_t = \lambda u$

### Basic time domain information

```
$./ex-01-expanded
Braid: Begin simulation, 10 time steps
Braid: || r_0 || not available, wall time = 1.81e-04
Braid: || r_1 || = 2.845538e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 8.621939e-04, conv factor = 3.03e-02, wall time = ...
Braid: || r_3 || = 0.000000e+00, conv factor = 0.00e+00, wall time = ...
```

- start time = 0.000000e+00
- stop time  = 5.000000e+00
- time steps = 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>use seq soln?</td>
<td>0</td>
</tr>
<tr>
<td>storage</td>
<td>-1</td>
</tr>
<tr>
<td>stopping tolerance</td>
<td>1.000000e-06</td>
</tr>
<tr>
<td>use relative tol?</td>
<td>0</td>
</tr>
<tr>
<td>max iterations</td>
<td>100</td>
</tr>
<tr>
<td>iterations</td>
<td>4</td>
</tr>
<tr>
<td>residual norm</td>
<td>0.000000e+00</td>
</tr>
</tbody>
</table>

---

TemporalNorm

`-> 2-norm TemporalNorm`
Examine the standard XBraid output

- **File:** examples/ex-01-expanded.c  
  **Solves:** $u_t = \lambda u$

### Advanced options

```
$./ex-01-expanded
Braid: Begin simulation, 10 time steps
Braid: || r_0 || not available, wall time = 1.81e-04
Braid: || r_1 || = 2.845538e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 8.621939e-04, conv factor = 3.03e-02, wall time = ...
Braid: || r_3 || = 0.000000e+00, conv factor = 0.00e+00, wall time = ...

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? = 0
storage = -1

stopping tolerance = 1.000000e-06
use relative tol? = 0
max iterations = 100
iterations = 4
residual norm = 0.000000e+00
 --> 2-norm TemporalNorm
```
Examine the standard XBraid output

- **File**: examples/ex-01-expanded.c  
  **Solves**: \( u_t = \lambda u \)

Describe the XBraid options set for this run

```
$./ex-01-expanded
Braid: Begin simulation, 10 time steps
Braid: || r_0 || not available, wall time = ...
Braid: || r_1 || = 2.845538e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 8.621939e-04, conv factor = 3.03e-02, wall time = ...
Braid: || r_3 || = 0.000000e+00, conv factor = 0.00e+00, wall time = ...

start time = 0.000000e+00
stop time = 5.000000e+00
time steps = 10

use seq soln? = 0
storage = -1

stopping tolerance = 1.000000e-06
use relative tol? = 0
max iterations = 100
iterations = 4
residual norm = 0.000000e+00
 --> 2-norm TemporalNorm
```
Examine the standard XBraid output

- **File:** examples/ex-01-expanded.c  
  **Solves:** $u_t = \lambda u$

**Describe the XBraid options set for this run**

```
$./ex-01-expanded
 Braid: Begin simulation, 10 time steps
 ...

 use fmg? = 0
 access_level = 1
 print_level = 1

 max number of levels = 2
 min coarse = 2
 number of levels = 2
 skip down cycle = 1
 number of refinements = 0

 level time-pts cfactor nrelax
 0 10 2 1
 1 5

 wall time = ...
```
Examine the standard XBraid output

- **File:** examples/ex-01-expanded.c  
  **Solves:** $u_t = \lambda u$

**Describes the levels in the XBraid hierarchy**

```bash
$./ex-01-expanded
Braid: Begin simulation, 10 time steps
...

use fmg? = 0
access_level = 1
print_level = 1

max number of levels = 2
min coarse = 2
number of levels = 2
skip down cycle = 1
number of refinements = 0

<table>
<thead>
<tr>
<th>level</th>
<th>time-pts</th>
<th>cfactor</th>
<th>nrelax</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

wall time = ...
```
Increase number of time points

- File: examples/ex-01-expanded.c  Solves: $u_t = \lambda u$

Now, compare the effects of increasing the time domain size

$ ./ex-01-expanded -ntime 16$
Braid: Begin simulation, 16 time steps
Braid: || r_0 || not available, wall time = ...
Braid: || r_1 || = 2.851025e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 1.040035e-03, conv factor = 3.65e-02, wall time = ...
Braid: || r_3 || = 3.530338e-05, conv factor = 3.39e-02, wall time = ...
Braid: || r_4 || = 3.716892e-07, conv factor = 1.05e-02, wall time = ...
...

