
Are Multiple Runs of Genetic Algorithms Better
than One?

Erick Cantú-Paz1 and David E. Goldberg2

1 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
7000 East Avenue, Livermore, CA 94550

cantupaz@llnl.gov
2 Department of General Engineering

University of Illinois at Urbana-Champaign
104 S. Mathews Avenue Urbana, IL 61801

deg@uiuc.edu

Abstract. There are conflicting reports over whether multiple indepen-
dent runs of genetic algorithms (GAs) with small populations can reach
solutions of higher quality or can find acceptable solutions faster than
a single run with a large population. This paper investigates this ques-
tion analytically using two approaches. First, the analysis assumes that
there is a certain fixed amount of computational resources available, and
identifies the conditions under which it is advantageous to use multiple
small runs. The second approach does not constrain the total cost and
examines whether multiple properly-sized independent runs can reach
the optimal solution faster than a single run. Although this paper is lim-
ited to additively-separable functions, it may be applicable to the larger
class of nearly decomposable functions of interest to many GA users. The
results suggest that, in most cases under the constant cost constraint, a
single run with the largest population possible reaches a better solution
than multiple independent runs. Similarly, a single large run reaches the
global faster than multiple small runs. The findings are validated with
experiments on functions of varying difficulty.

1 Introduction

Suppose that we are given a fixed number of function evaluations to solve a
particular problem with a genetic algorithm (GA). How should we use these
evaluations to maximize the expected quality of the solution? One possibility
would be to use all the evaluations in a single run of the GA with the largest
population possible. This approach seems plausible, because it is well known
that, in general, the solution quality improves with larger populations. Alterna-
tively, we could use a smaller population and run the GA multiple times, keeping
the best solution found by the different runs. Although the quality per run is
expected to decrease, we would have more chances of reaching a good solution.

This paper examines the tradeoff between increasing the likelihood of success
of a single run vs. using more trials to reach the goal. The first objective is to

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 801–812, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: ¡M RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile (¡M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

802 E. Cantú-Paz and D.E. Goldberg

determine what configuration reaches solutions with the highest quality. The pa-
per also examines the question of single vs. multiple runs removing the constant
cost constraint. The objective in this case is to determine what configuration
reaches the solution faster.

It would be desirable to find that multiple runs are advantageous, because
they could be executed concurrently on different processors. Multiple indepen-
dent runs are a special case of island-model parallel GAs, and have been studied
in that context before with conflicting and controversial results [1,2,3,4,5]. Some
results suggest that multiple runs can reach solutions of similar or better quality
than a single run in a shorter time, which implies that superlinear speedups are
possible.

Most of the previous work on this topic has been experimental, which makes
it difficult to identify the problem characteristics that give an advantage to
multiple runs. Instead of trying to analyze experimental results from a set of
arbitrarily-chosen problems, we use simple mathematical models and consider
only additively separable functions. The paper clearly shows when one approach
can be superior, and reveals that, for the functions considered, multiple runs are
preferable only in conditions of limited practical value.

The paper also considers the extreme case when multiple runs with a single
individual—which are equivalent to random search—are better in terms of ex-
pected solution quality than a single GA. Although it is known than in some
problems random search must be better than GAs [6], it is not clear on what
problems this occurs. This paper sheds some light on this topic.

The next section summarizes related work on this area. The gambler’s ruin
(GR) model [7] is summarized in section 3 and extended to multiple independent
runs in section 4. Section 5 presents experiments that validate the accuracy of
the models. Section 6 lifts the total cost constraint and discusses multiple short
runs. Finally, section 7 presents a summary and the conclusions.

2 Related Work

Since multiple runs can be executed in parallel, they have been considered by
researchers working with parallel GAs. Tanese [1] found that, in some problems,
the best overall solution found in any generation by multiple isolated populations
was at least as good as the solution found by a single run. Similarly, multiple
populations showed an advantage when she compared the best individual in the
final generation. However, when she compared the average population quality at
the end of the experiments, the single runs seemed beneficial.

Other studies also suggest that multiple isolated runs can be advantageous.
For example, Shonkwiler [2] used a Markov chain model to argue that multiple
small independent GAs can reach the global solution using fewer function eval-
uations than a single GA. He suggested that superlinear parallel speedups are
possible if the populations are executed concurrently on a parallel computer.

