: UCRL- 90770, Rev. 1
“p‘(PREPRINT

 Matrix-Free Methods for Stiff Systems of ODE's

Peter N. Brown
Alan C. Hindmarsh

This paper was prepared for submission to
the SIAM Journal on Numerical Analysis.

February 1985

This ls a preprint of a paper intended for publication in & journal or proceedings. Since
changes may be made before publication, this preprist is made avallable with the wm-
derstanding that it will mot be cited or reprodaced without the permission of the author.

Important Information
Published in Volume 23, Number 3, June 1986.

DISCLAIMER

This document was prepared as aa sccomat of work spomsored by an agency of the

United States Goverament. Neither the United States Government nor the University

of California ner any of their employees, makes any warraaty, expreas or Implicd, or
assumes any legal lability or responsdbility for the accaracy, completesess, or meefal-
pess of any information, apparates, product, or process disclosed, or represents that
its wee would not infringe privately owned rights, Reference herein to amy specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, doea not necemarily coustitste or lmply ita endorsement, recommendation,
or favoring by the United States Governmesnt or the University of California. The
views and opinions of anthors expressed hereln do mot necessarlly state or reflect
those of the United States Government or the University of Californis, and shall not
be used for advertising or product endorsement purposes.

.

=

Matrix<Free Methods for Stiff Systems of ODE's*

Peter N. Brown!

Alan C. Hindmarsh?

ABSTRACT

We study here a matrix-free method for solving stiff systems of ordinary
differential equations (ODE's). In the numerical time integration of stiff
ODE initial value problems by BDF methods, the resulting nonlinear algebraic
system is usually solved by a modified Newton method and an appropriate linear
system algorithm. In place of that, we substitute Newton's method
(unmodified) coupled with an iterative linear system method. The latter is a
projection method called the Incomplete Orthogonalization Method (IOM),
developed mainly by Y. Saad. A form of IOM, with scaling included to enhance
robustness, is studied in the setting of Inexact Newton Methods. The
implementation requires no Jacobian matrix storage whatever. Tests on several
stiff problems, of sizes up to 16000, show the method to be quite effective
and much more economical, in both computational cost and storage, than
standard solution methods, at least when the problem has a certain amount of

clustering in its spectrum.

*This work was performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48,
and supported by the DOE Office of Energy Research, Applied Mathematical

Sciences Research Program.

IMathematics Department, University of Houston, Houston, Tx 77004

ZMathematics and Statistics Division, LLNL

1. Introduction

We consider here the numerical solution of the ODE Initial Value Problem

(1.1) ¥ =1f(ty), ylt) =y,

where the dot denotes d/dt and y is a vector of length N. The ODE in (1.1) is
assumed to be stiff, meaning. that one or more strongly damped modes are

present, and we will use the popular BDF (Backward Differentiation Formula)

methods to solve it. These methods have the general form

(12 oy, - FHhB Y ¥ o= FtLy,) s

where q is the method order. The BDF methods are implicit, and hence at each

time step one must solve for Yn in an algebraic system

(1.3) Yy - hBof(tn,yn) -a, = o,

a

*n 5551 Unejr Bo >0 -

Actually, we will deal with an equivalent form of the problem (1.3) that is
posed in terms of
Xq = hyy =y, - a,)/8,.

The restated system is
(1.4) Fn(xn) =Xy - hf(tn,an + Boxn) = 0.

Some form of Newton iteration is usually employed to solve (1.4) for Xn
(or (1.3) for yn), and this generates a sequence of linear systems to be
solved at each time step. The coefficient matrix in each of these linear
systems is some value of (or an approximation to a value of)

I 4

(1.5) Fn(x) =] « hBOJ(tn,y) (y = a, + Box) .
where J(t,y) denotes 8f/3y, the system Jacobian matrix. The solution of
these linear systems often makes up most of the work involved in the

integration of the ODE's. The most common approaches taken for the linear

2 -

systems are direct methods, and for them most of the required core memory is
for the storage of the Jacobian matrix and the decomposition factors of F;.
Iterative methods have also long been used in BDF solvers [7], but until
recently they have also required storage of the nonzero Jacobian elements.

We consider here what we feel is best called a matrix-free method for the
solution of these linear systems. In [6], Gear and Saad proposed the use of a

Krylovesubspace projection method known as the Incomplete Orthogonalization

Method, or I0M. The IOM algorithm is an iterative method for the solution of

a linear system, and as will be seen below, does not require the storage of
the coefficient matrix in any form. Its usefulness relies heavily on the fact
that the convergence of the sequence of approximations to the solution of the
linear system is fastest in the dominant subspace (i.e., in those components
corresponding to the eigenvalues in the outermost part of the spectrum of the
coefficient matrix). This is a desirable feature in the context of solving
stiff systems of ODE's by multistep or multivalue methods, since normally the
residual associated with the predicted value of the solution in a time step
(which is given by an explicit method) has its largest errors in the stiff
components. These errors are then damped out in the first few Newton
corrections since the IOM algorithm solves for these components the most
accurately. See Saad [12,13], and Gear and Saad [6] for a more detailed
discussion of the convergence properties of the IOM algorithm.

In [6], Gear and Saad discuss the implementation of the IOM algorithm into
the Newton iteration and present some preliminary results. They give several
enlightening results concerning both the linear and nonlinear iterations, but
no comprehensive analysis of the resulting Newton<like iteration scheme is
presented. Here we view the combined Newton~IOM iteration as an Inexact

Newton Method, a class of methods in which the Tinear system in the Newton

iteration is solved only approximately. The advantage of this viewpoint is

that it lends a theoretical base upon which to build the combined iteration,
at the same time suggesting how that combination mighi be done. For a
discussion of Inexact Newton Methods, see Dembo, Eisenstat, and Steihaug [4].
We prove a generalization of a theorem in [4], relaxing a condition there on
the norm of the residuals in the approximate solutions of the linear systems,
and a second -theorem that concerns the iteration error. These results will

provide a basis for the stopping condition in the I0M algorithm presented

later.
In [3], Chan and Jackson consider the use of preconditioned Krylov methods

in ODE solvers. However, since all of the preconditioning techniques
implemented there require the explicit use of the Jacobian matrix, those
methods are not matrix-free. Also, their solver attempts to use the same
Jacobian over several corrector iterations and several steps, and they view

the modified Newton/Krylov combination as an inexact chord-Newton method.

This differs from the Newton/IOM approach studied here. In a second paper
(2], Chan and Jackson have investigated general matrixkfreé preconditioning
techniques, and in particular one based on nonlinear SSOR, for general
nonlinear algebraic systems, but we are aware of no testing of this idea in
the stiff ODE setting as yet. In [10], Miranker and Chern have considered the
use of the Conjugate Gradient algorithm in the solution of the model problem
dy/dt = Jy by BDF methods, where J is symmetric and the matrix I - hBOJ is

positive definite.
The remainder of this paper is organized as follows: In Sec. 2, we

introduce the Modified and Inexact Newton Methods, prove the abovementioned
results, and describe the scaling to be used in the préblem. Then in Sec. 3,
we present the IOM algorithm, and a scaled version of it, denoted SIOM. The
incorporation of the SIOM algorithm into the general purpdse ODE solver LSODE

[8,9] is discussed in Sec. 4, and test results on several probiems are

reported in Sec. 5. Finally, in Sec. 6 we conclude with a discussion of our

results and some suggestions for future work.

2. Modified and Inexact Newton Methods

The non-linear system (1.4) is often solved using a Newton-like iteration
scheme. In this section we discuss two such schemes, namely modified Newton

and the class of Inexact Newton methods. We then introduce a natural scaling

into. the above system.
Consider a general non-linear system in RN,
(2.1) F(x) =0,
with solution x*, If Newton's method is used to solve (2,1), one ggnerates an

initial guess x(0) by some technique and then computes successive iterates by

the scheme
(2.2) P s(m) = -F(x(m))
x(m+1) = x(m) + s(m),
where P = F'(x(m)) is the Newton matrix (F' denoting 9F/dx).

When instead using modified Newton to solve (2.1), the matrix P in (2.2)

is given initially as some approximation to F'(x*), but is then held fixed
while computing the iterates x(m). In the ODE context, one must solve a
system of the form (2.1) at each time step, and so for efficiency the matrix P
is usually also held fixed over several time steps. The system (2.2) is
typically solved by performing an LU decomposition of P (at the time it is
formed) and using that for all iterations (on all time steps) until a decision
is made to reevaluate P. |

The convergence analysis of modified Newton is well known (cf. Ortega and
Rheinboldt [11]). Under appropriate conditions on P and F that Quarantee the
local convergence of the iterates x(m) to x*, when P # F'(x*), one has

linear convergence in that as m + =

Ix(m+e1) w» x*il / llx(rﬁ) - X*|Il »C,
where 0 <C <1 and leli is any normon RV, 1fp = F;(x*), then one
can show superlinear convergence, that is,
IX(m+1) « x*1l / Ix(m) - x*it +0,
In practice, it is appropriate to assume only linear convergence. Then, at

the time x(m+1) is computed, one can form
Cp = IXx(m+1) « x(m)t / nx(m) < x(m<1)n
of the asymptotic rate constant C, and use these in subsequent convergence
tests. Thus a stohping condition on x(m) of the form
lix(m) - x*¥Il < €
will be satisfied approximately if the (verifiable) condition
c ix(m) « x(m-1)Il < €

holds, provided that € is a good approximation to €/(1-C), or simply to C if C
is sufficiently small. LSODE uses this convergence acceleration idea (with
suitable "fudge factors") in its stopping test for modified Newton iterations,
and it is quite beneficial there in reducing the average number of iterations
per step. We would also 1ike to use the same idea in conjunction with Inexact
Newton Method iterations, but this will require some further justification.

The particular class of ODE problems of interest here is such that most of
the work required for the integration is in the linear algebra operations
associated with (2.2). Furthermore, much (often most) of the core memory
needed in the integration is used for the storage of the matrix P and its LU
factorization. (The latter is usually overwritten on P.) For large problems
in which the number of unknowns is on the order of several thousand or more,
storage considerations may be prohibitive on many computers. Thus, for this
class of problems, any method which can approximately solve the system in
(2.2) at reasonable cost, and also reduce the core memory required, merits

investigation. The Incomplete Orthogonalization Method (IOM) proposed by Gear

wHe

and Saad [6] is such a method, which we will view here from a somewhat
different perspective than that iﬁ [6].