$ ./ex-01-expanded -ntime 128$
Braid: Begin simulation, 128 time steps
Braid: || r_0 || not available, wall time = ...
Braid: || r_1 || = 2.851112e-02, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 1.040035e-03, conv factor = 3.68e-02, wall time = ...
Braid: || r_3 || = 4.437913e-05, conv factor = 3.39e-02, wall time = ...
Braid: || r_4 || = 1.990483e-06, conv factor = 4.49e-02, wall time = ...
Braid: || r_5 || = 9.174722e-08, conv factor = 4.61e-02, wall time = ...
...
FCF-relaxation

- **File:** examples/ex-01-expanded.c  
  **Solves:** $u_t = \lambda u$

```
$./ex-01-expanded -ntime 128 -nu 0
 Braid: Begin simulation, 128 time steps
 Braid: || r_0 || not available, wall time = ...
 Braid: || r_1 || = 6.415003e-02, conv factor = 1.00e+00, wall time = ...
 Braid: || r_2 || = 5.312734e-03, conv factor = 8.28e-02, wall time = ...
 Braid: || r_3 || = 5.055060e-04, conv factor = 9.51e-02, wall time = ...
 Braid: || r_4 || = 5.101391e-05, conv factor = 1.01e-01, wall time = ...
 Braid: || r_5 || = 5.290607e-06, conv factor = 1.04e-01, wall time = ...
 Braid: || r_6 || = 5.570496e-07, conv factor = 1.05e-01, wall time = ...

$./ex-01-expanded -ntime 128 -nu 3
 Braid: Begin simulation, 128 time steps
 Braid: || r_0 || not available, wall time = ...
 Braid: || r_1 || = 5.631827e-03, conv factor = 1.00e+00, wall time = ...
 Braid: || r_2 || = 4.094709e-05, conv factor = 7.27e-03, wall time = ...
 Braid: || r_3 || = 3.420453e-07, conv factor = 8.35e-03, wall time = ...
```

Observe how changing the number of FCF-relaxations improves convergence.
Halting tolerance and max-iterations

- File: examples/ex-01-expanded.c  Solves: $u_t = \lambda u$

Observe how changing the tolerance and max-iter (-mi) parameters affect XBraid

```
$./ex-01-expanded -ntime 128 -tol 1e-3
...
iterations = 4
...

$./ex-01-expanded -ntime 128 -tol 1e-12
...
iterations = 10
...

$./ex-01-expanded -ntime 128 -tol 1e-12 -mi 3
...
iterations = 3
...```
Full multigrid cycles (FMG)

- File: examples/ex-01-expanded.c Solves: $u_t = \lambda u$

Now, use the fmg parameter and plot braid.out.cycle (file generated at runtime)

```bash
$ ./ex-01-expanded -ntime 32 -ml 15 -mi 4 -fmg
$ python ../user_utils/cycleplot.py
```

![XBraid Cycling](image)

This functionality can be used to adaptively refine in time (nested iteration)
Outline

1. Introduction
 → Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
 → Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
 → Debugging the connection to XBraid
 → Intrusiveness versus efficiency

5. A few application area highlights

Appendix: Advanced XBraid features
- Temporal adaptivity
- Shell-vectors and BDF-k
- Fortran90 Interface
- Residual and storage options
- Spatial coarsening
How to convert a user-code

- **File:** examples/ex-02*

 Solves: $u_t = -u_{xx}$

ex-02-serial.c

```c
/* Set up simulation */
t= 0.0; tstop= 2*PI; ...

/* Initialize u(t=0) */
get_solution(values, ...);

/* Loop over all time values */
for(step=1; step < ntime; step++){
    t = t + deltaT;
    take_step(values, t, ...);
}

/* Process result */
compute_error_norm(values, ...);
save_solution(fname, values, ...);
```

ex-02-lib.c

```c
/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)
void save_solution(...)

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)
void coarsen_1D(...)
```

```
$ex-02-serial -ntime 64 -nspace 17
```

x02.c

XBraid Driver

...
How to convert a user-code

- **File:** examples/ex-02*

Solves: $u_t = -u_{xx}$

ex-02-serial.c

```c
/* Set up simulation */
t = 0.0; tstop = 2*PI; ...

/* Initialize u(t=0) */
get_solution(values, ...);

/* Loop over all time values */
for(step=1; step < ntime; step++){
    t = t + deltaT;
    take_step(values, t, ...);
}

/* Process result */
compute_error_norm(values, ...);
save_solution(fname, values, ...);
```

ex-02-lib.c

```c
/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)
void save_solution(...)

