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Abstract. This paper describes the application of four evolutionary al-
gorithms to the pruning of neural networks used in classification prob-
lems. Besides of a simple genetic algorithm (GA), the paper considers
three distribution estimation algorithms (DEAs): a compact GA, an ex-
tended compact GA, and the Bayesian Optimization Algorithm. The
objective is to determine if the DEAs present advantages over the simple
GA in terms of accuracy or speed in this problem. The experiments con-
sidered a feedforward neural network trained with standard backpropa-
gation and 15 public-domain and artificial data sets. In most cases, the
pruned networks seemed to have better or equal accuracy than the orig-
inal fully-connected networks. We found few differences in the accuracy
of the networks pruned by the four EAs, but found large differences in
the execution time. The results suggest that a simple GA with a small
population might be the best algorithm for pruning networks on the data
sets we tested.

1 Introduction

The success of neural networks (NNs) largely depends on their architecture,
which is usually determined by a trial-and-error process. Evolutionary algorithms
(EAs) have been used in numerous ways to optimize the network architecture
to reach the highest possible classification accuracy [1,2]. In the present paper,
we examine neural network pruning by four evolutionary algorithms to improve
the generalization accuracy in classification problems.

We experimented with a simple genetic algorithm (sGA) and three distribu-
tion estimation algorithms (DEAs): a compact GA (cGA), an extended compact
GA (ecGA), and the Bayesian Optimization Algorithm (BOA). Instead of the
mutation and crossover operations of conventional GAs, DEAs use a statisti-
cal model of the individuals that survive selection to generate new individuals.
Numerous experimental and theoretical results show that DEAs can solve hard
problems reliably and efficiently [3,4,5].

The objective of this study is to determine if DEAs present advantages over
simple GAs in terms of accuracy or speed when applied to neural network prun-
ing. The experiments used conventional feedforward perceptrons with one hidden
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layer and were trained with the backpropagation algorithm. The experiments
used 13 public-domain and two artificial data sets.

Our target was to maximize the accuracy of classification. The experiments
demonstrate that, in most cases, the accuracy of the pruned networks is at least
as good as that of fully-connected networks. We found few significant differences
in the accuracy of networks pruned by the four EAs, but found large differences
in the execution time.

The next section presents background on neural network pruning, including
some previous applications of EAs to this task. Section 3 describes the algo-
rithms, data sets, and the method used to compare the algorithms. The exper-
imental results are presented in section 4. Section 5 concludes this paper with
a summary, the conclusions of this study, and a discussion of future research
directions.

2 Neural Network Pruning

It is well known that a network that is too big for a particular classification
task is more likely to overfit the training data and have poor performance on
unseen examples (i.e., poor generalization) than a small network. Therefore, a
heuristic to obtain good generalization is to use the smallest network that will
learn to classify correctly the training data. However, the optimal network size
is usually unknown and tedious experimentation becomes necessary to find it.
An alternative to improve generalization is to train a network that is believed
to be larger than necessary and prune the excess parts.

Numerous algorithms have been used to prune neural networks [6]. Prun-
ing begins by training a fully-connected neural network. Most pruning methods
delete a single weight at a time in a greedy fashion, which may result in sub-
optimal pruning. Additionally, many pruning methods fail to account for the
interactions among multiple weights. This may be problematic if deleting one
weight makes it appear as if another weight that should be pruned is important
for the operation of the network. An algorithm that considers weight interactions
and more than one weight at a time may have a better chance of reducing the
size of the network significantly without affecting the classification accuracy. For
these reasons, GAs and DEAs seem promising for NN pruning.

Genetic algorithms have been used to prune networks with good results [7,8,
9]. Applying GAs to prune networks is straightforward: The chromosomes con-
tain one bit for each weight of the original network, and the value of the bit
determines whether the weight will be used in the final network. This simple bi-
nary encoding is used in the experiments in the present paper. More sophisticated
methods of simultaneously training and pruning the networks were introduced
by Schmidt and Stidsen [10].

Whitley [11] suggests to retrain the network for a few epochs after pruning
the weights. We performed experiments to test this idea, but our experiments
show only limited advantages of retraining.
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It is also possible to prune entire (input and hidden) nodes, but in the present
paper we experiment only with the more common approach of pruning individual
weights. We leave pruning units to future work.

3 Methods

This section describes the algorithms and the data sets used in this paper as
well as the statistical method used to compare the algorithms.