The IOM algorithm itself is a method (described in more detail in the next
section) for the approximate solution of a linear system of equations.Ax =b
in RN. The use of the IOM algorithm in the solution of the non<linear

system (2.1) by Newton's method gives rise to a method which is more properly

viewed as an Inexact Newton Method. From Dembo, Eisenstat, and Steihaug [4],

an Inexact Newton Method for (2.1) has the following general form:

Set x(0) = an initial guess
For m = 0,1,2,... until convergence:
Find (in some unspecified manner) a vector s(m) satisfying

(2.3) F'(x(m)) s(m) = <F(x(m)) + r(m)
Set x(m+1) = x(m) + s(m) .

The residual r(m) represents the amount by which s(m) fails to satisfy the
Newton equation (2.2). It is not generally known in advance, being the result
of some inner algorithm which attempts to solve (2.2) exactly but doe§ not.

In order to guarantee convergence of the scheme, one must demand some
auxiliary conditions on the residual r(m). In [4], it is shown that if

(2.4) le(m)l < n IF(x(m))0 , m =0,1,2,... ,

where 0 2 My £ Mpax < 1, then the sequence of iterates x(m)

converges to a true solution of F(x) = 0 at least linearly, as long as the
initial guess x(0) is close enough. Here again, li¢ll is any norm on RN.

For the present context, where actual convergence of the iterates is not
necéssary, and the cost of obtaining them is high, the condition (2.4) is
overly restrictive. Thus it is of interest to find out how much one can relax
(2.4) and still obtain enough accuracy in the approximate solution x(m) to

x*, The following is a result along these lines.

Theorem 2.1: Let F: RN +RN be a mapping such that

(2.5) there exists a x* in RN with F(x*) = 0;

(2.6) F is continuously differentiable in a neighborhood of x*; and

(2.7) F'(x*) is non-singular,

Let x(m) be a sequence generated by an Inexact Newton Method: That is, x(0) is
an initial guess, and for m = 0,1,2,..., we have

(2.8) F'(x(m) s(m) = -F(x(m)) + r(m) , x(m1) = x(m) + s(m) .

Then there are positive gonstants € and K (depending only on F and x*)
with the following property: For any positive numbers e < ¢, and

8 <Ke, whenever ix(0) - x*i < ¢ and the residuals r(m) in (2.8)
satisfy Ir(m)Il < § for all m, then all the iterates x(m) exist and satisfy
Ix(m) - x*li < ¢, and |

1im sup Ix(m) - x*Ih < &K .

m+w
Proof: First define u= IF*(x*)ll and A = IF*(x*)" 1. Then
(2.9) ATk < IF* (x%)xh < wikil for all x n RN |
Let vy >0 be chosen such that
' b =2yM1+ uy) <1.
Next observe that by (2.5) - (2.7), there exists & > 0 so that
Ix = x*Il < e, implies
(2.10) F'(x) - F'(x*)l <y,
2.1 F - F e Ty, and
(2.12) IF(x) = F(x*) = F'(x*)(x = x*)lIl <y lix - x*il .
Next, for any x with Ix - x*il < € consider the vector given by
X' = x+s, with F'(x) s = -F(x) + r,
where nothing is specified as yet about the size of the residual r. (F'(x) is
nonsingular by (2.11).) We have the following identity:
Frix¥)(x" - x%) = {1 + F' (e [P (x)7) - P2 (x0)"T])
o{r + [F'(x) - F'(x)](x - x%) - [F(x) = FOx*) - F*(xx)(x = x%)]3 .

Taking norms and using (2.10) - (2.12), we then obtain
() O =) < [T 4+ 1F (e 1E0 ()™ = Fr (o)1)
sLirii+ IF'(x) = F'(x*)lielx-x*il + IF(x) = F(x*) = F'(x*)(x = x*)1]
< (1 + py)(irn + 2yix = x*n) ,
or, using (2.9),
(2.13) Xt - x*l < AT + uy)iell + blix - x*i
We now want to insure that when Ix - x*ll < e, and Iril < Ke for
some constant K, then ix* - x*ll < e also. From (2.13), it is clear that
we will achieve that end if
M1+ uy)Ke+ be <€,
and so we define K by
K=(1-b)/[MT1+ un].
Now for any positive e < s and any x(0) with ux(0) - x*u < ¢, a
sequence of inexact Newton iterates x(m) (m = 1,2,...) satisfying (2.8) with
Ir(m) I <Ke is guaranteed to exist, and for each m, Ix(m) - x*ll < e.
We can say more about the norms of the errors if we suppose further that
ir(m) Il < & for some constant & with § <Ke. Then, setting
a= M1+ s,
(2.13) gives
ix(m1) = x*lIl < a + blix(m) - x*Ii ,

and by induction we obtain
Ix(m) - x*il < a(l + b + b2 + ... b"'"l) + bMx(0) - x*i .

Thus, since b < 1,
ix(m) - x*i <a/(1 - b) + b,
and finally

Tim sup lix{(m) - x*il < a/(1-b) = 6/K .
M+ | QED

In practice, it is of interest to know how large & can be. If € is

-9~

the tolerance for the final computed iterate x(m), where € < €, then
we must demand that &K < ¢; in order to insure Tim sup ix(m)-x*i <

€. This indicates we should choose

§=K¢g .
Therefore, we need to know the largest allowable value of K within the
constraints of the theorem. From the proof,

K=K(y) = (1-b) / [A(T+ u)] = /(A + ya) - 2y,
where) = lF'(x*)"]u and u = IF*'(x*)Il, Recall that y Iis
chosen so that b < 1. Hence, b = 2y(A + yApy) < 1 when 0 < y < Yo» where
Yo is the positive root of 2y(A + yAuw) = 1. It is apparent that
K(y) 1s monotone in y for 0 <y < y,, with

K+0asy+y° and K+1/2xas y=+0.
Thus we would expect that

§=efA= ¢/ IF'(x*)"'II
is an acceptable choice for 6.

In the context of a stiff ODE system, we have F(x) = x - hf(t,a+8x)

(see (1.4)), so that

F'(x*) =1 - hBoJ, J = fy(t,a + Box*)
(where fy denotes of/3d). If we assume that the ODE is stable in the
sense that all the eigenvalues of J have negative real part, then

olF* (x*)1) <1
where p(A) 1s the spectral radfus of a matrix A. To the extent that
p(F'(x*)'l) approximates IIF'(x*)']II, we have roughly that A < 1.
Hence the choice of § = €; seems reasonable.

It is somewhat harder to assure that we have a reliable but practical

estimate of the error iIx(m) - x*i . In doing so, we want to make use of
estimates of the convergence rate constant (based on Tinear convergence), as

is done for modified Newton. Here, however, it must be remembered that the

iterates in Theorem 2.1 do not éven converge in general. The next result says
that under a stronger assumption on the residuals r(m), not only do we have
convergence, but the error can be reliably bounded in terms of'iterate'
differences. Thus a stopping test based on Tinear convergence remains valid
when convergence is superlinear. Following the proof, we argue heuristically
that it 1s still valid unqér the weaker assumption Ir(m)it < 6, provided

that 6 is chosen small enough.

Theorem 2.2: Let F: R + RN be a mapping satisfying (2.5), (2.7), and:
(2.14) F* satisfies a Lipschitz condition in a neighborhood of x*.
Let x(m) be a sequence generated by the Inexact Newton Method (2.8). If for
some n < I the residuals r(m) satisfy '
(2.15) wr(m)n <n Fxm)?,
then there exists an e > 0 such that whenever Ix(0) - x*i < ¢, the
iterates x(m) satisfy x(m) + x* as m + «, Furthermore, for any €'>0,
we have, for all sufficiently Targe m,

ix(m1) - x*it <C ix(mt1) - x(m)ii (1 + €') ,
where

cm = lX(mT) = x(m)n / ux(m) = x(m=1)0 .,

Proof: It follows from the results in Dembo et al. [4] or from a simple

modification of the proof of Theorem 2.1 that the sequence of iterates x(m)

converges to x* when m + =, Dembo et al. [4] show that under these stronger
conditions the sequence x(m) actually converges to x* quadratically.

Next, note that by the Mean Value Theorem (see Ortega and Rheinboldt [11])
(2.76) F(x(m)) = F(x(m)) - F(x*) = A (x(m) - x*) , |

where

Ay =j] F'(x* + t[x(m) - x*]) dt ,
0

-11-

and

1
Ay - F'(x*) = L [F'(x* + t(x(m) - x*)) - F'(x*)] dt .

It follows from (2.14) that -
(2.17) WA, - F'(x*)un < « mx(m) - x*n
for some constant a. This then implies that Am + F'(x*) as m + » and
by the Perturbation Lemma (p.45 in Ortega and Rheinboldt [11]) A, is
non-singular for all m large enough.

Denoting F(x(m)) by F, and F' (x(m)) by F';, one has, from the
definition of the Ingxact Newton Method,
(2.18) x(mel) = x(m) - (FH~L [F, - x(m)].
Using (2.16) then gives |
(2.19) x(m+l) - x* = [I - (Fr:|)'l Am][x(lﬁ) - X*] + (l",:')".l r(m).

Also, from (2.16) and (2.18) one has
x(m+l) - x(m) = - (F,:.)'l [Am(x(m) - x*¥) - t(m)] .

Multiplying this last equation by Bp = I- A;l F,; and using (2.19) gives
B [x(msl) - x(m)] = - B (F™! [A_(x(m) - x*) ~ r(m)]

= x(m+l) - x* - Am"l r(m) .

Therefore,

(2.20) x(m+l) - x* = Bm[x(m+l) -x(m)] + I-\,'“".l

r(m) .
We next show that
(2.21) B u < C, for m large enough.

Consider

x(m+l) = x(m)u/ix(m) - x(m=1)n - "Bﬁ\"

Cm - "Bm I

u(Fé)'l [Fm - t(m))Iw/ux(m) - x(m-1)n - [: I

> uF';u'l WF = c(m)n/mx(m) - x(m-1)u - ug v

||Fm - r(m)n -1 anll
= x(m) = x(m=1)n ot - 1o (m)=x(m~1) u ||Fm-r(m5|| .