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)
void coarsen_1D(...)
```

```
ex-02-serial -ntime 64 -nspace 17
ex-02-lib.c
```

ex-02.c

```
XBraid Driver...
```
How to convert a user-code

- File: examples/ex-02*

```c
/* Set up simulation */
t= 0.0; tstop= 2*PI; ...

/* Initialize u(t=0) */
get_solution(values, ...);

/* Loop over all time values */
for(step=1; step < ntime; step++){
    t = t + deltaT;
    take_step(values, t, ...);
}

/* Process result */
compute_error_norm(values, ...);
save_solution(fname, values, ...);
```

```c
$ex-02-serial -ntime 64 -nspace 17
```

Solves: $u_t = -u_{xx}$

```c
/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)
void save_solution(...)

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)
void coarsen_1D(...)
```

ex-02.c
XBraid Driver ...

How to convert a user-code

- **File:** examples/ex-02*

 Solve: \(u_t = -u_{xx} \)

```c
typedef struct _braid_App_struct
    MPI_Comm  comm;
    double    matrix[3];
...

typedef struct _braid_Vector_struct
    int     size;
    double *values;
...

typedef struct _braid_App_struct
    MPI_Comm  comm;
    double    matrix[3];
...
```

App structure holds time-independent data for stepping
How to convert a user-code

- **File:** examples/ex-02*

ex-02-lib.c

```c
/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)  
void save_solution(...)  

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)  
void coarsen_1D(...)  
```

ex-02.c

```c
typedef struct _braid_App_struct
  MPI_Comm  comm;
  double    matrix[3];
  ...

typedef struct _braid_Vector_struct
  int     size;
  double *values;

int my_Step(u, ...)
  take_step(u->values, ...);

int my_Access(u, ...)
  compute_error_norm(u->values, ...);
  save_solution(fname, u->values, ...);

int my_Init(u, ...)
  get_solution(u->values, ...);

main()
  braid_Core core; app = (my_App *) ...
  braid_Init(..., core);
  braid_Drive(core);
```

Solves: $u_t = -u_{xx}$

- Vector holds time-dependent data for stepping
How to convert a user-code

- **File:** examples/ex-02*
- **Solves:** $u_t = -u_{xx}$

ex-02-lib.c

```c
/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)
void save_solution(...)

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)
void coarsen_1D(...)
```

ex-02.c

```c
typedef struct _braid_App_struct
  MPI_Comm  comm;
  double    matrix[3];
...

typedef struct _braid_Vector_struct
  int     size;
  double *values;

int my_Step(u, ...)
take_step(u->values, ...);

int my_Access(u, ...)
compute_error_norm(u->values, ...);
save_solution(fname, u->values, ...);

int my_Init(u, ...)
get_solution(u->values, ...);

main()
  braid_Core core; app = (my_App *) ...
  braid_Init(..., core);
  braid_Drive(core);
```

ex-serial.c

Serial Driver ...

Various wrapper functions re-use library routines
How to convert a user-code

- **File:** examples/ex-02*

Solves: \(u_t = -u_{xx} \)

ex-02-lib.c

/* Common functions with XBraid */

/* Initialization routine */
void get_solution(...)

/* Helpers for take_step */
void solve_tridiag(...)
void matvec_tridiag(...)
void compute_stencil(...)

/* Core time-stepping routine */
void take_step(...)

/* Output Functions */
double compute_error_norm(...)
void save_solution(...)

/* XBraid specific spatial interpolation/coarsening */
void interpolate_1D(...)
void coarsen_1D(...)

ex-02.c

typedef struct _braid_App_struct
 MPI_Comm comm;
 double matrix[3];
...

typedef struct _braid_Vector_struct
 int size;
 double *values;

int my_Step(u, ...)
take_step(u->values, ...);

int my_Access(u, ...)
compute_error_norm(u->values, ...);
save_solution(fname, u->values, ...);

int my_Init(u, ...)
get_solution(u->values, ...);

main()
braid_Core core; app = (my_App *) ...
braid_Init(..., core);
braid_Drive(core);

Actually running XBraid is easy!
How to convert a user-code

- **File:** examples/ex-02*

 Solves: \(u_t = -u_{xx} \)

<table>
<thead>
<tr>
<th>ex-02-lib.c</th>
<th>ex-02.c</th>
</tr>
</thead>
</table>
| /* Common functions with XBraid */
| /* Initialization routine */
| void get_solution(...) |
| /* Helpers for take_step */
| void solve_tridiag(...) |
| void matvec_tridiag(...) |
| void compute_stencil(...) |
| /* Core time-stepping routine */
| void take_step(...) |
| /* Output Functions */
| double compute_error_norm(...) |
| void save_solution(...) |
| /* XBraid specific spatial interpolation/coarsening */
| void interpolate_1D(...) |
| void coarsen_1D(...) |