Nakano, Davidor, and Yamada [8] proved that, under the fixed cost con-
straint, there is an optimal population size and corresponding run count that

Are Multiple Runs of Genetic Algorithms Better than One? 803

maximizes the chances of reaching a solution of certain quality, if the single-run
success probability increases with larger populations until it reaches a saturation
point (less than 1). The method used in the current paper can be used to find
this optimum, but a numerical optimization would be required, because efforts
to characterize the optimal configuration in closed form have been unsuccessful.

Cantú-Paz and Goldberg [3] compared multiple isolated runs against a single
run that reaches a solution of the same expected quality. They determined that—
even without a fixed time constraint—the savings on execution time seemed
marginal when compared against a single GA, and recommended against using
isolated runs. The findings in the present paper, however, show that with the
cost constraint there are some cases where multiple runs are advantageous.

Recently, Fuchs [4] and Fernández et al. [5] studied empirically multiple iso-
lated runs of genetic programming. They found that in some cases it is advanta-
geous to use multiple small runs. Luke [9] studied the tradeoff between executing
a single run for many generations or using multiple shorter runs to find solutions
of higher quality given a fixed amount of time. In two out of three problems, his
experiments showed that multiple short runs were preferable.

There have been several attempts to characterize the problems in which GAs
perform better than other methods [10,11]. However, without relating the per-
formance of the algorithms to properties of the problems it is difficult to make
predictions and recommendations for unseen problems, even if they belong to
the same class. This paper identifies cases where random search reaches better
solutions based on properties that describe the difficulty of the problems.

3 The Gambler’s Ruin Model

It is common in GAs to encode the variables of the problem using a finite alpha-
bet Σ. A schema is a string over Σ ∪ {∗} that represents the set of individuals
that have a fixed symbol F ∈ Σ in exactly the same positions as the schema.
The ∗ is a “don’t care” symbol that matches anything. For example, in a domain
that uses 10-bit binary strings, the individuals that start with 1 and have a 0 in
the second position are represented by the schema 10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗.

The number k of fixed positions in a schema is its order. Low-order highly-fit
schemata are sometimes called building blocks (BBs) [12]. Following Harik et
al. [7], we refer to the lowest-order schema that consistently leads to the global
optimum as the correct BB. In this view, the correct BB must (1) match the
global optimum and (2) have the highest average fitness of all the schemata in
the same partition. All other schemata in the partition are labeled as incorrect.

Harik, Cantú-Paz, Goldberg, and Miller [7] modeled selection in GAs as a
biased random walk. The number of copies of the correct BB in a population
of size n is represented by the position, x, of a particle on a one-dimensional
space. Absorbing barriers at x = 0 and x = n bound the space, and represent
ultimate convergence to the wrong and to the right solutions, respectively. The
initial position of the particle, x0, is the number of copies of the correct BB in
the initial population.

804 E. Cantú-Paz and D.E. Goldberg

At each step of the random walk there is a probability, p, of obtaining one
additional copy of the correct BB. This probability depends on the problem that
the GA is facing, and Goldberg et al. [13] showed how to calculate it for functions
composed of m uniformly-scaled subfunctions. The probability that a particle
will eventually be captured by the absorbing barrier at x = n is [14]

Pbb(x0, n) =
1 −

(
q
p

)x0

1 −
(

q
p

)n (1)

where q = 1 − p. Therefore, the expected probability of success is

Ps(n) =
n∑

x0=0

P0(x0) · Pbb(x0, n), (2)

where P0(x0) =
(

n
x0

) (
1

χk

)x0
(
1 − 1

χk

)n−x0

is the probability of having exactly
x0 correct BBs in the initial population, and χ = |Σ| is the cardinality of Σ.

The GR model makes several assumptions, but it has been shown that it
accurately predicts the solution quality of artificial and real-world problems [7,
15]. For details, the reader is referred to the paper by Harik et al. [7], but one as-
sumption affects the experiments in this paper: Having absorbing walls bounding
the random walk implicitly assumes that mutation and crossover do not create
or destroy BBs. The only source of BBs is the random initialization of the pop-
ulation. This is why the experiments described below do not use mutation.

