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ABSTRACT

Numerical analysis software packages which employ a coarse
first mesh or an inadequate initial mesh need to undergo a
cumbersome and time consuming mesh refinement studies
to obtain solutions with acceptable accuracy. Hence, it is
critical for numerical methods such as finite element analy-
sis to be able to determine a good initial mesh density for
the subsequent finite element computations or as an input
to a subsequent adaptive mesh generator. This paper ex-
plores the use of data mining techniques for obtaining an
initial approximate finite element density that avoids signif-
icant trial and error to start finite element computations. As
an illustration of proof of concept, a square plate which is
simply supported at its edges and is subjected to a concen-
trated load is employed for the test case. Although simplis-
tic, the present study provides insight into addressing the
above considerations.

1. INTRODUCTION

It is widely recognized that the finite element method is
the choice of many analysts for performing structural anal-

*The authors are very pleased to acknowledge support in
part by the Department of Energy DOE/LLNL W-7045-
ENG-48 and by the Army High Performance Computing Re-
search Center (AHPCRC) under the auspices of the Depart-
ment of the Army, Army Research Laboratory (ARL) co-
operative agreement number DAAH(04-95-2-0003/contract
number DAAH04-95-C-0008. The content does not neces-
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ysis simulations. It is a viable computational tool due to
the various inherent advantages, namely, the capability of
programming the method in a general purpose manner, the
ability to handle natural boundary conditions and arbitrary
loads acting on the structure, and the ability to model com-
plex geometries. Various methods of generating finite el-
ement meshes exist in the literature. Some are based on
prescribed mesh density values at various sample points in
the geometry. Other approaches such as adaptive h, p, h-p
refinements also exist. The so-called r-method of relocation
of the nodes is yet another strategy for developing a suitable
finite element mesh.

Numerical methods employing a coarse initial mesh suffer
from the drawback of needing several successive mesh re-
finements for acceptable accuracy of results which tend to
be cumbersome and expensive. It is well known that the pro-
cedures which start with a coarse mesh and attempt serious
repetitive refinements, as is the case in most finite-element
packages, are time consuming and costly. An approach of
overcoming this limitation involves the use of some type of
adaptive re-meshing scheme to guarantee convergence in the
finite element solution. Whilst this approach is attractive, it
can be slow to converge to ideal finite element meshes since
the initial mesh for these adaptive schemes has zero knowl-
edge of the problem apriori. Hence, close to ideal initial
meshes of these adaptive re-meshing schemes may acceler-
ate the convergence and guarantee sufficient accuracy in the
finite element solution. Consequently this reduces the over-
all solution times for both serial and parallel architectures.
Recent works [1] and [2] involved the application of Artifi-
cial Neural Networks (ANN) for the prediction of the finite
element mesh density in order to estimate the magnetic field
in a body. The present study builds upon previous work and
provides a detailed study as related to structural mechanics
applications. We specifically outline details in obtaining an
ideal mesh densities at selected sampling points and an ap-
proach to enhance the quality of the results by asymmetric
scaling of training samples.

In case of the structural mechanics, for illustration, Fig. 1
describes an elastic body @ with boundary I" which is de-



Sampling point

Figure 1: Illustrative application problem descrip-
tion for predicting finite element mesh density using
data mining.

fined by representative critical points ¢ ={c1,c2, ... } with
respect to a fixed co-ordinate system. The elastic body is
also comprised of materials with properties set M = {(E1,v1,
... )y (B2, ... ), ... } where E;, v; are the Youngs modulus
and the Poison’s ratio respectively. The body is subjected
to traction loads, t, and variety boundary constraints. The
response of such a structure includes determination of field
variables such as displacements, stresses and strain data for
use in subsequent data mining models. Fig. 2 describes the
finite element discretization with different material set M;,
loads ¢; and boundary conditions up;, ¢ = 1,2, ... ,n where
n is the number of finite element analyses carried out to
generate the training data for the data mining model. From
these analyses, it is postulated that one could predict an
approximate mesh density for the analysis by employing er-
ror indicators formulated from data mining models. Hence
for a given geometry, the objective is to predict the iniital
finite element mesh density for arbitrary material distribu-
tions, loads, and boundary conditions as described in Fig. 3.
Pictorially Fig. 2 describes the training examples to gener-
ate training data and Fig. 3 describes the test example for
which the data mining model is required to predict the de-
sired initial mesh density.

Sharp comers

Material interface Material interface

Figure 2: Illustrative application problem with finite
element models for training example.

In this paper, as a proof-of-concept, we explore the calcula-
tion of the mesh density for a square plate, which is simply
supported at its edges, with a concentrated load acting on it.
This simplistic test example was selected since we already
know the exact theoretical solution to the problem. From
this, we can immediately assess if data mining techniques
are indeed helpful for predicting the mesh density. The mesh

density is predicted by training a simple feed forward neural
network and making it learn the relationship between the
mesh density and geometric features of the model. In Sec-
tion 2, the preliminaries are discussed, followed by a discus-
sion of the methodology used in predicting the mesh density
in Section 3. In Section 4 and 5 the results obtained and
conclusions of this study are discussed. In Section 6, future
directions and the challenges involved are highlighted.

