CLASSIFYING BENT-DOUBLE
(GALAXIES

Astronomy data sets have led to interesting problems in mining scientific data. These
problems will likely become more challenging as the astronomy community brings several
surveys online as part of the National Virtual Observatory, giving rise to the possibility of
mining data across many different surveys.

ata mining is a process concerned

with uncovering patterns, associa-

tions, anomalies, and statistically sig-

nificant structures in data. These
techniques have long been applied to astronomy
data, both by astronomers using data mining
techniques and by data miners working with as-
tronomy data. Such research has included the
use of neural networks to discriminate between
stars and galaxies, as well as the use of decision
trees for star—galaxy classification, the identifi-
cation of volcanoes in Venusian imagery, and the
classification of galaxies with a bent-double mor-
phology./™* These efforts have typically focused
on data in a single survey, although researchers
often cross-verify their results with other sur-
veys for validation.

The data in an astronomical survey is usually
available in two forms: images and catalogs. The
original data that the telescopes take (after some
preprocessing) is in the form of images, which,
taken together, tile a large area of the sky. Once
the telescope obtains the images, the as-
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tronomer can create a catalog that includes in-
formation on each object in the image. De-
pending on the type of problem being solved
through data mining, the catalog data could re-
quire further processing before it is ready for
pattern identification. To successfully apply data
mining to an astronomy problem, the data
miner must understand the problem, the data,
and the processing performed to generate the
catalog from that data. This requires close col-
laboration with the astronomers in all aspects of
the data mining process—from feature identifi-
cation and extraction to result validation and
process refinement.

In this article, we discuss the work we per-
formed while using the catalog from the FIRST
(Faint Images of the Radio Sky at Twenty cen-
timeters) survey to classify galaxies with a bent-
double morphology, meaning those galaxies that
appear to be bent in shape. We describe the ap-
proach we took to mine this data, the issues we
addressed in working with a real data set, and the
lessons we learned in the process.

FIRST data

The FIRST survey is a project that started in
1993 with the goal of producing the radio
equivalent of the Palomar Observatory Sky Sur-
vey.’ Using the National Radio Astronomy Ob-
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servatory’s very large array (VLA), FIRST is
scheduled to cover more than 10,000 square de-
grees of the northern and southern galactic caps,
to a flux density limit of 1.0 mJy (milli-Jansky).
With the data from its first six years’ worth of
observations, FIRST has covered about 8,000
square degrees, producing more than 32,000 im-
ages, each with two million pixels. At a thresh-
old of 1 mJy, approximately 90 radio-emitting
galaxies, or radio sources, occupy a typical square
degree. The results we present in this article are
based on the 2000 version of the catalog, which
includes data from 1993 through 1999. The sur-
vey is ongoing; new data is being collected,
processed, and made available in the public
domain at the FIRST Web site, http://sundog.
stsci.edu.

Radio sources exhibit a wide range of mor-
phological types that provide clues to the source
class of the galaxy, its emission mechanism, and
the properties of the surrounding medium. Ra-
dio sources with a bent-double morphology par-
ticularly interest astronomers because they indi-
cate the presence of clusters of galaxies. FIRST
scientists currently use a manual approach to de-
tect bent-double galaxies. They look at a radio
source’s image, and if it appears to be a bent dou-
ble, they cross-validate it with other surveys.
This visual inspection of the radio images, be-
sides being very subjective, is becoming increas-
ingly infeasible as the survey grows. Our goal is
to automate this process of classifying galaxies
using techniques from data mining. We used as a
training set the galaxies that astronomers had
manually identified as bent doubles and nonbent
doubles. We used this training set, along with
the features representing each galaxy, to induce a
decision tree model, which we then applied to
the classification of unlabeled galaxies.

Figure 1 includes several examples of radio
sources from the FIRST survey, including both
bent doubles and nonbent doubles. Although
some galaxies are relatively simple in shape, oth-
ers can be rather complex.