4 Multiple Small Runs

We measure the quality, Q, of the solution as the number of partitions that
converge to the correct BBs. The probability that one partition converges cor-
rectly is given by the GR model, Ps(n) (Equation 2). For convenience, we use
P1 = Ps(n1) to denote the probability that a partition converges correctly in one
run with population size n1 and Pr = Ps(nr) for the probability that a partition
converges correctly in one of the multiple runs with a population size nr.

4.1 Solution Quality

Under the assumption that the m partitions are independent, the quality has
a binomial distribution with parameters m and Ps(n). Therefore, the expected
solution quality of a single run is E(Q) = mPs(n). Of course, some runs will
reach better solutions than others, and when we use multiple runs we consider
that the problem is solved when one of them finds a solution of the desired
quality. Let Qr:r denote the quality of the best solution found by r runs of size
nr. We are interested in its expected value, which can be calculated as [16]

E(Qr:r) =
m−1∑
x=0

1 − F r(x), (3)

Are Multiple Runs of Genetic Algorithms Better than One? 805

where F (x) = P (Q ≤ x) =
∑x

j=0

(
m
j

)
P j

r (1 − Pr)m−j is the cumulative distri-
bution function of the solution quality. Unfortunately, there is no closed-form
expression for the means of maximal order statistics of binomial distributions.
However, there are approximations for the extreme order statistics of the Gaus-
sian distribution, and we can use them to make some progress in our analysis.
We can approximate the binomial distribution of the quality with a Gaussian,
and normalize the number of correct partitions by subtracting the mean and di-
viding by the standard deviation: Zr:r = Qr:r−mPr√

mPr(1−Pr)
. Let µr:r = E(Zr:r) denote

the expected value of Zr:r. We can approximate the expected value of the best
quality in r runs as

E(Qr:r) ≈ mPr + µr:r
√

mPr(1 − Pr). (4)

If there are no restrictions on the total cost, adding more runs to an experiment
results in a higher quality. The problem is that µr:r increases very slowly as more
runs are used: µr:r ≈

√√
2 ln r. Therefore, the increase in quality is marginal,

and multiple isolated runs seem unappealing [20].
However, the situation may be different if the total cost is constrained. Equa-

tion 4 shows an interesting tradeoff: µr:r grows as r increases, but Pr decreases
because the population size per run must decrease to keep the cost constant. Mul-
tiple runs would perform better than a single one if the quality degradation is not
too pronounced. In fact, the tradeoff suggests that there is an optimal number
of runs and population size that maximize the expected quality. Unfortunately,
we cannot obtain a closed-form expression for these optimal parameters.

The quality reached by multiple runs is better than one run if

mPr + µr:rσr > mP1, (5)

where σr =
√

mPr(1 − Pr). We can bound the standard deviation as σr =
0.5

√
m to obtain an upper bound on the quality of the multiple runs. Substituting

this bound into the inequality above, dividing by m, and rearranging we obtain
µr:r

2
√

m
> P1 − Pr. (6)

This equation shows that multiple runs are more likely to be beneficial on short
problems (small m), everything else being equal. This is bad news for the case
of multiple runs, because interesting problems in practice may be very long.

The equation above also shows that multiple runs can be advantageous if the
difference between the solution qualities is small. This may happen at very small
population sizes where the quality is very poor, even for a single run. This case
is not very interesting, because normally we want to find high-quality solutions.
However, the difference is also small when the quality does not improve much
after a critical population size. This is the case that Nakano et al. [8] examined,
and represents an interesting possibility where multiple runs can be beneficial.
The optimum population size is probably near the point where there is no further
improvement: Using a larger population would be a waste of resources, which
would be better used in multiple runs to increase the chance of success.

806 E. Cantú-Paz and D.E. Goldberg

4.2 Models of Convergence Time

We can write the fixed number of function evaluations that are available as

T = rgnr, (7)

where g is the domain-dependent number of generations until the population
converges to a unique value, r is the number of independent runs, and nr is the
population size of each run. GAs are often stopped after a fixed number of gener-
ations, with the assumption that they have converged by then. In the remainder
we assume that the generations until convergence are constant. Therefore, to
maintain a fixed total cost, the population size of each of the multiple runs must
be nr = n1/r, where n1 denotes the population size that a single run would use.