A = Discretization

Figure 3: Overall goal of data mining illustrting ap-
plication problem for predicting finite element mesh
density.

2. PRELIMIN ARIES

Finite element modeling involves discretizing the original
domain into finite elements such as triangles. Such a typical
process is shown in Fig. 4(a) using triangular elements for il-
lustration, though other element types could also have been
used. This is accomplished by a mesh generator for which
the input is the mesh density at selected points in the do-
main. This mesh density can be defined in many ways. One
such definition could be the number of nodes in the vicin-
ity of a point [3]. Another definition could be the value of
the radius (R) of the circle which is circumscribed over the
triangle as shown in Fig. 4(b). This determines the triangle
size and hence the element size in a finite element discretiza-
tion. The mesh density value is the target variable of the
classifier and the features can typically consist of geometry
descriptions, loads applied, etc., depending on the problem
at hand.

3. METHODOLOGY

In this section we discuss the various steps followed in cal-
culating the initial mesh density for the problem at hand,
the neural network architecture used to train the data, and
feature selection required for training.

3.1 Generatingthe data

We start by training the predictive data mining models us-
ing example data, which pertains to “ideal” meshes of the
representative geometries or domains. Here a square plate,
is simply supported at its edges as shown in Fig. 5. A con-
centrated load, is applied at a point whose coordinates are
(z1,1)- For this situation an analytical solution is available
in [4], [5] which gives the displacement at any point (z,ys)
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Figure 4: (a) Typical finite element mesh discretiza-
tion and (b) ideal element representation for trian-
gular and quadrilateral elements.

for any load at (z:,:). The displacement w at (xs,ys) is
given by

4P

)

[ee) oo : . . .
Z Z sin(mmx;) sin(nry;) sin(mn 22 ) sin(n 42

= ®Dab ()2 + ()2

m=1n=1

(1)

where P is the load applied at load coordinates (zi, y1), D is
Et3

12(1—-v2)?
is the Young’s modulus, t is the thickness, v(is th()a Poisson’s
ratio, a is the length of the plate and b is the width of the
plate. Once the displacement is obtained from this equation
for a point (xs,ys), the mesh density value (higeq:), which is
the radius of the circle circumscribing the triangle (as shown
in Fig. 4(b)), is determined for this point via the following
steps:

the flexural rigidity of the plate given by where E

Figure 5: Problem description: a simply supported
at all edges of square plate with concentrated load.

e First, choose a circular magnifier (radius of influence)
of radius R;n; unit about the sample point (zs,ys).
Next, start with and choose different directions in the
circle at equal angular displacements. Then choose

points along each direction such that they are equidis-
tant from each other as shown in the Fig. 6(a). The
displacements, w, are then computed at each of these
points using Eq.(1).

e Next all the points that are on the line in a particular
direction are chosen. The method of least squares is
used to make the best linear fit as shown in Fig. 6(b)
using various w’s at the chosen points along this di-
rection. The process is repeated for all the directions.
Note that one could employ the best quadratic fit, best
cubic fit, etc., depending on the application and the
type of the finite element employed.

e The error is then estimated between the analytical so-
lution and the numerical solution obtained from the
best fit line, for each direction. Here, the error is de-
fined by the Ly norm on the solution vector in each
direction. This norm should be less than the prede-
fined tolerance limit, €, for all the directions. Then,
this value of the radius of the circle forms the higeqr
value, otherwise the radius is reduced. Note that the
data mining model developed only holds for predeter-
mined values of the tolerance limit, ¢, for all other
values the above steps have to be repeated till conver-
gence to a numerical solution whose error lies within
the tolerance limit.

T

-

direction 3
direction 4

direction 2

direction 1

distance along center

(b)

Figure 6: Ideal mesh density h;4..; computations for
situation with known analytical response: (a) circu-
lar magnifier with points in chosen direction and (b)
best fit line to exact values along a selected direction

A-B.

Finally after obtaining the various higeq: values at different
sampling points in the domain, the mesh generator draws
the approximate finite element mesh as shown Fig. 4(a).

3.2 Architecture of the Artificial Neural Net-

work (ANN)

The artificial neural network considered in this work consists
of a one input layer with 7 processing units corresponding
one hidden layer with 19 processing units, and one output
layer with a single processing unit. The ANN is trained to
the corresponding target vector on the output layer. This



Features Target variable

Sampling points | Projxload | Projyload | ProjX | ProjY |d | P | ¢ hideal
1
2
n

Table 1: Training and test data layout for the problem.

target vector is the mesh density value for the finite element
model.

ProjY

ProjX

Sample point (x g Vg )

d

. Projxload
Load Point (x |.y)

Projyload

Figure 7: Features description for simply supported
square plate with concentrated load.