Like other astronomy surveys, data from the
FIRST survey is available in two forms: image
maps and a catalog. A user-friendly Web inter-
face enables easy access to radio sources at a
given RA (right ascension, analogous to longi-
tude) and Dec (declination, analogous to lati-
tude) position in the sky. Figure 2 shows an im-
age map containing examples of two bent
doubles. These large image maps are mostly
“empty”—that is, composed of background
noise. Each map covers an area approximately

0.45 square degrees, with pixels thatare 1.8 arc-
seconds wide. We get these image maps as a re-
sult of processing the raw data collected by the
VLA telescopes.

In addition to image maps, the FIRST survey
also provides a catalog,® which is created by
FIRST astronomers by processing an image map
to fit 2D elliptic Gaussian to each radio source.
For example, the lower bent double in Figure 2
is approximated by more than seven Gaussians
whereas the upper one is approximated by three
Gaussians. Due to an upper limit on the num-
ber of Gaussians needed to fit each radio source,
highly complex sources are not approximated
well by using just the information in the catalog.
Each entry in the catalog corresponds to the in-
formation on a single Gaussian. This includes,
among other things, the RA and Dec for the
Gaussian’s center, the lengths of the major and
minor axes, the peak flux, and the position angle
of the major axis (degrees counterclockwise from
north). A radio source is composed of one or
more catalog entries. For the data collected
through 1999, the image data is 250 Gbytes,
whereas the catalog is much smaller—approxi-
mately 80 Mbytes.

Extracting features from the FIRST
catalog

In our work on the bent-double problem, we
decided that we would first focus on the catalog
data. It was not only easier to work with the cat-
alog, but the astronomers believed that it was a
good approximation to all but the most complex
radio sources. Therefore, our first task was to
group the catalog entries—that is, the elliptic
Gaussians—into radio sources. Our algorithm
starts with an entry in the catalog, searches for
other entries within a region of interest of 0.96
arc-minutes, restarts the search from each newly
found entry, and repeats until it can’t find any
more new catalog entries within the region of
interest. The algorithm collects all the catalog
entries it finds in this search to form a radio
source. Next, the algorithm repeats the entire
grouping procedure, starting from the next avail-
able catalog entry and excluding any entries that
are part of already existing radio sources.

Finding cases where two distinct galaxies are
widely separated in the 3D sky but appear close
to each other in the 2D projection of the FIRST
images is not hard. For example, Figure 3, with
the image centered at RA = 10"50™08.5% and Dec
= +30°40"15" (Julian 2000 coordinates), shows
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Figure 1. Example radio sources
from the FIRST survey: (a)
through (c) bent doubles; (d)
through (f) nonbent doubles;
and (g) through (I) complex
sources. The similarity between
a (b) bent double and a (d)
nonbent double indicates one
of the difficulties in automating
the detection of bent-double
galaxies.

Figure 2. FIRST data: image
maps and catalog entries.
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two distinct radio sources within 0.96 arc-min-
utes of each other. Such examples illustrate why
the task of automated bent-double detection is

Figure 3. An example image
from FIRST, illustrating two
galaxies close together.

a rather hard problem, because processing tech-
niques designed to work for most cases some-
times fail in others. It also shows the ease with
which humans can visually identify the two ob-
jects as being separate, a task that is difficult to
automate.

After grouping the catalog entries into com-
plex radio sources, we separated the data de-
pending on the number of catalog entries that
make up the sources. We did this to reduce the
number of galaxies we had to classify. First, we
knew that by using features from only the cata-
log, there were unlikely to be any bent doubles
in the single-catalog-entry sources. Second,
there are relatively few three-plus-entry sources,
all of which are “interesting” to the astronomers,
regardless of whether they are bent doubles. Our
software flagged and reported them to the
FIRST astronomers. This approach also helped
us address cases in which two radio sources are
close to each other and each composed of at least
two catalog entries. However, it did not address
cases in which two disconnected, yet close,
sources were approximated by two or three
Gaussians. For the 2000 catalog, the number of
radio sources as a function of the number of cat-
alog entries comprising them is

