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ABSTRACT

Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many
domains. A common approach is to segment the 2D frames in order to separate the objects of interest from
the background, then estimate the motion of the objects and track them over time. Most existing algorithms
assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest
evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate
efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame
separately, we propose an incremental approach which incorporates the segmentation result from the previous
time frame when segmenting the data at the current time frame. We start with the simple K-means method,
then we study more complicated segmentation techniques based on Markov random fields. We compare the
incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as
computational complexity.
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1. INTRODUCTION

Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many
domains. Usually, the first step in such problems is to detect the objects in the data by segmenting the frames
corresponding to the different time steps, and then estimating the motion of the objects from frame to frame.

In this paper, we investigate efficient segmentation methods in the context of scientific simulation data.
Instead of segmenting each frame separately, we propose an incremental approach which incorporates the seg-
mentation result from the previous time frame when segmenting the data at the current time frame. We start
with the simple K-means method, then we study more complicated segmentation techniques based on Markov
random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the
quality of the results, as well as computational complexity.

The rest of this paper is organized as follows. Section 2 describes the simulation dataset we use as an example
in this study. Section 3 outlines methods we consider: the K-means and the Markov random field segmentation
techniques in Sections 3.1 and 3.2, respectively, and explains our incremental approach in Section 3.3. Section 4
presents our results, and finally, Section 5 concludes with a summary.

2. THE DATA

Understanding turbulence is an important scientific problem, but one that has not yet been fully solved. To
answer the remaining challenges, it is important to analyze carefully the results of different turbulent flow
simulations. We consider data from a high resolution 3-D shock tube simulation performed on a 2048×2048×1920
grid over 27,000 time steps, obtained on 960 nodes of the IBM-SP Sustained Stewardship TeraOp system at
Lawrence Livermore National Laboratory.1 Initially, two gases are separated by a membrane in a tube, then
the membrane is pushed against a wire mesh. The simulation models the resulting mixing of the two gases.

In this paper, we illustrate our methods using only a small subset of the data, as shown in Fig. 1. The twelve
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Figure 1. Example turbulence images, each of size 256×256 pixels, corresponding to different time steps in the simulation.
The time evolution is ordered by row. The first eleven correspond to consecutive time steps, while the last one is ten time
steps after the eleventh time frame.



images are each of size 256× 256 pixels, and correspond to twelve time steps taken at a certain cross-section of
a typical 256× 256× 128 data cube from a node. The time evolution is by row, that is, the three images in the
top row correspond to time steps 1 through 3, the three images in the second row to time steps 4 through 6, and
so on. The first eleven images correspond to consecutive time steps, while the twelfth one is ten time steps after
the eleventh.

3. THE METHODS

There are numerous techniques for segmenting images. A frequently updated extensive computer vision bibli-
ography available online at http://iris.usc/edu/Vision-Notes/bibliography/contents.html lists several
examples, including global threshold based methods, region growing algorithms, split and merge algorithms,
model based techniques, deformable curves (snakes), level set methods, and texture based implementations.

In rest of this section, we describe the segmentation algorithms we consider. Section 3.1 outlines the K-means
clustering algorithm as used for segmentation, Section 3.2 explains segmentation based on Markov random fields,
and Section 3.3 presents our incremental approach.

3.1. Segmentation using K-means

As a first segmentation method, we apply the simple K-means clustering algorithm.2, 3 Given N observations
{zi}

N
i=1, from a d-dimensional dataset, and a specified number of classes K, the K-means algorithm divides the

observations into K clusters by minimizing the total within-class sum of squares. For a given class, the within-
class sum of squares is simply the sum of the L2 distances of the objects in the class and the class mean. If µk
denotes the p-dimensional mean corresponding to class k, denoted by Clk for k = 1, . . . ,K, the within-class sum
of squares for class k is defined as

SSQk =
∑

{i:zi∈Clk}

(zi − µk)
2. (1)

The total within-class sum of squares is the sum of the K class sum of squares

TSSQ =

K
∑

k=1

SSQk. (2)

In our results, instead of reporting the rather large sums of squares, we provide the class and overall clustering
summaries in terms of the number of items per cluster and root mean square (RMS) deviations. For class k, nk
denotes the number of elements in it, and RMSk the associated class RMS. We have,

nk = #{i : zi ∈ Clk}, (3)

and

RMSk =


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1

nk
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2





1/2

. (4)

For the overall clustering, the total number of elements N is

N =

K
∑

k=1

nk, (5)

and the total RMS is

RMS =
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N
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. (6)

The K-means algorithm is easily extensible to other cluster centers and distance measures: instead of using
the mean and Euclidean distance, one could also use the median and L1 norm, for example.

