Displaying the Power of Heterogeneous Computing on GPUs

Emily Craig, Carina Salcedo, Elizabeth Wang
Lawrence Livermore National Laboratory

Goal Applications — Mandelbrot Set
Demonstrate speedups gained by incorporating a GPU in a way that can be used for Set of complex numbers c for which the function z_,,=z_2+c Mandelbrot
demonstrations to the general public does not diverge when iterated from z,=0 __ aome
. * Coloration based on divergence rate lends itself to B 5000 . oL
B : visualization S 4000 only
Introduction * Prebuilt demo on our Jetson Boards with a visual % 3099 mGPU
Central Processing Unit (CPU) — standard processor used in computers simulation Eizzz i S c+:Pu
* Designed to perform a small number of tasks at a time as quickly as possible Results . A ' ')
* Reaching a limit in performance speed due to power and heat limitations * Ineach run, the GPU was about 6 times faster than the CPU Nuni:)er ofNe\i\(l)Sets Genggrated
Graphics Processing Unit (GPU) — massively parallel processor developed for rendering graphics
* Designed to perform a vast number of tasks concurrently | . . : : -
e Now being used in conjunction with CPUs to accelerate many types of computationally Appllcatlons — John the Rlpper
expensive tasks Password cracking program
We chose to compare the speed of computation with and without a GPU accelerator for three * Recognizes a variety of different types of hashing algorithms
applications in different fields of science * First uses a word list to guess, then guesses by brute force
Challenges
B . . L e Better support for OpenCL than CUDA, but our GPU was incompatible with OpenCL
Appllcatlons' LAMMPS * Supports cracking fewer hashing algorithms with GPU than on CPU alone
Large-scale Atomic/Molecular Massively Parallel Simulator, a molecular dynamics simulation Results
» Can be used to model atoms or simulate particle movement * For 12/14 hashing algorithms, the GPU code was at least twice as fast as the CPU code
* Generates a fixed number of particles inside a cube and animates them, tracking where " In four cases, the GPU was more than 50 times faster
they are and calculating their new positions * For the remaining two hashing algorithms, the CPU was 2-4 times faster than the GPU
* Used Lennard-Jones simulation Guess Rate by Hash Type
Challenges 1E+8
» Compiling application for the GPU g oy o)
* NVIDIA Jetson Board is a non-standard hardware and software environment & s L ~ mCPU only
Results . Performance vs. Number of Particles 3 1;: : B - BB B scru+cru
 The GPU ran 3 to 4.3 times 100000 § (B2 wm a BB R = BB BB
faster than the CPU alone = 1E41 I I I I - I BN BN Em B b
< 10000 - 1E+0 -
* Drastic decrease in S a b ¢ d e f ¢ b |] ‘ m o on
performance speed due to £ 1000 = Hashing Algorithm
very limited memory S o = CPU Only
L £ B GPU + CPU »
* External memory limitations s . . ’ _
caused crash when container g Next Steps
dimensions increased to four o . ! 3 ' 27 ! * Install and tune GUIs for LAMMPS and John the Ripper
Volume of Container (sigma’) * Design and implement a GUI that incorporates all three applications

Acknowledgements: David Fox, Joseph Han, Pam Hamilton

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-698611

Proof-of-Concept for Heterogeneous GPU Computing:
Lattice-Boltzmann Fluid Simulations with Image Capture Analysis for User-drawn Boundary Copditions

Andrew Dawson’, Shingo Lavine*, Xavier Quinn?

*: Rensselaer Polytechnic Institute (Troy, NY) +: Brown University (Providence, Rl) ¥: Union College (Schenectady, NY)

e = E e

Abstract

This project demonstrates a Lattice-Boltzmann Method fluid simulation running on a heterogeneous GPU architecture using captured graphical input from the user. Components
fFor the software stack were identified and deployed on the heterogeneous processor, and python scripts are used to translate information from image analysis to simulation.

Introduction

What is Heterogeneous Computing?

e Utilizing more than one kind of processor,
e.g. CPU and GPU, to solve a problem

e Can have significant performance and power
usage advantages over homogeneous
systems

The new Sierra system to be deployed at LLNL
as part of the CORAL procurement is an
example of a heterogeneous system where IBM
Power processors are coupled with Nvidia GPU
accelerators. The objective of this project is to
explore a heterogeneous system while creating
an interesting interactive simulation. The data
fFlow involves the user drawing a shape while an
edge-detection algorithm interprets the
drawing to define boundary conditions for a
Fluid simulation.

Methods and Results

The Jetson TX1 device from Nvidia combines a
multi-core ARM CPU with 256 CUDA-capable
Maxwell GPU cores. While the board is
commonly used fFor deep learning and
computer vision embedded applications such as
autonomous vehicles, here the platform is
being used as a proxy for a cluster compute
node. The Jetson TX1 board was able to
support the LBM simulation along with the
image capture analysis. Multiple boards were
clustered allowing problems to be solved with a
distributed parallel algorithm leading to
computational speedups.