# Catalog entries # Radio sources

1 514637
2 66571
3 15059
3+ 6333

Having removed the single-entry and the
three-plus-entry radio sources from considera-
tion, we further split the sources into two- and
three-entry sources. We did this because the
number of features extracted depends on the
number of catalog entries, and we wanted a fea-
ture vector with a uniform length. However, it
also meant that a small training set (313 exam-
ples) split further into smaller training sets of
118 examples for two-entry sources and 195 ex-
amples for three-entry sources. We initially fo-
cused on the three-entry sources because identi-
fying features representing “bentness” seemed
easier. We also had a larger training set, with 167
bent doubles and 28 nonbent doubles. Over
15,000 such three-entry galaxies appear in the
data collected through 1999, making a visual in-
spection tedious. Moreover, the training set is

unbalanced, with far more bent doubles than
nonbent doubles.

We identified the features for the bent-dou-
ble problem through extensive conversations
with FIRST astronomers. As we asked them to
justify their decisions in identifying a radio
source as a bent double, it became apparent that
they placed great importance on spatial features
such as distances and angles. Frequently, the as-
tronomers would characterize a bent double as
a radio-emitting “core,” with one or more addi-
tional components at various angles that were
usually side-wakes left by the core as it moved
relative to the Earth. Once we extracted an ini-
tial set of features, we continued refining the fea-
tures until the cross-validation error for a deci-
sion tree classifier reduced to about 10 percent, a
number the astronomers felt was sufficient for
their use.” We achieved the best accuracies by
using just the features representing all three cat-
alog entries simultaneously. Therefore, the re-
mainder of this article focuses on these features.

In identifying the features based on all three
catalog entries, we first identified the galaxy’s
core as the entry opposite the longest side of the
triangle formed by the centers of the three Gaus-
sians. Figure 4 depicts a possible arrangement of
the three catalog entries, with entry A as the core.

Table 1 characterizes the features used.®

Decision trees

Let’s examine our experimental results for the
classification of bent-double galaxies with three
catalog entries and various decision-tree based
classifiers. These include a single tree and en-
sembles of 10 and 20 trees created using the Ad-
aboost, bagging, and ArcX4 techniques for creat-
ing ensembles for classifiers.” We also developed
an ensemble technique based on histograms.'® In
this method, instead of sorting each feature to de-
termine the best split for it, we first create a his-
togram for each feature. Then, considering only

JuLy/AucusT2002

55



Table 1. Features used to represent a galaxy using all three catalog entries simultaneously.

Feature Definition

totArea The sum of the three areas of the elliptic Gaussians

peakFlux The maximum of the three peak fluxes of the entries

sumintFlux The sum of the three integrated fluxes of the entries

avgDiffusion The mean of the three diffusions, where diffusiony = IntFluxy/Areay

totEllipt The sum of the three ellipticities, where ellipticityx = MajorAxisyx/MinorAxisy
maxFlux The maximum of the three integrated fluxes

coreAng|l The core angle, defined as angle BAC in Figure 4

angleAB Angle ACB in Figure 4 (between sides a and b)

angleAC Angle ABC in Figure 4 (between sides a and c)

totalBendGeom
totalBendDiff

ariAngl = acos BC/(AB + AC)
ABAnNg|Side

ACAnNg|Side

sumComDist

sumRelDist

axialSym

ariSym = AC/AB

anotherSym = (AB + AC)/(AB + BC + AC)
consDemote

The source’s total bentness, equal to the sum of angles AMB and ANC

The source’s total bentness, equal to the sum of IAPosAngle — BPosAnglel and
|IAPosAngle — CPosAnglel, where XPosAngle denotes the angle of the major axis
of entry X, measured counterclockwise from north