In our application, at each time frame, we have N = n ×m = 256 × 256 = 65,536 pixel intensity values as
the N observations from a d = 1 dimensional data.



3.2. Segmentation using Markov random fields

One popular model-based image segmentation method is segmentation with Markov random fields (MRFs).
Following Ref. 4, let xij denote the intensity of the (i, j)th pixel of an n ×m image X, and yij ∈ {1, ...K} its
corresponding class label for {(i, j) : i = 1, . . . , n; j = 1, . . . ,m}. The MRF model assumes that the observed
intensities depend only on the unobservable (hidden) class labels, and that the distribution of the labels follows
an MRF of the form

P (Y ) ∝ eβV (Y ), (7)

where β is a smoothness parameter and V (Y ) is an overall potential function. In Eq. (7), we omitted the
normalizing constant that ensures that

∑

Y P (Y ) = 1. Large values of β correspond to large objects in the data,
while small values allow for smaller structures. If the image is homogeneous, it is appropriate to consider one
global β for the entire image. However, if there are several regions with spatial structures on different scales, it
is recommended to consider spatially varying, or inhomogeneous, MRFs with βij varying at the different pixel
locations.

In this paper, we consider a second order neighborhood model with a location dependent smoothness param-
eter βij . The local potential function Vij is equal to nij(yij), which is the number of pixels labeled yij in the
second order neighborhood δij = {ykl : i− 1 ≤ k ≤ i+ 1, j − 1 ≤ l ≤ j + 1} of pixel (i, j). Accordingly, Eq. (7)
becomes

P (Y ) ∝ e

∑

i,j
βijnij(yij). (8)

We also assume that given the class label yij at location (i, j), the intensity xij is a realization from a normal
random variable that depends only on the class label yij , with mean µij = µyij

and standard deviation σij = σyij
,

P (xij |yij) ∼ N (µij = µyij
, σij = σyij

). (9)

Combining Eqs. (8) and (9) and using Bayes’ theorem, we obtain the posterior distribution of the labels given
the intensity observations as

P (Y |X) ∝ P (Y )P (X|Y ) = e

∑

i,j
βijnij(yij)

∏

ij

1
√

2πσ2
yij

e
−1/(2σ2

yij
)(xij−µyij

)2
. (10)

We estimate the MRF parameters βij with the method developed in Ref. 4, based on the pseudo likelihood
approximation of the maximum likelihood solutions. The spatially homogeneous model corresponds to one
global beta at each image pixel, that is, βij ≡ β. The technique requires an initial guess estimate of the labels.
Rather than a random guess, we use the results of a K-means segmentation as the starting point of the algorithm.

3.3. An incremental approach to segmentation

Instead of segmenting anew the images at every time step, we propose to use the segmentation result from an
earlier time step as the starting point for segmenting the data at a later time frame.

Given the segmentation result at time t1, we obtain the segmentation at time t2 > t1 as follows: first, we
take the pixel-wise difference of the image Xt2 at time t2 and Xt1 at time t1, to obtain a difference image Dt1,t2 .
Next, for i, j = 1, . . . , 256, if the absolute value of the difference image at pixel (i, j), i.e., Dt1,t2(i, j), is less than
a positive threshold λ, we keep the class of Xt2(i, j) the same as the class of pixel Xt1(i, j). Otherwise, we assign
pixel Xt2(i, j) to the class k that minimizes |(Xt2(i, j)− µk)/RMSk| over k = 1, . . . ,K.

4. RESULTS

The three images in Fig. 2 display the segmentation results for the first time frame obtained by K-means with
K = 3, 4, and 5, respectively. The corresponding class summaries are presented in Table 1.

The top row of Fig. 3 and Table 2 display the corresponding segmentation results for the second time frame
obtained by K-means with K = 3, 4, and 5, respectively. The three images in the middle row of Fig. 3 show the



(a) (b) (c)

Figure 2. Results of the K-mean segmentation algorithm applied to the first time frame in Fig. 1. (a) K=3, (b) K=4,
(c) K=5.

Table 1. Class summaries for the three K-means segmentations displayed in Fig. 2.

