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Abstract

Comparing the output of a physics simulation with an experiment is often done by visually
comparing the two outputs. In order to determine which simulation is a closer match to the
experiment, more quantitative measures are needed. This paper describes our early experiences
with this problem by considering the slightly simpler problem of £nding objects in a image that
are similar to a given query object. Focusing on a dataset from a cuid mixing problem, we report
on our experiments using classifcation techniques from machine learning to retrieve the objects
of interest in the simulation data. The early results reported in this paper suggest that machine
learning techniques can retrieve more objects that are similar to the query than distance-based
similarity methods.

1 Introduction

Computer simulations are increasingly being seen as the third mode of science, complementing
theory and experiments. In order to validate the physics models in these simulations, their results
must be compared with an experiment using quantitative measures - this is referred to as “code
validation.” In this paper, we describe how data mining and information retrieval techniques
can be used to aid the validation of a simulation with an experiment. We consider the problem
of shock-driven mixing of two auids of different densities. When the interface between them is
accelerated by a shock wave striking the interface perpendicularly, it results in an instability re-
ferred to as the Richtmyer-Meshkov instability [Richtmyer, 1960, Meshkov, 1969]. This instability
occurs in various natural and man-made settings such as supernova explosions, the interiors and
wakes of jet engines, and combustion chambers. It is therefore important to understand and model
this instability accurately. In recent years, researchers have been able to produce the Richtmeyer-
Meshkov instability in high-quality experiments. This data is now being used to validate sim-
ulation codes in order to determine the numerical techniques that best match the results in the
experiments [Rider et al., 2002, Zoldi, 2002].

As the £rst step toward code validation in the context of this particular problem, we consider
the more general task of identifying similar “objects” in simulation data. This is motivated by the
fact that the image of two cuids mixing, as shown in Figure 1, has clearly identifable “mushroom”



shaped objects. If we could quantitatively measure the similarity of these objects taken in isola-
tion, we could then combine this measure with additional information such as the number and
locations of the mushrooms to quantitatively compare the experimental image with the ones from
simulations. In fact, a system that can automatically identify visually similar objects in simulation
data has other applications beyond code validation. For example, by combining such a system
with visualization software, scientists can quickly focus on selected regions in large dataset that
are visually similar to a pre-de£ned object of interest.

In this paper, we focus on the task of identifying objects in the simulation data that are similar
to a given query object. Our primary approach is to represent objects in terms of carefully-designed
numerical features such that features of similar objects in different orientations, scales, and reso-
lutions are close to each other. Our objective in this paper is to show that inductive classifcation
algorithms can be used to identify objects similar to a query object. We compare the results ob-
tained using a naive Bayes classifer with the results of k-Nearest Neighbor search.

This paper is organized as follows. After reviewing related work in Section 2, we describe a
preliminary implementation of our Similarity-Based Object Recognition (SBOR) system for simu-
lation data. This system provides a test-bed for evaluating different features in retrieving similar
objects. Initial experiments with a number of simple features using data from turbulence simula-
tion are reported in Section 3. We conclude this paper and highlight some of our ongoing work in
Section 5.

Figure 1: The left image shows the Cow pattern of a Richtmyer-Meshkov experiment performed at Los
Alamos National Laboratory. The same experiment is simulated by high resolution numerical methods and
the result is shown in the right image [Rider et al., 2002].

2 Related Work

Much of the research on pattern recognition for turbulence data has been focused on extracting and
tracking topological features such as cow lines and vortexes for visualization [Helman and Hesselink, 1989,
Jiang et al., 2002, Post et al., 2002], and identifying high-level events such as bursting and shock



waves based on these features [Ma et al., 1996, Han et al., 2001]. These works typically assume a
single large ouid dataset, and the goal is to allow scientists to visualize the large amount of data
available and build models to explain the underlying phenomenon. On the other hand, our goal of
code validation is to compare and validate datasets from simulations with experiments. In general,
these datasets contain different physical measurements, and vary greatly in resolution and preci-
sion. As such, we need to construct a system that can support a large array of different features and
provide robust methods for feature extraction and comparison. The similarity-based approach de-
scribed in this paper is inspired by the recent progress in the area of Content-Based Image Retrieval
(CBIR).