```c
typedef struct _braid_App_struct
    MPI_Comm    comm;
    double     matrix[3];
...
```

```c
typedef struct _braid_Vector_struct
    int      size;
    double *values;
...
```

```c
int my_Step(u, ...)
    take_step(u->values, ...);
...
```

```c
int my_Access(u, ...)
    compute_error_norm(u->values, ...);
    save_solution(fname, u->values, ...);
...
```

```c
int my_Init(u, ...)
    get_solution(u->values, ...);
...
```

```c
main()
    braid_Core core; app = (my_App *) ...
    braid_Init(..., core);
    braid_Drive(core);
```
How to debug your new code

- **File:** examples/ex-02.c
 Solves: \(u_t = -u_{xx} \)

<table>
<thead>
<tr>
<th>There is a test function for each wrapper, e.g., braid_TestInit()</th>
</tr>
</thead>
<tbody>
<tr>
<td>$./ex-02 -wrapper_tests</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Finished braid_TestAll: no fails detected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set <code>max-levels=1</code>. The answer should exactly match sequential time stepping.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$. ./ex-02 -ntime 64 -nspace 17 -ml 1</td>
</tr>
<tr>
<td>$ python viz-ex-02.py</td>
</tr>
<tr>
<td>(In reality, you’d want to check the agreement to 15 or 16 decimals)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continue with <code>max-levels=1</code>, but switch to multiple processors in time. Check that the answer again exactly matches sequential time stepping.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ mpirun -np 2 ex-02 -ntime 64 -nspace 17 -ml 1</td>
</tr>
<tr>
<td>$ python viz-ex-02.py</td>
</tr>
<tr>
<td>(In reality, you’d want to check the agreement to 15 or 16 decimals)</td>
</tr>
</tbody>
</table>
How to debug your new code

- File: examples/ex-02.c
 Solves: \(u_t = -u_{xx} \)

Check that XBraid is a fixed point method
Set `max-levels=2, tol=0.0, max-iter=3`, and initialize XBraid with the sequential solution

```
$ ./ex-02 -ntime 64 -nspace 17 -ml 2 -tol 0.0 -mi 3 -use_seq
Braid: || r_0 || = 0.000000e+00, conv factor = 1.00e+00, wall time = ...
Braid: || r_1 || = 0.000000e+00, conv factor = nan, wall time = ...
Braid: || r_2 || = 0.000000e+00, conv factor = nan, wall time = ...
Braid: || r_3 || = 0.000000e+00, conv factor = nan, wall time = ...
Braid: || r_4 || = 0.000000e+00, conv factor = nan, wall time = ...
```
How to debug your new code

- **File:** examples/ex-02.c
 Solves: $u_t = -u_{xx}$

Turn on debug-level printing and check that the exact solution is propagating

With FCF-relaxation, the exact solution propagates forward 2 C-points each iter