A measure of bentness®

The angle formed by the major axis of B with the AB segment, angle ABM

The angle formed by the major axis of C with the AC segment, angle ACN

The sum of the three pairwise distances between the centers of entries

The sum of the three pairwise relative distances, calculated as

4XYComDist
XMaj+ XMin +YMaj +YMin

where for a pair of entries X and Y, XYComDist is the distance between their
centers, and XMaj, XMin denote the major and minor axis of entry X

A symmetry measure given by the ratio of the ellipticities of entries B and C

A symmetry measure®

Another symmetry measure

{0/1} flag, 1 if one of the noncore entries is far from the core, and 0 otherwise
(B is considered far if AB > 2 x const x (AMaj + BMaj), where const is currently

set to 3 arc-seconds; similarly for C)

Figure 4. An example of the
elliptic Gaussians fitted to a
three-entry radio source.

the histogram bin boundaries as potential split
points, we find the best such bin boundary. Next,
to introduce randomness in the tree induction,
we select an interval around the best bin boundary
among all the features and select a point uni-
formly at random in this interval as the split point.

In the experiments reported here, we used equal-
width histograms, with the number of bins chosen
to be the square root of the number of instances at
a node. The interval’s width is chosen to be the
same as the bin’s width. We refer to this technique
as the histogram-based ensemble. In addition, we
also consider the case of a single tree obtained by
selecting the best bin boundary as the split point,
without the randomization.

We first used our original set of 195 training
examples to refine the set of features until the
error rate dropped below 10 percent. Then, we
used the tree created from this set of features to
classify unlabeled galaxies. We showed several of
these galaxies to the astronomers for validation.
Because we wanted to use this new set of galaxies
to enhance our training set, we selected a higher
percentage of galaxies classified as nonbents.
This process of validation is rather tedious and
has the drawback of being subjective and some-
what inconsistent: the labels an astronomer as-
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Table 2. Test error rates from different classification methods.

Method Gini (%) Gain ratio (%) Information gain (%)
Single tree 32.41 42.76 30.00
Histogram-based tree 30.69 34.14 29.31
Histogram-based ensemble, 10 trees 33.17 27.97 32.93
(0.597) (0.854) (0.565)
Histogram-based ensemble, 20 trees 32.24 26.55 32.28
(0.465) (0.465) (0.507)
Adaboost, 10 trees 34.83 43.10 42.41
Adaboost, 20 trees 34.83 42.07 42.76
Bagging, 10 trees 34.72 33.79 36.65
(0.974) (1.087) (1.61)
Bagging, 20 trees 32.38 32.24 33.65
(0.486) (0.478) (0.681)
ArcX4, 10 trees 41.38 42.41 38.28
ArcX4, 20 trees 34.82 39.66 38.62

signs are subject to the drift common to human
labelers. Therefore, we were able to validate
only 290 galaxies, of which 92 were bents and
198 nonbents.

For the first experiment, we used these newly
validated galaxies as a separate testing set. Table 2
gives the test error rates for this set of experi-
ments; we got these results after 10 runs. In bag-
ging and histogram-based ensemble techniques,
the algorithm’s randomization results in differ-
ent test errors for each run. In these cases, the
standard error is included as well. All results are
presented for a tree or ensemble created without
pruning; because the training set was rather small
and unbalanced, pruning increased the error. We
present results for three different splitting crite-
ria: Gini, gain ratio, and information gain.!!

"The results in Table 2 indicate that if we create
a classifier from the original 195 instances and
test it on a different set of 290 instances, the error
increases almost by a factor of 3. However, we
should view these results with caution. First, the
training set has far more bent doubles (167) than
nonbent doubles (28). In contrast, the test set has
more nonbents (198) than bents (92). As a result,
we would expect poorer performance on the test
set. Moreover, for some methods, the choice of
a splitting criterion can affect the error rates sub-
stantially. The lowest error rate is for the his-
togram-based ensemble using the gain ratio cri-
terion, whereas the other ensemble techniques
fared rather poorly relative to a single tree.