CBIR systems exploit various features derived from the images and model visual similarity
by mathematical distance functions between feature vectors. Extensive research has been per-
formed to derive compact and representative features and distance functions to model visual cues
such as color, texture, and shapes. Excellent reviews of different CBIR systems can be found
in [Castelli and Bergman, 2002, Djeraba et al., 2002, Veltkamp et al., 2001, M. Yeung et al., 2001, Perry et al., 1999,
Forsyth et al., 1997, Faloutsos, 1996, Picard et al., 1996]. All of these systems focus on photographic
imagery, remotely sensed images, medical images or geologic images. To the best of our knowl-
edge, our work is the £rst to consider the application of content-based approach to turbulence
simulation data. Turbulence data differs from other types of imagery in that they do not have
clear object defnitions, and there are a multitude of physical quantities associated with each phys-
ical location. In addition, much of the existing research focus on capturing the salient features
of the entire image. A related problem arises when the query object is not an image, but a part
of an image. For example, instead of using the entire image in Figure 1 as a query, a scientist
might outline just one of the “mushroom”-shape structures as the object of interest. In this case,
the problem of CBIR becomes more complex as we now need to £nd sub-images that are a close
match. To clearly identify this added level of complexity, we refer to this problem as similarity-
based object retrieval (SBOR). There are two approaches to the SBOR problem: data-independent
and data-dependent [Castelli, 2002]. In the data-independent approach, images are divided into
overlapping or non-overlapping rectangular regions or tiles, and feature vectors are extracted from
each tile and stored in a database for similarity search [Li and Castelli, 1997, Li et al., 1999]. Data-
dependent approaches, on the other hand, apply object segmentation algorithms to extract ob-
jects from images and perform similarity search on feature vectors representing individual ob-
jects [Carson et al., 1997, Manjunath, 1998]. Due to the small size and £ne granularity of tile im-
ages, the data-independent approach typically generate much larger amount of feature data than
the data-dependent approach. On the other hand, the data-independent approach is more @exi-
ble and accurate as it is feasible to incorporate the query object as part of the input to the object
segmentation and extraction algorithms. Our work will primarily focus on the data-independent
approach.

3 Methods

In a typical similarity search, a user £rst opens an image from the image database and de£nes a
rectangular tile on the image as the query image. Then, the user specifes the types of features to be
used in the similarity search. The user can select from a large array of features, ranging from simple
pixel statistics to complicated visual attributes such as shape and texture. Later in this section we
describe the feature types in detail.

Based on the types of features chosen by the user, the feature extraction module populates the
feature database with feature vectors extracted from images in the database. We adopt a simple
sliding-window approach in generating feature vectors from images. A tile window, with dimen-
sions same as the query image, is moved across each image in a £xed-size step. A feature vector



is computed for the part of the image under the tile window at each location. In the experiments
reported here, a small step-size of two pixels is used for both the horizontal and vertical directions
in order to capture spatial variations of the data. This results in overlapping tiles. Other step-sizes
are also possible. In order to be robust against rotation at an arbitrary angle, we only consider the
pixels within the largest circle inscribed in the tile window for feature extraction.

With the feature database in place, the similarity search module seeks out the feature vec-
tors in the database that are “similar” to the feature vector corresponding to the query image.
To properly defne the notion of similarity, we assume that there is a distance, or dissimilarity,
function associated with each type of feature. Two feature vectors that are a small distance apart
are regarded to be more similar to each other than those with a large distance between them.
Some of the most commonly-used distance functions are described in detail in [Castelli, 2002] and
[Theodoridis and Koutroumbas, 1999, ch. 11]. For the experiments in this paper, we used e-search,
which consists on returning all feature vectors in the database whose distance from the query fea-
ture is within a positive threshold e. Other types of distance-based searches are possible.

To use inductive machine learning techniques to retrieve similar objects, we £rst need to create
a training set with positive and negative examples. The output of the similarity-based search is
used as the positive examples and a random sample of 200 tiles from the feature database are used
as the negative examples. It is possible that the similarity search incorrectly identifes some tiles as
being similar to the query object when they are not. It is also possible (but generally unlikely) that
sampling randomly to obtain the negative examples would include tiles that are visually similar to
the query object, but were not retrieved by the e-search. This would include examples incorrectly
mislabeled as negative into the training set. In any case, the training set is presented to the user,
who can examine and relabel the examples if necessary.

A naive Bayesian classifer is trained using the entire training set and applied to label all the
feature vectors in the database as being either “similar” or “not-similar” to the query. The feature
vectors labeled as “similar” are presented to the user.

3.1 Data

For the work in this paper, we consider the data from a high resolution 3-D shock tube simula-
tion performed on a 2048 x 2048 x 1920 grid over 27,000 time steps, obtained on 960 nodes of
the IBM-SP Sustained Stewardship TeraOp system at Lawrence Livermore National Laboratory
[Mirin et al., 1999]. At the beginning of the simulation, two gases are separated by a membrane in
a tube; then the membrane is pushed against a wire mesh. The simulation models the resulting
mixing of the two gases.

Several variables are output by the simulation at each grid point at each time step. These
variables include pressure, density, velocity, etc. In this work, we focus on the entropy, which is
available in Brick-of-Byte (BOB) £les, with one byte of information per grid point. This information
is the entropy scaled linearly with a minimum of 0 and a maximum of 255.

We focus primarily on features that provide a general and compact description of how pixel
values are distributed inside a tile image. The list of features used in our experiment include:

Simple Features This is a four dimensional vector with the mean, the standard deviation, the
maximum, and the minimum of all pixel values in a tile.

Histogram This is a 16-bin histogram of pixel values in a tile image. The bins are uniform across
the dynamic range.