Assuming that g is constant may be an oversimplification, since it has been
shown that the convergence time depends on factors such as the population size
and the selection intensity, I. For example, under some conditions, the genera-
tions until convergence are given by g ≈ π

2

√
n

I [17]. In general, if the generations
until convergence are given by the power-law model g = κnθ, the population size
of each of the multiple runs would have to be nr = n1/r1/(θ+1) to keep the total
cost constant (e.g., in the previous equation, θ = 1/2 and nr would be n1/r2/3).
This form of nr would give an advantage to the multiple runs, because their
sizes (and the quality of their solutions) would not decrease as much as with the
constant g assumption, so this assumption is a conservative one.

4.3 Random Search

Using all the available computation time in one run with a large population
is clearly one extreme. The other extreme are multiple runs with the smallest
population, which is one individual. The latter case is equivalent to random
search, because there is no evolution possible (we are assuming no mutation).
The models above account for the two extreme cases. When the population size
is one, Pr = 1

χk , because only one term in equation 2 is different from zero. The
quality of the best solution found by r runs of size one can be calculated with
equation 3.1

To identify when random search can outperform a GA, we calculated the
expected solution quality using equation 3 varying the order of the BBs, k, and
the number of runs. The next section will define the functions used in these
calculations; for now we only need to know that k varied. Figure 1 shows the
ratio of the quality obtained by random search over the quality found by a
simple GA with a population size of n1 = r. Values over 1 indicate that multiple
runs perform better. The figure shows that random search has an advantage as
the problems become harder (with longer BBs). However, this peculiar behavior
occurs only at extremely low population sizes, where the solution quality is so low
1 Taking Qr:r = m[1− (1− 1

χk)r] may seem tempting, but it greatly overestimates the
true quality. This calculation implicitly assumes that the final solution is formed by
correct BBs that may have been obtained in different runs.

Are Multiple Runs of Genetic Algorithms Better than One? 807

5

10

15
runs

3

4

5

6

7

8

k
0

0.5
1

1.5
2

Qr/Q1

5

10

15
runs

(a) Theory

5

10

15

runs

3

4

5

6

7

8

k

1

1.5

2

Qr/Q1

5

10

15

runs

(b) Experiments

Fig. 1. Ratio of the quality of multiple runs of size 1 (random search) vs. a single run
varying the order of the BBs and the number of runs.

that it is of no practical importance. When we increase the population size (and
the number of random search trials), the GA moves ahead of random search.

These results suggest that superlinear speedups can be obtained if random
trials are executed in parallel and the simple GA is used as the base case. Inter-
estingly, Shonkwiler [2] used very small population sizes (≈ 2 individuals) and
at least two of his functions are easily solvable by random search.

5 Experiments

The GA in the experiments used pairwise tournament selection without replace-
ment, one-point crossover with probability 1, and no mutation. All the results
presented in this section are the average of 200 trials.

The first function is the one-max function with a length of m = 25 bits.
We varied the population size nr from 2 to 50 individuals. For each population
size, we varied the number of runs from 1 to 8 and recorded the quality of the
best solution found in any of the runs, Qr:r. Figure 2 shows the ratio of Qr:r
over the quality Q1 that a GA with a population size n1 = rnr reached. The
experiments match the predictions well, and in all cases the larger single runs
reached solutions of better quality than the multiple smaller runs.

To illustrate that multiple runs are more beneficial when m is small, we
conducted experiments varying the length of the problem to m = 100 and m =
400 bits. The population size per run was fixed at nr = 10, and the number of
runs varied from 1 to 8. The results in figure 3 clearly show that as the problems
become longer, the single large runs find better solutions than the multiple runs.

808 E. Cantú-Paz and D.E. Goldberg

2

4

6

8

Runs
10

20

30

40

50

Pop size

0

0.25

0.5

0.75

1

Qr/Q1

2

4

6Runs

(a) Theory

2

4

6

8

Runs
10

20

30

40

50

Pop size

0

0.25

0.5

0.75

1

Qr/Q1

2

4

6Runs

(b) Experiments

Fig. 2. Ratio of the quality of multiple runs vs. a single run for the one-max with
m = 25 bits.

0 2 4 6 8
runs

0.6

0.7

0.8

0.9

1

Q
r
/
Q
1

m=400

m=100

m=25

Fig. 3. Ratio of the quality of multiple runs vs. a single run varying the problem size.