To better compare the different methods,
Table 3 lists a sample of the confusion matrices
for each method, and Table 4 lists each method’s
precision, recall, and F-measure. For Table 3,

the two columns of the top row list the number
of bents identified as bent and nonbent, respec-
tively. The two columns of the bottom row list
the number of nonbents identified as bent and
nonbent, respectively. The confusion matrix in

Table 4 is

ab

cd
where 2 and d are the correctly classified bents
and nonbents, 4 is the number of bents classified
as nonbent, and ¢ is the number of nonbents clas-

sified as bents. Thus, precision, recall, and F-
measure are

Precision (P) = a/(a + ¢)
Recall (R) = a/(a + b)
F-measure = 2PR/(P + R).

Here, we assume that the precision and recall are
weighted equally. These results indicate that the
histogram-based ensembles have the highest F-
measure for the gain ratio splitting criterion,
with bagging and the histogram-based single
tree methods a close second. The relatively low
precision indicates several false positives, but the
higher recall indicates that few positives (bent
doubles) are missed.

For our second experiment, we combined the
newly validated set of 290 examples with the
original training set of 195 instances and used
the combined set of 485 instances to evaluate the
algorithms with cross-validation. Because the
data set is now larger, we include results with
pessimistic error pruning because it improves
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Table 3. Typical confusion matrices (bent, nonbent) for the different classification methods.

Method Gini Gain ratio Information gain
Single tree (74 18 ] (82 10 (72 20
176 122, 114 84 67 131
Histogram-based tree (71 21 (80 12 (71 21]
168 130 187 111 64 134
Histogram-based ensemble, 10 trees (65 27 (74 18] (74 18 |
76 122 53145 172 126
Histogram-based ensemble, 20 trees (72 20 ] (77 15| (71 21]
70 128 60 138 169 129
Adaboost, 10 trees (80 12 ] [ 81 11] [ 78 14]
189109 114 84| 109 89|
Adaboost, 20 trees (80 12 ] (80 12] [ 77 15]
189 109 110 88 109 89|
Bagging, 10 trees (77 15 ] (75 17| (72 20 ]
82116 163135 83115
Bagging, 20 trees (75 17 ] (74 18] (78 14 |
175123 76 122 189109
ArcX4, 10 trees 80 12] [79 13] (80 12
1108 90| 1110 88| 99 99
ArcX4, 20 trees (81 11] [79 13] 7913
190 108 102 96| 199 99

performance. We also restricted our study to en-  set, with the given set of features and training
sembles of 10 trees.

From the results presented in Table 5, we 18.02 to a high of 22.79. The values in bold in-
make the following observations. For this data  dicate the best error rate for each method across

examples, the error rates range from a low of

Table 4. The precision, recall, and F-measure corresponding to Table 3’s confusion matrices.

Method Gini Gain ratio Information gain
P R F-measure P R F-measure P R  F-measure

Single tree 0.49 0.80 0.61 0.41 0.89 0.56 0.52 0.78 0.62
Histogram-based tree  0.51 0.77 0.61 0.48 0.87 0.62 0.53 0.77 0.63
Histogram-based

ensemble, 10 trees 0.46 0.71 0.55 0.58 0.80 0.67 0.54 0.80 0.64
Histogram-based

ensemble, 20 trees 0.51 0.78 0.62 0.56 0.84 0.67 0.51 0.77 0.61
Adaboost, 10 trees 0.47 0.87 0.61 0.41 0.88 0.56 0.42 0.85 0.56
Adaboost, 20 trees 0.47 0.87 0.61 0.42 0.87 0.57 0.41 0.84 0.55
Bagging, 10 trees 0.48 0.84 0.61 0.54 0.81 0.65 0.46 0.78 0.58
Bagging, 20 trees 0.50 0.81 0.62 0.49 0.80 0.61 0.47 0.85 0.60
ArcX4, 10 trees 0.42 0.87 0.57 0.42 0.86 0.56 0.45 0.87 0.59
ArcX4, 20 trees 0.47 0.88 0.61 0.44 0.86 0.58 0.44 0.86 0.58
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Table 5. Cross-validation error rates using different classification methods.