ART Angular Radial Transform (ART) belongs to a broad class of shape analysis tools based on
moments [Mukundan and Ramakrishnan, 1988]. Our implementation of ART is based on the



Figure 2: The three queries used in the experiments.

region-shape descriptor defned in MPEG-7 [Manjunath et al., 2002, ch. 15]. ART projects a
2-D signal within the unit circle onto a set of complex orthonormal basis functions.

BART As alluded to in Section 1, we believe that shape is a very important attribute in identifying
similar objects in turbulence data. To provide a description of the shape of a 2-D object
independent of the internal pixel values, we propose a slight modifcation of ART called the
Binary ART (BART) feature. A simple adaptive thresholding scheme is £rst applied to the
input tile image to convert it to a binary image, with the foreground pixels set to 255 and
the background pixels to zero. The threshold is chosen to provide a good de£nition of the
object boundary. It is set to be the £rst minimum of a 32-bin histogram of all pixel values in
the input tile image. The BART feature is defned to the ART feature of the resultant binary
image.

The feature vectors in the feature database cannot be used directly by many machine learn-
ing techniques, because the individual elements in the feature vectors do not represent anything
meaningful. Consider, for example, basing a discrimination on the 10-th bin of the histogram or on
the fourth ART coeffcient. To avoid this problem, we compute a set of “derived” features. These
features are different distances between features of the query and features of each element in the
database. For example, a derived feature might be the L1 distance between histograms. There is
a new derived feature vector for each feature vector in the database. The derived features calcu-
late L1, and L2 distances between all the features as well as the Kullback-Leibler and Chi-square
distances between histograms.

4 Experiments

We conducted experiments with different query objects. In this section we present the results of
the experiments with three queries that illustrate different advantages of using machine learning
techniques to retrieve similar objects. The three queries are shown in £gure 4.

In the case of the £rst query, e-search with e=1.5 returned three matches (including the query)
and no false matches. The training set was composed of these two matches as the positive exam-
ples and 200 negative examples that were sampled randomly from the feature database. The naive
Bayesian classifer was trained and used to label all the examples in the feature database as “simi-
lar” or “not-similar.” Figure 4 presents the three “similar” objects (besides the query) identifed by
the naive Bayes. Using the naive Bayes resulted in £nding one additional similar object.

For the second query, we chose € = 4.0 to minimize the number of false matches returned by
the similarity search. With this threshold, the e-search returned two matches (including the query)
and no false matches. The naive Bayes classifer was trained using these two matches labeled as
positive examples and 200 randomly chosen examples labeled as negative. The results of applying
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Figure 3: The results of applying the naive Bayes classifer to retrieve objects similar to the £rst
query. The £rst two results were also retrieved by the e-search.

Figure 4: The results of applying the naive Bayes classifer to retrieve objects similar to the second
query. The £rst result was also retrieved by the e-search.

the trained naive Bayes as shown in £gure 4. Again, the naive Bayes classifer obtained more true
matches than with the e-search and no false matches.

The third query produced interesting results. e-search with € = 1.5 returned 20 true matches,
including some rotated examples. Figure 4 has a sample of the results. The naive Bayes was
trained with these 20 positive examples and 200 randomly selected negative examples. Applying
the trained classifer to label the items in the database resulted in 96 items being labeled as “similar”
to the query. Of these 96 items, 30 were false positives and 66 were true matches. Figure 4 has a
sample of the results.

5 Conclusions and Future Work

In this paper, we have described our initial efforts to use machine learning techniques to retrieve
objects similar to a query in simulation data. Our basic approach is to £rst capture the salient
features of the local structure or object as a multi-dimensional feature vector, and then use e-search
to identify an initial set of matches. A training set is created by joining the initial set of matches

i -

Figure 5: A sample of results of e-search to retrieve objects similar to the third query.



Figure 6: A sample of results of applying the naive Bayes classifer to retrieve objects similar to the
third query.

with a random sample of objects. The training set is used to train a naive Bayes classifer, which is
used to retrieve objects similar to the query from the database of feature vectors. We have shown
results where the naive Bayes classifer retrieves more true matches than e-search.

Our initial design generates feature vectors on-the-oy using a tile size identical to that of the
query. Even though this approach is adaptive to the input query, it does not scale well with the
size of the database. We are currently developing a two-step approach to rectify this problem.
In the £rst step, a set of simple but general features are computed ofcine based on a number of
pre-defned tile sizes. Similarity search on these features provides a crude estimate on the lo-
cations of the objects of interest. As these features are generated ofcine, we can apply dimen-
sion reduction and indexing structures such as R-Tree to achieve faster-than-linear search perfor-
mance [Castelli, 2002]. In the second stage, the user can refne the search results from the £rst
step by computing query-specifc features on the target area, or applying learning algorithms to
incorporate user feedback. Another area we are investigating is to extend the current system from
handling just a single variable of entropy to multiple variables, as well as from 2-D slices to the
entire 3-D dataset.
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