```plaintext
$./ex-02 -ntime 8 -nspace 17 -mi 3 -print_level 2
Braid: time step:  0, rnorm:  0.00e+00
Braid: time step:  2, rnorm:  0.00e+00
Braid: time step:  4, rnorm:  6.86e-01
Braid: time step:  6, rnorm:  1.10e+00
Braid: time step:  8, rnorm:  2.04e-02
Braid: || r_0 || = 1.292837e+00, conv factor = 1.00e+00, wall time = ...
Braid: time step:  0, rnorm:  0.00e+00
Braid: time step:  2, rnorm:  0.00e+00
Braid: time step:  4, rnorm:  0.00e+00
Braid: time step:  6, rnorm:  0.00e+00
Braid: time step:  8, rnorm:  1.62e-02
...
```

Then, run some larger, multilevel tests of XBraid, checking that the sequential and time-parallel versions agree to within the halting tolerance
Intrusiveness versus efficiency

- The more intrusive XBraid is allowed to be, the more efficient it is
 - **Residual option**: computing the residual with a naive implementation of XBraid is as expensive in FLOPs as sequential time stepping. Writing this extra function allows you to avoid this for implicit schemes.
 - This function also allows relaxation to be significantly less expensive
 - **Adaptivity**: constructing the correct adaptive space-time grid is active research
 - For instance a development branch is currently using threshold refinement across the temporal communicator to choose time intervals to refine
 - **Storage**: requires a little extra coding, i.e., a new initial guess for implicit scheme
 - **Level-dependent time-stepper**: how to change `Step()` on coarse-levels is problem dependent, but almost always yields big benefits, e.g., vary the tolerance
 - **Spatial coarsening**: this can affect convergence, but is required for an $O(N)$ method in both time and space
 - **Stephanie Friedhoff’s talk** covers this in more detail, e.g., results from taking a naive XBraid implementation and moving to an STMG (space-time MG) method
Outline

1. Introduction
 → Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
 → Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
 → Debugging the connection to XBraid
 → Intrusiveness versus efficiency

5. A few application area highlights

Appendix: Advanced XBraid features
• Temporal adaptivity
• Shell-vectors and BDF-k
• Fortran90 Interface
• Residual and storage options
• Spatial coarsening
Experiments coupling our code XBraid with various application research codes

- Navier-Stokes (compressible and incompressible)
 - Strand2D, CarT3D, LifeV (Trilinos-based)

- Heat equation (including moving mesh example)
 - MFEM, hypre

- Nonlinear diffusion, the p-Laplacian
 - MFEM

- Power-grid simulations (project just starting)
 - GridDyn

- Explicit time-stepping coupled with space-time coarsening
 - Heat equation
 - Advection plus artificial dissipation
 - MFEM, hypre
Compressible Navier-Stokes (nonlinear) – speedups to 7.5x with typical MG scaling

- Coupled XBraid with existing code Strand2D (DoD project)
 - ~500 lines of XBraid wrapper code plus minor changes to Strand2D
 - ~3 weeks with minimal outside help

- Plots of velocity magnitude at time step 5120
Compressible Navier-Stokes with Cart3D – convergence is very fast, ~5 iterations

- Taylor-Green problem: turbulent decay of vortex, \(Re=1600 \)
 - Higher-order spatial discretization on \(58^3 \times 20,000 \) cartesian grid
- Plot velocity magnitude at \(x=0 \) cross-section
Strong scaling for heat equation

- XBraid uses V-cycles and FCF-relaxation
- Excellent strong scaling, until parallelism is exhausted

257^2 \times 16384 \text{ space-time grid}
Max speedup is 52
Cross-over at \approx 32 \text{ cores}
The \(p \)-Laplacian: nonlinear diffusion

- Solve \(u_t = \nabla \cdot (|\nabla u|^{p-2}\nabla u) \)
- 2D linear finite elements
 - 16K x 20K space-time problem
 - Backward Euler (Newton’s method)
- Current results
 - Crossover at ~40 processors in time
 - Speedup of 18x at 130K cores
- Important parameters for performance
 - Full storage and space-time coarsening
 - Adjusting the Newton tolerance for the early iterations

Initial speedups for power-grid

- Simulate 4 generators (30 unknowns) for 30s with 30K time steps

<table>
<thead>
<tr>
<th></th>
<th>Sequential</th>
<th>128 cores</th>
<th>256 cores</th>
<th>512 cores</th>
<th>1024 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit RK4</td>
<td>227s</td>
<td>144s</td>
<td>113s</td>
<td>102s</td>
<td>105s</td>
</tr>
<tr>
<td>BDF-4</td>
<td>12.4s</td>
<td>13.6s</td>
<td>9.46s</td>
<td>7.73s</td>
<td>7.30s</td>
</tr>
</tbody>
</table>

- XBraid is designed for one-step methods, so we make BDF-\(k\) “one-step” by grouping \(k\) time-steps together
 - Creates non-uniform time-step sizes on coarse grids and stability issues for \(\Phi\)

Solution: reduce the BDF order on coarse levels
Explicit methods with MFEM

- 2D advection $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

- Sequential Time Stepping
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