The next two test functions are formed by adding fully-deceptive trap func-
tions [18]. The order-k traps are defined as

f
(k)
dec(u) =

{
k − u − 1 if u < k,

k if u = k.
(8)

Two deceptive test function were formed by concatenating m = 25 copies of
f

(3)
dec and f

(4)
dec. Figures 4 and 5 show the ratio Qr:r/Q1, varying the run size from

2 to 100 individuals and the number of runs from one to eight. The experimental
results are very close to the predictions, except with very small population sizes,
where the GR model is inaccurate. In most cases, the ratio is less than one,
indicating that a single large run reaches a solution with better quality than
multiple small runs. The exceptions occur at very small population sizes, where
even random search performs better.

Are Multiple Runs of Genetic Algorithms Better than One? 809

2

4

6

8

Runs
10

20

30

40

50

Pop size

0
0.25
0.5

0.75

1

Qr/Q1

2

4

6Runs

(a) Theory

2

4

6

8

Runs
10

20

30

40

50

Pop size

0
0.25
0.5

0.75

1

Qr/Q1

2

4

6Runs

(b) Experiments

Fig. 4. Ratio of the quality of multiple runs vs. a single run for the order-3 trap.

We performed experiments to validate the results about random search. Fig-
ure 1b shows the ratio of the quality of the solutions found by the best of r
random trials and the solution obtained by a GA with a population size of r.
For each value of k from 3 to 8, the test functions were formed by concatenating
m = 25 order-k trap functions. The experiments show the same general tendency
as the predictions (figure 1a).

6 Multiple Short Runs

Until now we have examined the solution quality under the constant cost con-
straint and after the population converges to a unique solution. However, in
practice it is common to stop a GA run as soon as it finds a solution that meets
some quality criterion. The framework introduced in this paper could be applied
to this type of experiment, if we had a model that predicted the solution quality
as a function of time: Ps(n, t). In any generation (or any other suitable time
step), the expected solution quality in one run would be mPs(n, t), but again
we would be interested in the expected value of the best solution in the r runs,
which can be found by substituting the appropriate distribution in equation 3.

There are existing models of quality as a function of time, but they assume
that the population is sized such that the GA will reach the global solution and
that recombination of BBs is perfect [17]. If we adopt these assumptions, we could
use the existing models, but we would not be able to reduce the population size
to respect the constraint of fixed cost. Mühlenbein and Schlierkamp-Voosen [17]
derived the following expression for the one-max function:

Ps(n, t) =
1
2

(
1 + sin(

I√
n

t)
)

, (9)

810 E. Cantú-Paz and D.E. Goldberg

2

4

6

8

Runs
10

20

30

40

50

Pop size

0
0.25
0.5

0.75

1

Qr/Q1

2

4

6Runs

(a) Theory

2

4

6

8

Runs
10

20

30

40

50

Pop size

0

0.25

0.5

0.75

1

Qr/Q1

2

4

6Runs

(b) Experiments

Fig. 5. Ratio of the quality of multiple runs vs. a single run for the order-4 trap.

0 10 20 30 40 50
runs

0.8

0.85

0.9

0.95

1

G
r
/
G
1

m=25

m=50

m=100

m=200

Fig. 6. Ratio of the generations until convergence of multiple over single runs. The
total cost is not constant.

and Miller and Goldberg [19] used it successfully to predict the quality of de-
ceptive functions. If we abandon the cost constraint, we can show that the best
of multiple runs of the same size (that is at least large enough to reach the
global optimum) reaches the solution in fewer generations than a single run of
the same size. This argument has been used in the past to support the use of
multiple parallel runs [2].

Figure 6 shows the ratio of the number of generations until convergence (to
the global) of multiple runs over the number of generations of convergence of
a single run. The figure shows that the time decreases as more runs are used,
and the advantage is more pronounced for shorter problems. If each run was
executed concurrently on a different processor of a parallel machine, the elapsed
time to reach the solution would be reduced (assuming that the cost to determine
convergence by any run is negligible, which may not be the case). However, this

Are Multiple Runs of Genetic Algorithms Better than One? 811

scheme offers a relatively small advantage, and it is probably not the best use of
multiple processors since we can obtain almost linear speedups in other ways [20].