3.1 Algorithms

The simple genetic algorithm in this study uses binary strings, pairwise tourna-
ment selection without replacement, uniform crossover, and bitwise point muta-
tion. Simple GAs such as this have been used successfully in many applications.
However, it has long been recognized that the problem-independent crossover
operators used in simple GAs can disrupt groups of related variables and pre-
vent the algorithm from reaching the global optimum, unless exponentially-sized
populations are used. (Thierens [12] gives a good description of this problem).

One approach to identify and exploit the relationships among variables is
to estimate the joint distribution of the individuals that survive selection and
use this model to generate new individuals. The complexity of the models has
increased over time as more sophisticated methods of building models from data
and more powerful computers become available. Interested readers can consult
the reviews by Pelikan et al. [13] and Larrañaga et al. [14].

The simplest model-building EA used in the experiments reported here is the
compact GA [15]. This algorithm assumes that the variables (bits) that represent
the problem are independent, and therefore the cGA models the population as a
product of Bernoulli distributions. The compact GA receives its name from its
small memory requirements: Instead of using an explicit population, the cGA
uses a vector p of length equal to the problem’s length, l. Each element of p
contains the probability that a sample will take the value 1. If the Bernoulli trial
is not successful the sample will be 0. All positions of p are initialized to 0.5 to
simulate the usual uniform random initialization of simple GAs. New individuals
are obtained by sampling consecutively from each position of p and concatenating
the values obtained. The probabilities vector is updated by comparing the fitness
of two individuals obtained from it. For each pk, k = 1, .., l, if the fittest individual
has a 1 in the k-th position, pk is increased by 1/n, where n is the size of
the virtual population that the user wants to simulate. Likewise, if the fittest
individual has a 0 in the k-th position, pk is decreased by 1/n. The cGA iterates
until all positions in pk contain either zero or one. PBIL [16] and the UMDA [17]
are other algorithms that use univariate models and operate on binary alphabets.
They differ from the cGA in the method to update the probabilities vector.

The extended compact GA [18] uses a product of marginal distributions on a
partition of the variables. In this model, subsets of variables are modeled jointly,
and the subsets are considered independent of other subsets. Formally, the model
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(a) ecGA (b) BOA

Fig. 1. Representation of the models used in the ecGA and the BOA. Variables are
represented as circles. The ecGA groups related variables into subsets, but cannot
represent individual relationships among variables in the same subset.

is P =
∏m

i=0 Pi, where m is the number of subsets in a partition of the variables
and Pi represents the distribution of the i-th subset. The distribution of a subset
with k members is stored in a table with 2k − 1 entries. The challenge is to find
a partition that models the population correctly. Harik [18] proposed a greedy
search that initially supposes that all variables are independent. The model
search tries to merge all pairs of subsets and chooses the merger that minimizes
a complexity measure based on information theory. The search continues until no
further subsets can be merged. In contrast to the cGA, the ecGA has an explicit
population that is evaluated and is subject to selection at each iteration of the
algorithm. The algorithm builds the model considering only those solutions that
survive selection. The population is initialized randomly, and new individuals
are generated by sampling consecutively from the m subset distributions.

The Bayesian Optimization Algorithm [3] models the selected individuals
using a Bayesian network, which can represent dependence relations among an
arbitrary number of variables. Independently, Etxeberria and Larrañaga [4] and
Mühlenbein and Mahnig [5] introduced similar algorithms. The BOA uses a
greedy search to optimize the Bayesian Dirichlet metric, a measure of how well
the network represents the data (the BOA could use other metrics). The user
specifies the maximum number of incoming edges to any node of the network.
This number corresponds to the highest degree of interaction assumed among the
variables of the problem. As the ecGA, the BOA builds the model considering
only the solutions that survived selection. New individuals are generated by
sampling from the Bayesian network.

The main difference between the ecGA and the BOA is the model that they
use to represent the survivors. Figure 1 illustrates the different models used by
the ecGA and the BOA. The ecGA cannot represent individual relationships
among the variables in a subset.
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The experiments used the C++ implementations of the ecGA [19] and the
BOA version 1.0 [20] that are distributed by their authors on the web (at
http://www-illigal.ge.uiuc.edu). The ecGA code has a non-learning mode
that emulates the cGA. The sGA and the neural network were developed in C++.
All programs were compiled with g++ version 2.96 using -O2 optimizations. The
experiments were executed on a single processor of a Linux (Red Had 7.2) work-
station with dual 2.4 GHz Intel Xeon processors and 512 Mb of memory. The
ecGA and the BOA codes were modified to use a Mersenne Twister random
number generator, which was also used in the GA and the data partitioning.