Explicit methods with MFEM

- 2D advection $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
- Parallel-in-time solution
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy
Explicit methods with MFEM

- 2D advection $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
- Parallel-in-time solution
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy
Explicit methods with MFEM

- 2D advection \(u_t = b(x) \cdot \nabla u + \gamma \Delta u \)
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
- Parallel-in-time solution
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy
Explicit methods with MFEM

- 2D advection $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
- Parallel-in-time solution
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy

Iteration 15
Explicit methods with MFEM

- 2D advection $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001

- Parallel-in-time solution
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy
Explicit methods with MFEM

- **2D advection** $u_t = b(x) \cdot \nabla u + \gamma \Delta u$
 - Stability determined by convection (convection dominated)
 - Diffusion term 0.001
- **Parallel-in-time solution**
 - Sharp profile is transported over 1100 time steps
 - 3rd order explicit method
 - 3-level XBraid hierarchy
- **Future Work**: Improve convergence (relaxation, coarse-grid equations)
Moving mesh

- 1D space moving mesh proof-of-concept

- Mesh points move towards regions with a rapidly changing solution

- Fast convergence and scalable iteration counts

- More complicated moving mesh problems coming...
Temporal adaptivity proof-of-concept

- Classic ODE modeling satellite orbit around earth and moon (2 variables in space, x and y)
- One region of orbit requires very fine time steps
 - Carry out 4 periods of orbit, refining step size as needed
Nearly 50 years of research exists, but has only scratched the surface

- **Earliest work** goes back to 1964 by Nievergelt
 - Led to multiple shooting methods, Keller (1968)

- **Space-time multigrid** methods for parabolic problems
 - The latter is one of the first **optimal & fully parallelizable** methods to date

- **Parareal** was introduced by Lions, Maday, and Turincini in 2001
 - Probably the most widely studied method
 - Gander and Vandewalle (2007) show that parareal is two-level FAS multigrid

- **Discretization specific** work includes
 - DeSterck, Manteuffel, McCormick, Olson (2004, 2006) – FOSLS

- **Research on these methods is ramping up!**
 - Ruprecht, Krause, Speck, Emmett, Langer, … **this is not an exhaustive list**
Summary and conclusions

- Sequential time integration bottleneck is real
 - Parallel in time is needed for future architectures
 - This is a major paradigm shift

- XBraid applies multigrid reduction to the time dimension
 - Multigrid is ideal for exascale (optimal, resilient, ...)
 - Result is a flexible and non-intrusive approach

- The more intrusive XBraid is allowed to be, the more efficient the algorithm is.

- There is much future work to be done!
 - More problem types, more complicated discretizations, performance improvements, adaptive meshing, ...
Thank You! Any Questions?

Open Source XBraid Code
- http://llnl.gov/casc/xbraid
- Supports C, C++, F90

Our Team

Veselin Dobrev
Rob Falgout
Matthieu Lecouvez
Tzanio Kolev
Anders Petersson
Jacob Schroder
Ulrike Yang

Collaborators and summer interns
CU Boulder (Manteuffel, McCormick, O’Neill, Southworth), Memorial University (MacLachlan), U Cologne (Friedhoff), U Stuttgart (Hessenthaler), Monash U (De Sterck)
Outline

1. Introduction
 → Tutorial software requirements and XBraid overview

2. Simplest example of solving a scalar ODE with examples/ex-01
 → Defining the App and vector structures, writing wrapper functions, running XBraid

3. Explore more XBraid settings in examples/ex-01-expanded.c

4. Porting a user-code to XBraid with examples/ex-02
 → Debugging the connection to XBraid
 → Intrusiveness versus efficiency

5. A few application area highlights

Appendix: Advanced XBraid features

- Temporal adaptivity
- Shell-vectors and BDF-k
- Fortran90 Interface

- Residual and storage options
- Spatial coarsening
Advanced feature: FMG allows for adaptivity in time and space

- User returns refinement factor in `Step()`
- Example time grid hierarchy

 ![Diagram of time grid hierarchy](image)

 - `C-point (coarse grid)`
 - `F-point`

- User requests refinement factors on the finest grid which generates a new grid and hierarchy

 ![Diagram of hierarchical grid refinement](image)

 Notice new `C-pts`
Advanced feature: adaptivity in time

- **File:** examples/ex-03.c

 Solves: \(u_t = -u_{xx} - u_{yy} \)

- This simple example carries out naive pre-specified refinements
- `braid_StepStatusSetRFactor(status, k)` refines an interval \(k \) times

 - Called from inside of `Step()`