=12-

Now, if we can show that IBmIVIFm - r(m)il remains bounded as

m + =, then since IFI;QI + IF'(x*)H >0, (2.21) will follow. We have
: 2
IF, Il < IF, - r(m)i + lir(m)il < IFy, = r@)u + n IF I

by (2.15). Thus, -
(2.22) IF - r(m) > (1- nnqu) IF 0
201 - aegn wehirT x(m) - xen,

using (2.16). Also, for m large enodgh,

- -.(2.23) B, < m\;‘1 A, - F';II < IIA;‘1II a lix(m) = x*i
Ce , I
by using the Lipschitz condition in a way similar to that for (2.17). Using

(2.22) and (2.23),.e see that
1B, IV IF,, - rlayh-< o e /7 (1 - gy

m——

and this s bounded as m + =, “This establishes (2.21).

—
-~

From (2.20) and (Z.Z'i)._ we have that for“m---lir"gé;\.. .

(2.24) (1) = x* <C_ Ix(m1) = x(m)u il "A;] r(m)i '."X(m).?-" x(m=1)1
. i - X*ll < Ix - I + .
m X - III_ . m x(m . ') - x(m

We now show - that IA;]n.mi'lVIM(ml)-x(m) 12 remains bounded as m + = From

(2.18) and (2.22),
(2.25) ix(me1) = x(m)u > Fp0T" IF - v (m)i
> ||-":|u'1 (1- niF i) IFH .

1

Thus, by (2.15) and (2.25), .

nA.;]r(m)il/'iIX('ml-)-x(m)_lnz < Im1ll n an"uz (1 "-“"Fm")-z .
and this remains bounded a“s.m + =, Therefore, given any e' > 0 we can choose
m large enough éo that in (2.24)

| ||x(m+.l) = xkil < Co Ix(m1) = x(m)l (1+¢). QED

Since we are only requiring that mr(m)il < & in practice, it would be |
helpful to know if a result similar to Theorem 2.2 holds in this case. But
since we do nof have actual convergence of the iterates x(m): in Theorem 2.1,
the best we can do is argue heuristically. I1f instead of (2.15), we only

-13-

/"/

assume ir(m)it < §, then in (2.22)
IF, - r{m)u > IF - 68,
and 1f § < ll-'mll, then
(2.26) VIF, - rimi < V(F -6 < V(e -8,
where e = Ix(m) - x*li, Then

|l-' - r(m)u [-1 Ix(m) - x(m=1)1 "Bm"
Fn

le(m) - x(m=-1) 0 IIA"] “Ta -5 :

Cp- 18,00 2

m

Now, recalling that A = IF'(x*)']II, we have

18Il lix{(m) - x(m-1)0 "Am lae, (e + em-l) Ao em(em + em_])
m'Tn"1 -8 - uA"n‘T e, - 6 S e, - 6

" Since an'lll'] & p'], we need § chosen small enough that

L. [Aoem(em+ en-11 7/ [;\."]e“| -6 >0.
Hence, to get 1B Ii < Cq & must be chosen so that
6 <e, [1/2- wale, +e,)] .
Note that em/A is an approximate lower bound for llel, and so the
above inequality implies that & < iF,ll (approximately). Now, if ¢
1s the desired tolerance for Ix(m) - x*il and € is chosen as in Theorem
2.1, then we can expect to have € <’'e, < e for almost all m that
actually occur. Thus & should be chosen so that
§ <& (171 - 2uha ¢), |
and ¢ needs to be small enough so that 1/A - 2uda € > 0.
Next, from the first part of (2.25) and from (2.26), one obtains
1/ i(m1) - x(myn < Fv ol e -6 .

m
Hence

1 2]

IR [IFLICIA I 8 (e + e 4)
w "0 x(m)-x(m-1)0 ¢ —F—Tp T zm-.1

I (m1) - x(m) I (il e - §°

-14-

2
AL R L s VA

(e /2 - Y (ef/A - 8)

For this last quantity to be less than a given €', & must satisfy

62-26(e]/A+ uzls'/e')+ 812/)‘2 >0. .

Again, this will be true for § small enough. Therefore, when & is chosen
small enough in comparison to €; we have, approximately,

k(m1) - x*ii <C. Ix(m1) - x(m)li .
The sizes of ¢; and & used will be seen below and are related to the
norm used and the ODE context. However, it is very likely the case that &
will need to be much smaller than e,/A .

We close this section with a discussion of scaling in the'problem (2.1),
which will at the same time specify the norm to be used. Suppose that a
diagonal matrix D is given, with positive diagonal elements, and that the
vector D']x is to be considered well-scaled whenever x approximates x¥.
That 1s, we will give the components of D™ 'x equal weight when measuring the
size of x (or errors in x, etc.). This means that the L2 (Euclidean) norm
Il 1L, on D']x, or any multiple of this, is an appropriate choice of
norm. In the LSODE solver these scale factors are available in a natural way
in terms of the user-defined absolute and relative tolerances ATOL and RTOL.
i h

The weight associated with component y time step is-

_ i
Wy = RTOL1 Iyn_ll + AT0L1

in terms of the last accepted numerical solution value y,_;. However, in

of y during the nt

order not to introduce a bias when dealing with similar ODE systems of
differing sizes, we use the root-mean-square (RMS) norm instead of the L2
norm, the two being related by

IXlpye = lxily / A

Thus, for a vector y approximating Yp» Or a vector x approximating h&h, we

will use the weighted RMS norm,

-15-

(2.27) X Ihpus = |D'1x|& .
where
D = diag (dy, ooy dy)y dy = wy AL

The given problem F(x) = 0 can now be restated in a scaled form in which

the appropriate norm is Euclidean. For any given x we define X = D'lx, and

define a new function _

(2.28) F(®) =0 F(x) = 0°1 F(DR) .
- If an Inexact Newton Method 1s applied to F(X) = 0, the iterates X(m) satisfy
(2.29) F'(R(m)) §(m) = -F(X(m)) + F(m) , K(m1) = X(m) + S(m) ,

where F'(x) = ﬂ'lF'(x)D. If one defines s(m) = DS(m) and r(m) = DF(m), then
clearly (2.29) is equivalent to (2.3). We do not explicitly rescale the
vectors in the nonlinear iteration, but will perform the scaling impTicitly.
However, this is not the case for the associated Tinear algebraic system
problem, as will be seen in the next section, where the I0M method is given in

an explicitly scaled form, called SIOM.

3. The Incomplete Orthogonalization Method

The Incomplete Orthogonalization Method (IOM) given in [13] 1s an-
algorithm for the approximate solution of the Tinear system
(3.1) Ax = b
where A is an N x N matrix and x and b are N-vectors. Here we are interested
in IOM only as a means of performing the general step of an Inexact Newton
Method for a nonlinear problem F(x) = 0. The vector b represents -F(x(m)),
A represents F'(x(m)), and the solution vector x represents the increment
s(m) = x(m1) - x(m) giving the next Newton iterate x(m1). (The Tetter x is
used to denote solutions of both nonlinear and linear systems; the particular
meaning should be clear to the reader from the context, however.) We give

here a brief development of IOM in the original (Arnoldi) form, the IOM form,

-16-

and the scaled I0M form. Details on the Arnoldi and (unscaled) IOM algorithms
and related methods can be found in [13].
By a projection method on the subspace K, = Span{VL}. where

V= [v1,...,vE] is an orthonormal system in RN. we mean a method
which finds an approximate solution x, of (3.1), using an initial guess
Xy» by requiring that

B2) x - xg€Ky, (Axg - b)Lvy (§=1,2,...8) .

Here, orthogonality is meant in the ordinary Euclidean sense. D_ifferent
choices of the subspace give rise to different bro:]ection methods, as do other
choices of orthogonality conditions. If we let rjy be the initial residual

Yo = b - Axo. and set K 2 equal to the Krylov subspace

Kg = span {ry, Arg, ..., AR"]ro} ’
then we have a Krylov subspace projection method. Writing x = x5 + z, the

equivalent equation for z is

(3.3) Az =1, , .

and the method finds an approximate solution z, of (3.3) by requiring that
2 €Ky (Azy - 1) Lvy (§=T1,...,8),

where V, = ["1"""'2.] is an orthonormal basis of Ky Letting

V, also denote the N x & matrix with columns Vi» and letting z, =

szk with Yy € Rg', we see immediately that Yy, must be the

solution of the linear system

T 1
Vg ¥y - Vyrp =0,

v
and so Xy = ¥ + z, becomes
(3.4) xp=xg+V, (VIAV) TV .
It is assumed throughout that the vectors Tor A_ro,...,A"']ro are
Tinearly independent so that the dimension of Ky 1s &
We next present an algorithm given by Saad [13], which is an adaptation of

an earlier one due to Arnoldi [1]. It constructs an orthonormal basis

-17-

Vo= [vieeae,y ol of K, such that V}AV 5, has Hessenberg form:
1. Compute o=b- Axy and set Vi =T/ Ig 1.
2. For j=1,2,...,4%do:
_ J
wj+-' = AVj - 131 h.ijv,' s hij = (AVJ, v.i)

Pr1,5 = Miiqly
iel = Y31 Pge,g

Here (+,+) 1is the Euclidean inner product and llell, the Euclidean norm.
Saad (cf. [13]) has shown that [v],...,v!'] is an orthonormal basis for
K, and that the matrix VIAVE is the upper Hessenberg matrix
H, whose nonzero elements are the hy j defined in the above algorithm.
It then follows that the vector V}:ro in (3.4) 1is equal to
Blvy = feq, where B = Irgil, and e, = (1,0,...,0)7 € R%
Therefore, the approximation Xy s given by
- -1
Xg=Xg+ BV H, ey
A very important practical consideration is the choice of 2, which
amounts to a stopping criterion. A very useful identity for this is the
following equation for the residual norm:
T
. D - i, = | I .
(3.5) b - Ax L, hn,n,g, ey,
The relation (3.5) follows from the relation
= T
AVg =Vt + hpry oVt 8y s
which can be derived from the algorithm. An interesting feature of the
relation (3.5) is that one does not have to form Xy or y, in order to

compute b - szlb. If we perform an LU factorization of Hz'

wri_ting H,‘ = LU, and assume that no pivoting was necessary, then it can be

shown [13] that

2-1
M1, n thzl " P10 B '

(0 &,)/u l)

-18-

where the £; (i=1,...,%1) are the successive pivots (the subdiagonal
elements of L). In general, one can show that when no pivoting has been

necessary for i € 1, where I € {1,...,2%1}, then

Ty | =
(3.6) hyq g felve| = hpg o 8 fon gy, |-

See [13] for more details.
The use of (3.5) to estimate the error Ib - szuz then Tleads to

the following algorithm, in which Lnax and § are given parameters:

. Algorithm 3.1 (Arnoldi's Ahorithm):
1. Compute ry = b - Ax; and set v, = ro/ rglly .
2. For &= 1.2,...,11“Iax do:
L

1:3] hjgVi s hyg = (Avg,vy)

(a) Woi1 = Av, -

Nart,e = Mar'y

Vert = Wer/P o, g
(b) Update the LU factorization of H, . |
(c) Use (3.6) to compute Py = hm],zlebzl =1b - Ax gil, .
(d) If p, <6, go to Step 3. Otherwise, go to (a).