The algorithms used populations with 1024 individuals and were initialized
uniformly at random. The GA used uniform crossover with probability 1.0, and
mutation with probability 1/l, where l was the length of the chromosomes and
corresponds to the total number of weights in the network. Promising solutions
were selected with pairwise binary tournaments without replacement. The cGA,
ecGA, and the BOA used the default parameters provided in their distributions:
The cGA and ecGA used tournaments among 16 individuals, and the BOA used
truncation selection with a threshold of 50%. All algorithms were terminated
after observing no improvement in the best individual over five consecutive gen-
erations, or until a limit of 50 generations was reached.

The network used in the experiments was a fully-connected perceptron with
a single hidden layer. The hidden and output units compute their output as
f(net) = tanh(net), where net =

∑d
i=1 xiwi + w0 is the net activation, the xi

are inputs to the unit, wi are the connection weights and w0 is a bias term. The
weights were initialized uniformly at random in the interval [-1,1]. Before each
EA run, a fully-connected network was trained with simple backpropagation
using a learning rate of 0.15 and a momentum term of 0.9. In each epoch, the
examples were presented to the network in a different random order. The sizes
of the network and the number of training epochs varied for each data set and
are specified in table 1.

For all the algorithms, the classification accuracy of the pruned network on
the training data served as the fitness function. In cases where the pruned net-
work was retrained with backpropagation, the algorithms exploited the Baldwin
effect: The retrained pruned network was used to evaluate the fitness, but the
retrained weights were not inherited. Note that the fitness measure does not
bias the search explicitly toward networks with few weights. Adding this bias is
a future extension of the work presented here.

3.2 Data Sets

The data sets used in the experiments are described in table 1. The data sets are
available in the UCI machine learning repository [21], except for Random21 and
Redundant21, which are artificial data sets with 21 features each. The target
concept of these two data sets is whether the first nine features are closer to
(0,0,...,0) or (9,9,...,9) in Euclidean distance. The features were generated uni-
formly at random in the range [3,6]. All the features in Random21 are random,
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Table 1. Description of the data sets used in the experiments. For each data set, the
table shows the number of instances; the number of classes; the number of continuous
and discrete features; the number of input, hidden, and output units; and the number
of epochs of backpropagation used to train the networks.

Features Neural Network
Domain Cases Class Cont. Disc. Input Output Hidden Epochs
Breast Cancer 699 2 9 – 9 1 5 20
Credit-Australian 653 2 6 9 46 1 10 35
Credit-German 1000 2 7 13 62 1 10 30
Heart-Cleveland 303 2 6 7 26 1 5 40
Housing 506 3 12 1 13 3 2 70
Ionosphere 351 2 34 – 34 1 10 40
Iris 150 3 4 – 4 3 5 80
Kr-vs-kp 3196 2 – 36 74 1 15 20
Pima-Diabetes 768 2 8 – 8 1 5 30
Segmentation 2310 7 19 – 19 7 15 20
Sonar 208 2 60 – 60 1 10 60
Vehicle 846 4 18 – 18 4 10 40
Wine 178 3 13 – 13 3 5 15
Random21 2500 2 21 – 21 1 1 100
Redundant21 2500 2 21 – 21 1 1 100

and the first, fifth, and ninth features are repeated four times each in Redun-
dant21. We took the definition of Redundant21 from the paper by Inza et al. [22].

Each numeric feature in the data was linearly normalized to the interval
[−1, 1]. The discrete features and the class labels were encoded with the usual
1-in-C coding if there are C > 2 values (one of the C outputs is set to 1 and the
rest to -1). Binary values were encoded as a single -1 or 1 value.

The instances with missing values in Credit-Australian were deleted. Fol-
lowing the usual practice, the missing values in Pima-Diabetes (denoted with
zeroes) were not removed and were treated as if their values were meaningful.
Following Lim et al. [23], the classes in Housing were obtained by discretizing
the attribute “mean value of owner-occupied homes” as follows: class = 1 if
log(median value) ≤ 9.84, class = 2 if 9.84 < log(median value) ≤ 10.075, and
class = 3 otherwise.