Method Gini Gain ratio Information gain
No pruning Pruning No pruning Pruning No pruning Pruning
Single tree 22.79 19.77 22.62 19.83 22.77 19.71
(0.31) (0.18) (0.27) (0.15) (0.39) (0.41)
Histogram-based, single tree ~ 21.73 20.46 20.85 18.81 22.56 20.96
(0.34) (0.29) (0.39) (0.17) (0.32) (0.39)
Histogram-based, 10 trees 18.69 18.27 18.10 18.02 18.22 18.42
(0.28) (0.30) (0.16) (0.22) (0.18) (0.34)
Adaboost, 10 trees 21.87 20.40 22.37 22.56 20.50 20.75
(0.42) (0.45) (0.53) (0.47) (0.45) (0.43)
Bagging, 10 trees 19.40 18.35 18.98 18.12 18.98 18.52
(0.28) (0.34) (0.34) (0.26) (0.36) (0.35)
ArcX4, 10 trees 20.48 20.12 21.67 22.48 21.06 19.77
(0.39) (0.20) (0.35) (0.41) (0.22) (0.37)

the different splitting criteria and pruning op-
tions. When we consider the best error rate for
each method across the different splitting crite-
ria and pruning options, the histogram-based
ensemble (18.02) and bagging (18.12) methods
are the best performers. They improved the per-
formance over the best single tree (19.71). In
fact, even a single histogram-based tree (18.81)
improved over a single tree. In comparison, Ad-
aboost and ArcX4 did not perform as well.

ur experiences with mining the
FIRST data to classify galaxies with a
bent-double morphology led to sev-
eral interesting observations.

First, astronomy data is frequently available in
the form of images or catalog data from which
all the relevant features have not been extracted.
We found that identifying and extracting such
features in a robust manner is nontrivial and re-
sults in one of data mining’s more time-consum-
ing steps. In our specific example of the detec-
tion of bent doubles, having the catalog immensely
helped us get a head start on the problem be-
cause we did not have to work with the images
themselves.

Second, we found that FIRST data’s availabil-
ity on the Web, as well as tools to read, write,
and display it were very helpful. This is not al-
ways the case with many data sets in astronomy
and other sciences.

Third, it took us almost six months to under-
stand the problem domain, the problem, and the
data itself. During this time, we had extensive
conversations with the FIRST astronomers.

"This understanding of the data and close collab-
oration with the domain scientists is an impor-
tant but often overlooked aspect of data mining,
especially in scientific domains.

Fourth, in our classification problem, we found
a dearth of labeled examples because the as-
tronomers had to manually identify them. Fur-
thermore, the labels for the galaxies were subjec-
tive, and we found astronomers sometimes
disagreed on whether to classify a galaxy as a bent
double or a nonbent double. This was especially
true in difficult-to-classify cases. Given the lack
of ground truth in this problem, generating a
good training set was difficult. This sharply con-
trasts with commercial data, where labeled ex-
amples might have been generated historically—
for example, in customer churn problems.

Finally, because FIRST is a survey in progress,
we found that our bookkeeping had to keep up
with changes made in different data releases. For
example, the 1999 version of the data merged in-
formation from the northern and southern hemi-
spheres that was previously separate. Also, in the
2000 version, we found that certain galaxies no
longer appeared in the catalog. Conversations
with astronomers indicated that this was a nor-
mal occurrence as a result of the processing of
the data the telescopes collected. For galaxies at
the very edge of the survey one year, additional
data collected the following year made the pixels
corresponding to those galaxies fall below the de-
tection threshold. This meant that we had to be
careful in our use of the ID tags for galaxies as we
moved to newer versions of the survey.

Our next step in this work is to apply these de-
cision tree techniques to the case of two-cata-
log-entry galaxies. We expect the problem to be
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harder because the catalog might not capture all
the features needed to discriminate between
bent doubles and nonbent doubles. We are also
applying these techniques to data from remote
sensing and simulations of turbulent flow. &
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