```bash
$ make ex-03
$ ./ex-03 -nt 128 -nx 9 9 -mi 4 -refine
  Braid: Begin simulation, 128 time steps
  Braid: \| r_0 \| not available, wall time = ...
  Braid: \| r_1 \| = 5.002967e-01, conv factor = 1.00e+00, wall time = ...
  Braid: Temporal refinement occurred, 242 time steps

  Braid: \| r_1 \| = 2.810253e-02, conv factor = 1.00e+00, wall time = ...
  Braid: Temporal refinement occurred, 390 time steps

  Braid: \| r_1 \| = 3.136143e-03, conv factor = 1.00e+00, wall time = ...
  Braid: Temporal refinement occurred, 583 time steps

  Braid: \| r_1 \| = 1.197026e-03, conv factor = 1.00e+00, wall time = ...
  Braid: \| r_2 \| = 1.558192e-04, conv factor = 1.30e-01, wall time = ...
  Braid: \| r_3 \| = 1.623626e-05, conv factor = 1.04e-01, wall time = ...
```
Advanced feature: adaptivity in time

- File: examples/ex-03.c
 Solves: $u_t = -u_{xx} - u_{yy}$

- Now, visualize the cycling
- Observe how the new levels (and time-points) are added
- This causes an uneven reduction in the residual

$\$ python ./user_utils/cycleplot.py

Refinement here is with a V-cycle. But can also be done with FMG cycles.
Advanced feature: residual function

- **File:** `examples/ex-01-expanded.c`
 Solves: $u_t = \lambda u$

Observe how turning on the residual function changes convergence

```
$. /ex-01-expanded -ntime 128 -res
...
iterations = 7

$. /ex-01-expanded -ntime 128
...
iterations = 6
```

- **File:** `examples/ex-03.c`
 Solves: $u_t = -u_{xx} - u_{yy}$

```
$ make ex-03
$ . /ex-03 -res -nt 128 -nx 9 9 -mi 4
  Braid: || r_1 || = 5.231464e-01, conv factor = 1.00e+00, wall time = ...
  Braid: || r_2 || = 6.067546e-02, conv factor = 1.16e-01, wall time = ...

$ . /ex-03 -nt 128 -nx 9 9 -mi 4
  Braid: || r_1 || = 5.002967e-01, conv factor = 1.00e+00, wall time = ...
  Braid: || r_2 || = 2.701758e-02, conv factor = 5.40e-02, wall time = ...
```
Understanding the residual feature

- **XBraid** computes the FAS residual in a block-row fashion for the space-time system

\[A_i(u_i, u_{i-1}) = f_i \]

- Consider, for example, the common additive form of a user residual:

User specifies this \[A_i(u_i, u_{i-1}) = -\Phi(u_{i-1}) + \Psi(u_i) \]

FAS residual computed internally \[r_i = f_i + \Phi(u_{i-1}) - \Psi(u_i) \]

- **Default setting**: \(\text{Step}() = \Phi(u_i) \) and \(\Psi = I \)
 - XBraid can compute the rest of the residual on its own

- **Residual setting**: user defines a new function \(\text{Residual}(u_i, u_{i-1}) = A_i(u_i, u_{i-1}) \)
 - This function defines the equation to be solved, implying that \(\text{Step}() \) must be compatible.
 - \(\text{Step}() \) must now compute \(u_i = \Psi^{-1}(f_i + \Phi(u_{i-1}) \)
 - Notice how \(\text{Step}() \) must now account for \(f_i \), that is, \(f_{\text{stop}} \) in \(\text{Step}() \) is no longer NULL!

- **Computational savings**: consider the heat equation and backward Euler
 - **Default**: \(\text{Step}() \) implements \(\Phi \), a full implicit solve for an accurate residual
 - **Residual**: \(\text{Step}() \) implements a very weak inexact solve (only used for relaxation)
 \(\text{Residual()} \) uses \(\Phi = I \) and \(\Psi \) is just a sparse matrix (very cheap!)
Advanced feature: shell-vectors & BDF-k

- File: examples/ex-01-expanded-bdf2.c Solves: $u_t = \lambda u$

- XBraid is designed for one-step methods. This is the standard way to partition the time-line.

$$
\begin{align*}
&T_0 \quad T_1 \\
&t_0 \quad t_1 \quad t_2 \quad t_3 \ldots
\end{align*}
$$

F-point

C-point
Advanced feature: shell-vectors & BDF-k

- File: examples/ex-01-expanded-bdf2.c Solves: $u_t = \lambda u$

- XBraid is designed for one-step methods. The new way to partition so that BDF-k looks “one-step” is to group k time-steps together (here, $k = 2$).

- Creates non-uniform time-step sizes on coarse grids

- The shell-vector feature allows for the storage of meta-data at every time point, including F-points that are otherwise not stored.
 - This meta-data allows for tracking the irregular time-grid spacing

- Other BDF-k strategies, like reducing order on coarse-grids, are possible

- To use the shell option, you must define new shell functions for allocating, copying, and freeing vector shells

\[T_0 \quad T_1 \]
\[t_0 \quad t_1 \quad t_2 \quad t_3 \ldots \]

\[F\text{-point} \quad | \quad C\text{-point} \]
Advanced feature: extra storage

- File: examples/ex-03.c

 Solves: \(u_t = -u_{xx} - u_{yy} \)

 - Set a storage value \(k \) (default is -1)
 - For level \(\geq k \geq 0 \), store all points; for level \(< k \), store only C-points
 - \(k = 0 \) storage at all points on all levels
 - \(k = -1 \) special value, storage only at C-points on all levels

- The extra storage critically gives improved initial guesses to implicit solvers
- The extra storage changes the problem being solved
 - The operator \(\Phi \) changes as the initial guess changes

- Look at the residual histories with

 \[
 \begin{pmatrix}
 I \\
 -\Phi & I \\
 & & \ddots & \ddots \\
 & & & -\Phi & I
 \end{pmatrix}
 \begin{pmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_N
 \end{pmatrix}
 =
 \begin{pmatrix}
 g_0 \\
 g_1 \\
 \vdots \\
 g_N
 \end{pmatrix}
 \]

 $ make ex-03$
 $./ex-03 -nx 17 17 -nt 128 -storage -1$
 $./ex-03 -nx 17 17 -nt 128 -storage 0$
 $./ex-03 -nx 17 17 -nt 128 -storage 1$
Advanced feature: skip option

- File: examples/ex-03.c
- Solves: $u_t = -u_{xx} - u_{yy}$

- Skip allows XBraid to skip (typically useless) relaxations on the 1st down cycle
 - By default, skip is turned on
- Compare the residual histories for