3.3 Evaluation Method

To evaluate the generalization accuracy of the pruning methods, we used 5 itera-
tions of 2-fold crossvalidation (5x2cv). In each iteration, the data were randomly
divided in halves. One half was input to the EAs. The best pruned network found
by the EA was tested on the other half of the data. The accuracy results pre-
sented in table 2 are the averages of the ten tests.

To determine if the differences among the algorithms were statistically sig-
nificant, we used a combined F test proposed by Alpaydin [24]. Let p

(j)
i denote
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Table 2. Mean accuracies found in the 5x2cv experiments. Bold typeface indicates
the best result and those not significantly different from the best according to the
combined F test at a 0.05 level of significance.

Domain Unpruned sGA cGA ecGA BOA
Breast Cancer 96.39 96.54 96.13 95.84 96.42
Cr-Australian 82.53 85.78 85.75 86.18 85.84
Cr-German 70.12 70.68 70.92 70.30 70.14
Heart-Cleveland 58.17 89.70 88.05 88.78 89.37
Housing 64.62 75.36 67.11 64.18 66.24
Ionosphere 84.77 84.61 82.95 82.22 84.22
Iris 94.53 92.93 70.13 67.73 93.60
Kr-vs-kp 74.30 92.56 93.53 93.81 93.85
Pima-Diabetes 73.30 74.84 75.91 76.04 75.88
Segmentation 44.16 64.02 62.45 64.32 63.66
Sonar 73.17 83.46 86.15 84.90 83.55
Vehicle 69.71 78.20 76.73 76.64 78.62
Wine 95.16 94.15 89.88 87.41 93.48
Random21 91.70 94.04 94.08 94.03 94.09
Redundant21 91.75 95.77 95.82 95.82 95.72

the difference in the accuracy rates of two classifiers in fold j of the i-th iteration
of 5x2cv, p̄ = (p(1)

i + p
(2)
i )/2 denote the mean, and s2

i = (p(1)
i − p̄)2 + (p(2)

i − p̄)2

the variance, then

f =

∑5
i=1

∑2
j=1

(
p
(j)
i

)2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees of freedom, and we rejected
the null hypothesis that the two algorithms have the same error rate with a 0.05
level of significance if f > 4.74 [24]. The algorithms used the same data partitions
and started from identical initial populations.

4 Experiments

Table 2 has the average accuracies obtained with each method. For each data
set, the best observed result and those that according to the combined F test
are not significantly different from the best are highlighted in bold type.

These results suggest that, in most cases, the accuracy of the pruned networks
is at least as good as the original fully-connected networks. In these experiments
the networks were not retrained after pruning. Unexpectedly, pruning does not
seem to have harmful effects on the accuracy, except in two cases (Iris and Wine)
where the networks pruned with cGA and ecGA perform significantly worse than
the fully-connected networks. The simple GA and the BOA performed equally
well, and their results were not significantly different than the best result for all
the data sets we tried.
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Pruning results in only minor accuracy gains over the fully-connected net-
works, except when the fully-connected nets performed poorly. In those cases,
pruning resulted in dramatic improvements. For example, the pruned networks
on Heart-Cleveland show improvements of ≈30% in accuracy, while in Kr-vs-kp
and Segmentation the improvements are ≈20%, and in Vehicle the improvements
are ≈10%.

One reason why pruning might improve the accuracy is because pruning
may eliminate the effect of irrelevant or redundant inputs. The experiments
with Random21 and Redundant21 were intended to explore this hypothesis. In
Random21, the pruning methods always selected weights corresponding to the
nine true inputs, but the algorithms always selected two or three additional
weights corresponding to random inputs. However, the performance does not
seem to degrade much. It is possible that backpropagation had assigned low
values to those irrelevant weights or it may be that the hypothesis that pruning
improves the accuracy by removing irrelevant weights is wrong. Further work is
required to clarify these results. In Redundant21, the pruning methods did not
eliminate the redundant features. In fact, the pruned networks retained more
than 20 of their 24 weights. Again, it is not clear why the performance did not
degrade with the redundant weights and additional work is needed to address
this issue.

With respect to the number of weights of the final networks, all algorithms
had similar results, successfully pruning between 30 and 50% of the total weights
(with the exception of Redundant 21 discussed above).