3.3 Featuresselection

Since the model seeks to predict the element size, h;geq: at
a point in the domain, the training data can have data sam-
pled at many points in the domain of a single representative
geometry. It is essential and critical that the features cho-
sen for training have all of the characteristics that can be
encountered in real applications such that the data-mining
model becomes almost problem independent. The various
features considered here for training the model are shown in
Fig. 3.2 and include:

e Projxload, Projyload - projections of the load point
(z1,1) to the nearest adjacent edges,

e ProjX, ProjY - projections of sample point (s,¥s),
where the mesh density is being determined, to the
nearest adjacent edges,

d - distance of the point (z.,ys) to the load point
(mlyyl)a

P - load value,

t - thickness of the plate.

For illustration, the corresponding feature table is described
in Table 1.

4. RESULTS

Sample points were chosen randomly in the plate and the
displacements were found for a load applied at different
points which were again chosen randomly on the plate. The

training data set consists of values of higeq: in the range
0.01 to 1. This results in a finite element size scale ratio
1:100 which is the case in more realistic finite element appli-
cations. The distributions of h;4eq: values are identical for
training instances and testing instances.

load 0.68214
projpyload | 0.56408
projpxload | 0.50756

distance 0.32830
thickness 0.21520
projpx1l 0.17636
projpyl 0.17247

Table 2: Reported relative importance of features
to the developed neural network model.

The values of loads and thicknesses chosen for the testing
case are different from the training case and, were chosen
such that they are within the range of training case val-
ues. The training set consisted of 36,600 records and the
test set consisted of 18,300 records. A neural net model was
created using the training set. The relative importance of
each of the features to the neural network using Clementine
software ! is listed in the Table 2. The plot between the
predicted mesh value and the actual mesh value is shown
in Fig. 8. In Fig. 8 the points above the diagonal represent
predicted mesh sizes which are larger than the actual mesh
size. This is detrimental for the finite element solution accu-
racy. Similarly, the points below the diagonal represent the
predicted mesh sizes which are smaller than the actual mesh
size. This is not detrimental for the the finite element solu-
tion. However, it is critical as the number of finite elements
increases, it increases the computational cost. Restricting
the attention only to the points above the diagonal, a scal-
ing technique is used to bring down the points close to the
diagonal by increasing the number of records pertaining to
these points in the training set. The scaling technique used
for this is given by

hear — higiat”

W = W x k (2)
where W is the number of records and & is a constant with
a value of 2 in our case. Also, it is observed that most of
these points pertain to the case where the load was close to
the boundary of the plate. Therefore, in conjunction with
the above scaling procedure load points that were within
0.5 units distance from the boundary of the plate were not
considered in the new training set. A new neural net model
was created with this new training set. The performance

1©1999 SPSS Inc., Version 5.0.1



measures of the developed neural network model are listed
in the Table 3. The plot between the predicted h;geq: and the
actual higeq: is shown in Fig. 9. Figures 10 — 13 show the
finite element mesh generated employing these actual and
predicted mesh densities for four loading conditions with
36 sampling points for each of them. The location of the
loading point in each of the case is illustrated with a box
on the plate. The actual mesh sizes for these four cases
are obtained as mentioned in Section 3.1. The predicted
mesh sizes are obtained from the neural network model. As
the Figs. 10 — 13 show, the meshes for both the actual and
predicted cases resemble each other very closely. As shown
in table 4 the predicted number of mesh elements is very
close to the actual number for all four cases.

Minimum Error - 0.74468
Maximum Error 0.53632
Mean Error 0.0028778
Mean Absolute Error | 0.019690
Standard deviation 0.051059
Linear Correlation 0.98256
Occurrences 18300

Table 3: Performance measures of the developed

neural network model.

MESH | Elementsp .+ | Elementsp .j | % increase
Fig. 10 5667 5780 2.15
Fig. 11 7307 7414 1.46
Fig. 12 7270 7258 -0.17
Fig. 13 7318 7021 -4.06

Table 4: Actual and predicted number of elements
for mesh in Figs. 10 — 13.

5. CONCLUDING REMARKS

The present work concentrated on a proof-of-concept appli-
cation. A relatively simple problem where we know the the-
oretical solution was employed to assess the performance of
data mining models. A simply supported square plate with
a concentrated load was considered as a test case. Close to
“ideal” mesh density h;geq; at various points in the plate
were predicted with different load values, location and plate
thickness. The training set was created without finite ele-
ment discretization and this allows to create a data mining
model. An ANN is employed and the initial results for pre-
dicting the appropriate mesh density are encouraging.

6. CHALLENGES AND FUTURE WORK

There are challenges involved in getting the training sets for
a complex geometry subject to different loading conditions,
composed of different materials and different boundary con-
ditions (Ref. Figs. 1 — 3). Analytical solution are generally
not known and we need to devise a strategy to determine
mesh density values for a general case. Assessments of fea-
sibility and performance are planned to be undertaken for
various other data mining methods like Classification and
Regression Trees (CART) and Multivariate adaptive regres-
sion splines (MARS) to find an alternative to neural network
techniques. The overall goal is to create an effective system
intended to provide an ideal initial mesh for a finite ele-
ment simulation code or an initial “close to ideal” mesh for

a subsequent adaptive solver employed for the finite element
computations. Such a system will enable a knowledge-based
approach for the pre-processing phase of finite element sim-
ulation codes.
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