RMS k µk nk RMSk

K=3 15.02 1 7.16 40,858 10.24
2 117.72 6,362 31.28
3 219.85 18,316 15.28

K=4 10.37 1 5.54 39,409 5.66
2 74.55 4,222 20.90
3 151.63 4,912 20.99
4 223.0 16,993 10.22

K=5 8.15 1 4.99 38,719 3.99
2 58.61 3,706 16.61
3 120.77 3,386 16.90
4 174.61 3,723 15.47
5 224.90 16,002 7.33

incremental segmentation result of the second time frame, based on the K-means segmentation of the first time
frame and the difference information, as explained in Sect. 3.3. For a given K, the value of the threshold λ for
each of the images Fig. 3(d-f) is chosen as the largest class RMSk corresponding to the K-means segmentation
of the first frame. A pixel in the second image is re-classified only if its difference, in absolute value, from the
corresponding pixel in the first frame exceeds the largest class RMSk. The differences between the corresponding
K-means segmentations of the second frame, displayed in the top row of Fig. 3, and the ones obtained by the
incremental shortcut, shown in the middle row Fig. 3, are presented in the third row of Fig. 3.

In our comparisons, we consider the K-means segmentations performed at each time step to be the ground
truth for the corresponding time frame. We evaluate the accuracy of the incremental segmentation only in
comparison with the K-means result. Alternative measures,5 weighting objective errors, that is, differences
between ground truth and segmented image, by human perception could also be used.

Table 3 presents the influence of the thresholds on the accuracy of the incremental results, for select values
of the threshold and different time separations between the segmented frames. The thresholds were selected
based on the class RMS values in Table 1. The Nrc(a, b) values denote the number of pixels that needed to be
re-classified in the incremental segmentation of the image at t2 = b based on the K-means segmentation of the
image at time t1 = a. Essentially, it is the number of pixels where the absolute value of the difference between
the image at t2 = b and at t1 = b exceeds the threshold λ. The Nmc(a, b) columns indicate the number of pixels
that are mis-classified in the incremental segmentation of the image at time at t2 = b based on the K-means
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Figure 3. Top row: Results of the K-mean segmentation algorithm applied to the second time frame in Fig. 1. (a) K=3,
(b) K=4, (c) K=5. Middle row: Results of the incremental K-means segmentation algorithm on the second time frame
(t2 = 2) in Fig. 1, using the corresponding segmentation of the first time frame (t1 = 1) as starting point. (d) K=3,
(e) K=4, (f) K=5. Bottom row: Differences between K-means segmentations in top row and corresponding incremental
segmentations in middle row. (g) K=3, (h) K=4, (i) K=5.



Table 2. Class summaries for the three K-means segmentations displayed in Fig. 3.

RMS k µk nk RMSk

K=3 15.39 1 7.31 40,613 10.20
2 115.89 7,037 30.96
3 219.26 17,886 15.96

K=4 10.77 1 5.80 39,263 6.19
2 76.86 4,669 21.19
3 151.66 5,199 21.01
4 223.02 16,405 10.22

K=5 8.42 1 5.08 38,341 4.12
2 56.57 3,857 16.21
3 115.29 3,674 16.52
4 170.64 4,058 16.076
5 224.57 15,606 7.73

Table 3. Influence of the thresholds on the accuracy of the incremental segmentation results.

λ Nrc(1, 2) Nmc(1, 2) Nrc(1, 3) Nmc(1, 3) Nrc(1, 8) Nmc(1, 8)

K=3 0 65,536 3,303 65,536 3,904 65,536 5,050
10.24 11,137 2,442 15,969 3,353 26,751 4,793
15.28 8,762 2,341 13,648 3,187 25,294 4,741
31.28 4,778 2,020 9,079 2,964 20,705 4,493
50.00 2,344 2,289 5,960 2,880 16,720 3,531

K=4 0 65,536 3,073 65,536 3,422 65,536 6,095
5.66 14,626 2,567 18,849 3,141 30,335 5,819
10.22 11,137 2,133 15,969 2,680 26,751 5,969
20.90 7,080 1,914 11,897 2,340 23,469 5,508
20.99 7,066 1,909 9,300 2,336 20,959 5,121
30.00 4,778 2,305 5,960 4,069 16,720 6,424

K=5 0 65,536 3,527 65,536 2,913 65,536 6,366
3.99 15,554 3,680 19,579 4,412 29,793 4,616
7.33 14,626 3,573 18,849 4,350 28,777 8,803
15.47 9,178 2,678 13,648 2,381 25,294 8,803
16.61 8,415 2,469 13,276 2,907 24,331 5,251
16.90 7,719 3,508 12,546 3,559 24,038 8,057

segmentation of the image at time t1 = a, when compared to the direct K-means segmentation of the image at
time t2 = b. The smaller the number of incorrectly classified pixels, the better the method is.