3. Compute Xy = Xg + Irgll, Vo H;"e] and stop.

In the above algorithm, if the test on p, fails, and if & = L.
iterations have been performed, then one has the option of either accepting
the final approximation xz,-or setting x5 = x, and then going back

to step 1 of the algc'withm. This last procedure has the effect of
"restarting" the algorithm. We also note that due to the upper Hessenberg
form of Hﬂ.' there is a convenient way to perform an LU faci_:orization of

Hy by using the LU factors of Hy_; (£ >1).

-19-

In Algorithm 3.1, as & gets large, a considerable amount of the work

involved is in making the vector N orthogonal to all the previous
vectors'vl,...,vz. Saad [13] has proposed a modification of Algorithm
3.1 in which the vector Vil is only required to be orthogonal to the
previous p vectors, v‘_p+1, cesy V. Saad [13] has shown that
equations (3.5) and (3.6) still hold in this case*. This leads to an

algorithm called the Incomplete Orthogonalization Method, denoted by IOM. It

differs from Algorithm 3.1 only in that the sum in Step 2(a) begins at

i-= 10 instead of at_i = 1, where i0 =max(l, ¢ - p +1) . The remarks

made after Algorithm 3.1 are also applicable to IOM. In [13], Saad compares
the two algorithms on several test problems, and reports that IOM is sometimes
preferred, based on total work required and run times. '

When A is symmetric, the inner products hi,z theoretically vanish for
i < 2-1, so that one can take p = 2. If A is also positive definite then
IOM with p = 2 1s equivalent to the Conjugate Gradient method [13, Sec. 3.3.1,
Remark 4]. Thus a value of p less than Tmax might be expected to be
cost-effective when A is nearly symmetric.

For our purposes, the use of the Euclidean norm is overly restrictive, and
we use scaled versions of these algorithms, corresponding to the scaled form
of the problem given in Sec. 2. SUppose.that instead of the linear system
Ax = b, we want to solve an equivalent problem that is better scaled, namely

A% =5, were A=0p, X=0"2, 5=0"1b,
and where D is a diagonal scaling matrix. Recall from (2.27) that the
weighted RMS norm of interest 1s given by ux WRMS = uD~1x h, = X Iy by virtue_

of the choice of D in terms of tolerance parameters. Applying IOM to this

*We note that in [13] there is a typographical error in the line following
equation (3.15), where ¥p should be replaced-by ¥p.

=20~

scaled problem then gives the following algorithm, called Scaled I0M, or SIOM:

Algorithm 3.2 (Scaled I0M):
1. Compute rg = b - Axg, set Fb = D'lro, and compute 'Fb'&'
Then set V; = Fo/ IFgll, .
2. For 2= 1,2,...,2max do:
(a) Compute Kvl = D'](A(DVL)) .
(b) Wy,q = 'RVL - zf’=1‘ 71'1271., where i; = max(1,%-p+1) and
hy, = (AV,V,).
(c) Set Fyq o= Mgt » Vg = RIIRIE
(d) Update the LU factorization of'ﬁl = (ﬁij) .
(e) Use (3.6) to compute p, = lb - i;"n,'h = lib-Axy \pus *
(f) If py < 6, go to Step 3. Otherwise, go to (a).
3. Compute EE a u'r'-'ouz VJL ﬁf ey » set xp = xg + D‘i',,. and stop.
This algorithm basically performs an explicit scaling of the problem Ax = b
without actually scaling the matrix A. Alternatively, this can be viewed as
the IOM algorithm with a more general inner product, which in this case is
given by (u,v)wRMS = (D'lu.D'lv). In Step 2(a), the parentheses
indicate that the product Kﬁh is computed by first computing DV, then
multiplying by A, and finally scaling by D'l. In the present context, the
matrix A is never formed explicitly; only the action of A times a vector v is

needed. Hence an explicit scaling of A has no meaning here. The matrix
Hy,
Eij' and the matrix V, 1is given by Vn = [ViseesVgle As

is again upper Hessenberg, with its nonzero elements given by the

indicated earlier, the vector ﬁ;']el is computed by generating an LU
decomposition of ﬁz (by successive updating as 2 varies), followed by

back-substitution. Here ﬁn, is treated as a general Hessenberg matrix,
even though it 1is actually banded (with an upper half-bandwidth of p-1),

because its size is too small to gain any efficiency advantage from the band

-21-

structure.
We had initially used an implicitly scaled form of IOM. However, we have

now chosen to fmplement explicit scaling instead, because any form of implicit

scaling will necessarily require using scaled inner products when computing
1

the h,,, which are given by (AV,,V,) = (D']sz.D' vy) in

terms of vj = DV&. Thus explicit scaling is Tess costly when 2 or more
iterations are done, and (at worst) equally costly when only one is done. A
third choice, namely not scaling at all in IOM but using a stopping test on
the WRMS norm of the residual, is impractical because it would require the
direct calculation of the residual and its norm.

In the setting of a stiff ODE system, the Newton iteration begins with an
explicit prediction y (0), and a corresponding prediction x(0) = (y,(0) - a /8,
of hin. Thus, the first Tinear system to be solved on the nth time step
is Ax = b with

b = -F(x(0)) = h f(t,,y,(0)) - x(0) ,

A =F'(x(0)) =1 - hByd(t,,y,(0)) .
The stiffness of the problem can be expected to make b Targest in the stiff
components (i.e., in the subspace corresponding to the stiff eigenvalues). It
is crucial that these components be damped out in the corrector iteration.
Results of Gear and Saad [6,12] suggest (but in general do not prove) that the
convergence of the Arnoldi iterates is fastest in the subspace corresponding
to the outermost parts of the spectrum, which would include the stiff
components. To the extent that this is true, it not only helps explain the
success of the method, but also suggests that a fairly small value of £...
may suffice. However, it is also important for IOM to have reasonably good

convergence properties over the rest of the spectrum as well, and our tests

suggest that it does, within some Timitationms.

=22=

4. Algorithmic Implementation
The LSODE solver [8,9] has been modified to solve the nonlinear system

(1.4) by an Inexact Newton Method in which the scaled I0M algorithm is used to
solve the resulting linear systems (2.2). We denote the iterates
approximating x, = hih by xn(m), and the corresponding approximations
to y, by y,(m). These two vectors are related by
(4.1) y,(m) = a, + B, x,(m)
for everym = 0,1,... . From (1.4), recall that the function whose zero we
seek is
(4.2) Fn(xn) =X, - hf(tn.an f BoXp) = X, = hf(to,y,) »
and the equations for the (true) Newton correction are
Fo(x, (m) s (m) = -F(x (m),
or
(4.3) 1 - hBdlt,, yo(m)] s, (m) = hf(t .y, (m) - x (m) ,
xn(m+1) = xn(m) + sn(m) .
In order to describe precisely the combined algorithm used, we must first

outline the structure and overall algorithm of LSODE, to the extent that this

is relevant here.

4.1 The Unmodified Algorithm
Aside from several auxiliary routines of secondary importance, the

structure of LSODE (unmodified) 1is shown in Fig. 1, with the dashed line
connections ignored. Subroutine LSODE is a driver, and subroutine STODE
performs a single step and associated error control. STODE calls PREPJ to
evaluate and do an LU factorization of the matrix P which approximates
I- thJ (see (4.3)), and subsequently calls SOLSY to solve the Tinear
system (2.2). Both of these routines call LINﬁACK routines [5] to do the

matrix operations.

~23-

LSODE

STODE

PREPJ SOLSY

User's \
routines
for f and
(optionally)
o/ - -

User's ~
routine ”~
for -
(af/oy)v

(optional)

Fig. 1. Simplified overall structure of the LSODE package.

Within STODE, the basic algorithm for time step n, in its unmodified form,

is as follows:
(1) Set flag showing whether to reevaluate J.
(2) Predict y, as y (0), and hin as x (0).
(3) COmpute-f(tn,yn(O)); set m=0.
(4) Call PREPJ 1f flag is on.
(5) Form F,(x (m)).
(6) Call SOLSY and correct to get xn(m+1) and yh(m+1).
(7) Update estimate of convergence rate constant C, if m > 1.
(8) Test for convergence.
(9) If convergence test failed:
(a) Set m « m+1.
(b) If m < 3, compute f(tn.yh(m)) and go to Step (5).
(c) If m = 3 and J is current, set h « h/4 and go to Step (1)
(redo time step).
(d) If m = 3 and J 1s not current, set flag to reevaluate J and go to
. Step (3) (redo time step). |
(10) If the convergence test passed, update history, do error test, etc.
In algorithm Step (1) above, the decision 1s made to reevaluate J (and redo
the LU factorization of P = I - hgJ) 1f either
(a) 20 steps have been taken since the lﬁst evaluation of J, or
(b) the value of h8, has changed by more than 30% since J was last
evaluated.
In algorithm step (7), the iterate difference s,(m) = x (m1) - x (m) is
used, together with sn(m-1) if m > 1, to form the ratio cm =
Isn(m)IVIBn(m-l)ll, and C 1s updated to be the Targer of .2C and
"C.. Whenever J is evaluated, C is reset to 0.7. The norm here is the

m
weighted RMS norm given in Sec. 2. The convergence test in step (8) requires

-25-

the product us_(m)u min(1,1.5C) to be less than a constant thch depends

only on g (the order of the EDF method). This is based on linear convergence,
as discussed in Sec. 2. Algorithm step (10) includes step and order selection
for the next step (if the error test passed) or for redoing the current step

(if it failed), but the details of that are not relevant here.