```
$ ./ex-03 -nx 17 17 -nt 128 -skip 1
$ ./ex-03 -nx 17 17 -nt 128 -skip 0
```
Advanced feature: parallel-run

- **File:** examples/ex-03.c
 Solves: \(u_t = -u_{xx} - u_{yy} \)

Run in parallel!

```
$./mpirun -np 8 ex-03 -pgrid 2 2 2 -nt 256 -nx 17 17
Braid: || r_0 || not available, wall time = ...
Braid: || r_1 || = 6.166798e-01, conv factor = 1.00e+00, wall time = ...
Braid: || r_2 || = 2.319985e-02, conv factor = 3.76e-02, wall time = ...
Braid: || r_3 || = 6.972052e-04, conv factor = 3.01e-02, wall time = ...
Braid: || r_4 || = 1.135286e-05, conv factor = 1.63e-02, wall time = ...
...```
Advanced feature: spatial coarsening

- **File:** examples/ex-02.c
- **Solves:** $u_t = -u_{xx}$

Here, we use simple bilinear interpolation (and its transpose) for spatial coarsening

```bash
./ex-02 -ntime 64 -nspace 17 -ml 3 -sc
Braid: || r_0 || = 2.935397e+00, conv factor = 1.00e+00, wall time = ...
Braid: || r_1 || = 1.483600e-01, conv factor = 5.05e-02, wall time = ...
Braid: || r_2 || = 3.884625e-03, conv factor = 2.62e-02, wall time = ...
Braid: || r_3 || = 1.315185e-04, conv factor = 3.39e-02, wall time = ...
```

### Level Grid

<table>
<thead>
<tr>
<th>level</th>
<th>dx</th>
<th>dt</th>
<th>dt/dx^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.96e-01</td>
<td>9.82e-02</td>
<td>2.55e+00</td>
</tr>
<tr>
<td>1</td>
<td>3.93e-01</td>
<td>1.96e-01</td>
<td>1.27e+00</td>
</tr>
<tr>
<td>2</td>
<td>7.85e-01</td>
<td>3.93e-01</td>
<td>6.37e-01</td>
</tr>
</tbody>
</table>

Spatial coarsening is active research and can (sometimes) negatively impact convergence.
Advanced feature: coarsening factor

- File: examples/ex-02.c

- Solves: $u_t = -u_{xx}$

- Changing the coarsening factor does not change convergence (much)
- This powerful fact applies to parabolic problems in general
  - Allows for a great deal of performance tuning
  - Requires that FCF-relaxation or F-cycles be used

```bash
$./ex-02 -ntime 1024 -nspace 128 -cf 16 -ml 10
...
iterations = 7

$./ex-02 -ntime 1024 -nspace 128 -cf 2 -ml 10
...
iterations = 8
```
Fortran90 interface

- File: examples/ex-01-expanded-f.f90  Solves: $u_t = \lambda u$

Uses Fortran90 modules to define the App and Vector Types

```fortran
module braid_types

 type my_vector
 double precision val
 end type my_vector

...```

User-defined wrapper functions are the same, only written in Fortran90

```fortran
subroutine braid_Sum_F90(app, alpha, x, beta, y)
    ! Braid types
    use braid_types
    implicit none
    type(my_vector) :: x, y
    type(my_app) :: app

    double precision alpha, beta
    y%val = alpha*(x%val) + beta*(y%val)
end subroutine braid_Sum_F90
```