Solvers
We’re developing algorithms and software to enable the scalable solution of equations central to large-scale science simulations. Our research involves developing new mathematics and computing techniques, with a major focus on methods (e.g., multilevel methods) suitable for the next generation of extreme-scale supercomputers. View content related to Solvers.
Podcast: optimizing math libraries to prepare applications for exascale computing
LLNL’s Virtual Beam Line ++ now available to users
SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers
SUNDIALS is a SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. It consists of the following six solvers: CVODE, solves initial value problems for ordinary differential equation (ODE) systems; CVODES, solves ODE systems and includes sensitivity analysis capabilities (forward and adjoint); ARKODE, solves initial value ODE problems with additive Runge-Kutta methods, include support for IMEX methods; IDA, solves initial value problems for differential-algebraic equation (DAE) systems; IDAS, solves DAE systems and includes sensitivity analysis capabilities (forward and adjoint); KINSOL, solves nonlinear algebraic systems.
Carol Woodward helps scientists solve diverse challenges
CASC researcher Carol Woodward consults on a diverse array of projects at the Laboratory and beyond. “It’s nice because it means I can work at the same place and not be stuck just doing one thing,” she says.
HYPRE: Scalable Linear Solvers and Multigrid Methods
Livermore’s hypre library of solvers makes larger, more detailed simulations possible by solving problems faster than ever before. It offers one of the most comprehensive suites of scalable parallel linear solvers available for large-scale scientific simulation.