4.2 The Modified Algorithm

In the modified algorithm, subroutine SOLSY calls a module denoted SIOM
(consisting of subroutine SIOM and auxiliary routines), which performs the
solution of the linear system (4.3) using the scaled IOM algorithm given in
Algorithm 3.2. Subroutine SIOM then calls user-supplied routines (mainly for
evaluating f), as indicated by the dashed lines in Fig. 1. It also performs
the looping and convergence test for the SIOM iterations. We describe below
the essential features of our implementation of the SIOM algorithm in the
LSODE solver. |

We have chosen to implement Algorithm 3.2 without the restart feature
proposed iﬁ [6]. This was done primarily for reasons of simplicity. Thus, if
the convergence test p, <8 in SIOM has not yet passed for & = Lnax’
no further attempt is made to solve the current linear system. However, the
Newton iteration is not necessarily considered hopeless, depending on the
firal value of o, (2 = 2 .) and the number m of Newton iterations
already performed. If on the first Newton correction (m = Q) the final Py
is either <1 or < n?:’uz = WF_(x (0))pys » OT if m > 1 and the final o is
<1, then the solution vector X, is computed and returned, and the
Newton iteration is continued (if possible). Otherwise, a flag 1s passed back
to STODE causing it to declare a Newton corrector convergence failure, reduce
the step size h, -and attempt the step again. As noted by Gear and Saad [6,

Sec. 2.1], the use of repeated Newton iterations makes it unnecessary to do

-26-

restarting within the IOM algorithm. In fact, when f(t,y) is Tinear iny and
X = 0, the combined Newton-IOM iteration is identical to IOM with restarts.

We note also that a convergence failure in SIOM is likely to occur when
the dominant subspace in the Tinear system (4.3) has too large a dimension for
the size of &... Reducing h then effectively reduces the size of this
subspace until SIOM can achieve convergence. |

We have tailored the SIOM algorithm to the ODE context by taking advantage
of the relation A = I - hgyJ. Thus in Algorithm 3.2, A is replaced by J
and then the required quantities are constructed. Thus in Step 2(a) we
compute 572 = DF1(J(DV£)) , and in Steps 2(b) and 2(c) we compute
quantities | '

Lo ae

gqq =-(IVps¥4)

Ugpp = IV - Z%=1,91'271 ’

9e1,2 = Mgl »

Vel = YV 901,2 0

hig = 8, - hBygy, (g <1 2 20),

where Gij is the Kronecker delta. The only other change in the equations

is to use lﬁﬁ+1,zl = lhﬁ095+l,zl in place of Fm+1,2 in computing p,.
Note that the two forms of the algorithm give the same Krylov subspace in
exact arithmetic. Also, the subspace based on J appears to be more accurate
in the presence of rounding error when h is small, because of the absence of
the cancellation (VL - VL) in computing ug ;. Furthermore, since
we are not explicitly forming A, computing Jv instead of Av saves N
multiply/subtract opefations.
As in other situations where Gram-Schmidt orthogonalization is done, there
is a potential Toss of accuracy of the vectors obtained in SIOM, due to
numerical cancellation errors. In order to avoid this loss, we insert a

correction after the calculation of ug 4. 1In SIOM we compute the 1nner

-27-

products

ey = (ugys¥y)

(which would vanish in the absence of roundoff error). Then for each i
(g <1 <8, If

Ihsoeil > 103 (unit roundoff) 'Fif.' .
then we correct hyj, by -€;hfy and correct wug.q by -e|71. This enhances
the numerical orthonormality of the Vi if it was lacking to a significant degree.

| The- values of Lnax (the maximum Krylov subspace dimension) and p (the
number of vectors to which V;+1 is made orthogonal) are optionally set by
the user of the modified solver. The default values we have set are

Ymax = 5 and p = Loy
This means that, for the default values, we are actually doing a scaled
Arnoldi iteration rather than a properly incomplete IOM. However, in cases
where the problem Jacobian is known to be symetric'or nearly symmetric, the
use of p = 2 (or other value < %nay) Should prove valuable.

The fairly small value of Lnax is based on the desire to keep the
storage requirements of the method to a minimum. The doﬁinant part of the
storage for SIOM is ”‘max + 7)N + “’max)z words. Hence to assure
that the method will be competitive in storage with more traditional methods
for the kinds of problems anticipated, where sparsity would be strongly
exploited, we wish to Timit Lmax severely.

Next, we need to consider the choice of the starting vector % in
Algorithm 3.2. In Gear and Saad [6], a nonzero value of x, is discussed.
However, for reasons of simplicity and efficiency, we take x; = 0. This
means that the convergence test 16 - Axglouc < & is easily
applied also for & = 0. This test is made in Step 1 of Algorithm 3.2, and
if it passes, x) = 0 is accepted as the approximate soTution.

In [3], Chan and Jackson used Xy = b (= -Fh(xn(m)) as an alternative

-28-

initial guess for the iterative solution of (4.3), and also suggested that
using xg = 0 may have a deleterious effect upon the stepsize and order
selection strategies of the ODE solver. However, we found no evidence of such
an effect in our testing. In addition, while for small h using x5 = b is
probably a better initial guess than Xg = 0, it imposes the added cost of
computing rg = b - Axg, and it is not at all apparent that either value is
better than the other when h is large. Miranker and Chern [10] discuss more
general choices for x, when solving linear initial value problems. Further
study of choices for X and their effects seems to be needed.

An observation of crucial importance, that was also made and utilized by
Gear and Saad in [6], is that in Algorithm 3.2 the matrix A is not needed
explicitly - only the action of A times a vector v is necessary. By using the
relation A = [- h&yJ, this means we require values of the product Jv,

where J = J(tn,yn(m)). We can approximate Jv by using the difference

quotient

(4.4) Jv=ws=[f(t,y+ov) - f(t,0)o,

where y denotes yh(m). for a suitably chosen scalar o. Note that if

f(tn,y) has been saved, then this only requires one additional f evaluation.
The choice of o is limited by roundoff error if o is too small, in

that the two values f in (4.4) may be numerically equal in some components

while the true components of Jv may not be zero. Also, o is limited by

truncation error if o is too Targe, in that f may be nonlinear between y and

y + ov, and the difference quotient (4.4) may be inaccurate as a result. In

Algorithm 3.2, Jv is needed for vectors v = DV which are normalized to 1 in

the weighted RMS norm: INloMs = Iliv'll2 = 1. On the other hand,

the test on local error in LSODE requires that the estimated Tocal error

vector e satisfy lelypus < 1, and we can expect that lielhous = 1 for the step

sizes selected. As a local error estimate, e can be regarded as a small

-29-

correction to y, whose size is about at the user's tolerance level. So for

any vector d having the same WRMS norm as e, it is 1ikely that f is reasonably
close to being Tinear between y and y + d, but unlfkely that d is so small as
to make f hard to resolve due to roundoff between y and y + d. Therefore, a
reasonable criterion on o is to meke ov and e have the same norm (WRMS
norm). This Teads to the choice

(4.5) o=1,
which we have adopted in the algorithm. There has been no clear evidence that

this choice is ever a bad one, but this issue deserves some.fur_ther study.

As an alternative to using (4.4), it is easy to give the user the option
of supplying his own routine for the computation of Jv. This has been done in
the experimental version of LSODE containing SIOM.

It remains to set the test constant 6. The discussion in Sec. 2
concludes that & should be much smaller than the tolerance level in the

solution vector x_ = h-‘;n of the nonlinear system (1.4) being solved. We

n
denote this tolerance Tevel (in terms of the WRMS norm) by € The value
of €1 is determined by the nature of the local error estimation in LSODE,
independently of the means used to solve (1.4). A vector e of estimated local
errors is formed from the difference between the prediction xn(O) and the
final corrected value Xp?

e = [x, - x,(0))/7,
T being a coefficient depending only on the current order q (t = TESCO(2,NQ)
in subroutine STODE). The Tocal error control is designed to keep
lelhpus = T» and hence the tolerance level (in WRMS norm) for the
error in e (due to inaccuracy in xn) is set to a heuristic constant |
<1, given by n; = 1/2(q#2) (= CONIT in STODE). Therefore, the

tolerance level for errors in Xn is € = Ty . Finally, we choose

another heuristic constant 6] < 1 and set 6 = 6191 . The

«30-

value we have adopted for the present is 61 = ,05, as this seems to work

well in our tests. However, it is an optional input to the modified solver,

and so other values can be easily used.

One further modification has been made in the Newton iteration .strategy:

When SIOM fails or the Newton convergence test fails after 3 iterations, the

step size h is cut by a factor of 1/2, not 1/4 as in LSODE, because we expect

the convergence region to be larger for the Newton method than for modified

Newton (even though the former {is an Inexact Newton Method).

The modified version of the basic algorithm in STODE is then as follows:

(1)
(2)

(3)
(4)

(5)
(6)
(7)

(8)

Predict yn(O) and xn(O).

Compute f(tn,yh(O)); set m = 0, and reset the convergence rate

constant C to 0.7.

Form Fn(xn(m)).

Call SOLSY

(a) If SIOM failed to converge and m = 0, and the final Py >
max[]’"Fn(“n(o))'hRMs]' set h «+ h/2 and go to step
(1) (redo time step).

(b) If SIOM failed to converge and m > 0, and the final Py >
1, set h « h/2 and go to step (1) (redo time step).

(c) Otherwise, correct to get xn(m+1).

Update estimate of convergence rate constant C, ifm > 1.

Test for convergence.

If the convergence test failed:

(a) Setm «mtl.

(b) Ifm <3, compute f(tn,yh(m)) and go to Step (3).

(¢) I1fm=3, set h «h/2 and go to Step (1) (redo time step).

If convergence test passed, update history, do error test, etc.

31~

The comments regarding steps (7) and (10) after the unmodified algorithm are

still relevant for steps (6) and (8) here, respectively.

5. Numerical Tests

The SIOM algorithm described above, and implemented in a modified version
of the LSODE solver, has been tested on various ODE test problems. In this
section we give, for each of three test problems, a description of the
problem, numeric;l results obtainéd, and some discussion. A1l three problems
are based on time-dependent multi~dimensional partial différentiaI equation
(PDE) systems, solved by the method of 1ines. In addition, we ran the test
problems given in [6], and one of those in [3], with our solver. A1l of the
tests were done on a Cray-1 computer with the CFT compiler.

The algorithms tested are (a) the unaltered LSODE package (as discussed in
Sec. 4.1), and (b) a version denoted here by LSODP (P for projection method),
modified to use the SIOM algorithm (the scaled form of the IOM algorithm, as
described in Sec. 4.2) to solve the linear systems (4.3). The BDF method was
selected in both cases, with banded Jacobian treatment in LSODE. In the LSODP
tests, except where noted, we used the parameter values p = RMax = 5 and
6] = 0.05, in.the notation of Sec. 4.2. In most cases, the J evaluations
in LSODE were done by a user-supplied subroutine, while the products Jv in
LSODP were generated using the difference quotient (4.4).