This work performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

User Drawn Image

OpenCV Edge Detected Image

~

Python Script Cropped Image

and Filled In

Sailfish Fluid Simulation

Simulation Workflow

" Image Capture Input

Gstreamer’, a framework For creating
various media-based applications, is used
to capture an image.

Jetson TX1

‘ Edge Detection

Algorithms within OpenCV?Z, an open-
source computer vision and image
recognition library, identify edges within
the image

_ ‘ User Iteration
Image Processing Script

A python script translates the edges
generated by OpenCV into boundary
conditions readable by sailfish. The
python script enters the boundary values
‘and executes the sailfish simulation.

Fluid Simulation

Sailfish3 solves the fluid dynamics
equation using a Lattice-Boltzmann
Method (LBM). In contrast to more
traditional methods (e.q. finite volume),
LBM could be more parallelizable on GPU

architectures.

- S
e), - @ e
-]
= e
= p- S
N b = R - ‘H’
S e 5 b
o < ,,.." e
- .
- =)
(S t-l‘_
=1 3
>
(<)
=
"y
3 >

One motivation for this project was to create an
environment in which a user could quickly
demonstrate fluid flow over rudimentary
airfoils. The program allows For simulation
Flexibility by allowing the user to draw or
photograph real objects and could theoretically
be expanded to allow for 3D spatial capture as
input for simulations. Using image capture
input enables users to demonstrate a proof-of-
concept prototype with minimal programming.

Furthermore, this project demonstrates the
viability of using LBM physics simulations on a
CPU/GPU architecture. Future high
performance computing resources will have
heterogeneous architectures and LBM
algorithms may enable better utilization of the
capabilities.

Next Steps:

e CPU vs GPU/CPU Performance Benchmarking
e Developing a GUI

e Clustering additional nodes

e Strong and weak scaling studies

e 3D Spatial Capture

Acknowledgements:

Joseph Han (Mentor), Thomas Bennett, lan Lee, David Fox,
Pam Hamilton, Kim Cupps, Giuseppe Di Natale: Lawrence
Livermore National Laboratory (Livermore Computing)

References:

1: https://gstreamer.freedesktop.org/

2: http://opencv.org/

3: http://dx.doi.org/10.1016/j.cpc.2014.04.018

Review and Release Number:

\
™ -

S S . <
(1)

sqr

Abstract

Sqrl 1s a computer inventory application written
in Golang that gathers and exports extensive system
information to an outside source for analysis and
visualization of the data. The purpose of this project is
to provide accessible/scalable data to users who are
interested in finding out information about their Linux
systems 1n order to better understand efficient
utilization of available nodes 1n a cluster.

Introduction

In large clusters of computers, 1t can be
difficult to extract information concerning the
physical node; however, this process can be
automated through a program. Previously existing
packages provided select information about the
node, such as network name, number of cores, free
and used memory, hard drive type, kernel version,
and type of operating system, but none contained
exhaustive system specifications. Our goal was to
create a single program that provided all of this
information, called sqrl. We aim to research the
possibilities of 1mplementation of sqrl in large-
scale systems to find the most efficient and
practical way to monitor systems.

run.

ﬂ;ld &rld ﬂld
_——— orld sarld_sarld

sqrl= sqrid_sqr
\ w\\\r}eﬁwﬂl "

Figure 1: sqrl can be easily run on all nodes of a cluster with one command. With
much larger clusters having thousands of nodes, this program alleviates the need to
address each node individually.

This work performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

Monitoring HPC Clusters Using Sqrl

Delaney Gill-Sommerhauser, Danielle Larson, Christopher Moussa

We looked into different ways sqrl could be automated and scheduled to

: Cron (through the operating system)

. Internal task scheduling

- HTTP server

After exploring pros and cons of each process, we decided on a
combination of both internal task scheduling and an HTTP server.

B Lawrence Livermore
National Laboratory

Methods

We leveraged previously existing Go packages in order to create sqrl. Our
completed application allows the user to customize what is logged and exported.

sqgrl all

|
I I I I I I

Figure 2: The commands and subcommands of sqrl that allow the user to customize
logs and output

Server machine

Client machine 1. Sends
connection

request

2. Performs
actions

(logging,
configuration,

Client

Figure 3: Client to server binding using a daemon. etc.)