7 Summary and Conclusions

There are conflicting reports of the advantage of using one or multiple indepen-
dent runs. This problem has consequences on parallel GAs with isolated popu-
lations and also to determine when random search can outperform a GA. This
paper presented an analytical study that considered additively-separable func-
tions. Under a constraint of fixed cost and assuming no mutation, the analysis
showed that the expected quality of the solution reached by multiple indepen-
dent small runs is higher than the quality reached by a single large run only in
very limited conditions. In particular, multiple runs seem advantageous at very
small population sizes, which result in solutions of poor quality, and close to a
saturation point where the solution quality does not improve with increasingly
larger populations. In addition, the greatest advantage of multiple independent
runs is on short problems, and the advantage tends to decrease with higher BB
order. The results suggest that for difficult problems (long and with high-order
BBs), the best alternative is to use a single run with the largest population
possible. Small independent runs should be avoided.

Acknowledgments. We would like to thank Hillol Kargupta, Jeffrey Horn,
and Georges Harik for many interesting discussions on this topic. UCRL-JC-
142172. This work was performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore National Laboratory
under contract no. W-7405-Eng-48. Portions of this work were sponsored by the
Air Force Office of Scientific Research, Air Force Materiel Command, USAF,
under grant F49620-00-0163. Research funding for this work was also provided
by the National Science Foundation under grant DMI-9908252.

References

1. Tanese, R.: Distributed genetic algorithms. In Schaffer, J.D., ed.: Proceedings
of the Third International Conference on Genetic Algorithms, Morgan Kaufmann
(1989) 434–439

2. Shonkwiler, R.: Parallel genetic algorithms. In Forrest, S., ed.: Proceedings of the
Fifth International Conference on Genetic Algorithms, Morgan Kaufmann (1993)
199–205

3. Cantú-Paz, E., Goldberg, D.E.: Modeling idealized bounding cases of parallel
genetic algorithms. In Koza, J., et al., eds.: Proceedings of the Second Annual
Genetic Programming Conference, Morgan Kaufmann (1997) 353–361

4. Fuchs, M.: Large populations are not always the best choice in genetic program-
ming. In Banzhaf, W., et al., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann (1999) 1033–1038

812 E. Cantú-Paz and D.E. Goldberg

5. Fernández, F., Tomassini, M., Punch, W., Sánchez, J.M.: Experimental study
of isolated multipopulation genetic programming. In Whitley, D., et al., eds.:
Proceedings of the Genetic and Evolutionary Computation Conference, Morgan
Kaufmann (2000) 536

6. Wolpert, D., Macready, W.: No-free-lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67–82

7. Harik, G., Cantú-Paz, E., Goldberg, D., Miller, B.L.: The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation 7
(1999) 231–253

8. Nakano, R., Davidor, Y., Yamada, T.: Optimal population size under constant
computation cost. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Parallel Prob-
lem Solving fron Nature, PPSN III, Berlin, Springer-Verlag (1994) 130–138

9. Luke, S.: When short runs beat long runs. In Spector, L. et al., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference, Morgan Kaufmann (2001)
74–80

10. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform
hill climbing? In Advances in Neural Information Processing Systems 6 (1994)
51–58

11. Baum, E., Boneh, D., Garrett, C.: Where genetic algorithms excel. Evolutionary
Computation 9 (2001) 93–124

12. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, Reading, MA (1989)

13. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex Systems 6 (1992) 333–362

14. Feller, W.: An Introduction to probability theory and its applications. 2nd edn.
Volume 1. John Wiley and Sons, New York, NY (1966)

15. van Dijk, S., Thierens, D., de Berg, M.: Scalability and efficiency of genetic al-
gorithms for geometrical applications. In Schoenauer, M., et al., eds.: Parallel
Problem Solving from Nature—PPSN VI, Berlin, Springer-Verlag (2000) 683–692

16. Arnold, B., Balakrishnan, N., Nagaraja, H.N.: A first course in order statistics.
John Wiley and Sons, New York, NY (1992)

17. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm: I. Continuous parameter optimization. Evolutionary Computation 1
(1993) 25–49

18. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In Whitley, L.D.,
ed.: Foundations of Genetic Algorithms 2, Morgan Kaufmann (1993) 93–108

19. Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the vary-
ing effects of noise. Evolutionary Computation 4 (1996) 113–131

20. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers, Boston, MA (2000)

	Introduction
	Related Work
	The Gambler's Ruin Model
	Multiple Small Runs
	Solution Quality
	Models of Convergence Time
	Random Search

	Experiments
	Multiple Short Runs
	Summary and Conclusions