For each of the test cases, various statistics were printed after the

completion of the run. Those of interest include the following:

R.T. = run time (CPU sec)

NST = number of time steps

NFE = number of f evaluaﬁions

NJE = number of evaluations of J (in LSODE) or of Jv (in LSODP) (= the

number of LU decompositions for LSODE)

32w

NSIOM = number of calls to routine SIOM (= the number of corrector-
jterations in LSODP)
AVDIM = NJE/NSIOM = average dimension £ of the Krylov subspace in the

SIOM iterations
of courﬁe the counters NSIOM and AVDIM are relévant only to LSODP. Nhen the
difference quotient form (4.4) of Jv is used in LSODP, NJE is given by NJE =
NFE - NSIOM - 1. The number AVDIM is significant in that it indicates on the
average how hard the SIOM algorithm must work to achieve convergence. If on a
particular problem AVDIM is very close to the value of the parameter Emax’
then it may be wise to increase Emax to improve the overall accuracy and
efficiency for that problem. We will also tabulate the work space, which is
the total length in words of the real and integer work arrays required. For
the options involved here, this length is 42 + (11 + 2ML + MU)N for LSODE
(where ML and MU are the halfubandwidths), and 107 + 16N for LSODP.

5.1. Test Problem 1

This problem is based on a pair of PDE's in two dimensions, representing a

simple model of ozone production in the stratosphere with diurnal kinetics.
There are two dependent variables ci, representing concentrations of 0]

and Qa (ozone) in mo]es/cnp, which vary with altitude z and horizontal
position x, both in km, with 0 < x <20, 30 <z <50, and with time t in sec,
0 <t <86400 (one day). These obey a pair of coupled reaction~transport

equations, with horizontal diffusion and advection and nonuniform vertical

diffusion:

i i i ;
% %2,:(2:"+ %(Kv(z)%;) svalra e R,y (=12,

K, = 44105, K (2) =108 e?/5, v=-.01,

«33

12 16

R'(c),c2,t) = -k]c] = kpc'c? + Ky (t)7.4010'8 + k4(t)c2 ,

k]c] - kzc]c2 - k4(t)c2

RE(c',c2,t)

ky = 6.031, k, = 4.66-1016

exp[-22.62/sin(mt/43200)] for t < 43200

k3(t) = o L]
0 otherwise

' © exp[+7.601/sin(wt/43200)] for t < 43200

kg (t) = ’

0 otherwise

Homogeneous Neumann boundary conditions are posed:

%'/ =0 onx=0andx=20; a'/&=0 onz=30andz = 50.
The initial condition funct%ons are polynomials chosen to be slightly peaked
in the center and consistent with the boundary conditions:

c](x,z,O) = 106 a{x) B(z), cz(x,z,O) = 10]2 a(x) B(z),

ax) =1 - (LIx<1)2 + (Lx-1)%2,

Bz) =1 - (.1z-4)2 + (.1z4)%72.

The PDE's are treated by central differencing, on a rectangular grid with
uniform spacings, & = 20/(J-1) and Az = 20/(K-1). If c}k denotes the
approximation to ci(xj,zk,t), where x, = (j~1)Ax, z) = 30 + (k-1)az,

J
1 <j<Jd, 1 <k <K, then we obtain the following ODE's:

i _ pi 1 2 2, (. i, .1
Cik = R(CjeaChpot) + (Ky/XT) (egpq o =265 *+ €5)
+ (1/Azz) [Kv(zk+1/2) (c},k;] - c}k)'h Kv(zkbllz) (c}k - c;’kh1)]
+ (V/28%) (cly ¢ = Sl -

The boundary conditions are simulated by taking

i i i o i

CO’k = CZ’k, c\]"'],k = c\]"],k (a]] k), and
i i i .

°3,0 7 S,2° GGk T Gk @11 I)

-34.

The size of the ODE system is N = 2JK. The variables are indexed first by
species, then by x position, and finally by z position. Thus in & = f(t,y),
we have cj, =y, with m = i + 2(3-1) + 22(kv1).

For these tests, we chose J = K = 20 (N = 800). The problem is stiff
because of the kinetics, and the Jacobian has half.bandwidths ML = MU = 2J =
40. A mixed relative/absolute error tolerance was chosen, with RTOL = 10“5
and ATOL = 10“3. For both LSODE and LSODP, both the user-supplied Jacobian
(or Jv) routine and the internal difference quotient option were tested.

These are denoted by USJ and DQJ, respectively, in the tabulated results. In
the DQJ case, LSODE does ML + MU + 1 = 81 evaluations of f for each value of
the (banded) Jacobian.

For this problem, we also give the solution by a third solver, GEARBI
[7]. 1t uses the BDF method and block~SOR on the linear systems (4.3) (within
a modified Newton iteration). Since GEARBI was specifically designed to solve
ODE systems arising from 2-D kinetics-transport problems, and takes full
advantage of the Jacobian sparsity structure, a comparison of it with LSODP is
quite significant. Here, GEARBI was altered so as to use a mixed
relative/absolute error weighting identical to that used in the LSODE and
LSODP tests. For GEARBI, the counter NJE is the number of evaluations and LU
decompositions of the block~diagonal part of I - hBoJ (the blocks being
2x2 here), as needed for the block-SOR algorithm.

We solve first the problem with no advection (V = 0). (See also [9] for
comparison tests on this problem.) The results of testing the three solvers
on this problem are shown in Table 1a. LSODP shows a dramatic improvement
over LSODE, trading 90 or 97 Jacobian evaluations (and the same number of
banded_LU decompositions) for 651 SIOM calls and 727 to 731 evaluations of Jv,
resulting in a savings of roughly 14 sec. (66%) of the CPU time in the USJ

case, and a savings of 42 sec. (86%) in the DQJ_case. Another significant

=35

result is that, while the use of a difference quotient Jacobian imposes a
severe cost penalty for LSODE (81 f evaluations per J value here), for LSODP
the closed form computation of Jv is actually slower than the difference
quotient approximation (1 f evaluation per Jv value), and the latter shows no
signs of being less accurate. Of course there is much less user effort with
the DQJ option in setting up ;he problem for the solver. We note also that
the work space required was reduceq by approximately 88%, and the value of
AVDIM = 1.1 indicates that SIOM is not haviné any difficulty at all achieving
convergence here, The GEARBI solution is only slightly faster than that of
LSODE(USJ), and 2.5 times slower than the LSODP(DQJ) solution. (Not shown in
the table is the fact that GEARBI performed an average of 1.34 block-SOR
iterations per modified Newton iteration.)' GEARBI is competitive with LSODP
in storage, but this does not remain true as the number of species grows
(because its storage goes as the square of the number of species), or if the

traﬁsport coupling is more complicated.

TABLE l1a. Test results for Problem 1, V = 0.

Algorithm R.T. NST NFE NJE NSIOM Work Space AVDIM
LSODE(USJ) 20.6 462 659 90 - 104,842 -
LSODE (DQJ) 48.6 490 8574 97 - 104,842 -
GEARBI 17.1 425 660 48 - 12,004 e
LSODP (USJ) 7.1 340 652 727 651 12,907 1.12
LSODP(DQJ) 6.8 339 1383 731 651 12,907 1.12

For this test, the success of LSODP can be predicted from spectral
information about the problem. Using the RG driver in EISPACK [15], we
computed the spectrum of the problem Jacobian J = 3f/dy for a 6x6 mesh at

each of the 12 equally spaced output points, and we can assume that analogous

36

results hold for a 20x20 mesh. The spectrum is real and has contributions
from the kinetics and the transport, but the stiffness is a result only of the
kinetics, which (after the initial transient) produces a tight cluster of
eigenvalues (one per mesh point) about a point A = <6 (roughly the value of
«ky), with all the others much smaller in size. Thus the SIOM algorithm
might be expected to behave as if there were only one stiff eigenvalue, and in
fact it does. This would not be the case if the diffusion coefficients were
much larger. However, the values of those were dictated by an actual
atmospheric model, and so we did not alter them. _

Next we solve the problem in {ts stated form, with horizontal advection
velocity V = .01. Here the presence gf advection limits the step sizes for
any solver, as well as making the linear system problem harder. The Jacobian
now has highly nonsymmetric contributions from both the transport and the
kinetics. The computed spectrum (for a 10x10 mesh) still has a tight cluster
at about ~k1, although it is mostly nonreal and the spread is slightly
lTarger. The test results are shown in Table 1b. Again, LSODP is the fastest
solver by a wide margin, even though AVDIM = 2.2 shows that SIOM is working
harder than before. GEARBI fs faster than LSODE(DQJ) but slower than
LSODE(USJ), presumably because of the advection contribution to the Jacobian

(making it now do 2.4 block~SOR iterations per modified Newton iteration).

TABLE 1b. Test results for Problem 1, V = .01.

Algorithm R.T. NST NFE NJE NSIOM Work Space AVDIM
LSODE(USJ) 113 3137 4,165 415 - 104,842 -
LSODE(DQJ) 235 3132 38,363 422 - 104,842 -
GEARBI 163 2976 4,084 345 - 12,004 -

LSODP (USJ) 74 2374 4,595 10,296 4594 12,907 2.24
LS00P (DQJ) 71 2447 15,198 10,468 4729 12,907 2.21

L37-

Both cases of this problem were also run with non-default values of p and
8, in LSODP(DQJ). The runs with p < & . (and the default ;)
showed no improvement in speed over the runs with the default (p = 5). In the
case V = 0, the results were nearly identical to the default results (counts
and run time) for p = 3 and 4, while for p = 2 the run time was slightly
higher (6.9 sec vs. 6.8 sec). In the latter run the total number of SIOM
iterations was 793 (vs 731 before), offsetting the reduced cost per
iteration. In the case V = .01, the run times for p = 4, 3, and 2 were
progressively longer (73 to 104 sec). The value of AVDIM was larger than for
p =25 in all cases, and for p = 2 and 3 the number of steps was also. These
results are in accord with the highly nonsymmetric nature of the Jacobian |
resulting from the kinetics terms. Runs made with p = £Max = 5 but with
6]_1arger than .05 (the default), namely .1, .2, and .5, gave mixed
results. For V = 0, the results were slightly worse (run times of 6.8 sec to
7.5 sec vs. 6.8 with the default), while for V = .01, the results were better

(run times of 64.6 to 65.7, vs. 70.6 sec with the default).