Why We Chose It

Internal task scheduling and an HTTP server provide many benefits for
continuously and efficiently logging system information. While our internal scheduler
will update and log information on a set time (versus the operating system’s own cron
scheduler), using an HTTP server provides the ability to run sqrl at any time. Sqrl,
when running in daemon mode, allows the application to accept requests that could
update the frequency of logging and verbosity of information. It also provides
scalability; whether there are five machines or 5,000, each individual machine logs its
own information, allowing an application like Splunk to collect and visualize that
information. In case of an emergency, the HTTP server in sqrl allows the user to make
configuration changes to all of the nodes in a cluster.

RAM in GB

A Selection of Compute Nodes from
the Cab Cluster

25 —V EEE i iﬁ

Individual Nodes

Figure 4: Graph of memory usage on a selection of nodes in the Cab cluster.

Discussion

The data that sqrl provides can be used in many
different applications. For example, sqrl could provide the
data needed to recognize correlations between running jobs
and memory usage, allowing users to better utilize system
resources. Depending on the memory requirement of a
particular job, sqrl’s exported data could be evaluated using
analytic tools to estimate the most efficient node-to-memory
distribution for certain jobs. Because sqrl 1s automatically
run, 1t 1s easily accessible and provided in real-time to users.

While the combination of an HTTP server and daemon
1s optimal, there are still some downfalls to this method. The
downside to the HTTP server is its lack of security; as of
now, anyone can access the server if needed. Consistent
reliability of the network also raises another concern because
users would not be able to access all of the machines through
a management node 1f a network connection 1s broken.

To extend this project, a point to address would be
security. For example, adding authentication would ensure
possession of how sqrl runs 1s limited to a select number of
privileged users. Another area for extension would be
logging dynamic information each time the program is run,
while the static information, such as operating system info, 1s
only logged per specific request, removes unnecessary logs
of information.

Acknowledgements:
Derek McQuay

Pam Hamilton
Livermore Computing

M. Abdalla, K. Johnston, J. Walker

Objective:

To develop a script that gathers basic
system information about a Linux based
cluster and output results in various
formats.

Method.:

Tory: A Computer Inventory Script for HPC

We used python modules, such as psutil, and Linux
system calls to gather system information, such as
network, CPU, and RAM. We then stored or displayed

results in human readable format, json, and others. We

$ python tory -h
usage: PROG [OPTION] CMD..

optional arguments:
optional arguments:

wrapped up our project using the “Package Manager by
Python”, pip, to package Tory and make it available for
download on PyPi and the open source channel GitHub.
We made Tory an interactive search tool, where users

-h, --help show this help message and exit
-m MAX RECORDS, --max-records MAX RECORDS o gro . .
= Mosimum number of secords to show can query a specific target or request a list of items.
-j, —--json convert to json Links:
-r, —-- d t to h dabl . .
4 --database cond to databmee oo GitHub: https://github.com/tbenz9/tory
-s, --show_database show contents in database PYP': httpszllglpi.Qython.orgiglpi/torylo.al
commands:

CMD

disks disks

CPU
izi RAM Node Node Node Node Node
:i:;le :i:;ie Node Node Node Node Node

package
one package

packages or search for
System Information

Why this is Cool? o
On large systems, such as Sequoia, parts -
are continuously being replaced and

data

software is constantly being added or Python Human . |
updated due to the needs of users. This £ dictionary | Readable o S
project will produce a fast and easy way to 2 /) B

monitor these changes. Tory will give us an

actual count of hardware or software. Number of CPUs: 8

Total RAM: 16.66 GB

Total HDD: 22.61GB
Hostname: academy-vm2

$ python tory -r simple

IP Address: 192.168.80.32

$ python tory simple
{ ‘num cpus’: 8,

‘hostname’ : ‘academy-vm2’}

"hostname'" :

$ python tory -j simple
‘{"num cpus": 8,

‘total ram’: '16.66 GB’, "total ram": "
‘ip address’: 192.168.80.32, "ip address":
‘total hdd’: ‘'22.61GB’,

"total hdd": “22.61GB”,
"academy-vm2"}’

16.66 GB",
192.168.80.32,

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

i\ SOCIAL CODING

Expected deliverable:

There is still much work for Tory, such as:

Graphic displays of information.

Alerts for mapping inventory scripts.

Deploying Tory on a large scale, HPC

computers.

Make a robust Tory, that can handle any

unexpected situation.

Insure that our code follows Python Pep 8

style guide.

Create documentation and man page.

m Total space

m Free Space

m Swap Space

a - .
..“ -t ."". -
- =t
b 04 - " ..' .'.
—_3 » ’
el
o ia P 2

B Lawrence Livermore
National Laboratory

	HPCAcademy_Poster_GPUs_CraigSalcedoWang
	HPCAcademy_Poster_LBMPOC_DawsonLavineQuinn
	HPCAcademy_Poster_Sqrl_GillSommerhauserLarsonMoussa
	HPCAcademy_Poster_Tory_AbdallaJohnstonWalker