Table 3 shows that the sGA and the BOA finished in similar number of
generations (except for Credit-Australian and Heart-Cleveland), and were the
slowest algorithms in most cases. On most data sets, the ecGA finishes faster
than the other algorithms.1 However, the ecGA produced networks with inferior
accuracy than the other methods or the fully-connected networks in three cases
(Housing, Iris, and Wine). Despite the occasional inferior accuracies, it seems
that the ecGA is a good pruning method with a good compromise of accuracy
and execution time. However, further experiments described below suggest that
simple GAs might be the best option.

We performed additional experiments retraining the networks after pruning
for one, two, and five epochs of backpropagation (results not shown). In most
cases, retraining the networks improves the classification accuracy only slightly
over pruning without retraining (1–2%), and there does not appear to be a
significant advantage to retrain for more than one epoch. Among the data sets
we tested, the largest impact of retraining (using one epoch) was in Housing
with an increase of approximately 7% over pruning without retraining.

Retraining, however, had a large impact on the number of generations until
the algorithms terminated. In most cases, retraining for one epoch reduced the
generations by approximately 40%. Only in one case (sGA on Random21) the

1 The time needed by the DEAs to build a model of the selected individuals and gen-
erate new ones was short compared to the time consumed evaluating the individuals,
so one generation took roughly the same time in all algorithms.
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Table 3. Mean generations until termination. Bold typeface indicates the best result
and those not significantly different from the best according to the combined F test at
a 0.05 level of significance.

Domain sGA cGA ecGA BOA
Breast Cancer 9.2 6.7 7 10.9
Credit-Australian 10 14 14.9 14.4
Credit-German 17.1 22.8 21.3 14.3
Heart-Cleveland 9.8 10.4 10.2 15.8
Housing 19.4 7.4 7.1 18.6
Ionosphere 16.8 15.7 15.1 17.8
Iris 10.1 5.9 5.9 10.1
Kr-vs-kp 37.7 28.8 26 35.7
Pima-Diabetes 12.8 14.7 11.5 14.2
Segmentation 26 18.1 17.4 24.9
Sonar 14.5 20.5 19.3 16.9
Vehicle 26.1 16.5 14.8 30.2
Wine 12.5 9.9 9.4 11.7
Random21 13.6 9 9.1 14.8
Redundant21 13.7 8.5 8.5 16.1

number of generations increased (from 13.6 to 20). Retraining for more than one
epoch did not have a noticeable effect on the number of generations. Of course,
in all cases, retraining increased the total execution time considerably.

The population size of 1024 individuals was chosen because the DEAs require
a large population to estimate correctly the parameters of the models of selected
individuals. However, for the simple GAs, it is likely that such a large population
is unnecessary. In additional experiments, we set the sGA population size to the
largest of 20 or 3

√
l, where l is the size of the chromosomes (number of weights

in the network). The only significant difference in accuracy between the sGA
with 1024 individuals and the smaller population was in Iris (87.73% with 20
individuals vs. 92.93% with 1024). There were no other significant differences
with the sGA with the large population or the best pruning method for each data
set. Naturally, the execution time was much shorter with the smaller populations.
Therefore, for pruning neural networks, it seems that the best alternative among
the algorithms we examined is a simple GA with small populations.

5 Conclusions

This paper presented experiments with four evolutionary algorithms applied to
neural network pruning. The experiments considered public-domain and artificial
data sets. With these data sets we found that there are few differences in the
accuracy of networks pruned by the four EAs, but that the extended compact
GA needs fewer generations to finish. However, we also found that, in a few
cases, the ecGA results in networks with lower accuracy than those obtained by
the other EAs or a fully-connected network.
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We also found that in most cases retraining the pruned networks improves
the classification accuracy only very slightly but incurs in a much higher com-
putational cost. Therefore, it appears that retraining is only recommended in
applications where time is not critical.

Additional experiments revealed that a simple GA with a small population
can reach results that are not significantly different from the best pruning meth-
ods. Since the smaller populations result in much shorter execution times, the
simple GA seems to have an advantage over the other methods.

The experiments with redundant and irrelevant attributes presented here are
not conclusive and additional work is needed to clarify those results. Future work
is also necessary to explore methods to improve the computational efficiency of
the algorithms to deal with much larger data sets. In particular, subsampling
the training sets and parallelizing the fitness evaluations seem like promising
alternatives. Another possible extensions of this work are to prune entire units
and attempt to reduce the size of the pruned networks by including a bias toward
small networks in the fitness function.
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