As expected, the accuracy of the results degrades as the time separation increases between the frames.
As λ increases, the number of incorrectly classified pixels decreases first, then it starts increasing again. In our
preliminary experiments with this dataset, choosing λ automatically as the largest class RMS leads to reasonable
results.

Similar to Fig. 3, Fig. 4 shows the incremental segmentation results of the third time frame, based on the
K-means segmentation of the first time frame. The corresponding results of the incremental segmentation of the
eighth time frame based on the K-means segmentation of the first time frame are presented in Fig. 5. In general,
the accuracy of the incremental results decreases as the time separation increases.

The proposed method can be applied without significant loss of accuracy, provided the differences between
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Figure 4. Top row: Results of the K-mean segmentation algorithm applied to the third time frame in Fig. 1. (a) K=3,
(b) K=4, (c) K=5. Middle row: Results of the incremental K-means segmentation algorithm on the third time frame
(t2 = 2) in Fig. 1, using the corresponding segmentation of the first time frame (t1 = 1) as starting point. (d) K=3,
(e) K=4, (f) K=5. Bottom row: Differences between K-means segmentations in top row and corresponding incremental
segmentations in middle row. (g) K=3, (h) K=4, (i) K=5.
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Figure 5. Top row: Results of the K-mean segmentation algorithm applied to the eight time frame in Fig. 1. (a) K=3,
(b) K=4, (c) K=5. Middle row: Results of the incremental K-means segmentation algorithm on the eight time frame
(t2 = 2) in Fig. 1, using the corresponding segmentation of the first time frame (t1 = 1) as starting point. (d) K=3,
(e) K=4, (f) K=5. Bottom row: Differences between K-means segmentations in top row and corresponding incremental
segmentations in middle row. (g) K=3, (h) K=4, (i) K=5.
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Figure 6. MRF segmentation for the first time frame with K=3 classes. (a) Result with a global β estimate. (b) Spatially
inhomogeneous βij estimates. (c) Result with the spatially inhomogeneous βij estimates.

the frames under consideration are small enough. If the differences reach a certain level above the tolerance of
the application, the method has to be re-started by performing an initial K-means segmentation on the frame
which drifted too much from the first frame.

In terms of computational complexity, one iteration of the K-means algorithm requires calculating the K class
centers, as well as the N×K distances of the N data items from theK centers, and ordering of the distances. The
algorithm usually converges in a few iterations. In comparison, the incremental approach requires calculating the
N differences between the pixels of the two images, and only Nrc×K additional distances and sorting, where Nrc

is the number of pixels where the absolute difference between the two images exceeds a user-defined threshold.
With the small images we explored in this study, (using our C++ software on a Dell Precision 530 workstation
with 32 GB disk, 512 MB memory, and dual 1.5 GHz Intel Xeon processors running the RedHat Linux operating
system), there is no noticeable difference between the run-times of the two different methods. As we scale up the
algorithms to cover the full range of the simulation data, we expect the incremental method to be significantly
faster than the sequential one.

In addition to the K-means segmentation, we also experimented with the more advanced MRF method.
Because of the added spatial information in the MRF model, it is expected to perform better than the non-
spatial K-means algorithm. Figure 6 shows the results of the MRF segmentation with K=3 classes for the first
time frame. As an initial guess for the MRF, we supplied the result of a K-means segmentation. The first image
in Fig. 6(a) illustrates the MRF segmentation using a single global smoothness parameter β. The spatially
inhomogeneous βij estimates are shown in Fig. 6(b), and the corresponding segmentation in Fig. 6(c). In our
current work, we are exploring an incremental segmentation technique based on combining the K-means and the
MRF methods. Our plan is to use the results of a K-means segmentation on previous time frames as starting
points for the MRF segmentation of the image corresponding to the current time frame.

5. SUMMARY

In this paper, we described a simple technique to segment consecutive frames in a time-evolving simulation. Our
future plans include investigating more effective segmentation methods in order to better isolate the objects of
interest in the data.
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