5.2 Test Problem 2

This problem is based on a reaction~diffusion system arising from a

Lotka-Volterra predator-prey model, with diffusion effects in two space
dimensions included. There are two species variables, c1(x,y,t) and
cz(x,y,t), representing (respectively) the prey and predator species
densities over the spatial habitat @ = {(x,y): 0 <x <1, 0 <y <1} and time
t insec, 0 <t <3. The equations are

acl/at = d(Fclrad + Eclraf) + (&%) (1=12),

f](c],cz) = c](b] -y cz) . fz(c],cz) = cz(b2 “ a5 c]) .

dy=.05, dy =10, by=1, b,=+-1000, a;,=.1, = =100 .

Homogeneous Neumann boundary conditions are imposed:

“38-

aci/ax =0onx=0and x = 1; acilay =0Qony=0andy=1.
The initial conditions involve products of cosines and are chosen to be
consistent with the boundary conditions:

c](x,y,O) = 10 « 5 cos(mx) cos(10my) ,

cz(x,y,o) = 17 + 5 cos{10wx) cos(my) .
As t + =, the solution becomes spatially homogeneous and tends to a
time~periodic solution of the Lotka-Volterra ODE system dci/dt = fi
(i =1,2). This ODE system is alternately stiff and nonstiff depending on the
position of the solution in (c‘,cz) phase space.

The two PDE's are again treated by central differencing on a rectangular
grid with uniform spacings, & = 1/(J~1) and A&y = 1/(K<1), with boundary
conditions discretized as before. The system is a stiff one of size N = 20K,

and the Jacobian has half-bandwidths ML = MU = 2J. A mixed relative/absolute

error tolerance was chosen, with RTOL = 10'6 and ATOL = 10'4. We tested 5

cases with J = K varying from 10 (N = 200) to 50 (N = 5000).

We also looked at the spectrum of the Jacobian for this problem (for a
10x10 mesh) and found that after an initial transient period the dominant
eigenvalues A are those from the discrete diffusion operator. Thus the
problem can be predicted to be nonstiff for crude meshes and stiff for fine
meshes, and experiments show that this is true, with the nonstiff method
becoming less efficient than a stiff one when J and K are 20 or more. We also
see that the stiff part of the spectrum is well spread out, rather than
clustered as in the first problem. More precisely, the extreme eigenvalue
from the discrete diffusion terms is roughly -8(J-1)2 for J = K, while the
step sizes h found to be appropriate for the accurate resolution of the
oscillatory steady state are about .002. Thus, in the 50x50 case, the values

of hA cover an interval from 0 to about <40 in a non-clustered manner.

Non-real eigenvalues also occur on parts of the limit cycle.-

39

For this (and the next) problem, we tested only the cheaper Jacobian
option for each solver, namely the user-supplied Jacobian with LSODE, but the
difference quotient Jv option in LSODP. A comparison involving the DQJ
options for both solvers would be more fair and more realistic, but the
expense of testing LSODE(DQJ) makes this prohibitive.

The test results on this problem are given in Table 2. Here, in all
cases, LSODP gives superior run times, with a 51% savings in run time and a
95% savings in required work space for the 50x50 mesh problem. However, note
the steady rise in AVDIM with grid size, as predicted from the spectral
results, and indicating that SIOM might require a larger value of Lax if
the grid were further refined. For LSODP the run time and storage costs here

are nearly proportional to N, but for LSODE they grow more rapidly than that.

TABLE 2. Test results for Problem 2.

Solver Mesh R.T. NST NFE NJE NSIOM Work Spéce AVDIM
LSODE 10x10 6.7 1248 1635 - 129 = 14,242 -
LSODP 10x10 5.8 1230 4891 2380 2510 3,307 .95
LSODE 20x20 52.0 1346 1795 197 - 104,842 -
LSO0P 20x20 26.3 1085 6211 3935 2275 12,907 1.73
LSODE 30x30 131.3 1197 1569 144 - 343,242 -

LSoDP 30x30 76.1 1176 8288 5954 2333 28,907 2.55

LSODE 40x40 377.0 1231 1,565 173 L 803,242 -
LsooP 40x40 164.3 1140 10,337 8044 .2292. 51,307 3.51
LSODE 50x50 661.4 1145 1,493 139 - 1,555,042 L

L S0DP 50x50 322.8 1261 12,608 10,149 2458 80,107 4.13

40 -

Two experiments were done with non-default values. For the 20x20 case,
values of 6] = .1, .2, and .5 were used. The results in all cases were

inferior to those with the default (61 = ,05), with run times vafying from
27.3 sec to 29.2 (vs 26.3 for the default). For the 50x50 case, we also ran
LSODP with p = 2. The various counts were nearly identical to the default
results, and the run time was reduced to 309.8 sec. This confirms the nearly
symietric nature of the Jacobian, as dominated by the diffusion contributions,

and the reduced cost per iteration with p = 2,

5.3 Test Problem 3
Like Problem 2, this problem is tased on a reaction-diffusion system
on model, but in this case in 3 space

comprising a Lotka-Volterra competit

1

dimensions. The two variables, ¢ and cz, represent the species

densities, and vary over the unit cube, 0 < x,y,z <1, and

0 <t <10. The equations are analogous to those in Problem 2, but have
different coefficients:

wlrat = dy el £l =12,

dy = .05, d, = 1.0,

flicl,e?) = c](b1 - a”c1 - a,zcz) s

f(cl,2) = v:""(b2 - aﬂc]'- azzcz) ,

agy = 10, ap, = 1, a5 = 108 - 1, a,, = 105,

by = by = (1+ axyz) (10% - 1+ 10
As before, homogeneous Neumann boundary conditions are posed. The initial

-6 .

conditions are
c](x.y,z,O) = 500 + 250 cos{wx) cos(3ny) cos(10nz) ,
¢(x,¥,2,0) = 200 + 150 cos(107x) cos(ny) cos(3mz) .
The coefficients above have been chosen so that, as t + «, the solution of

the system approaches a steady state which is (intentionally) not flat in

-41-

space. This steady state is given roughly by the asymptotic solution of the
problem without diffusion, namely:
c] = (1 - 10'6)(1 + axyz) , c2 = 10“6(1 + axyz) .

The two PDE's are discretized on a regular J by K by L grid in a manner
completely analogous to the formulation in Problems 1 and 2, giving an ODE
systém of size N = 2JKL. We consider a = 0 and a = .2, and vary the mesh
width J =K =L from6 (N = 432) to 20 (N = 16,000). Tolerance parameters are

taken to be RTOL = 10~® and ATOL = 10°5.

For this problem, the use of LSODE is inappropriate beéause of the amount
of sparsity structure present. However, in addition to testing LSODP, we have
solvéd the problem with GEARBI, in a suitably modified form so that it handles
the unequal diffusion coefficients. In LSODP, we used only the difference
quotient Jv option.

Beginning with the easier case a = 0, we show results for five cases in
Table 3a. Because of the high expense and predictable results, the GEARBI
solution was not done for the last two (finest) meshes. The growth of the run

time and storage requirement is nearly proportional to N for both LSODP and

TABLE 3a. Test results for Problem 3, o = 0.

Solver Mesh R.T. NST NFE NJE NSIOM Work Space AVDIM
LSopP 6Xx6x6 6.1 554 2218 1189 1028 7,019 1.16
GEARBI 6x6x6 11.8 553 592 67 - 5,618 -
LSODP 10x10x10 33.3 603 2785 1671 1113 32,107 1.50
GEARBI 10x10x10 68.5 580 624 79 - 26,002 .
LSODP 14x14x14 91.9 599 2840 1730 1109 87,915 1.56
GEARBI 14x14x14 232.8 618 676 102 - 71,346 L
LSODP 18x18x18 204.3 615 2995 1871 1123 186,731 1.67

LSODP 20x20x20 325.0 659 3528 2315 1212 256,107 1.91

42 -

GEARBI. GEARBI has a slight advantage in storage here, because only the
diagonal blocks of the Jacobian are stored.- However, LSODP is the faster
solver, by a factor of about 2 or more, uniformly.

Next, we show tﬁe results for the case o = .2, where the steady state is
truly space-dependent. Here, for the meshes considered, one finds that near
the steady state solution, the interaction terms dominate the Jacobian, which
is nearly symmetric, and from the non-diffusive system the dominant part of
the spectrum consists of JKL points widely spread over the interval from
-106 to ~106(l + a). Thus SIOM can be expected to have difficulty with
the linear systems. The results for three meshes are shown in Table 3b. Note
that LSODP was unable to complete the 14x14x14 case with default values for
all inputs, but was with a larger value of zmax‘ Clearly, the
space-dependent coefficients sharply increase the cost of the solution by
LSODP, while the GEARBI solution cost is much the same as for a = 0, as
expected. The success of the run with %max = 10 and p = 2 agrees with the

spectral information. It was also observed that the numerical solution is

TABLE 3b. Test results for Problem 3, o = .2.

Solver Mesh R.T. NST NFE NJE NSIOM Work Space AVDIM
LSoop 6x6x6 7.9 591 2973 1873 1099 7,019 1.70
GEARBI 6x6x6 11.5 553 590 65 = 5,618 = =
LSODP 10x10x10 50.6 736 4381 3054 1326 32,107 2.30
GEARBI 10x10x10 72.8 596 647 90 - 26,002 .

LSODP 14x14x14 (run stopped at t = 5.3 with repeated convergence failures)
LSODP* 14x14x14 131.6 601 4235 3119 1115 115,510 2.80
GEARBI 14x14x14 233.1 609 665 98 - 71,346 -

*Run with fgax = 10 and p = 2

43

sensitive to errors in the smaller component (cz), and that tightening the
absolute tolerance from 10"8 to 10“10 also allowed LSODP (with zmax =p=35)

to complete the solution for the 14x14x14 mesh, but at a run time of 344 sec.

5.4 Other Tests

For the sake of completeness, we mention here three other test problems,
namely those used by Gear and Saad in [6], and one of those used by Chan and
Jackson in [3].

The first test problem in [6] is an'adaptation of one due to Krogh. Our
test results with LSODE (USJ and DQJ) match those in [6] exactly (except for
run times), eveﬁ though run on a different computer. However, our results
using IOM are quite different from theirs (for both cases of their
algorithm). For the test case N = 50, we get NST = 151 (vs. 184 or 180 in
[6]) and NFE = 669 (vs. 720 or 643), and the LSODP run time is less than those
for LSODE by a factor of .48-to .55 (vs. .94 to 1.16). For the case N = 80,
we get NST = 149 (vs. 186 or 172) and NFE = 660 (vs. 733 or 640), and the
LSODP run time is less by a factor of .29 to .32 (vs. .54 to .65).

The second problem in [6] is a discrete form of the heat equation on a
square.* Qur test results for LSODE(DQJ) match those in [6], but the results
using IOM differ greatly. For either p = 5 (our default) or p = 2 (utilizing
the symmetry of A), we get NST = 132 (vs. 183) and NFE = 601 (vs. 724). Our
two LSODP run times are nearly the same, and less than the LSODE time by a
.factor of .87 (vs. 2.4).

For both of these problems, it appears that in our runs the step sizes are
hardly affected at all by the use of SIOM in place of a direct linear system
solver. In contrast, the runs in [6] with I0M take about 20% to 40% more

*There appears to be an error in the problem statement in [6], in that A is
missing a factor of (n+1)¢,

44 -

steps, presumably forced by convergence failures of the IOM algorithm used
there (which differs in many respects from ours).

It is our understanding that the algorithm in [6] involves external
storage for some of the vectors Vi» and associated I/0 operations. As a
result, direct comparisons of work space and run times are not entirely
meaningful. However, in the context of a large computer, our algorithm (with
no external data storage or I/0) definitely appears to be preferable.

In [3], Chan and Jackson test another form of the 2.D heat equation test
problem, which differs in having nonuniform initial conditions, given by u =
16xy(1-x)(1«y), and a looser tolerance ATOL = 10"3. We also ran this
problem, using an MxM mesh with M = 10, 20, and 30. The results of tests with
LSODE and LSODP are given in Table 4. Both solvers were run with difference
quotient evaluations of J (or Jv). Since the Jacobian is symmetric here, we
also ran the problem with p = 2 in LSODP, and verified that in all cases the

results were the same (or very nearly so), while the run times were reduced by

about 4% or less.

TABLE 4. Test results for 2-D Heat Equation.

Solver Mesh R.T. NST NFE NJE NSIOM AVDIM
L SODE 10x10 .20 37 2715 M - -
LSODP 10x10 .13 38 208 150 57 2.63
LSODE 20x20 . 1.34 38 496 1 - -
LSoppP 20x20 1.16 61 541 439 101 4.35
L SODE 30x30 4.34 40 718 1" - -
LSODP 30x30 5.04 113 1074 891 182 4.90

45 .-

We note that LSODP is faster than LSODE in the first two cases, but not
for tﬁe 30x30 mesh. The higher relative cost of LSODP there can be attributed
to the impact of the (non-clustered) spectrum on the step sizes and on AVDIM.
The LSODP results can also be compared with those from the Conjugate Residual
method (without preconditioning) in [3], where the number of iterations
(analogous to NJE above) is 273 for M = 10, 417 for M = 20, and 652 for M =
30. Thus for this problem and this method the iteration count also rises with
mesh size, but not as rapidly as in our SIOM results. This may be due to
inherent differences between the Conjugate Residual method and IOM (which
becomes the Conjugate Gradient method here), and may also be due in part to a

higher maximum iteration count allowed in [3].

6. Conclusions and Future Work

We have presented here an essentially matrix-free Newton-like iteration
scheme and its implementation into the LSODE package for the solution of stiff
systems of ODE's. The focus has been on those problems for which the cost of
performing the linear algebra associated with solving the system (2.2) by
traditional matrix methods far outweighs that of several function
evaluations. Thus one can hope that the use of a matrix-free method such as
the I0M algorithm to perform the Newton iterations involved in the integration
could succeed, at a greatly reduced cost in run time, overall work, and
storage. The inclusion of scaling associated with error tolerances, in the
SIOM form of the algorithm, is crucial for robustness, we feel. Although our
testing has been'somewhat Timited, initial results with our experimental code
LSODP seem very promising. In cases with tight SpectraI clustering, the
method is quite successful, and underst&ndably sb. In the cases with many

widely spread stiff eigenvalues, LSODP is sometimes unpredictably successful,

and sometimes unsuccessful.

46 -

There are several aspects of the method which need further investigation.
For example, a deeper understanding of the convergence of the IOM algorithm
may indicate more clearly a class of problems on which IOM will work very
well, while at the same time eliminating other classes. Currently, it is very
difficult to predict how I0OM will perform on realistic problems.

The corrector loop strategy given in the modified algorithm of Section 4.2
may show improvement by employing some of the techniques from Dembo,
Eisenstat, and Steihaug [4] for Inexact Newton Methods. In [6, Sec. 2.2],
Gear and Saad have suggésted ways of reusing the vectors ViseeesVy and
the matrix HL (or their scaled equivalents). Earlier, we did some testing
of these ideas, but did not find them beneficial. In any case, much more
development and testing needs to be done to make a final decision as to their
usefulness.

In the test results of Section 5, we have used the parameter values
%max =p =5 almost exclusively. This effectively reduces Algorithm 3.2
to a scaled version of Arnoldi's algorithm, instead of the IOM algorithm..
Some of the test cases were also run with p less than nmax’ and some of
the resulting run times were lower, but not by very much. This is probably
because both p and nmax are relatively small, and the cost of evaluating f
is much larger than that of an inner product. In the course of further work,
it may be possible to set IMax and p in a dynamic manner, thus making IOM
more robust, and then these two numbers would probably have larger and uneqﬁa]
values much of the time. For now, we are encouraged by the fact that the
algorithm performs as well as it does with such small values of p and
by comparison with the values used in (6], where zmax was

E’max’
usually taken to be 15 to 30.

For our algorithm as presently implemented, some condition on the problem

Jacobian, such as spectral clustering, seems to be necessary for success. But

47 -

a much wider problem class may be reachable if some preconditioning is
included in the linear iteration. We intend to explore this idea with various
natural preconditioning matrices, although this detracts from the matrix-free
nature of the method. We also intend to search for matrixfree
preconditionings which have potential effectiveness in the stiff ODE setting.

While this paper addresses only explicitly given ODE systems y = f, there
 is also much interest in implicit systems, especially linearly implicit ODE
systems A(t,y) ¥ = g(t,y) (A = a square matrix). The algebraic system arising
from the latter problem type, when solved by a BDF method (or any other
implicit linear multistep method), is somewhat more complicated than that
studied here [9]. But it is not hard to extend our Newton/IOM algorithm to
that problem. In addition to the residual routine that computes r = g ~ A },
the user would have to supply a routine to compute the product A(t,y)v for any
given v. The algorithm would also need values of (9r/3y)v, and could
obtain them cheaply by a difference quotient, or else from an optional
user-supplied routine. The result would again be a matrix«free method, with
the same basic features as that described here for y = f.

Even more generally, it is likely that algorithms of the type studied here
may be useful for arbitrary nonlinear algebraic systems F(x) = 0. When the
system is poorly conditioned, Newton-like methods are generally preferred, but
when the system size is large, such methods are very expensive (in time and
storage), as currently used. For such cases, a combination of the Inexact
Newton Method and IOM (or scaled I10M) may be quite competitive with present
algorithms. This idea, and variations of it, are discussed by Chan and
Jackson [2].

Finally, we remark that the IOM algorithm is only one of several Krylov
subspace methods which have the potential for reducing the overall storage and

work in solving large stiff ODE systems. Rather than test an array of methods

48 -

on one or two test problems, we elected to test essentially one promising
method on an array of problems. In choosing I0OM, we were influenced by the
preliminary results of Gear and Saad [6]. From the more recent work of Chan
and Jackson [3], it seems clear that other Krylov methods are also promising
candidates for use in stiff ODE solvers, and additionally that preconditioning

is essential if the methods are to be robust. We will certainly continue to

investigate these areas.

Acknowledgement

We are grateful to two anonymous referees for clarifying a number of
features in our algorithm and testing, and for suggesting improvements. We
also thank Don Wuebbles (LLNL Atmospheric Sciences Div.) for performing

experiments with, and giving feedback on, an early version of the LSODP solver.

References

(1] W. E. Arnoldi, The Principle of Minimized Iterations in the Solution of
the Matrix Eigenvalue Problem, Quart. J. Appl. Math., 9 (1951), pp. 17-29.

(2] T. F. Chan and K. R. Jackson, Nonlinearly Preconditioned Krylov Subspace
Methods for Discrete Newton Algorithms, SIAM J. Sci. Stat. Comp., 5
(1984), pp. 535-542.

[3] T. F. Chan and K. R. Jackson, The Use of Iterative Linear Equation
Solvers in Codes for Large Systems of Stiff IVPs for ODEs, Tech. Report
170/84, Dept. of Comp. Sci., Univ. of Toronto, March 1984.

[4] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton Methods,
SIAM J. Numer. Anal., 19 (1982), pp. 400-408.

(5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK

User's Guide, SIAM, Philadelphia, 1979.

49 -

(6] C. W. Gear and Y. Saad, Iterative Solution of Linear Equations in ODE
Codes, SIAM J. Sci. Stat. Comp., 4 (1983), pp. 583+601.

[7] A. C. Hindmarsh, Preliminary Documentation of GEARBI: Solution of ODE
Systems with Block-Iterative Treatment of the Jacobian, Lawrence
Livermore National Laboratory'Report UCID&30149, December 1976.

[8] A. C. Hindmarsh, LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers, in ACM Newsletter, Vol. 15, No. 4
(December 1980), pp. 10-11.

' [9] A. C. Hindmarsh, ODEPACK, a Syétematized Collection of ODE Solvers, in
Scientific Computing, R.S. Stepleman et atl. (eds.), North-Holland,
Amsterdam, 1983, pp. 55-64.

[10] W. L. Miranker and I-L. Chern, Dichotomy and Conjugate Gradients in the
Stiff Initial Value Problem, J. Lin. Alg. Appl., 36 (1981), pp. 57-77.

{11] J. M. Ortega and W. C. Rhein501dt, Iterative Solution of Nonlinear
Equations in Several Variables, Adademic Press, New York, 1970..

[12] Y. Saad, Variations on Arnoldi's Method for Computing Eigenelements of
Large Unsymmetric Matrices, Lin. Alg. Appl., 34 (1980), pp. 269-295.

[13] v. Saad, Krylov Subspace Methods for Solving Large Unsymmetric Linear
Systems, Math. Comp., 37 (1981), pp. 105~126.

[14] Y. Saad, Practical use of Some Kry]ov Subspace Methods for Solving
Indefinite and Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 5

(1984), pp. 203-228.
[15] B. T. Smith et al., Matrix Eigensystem Routines - EISPACK Guide, Lecture

Notes in Computer Science, vol. 6, Springer-Verlag, New York, 1976.

50

