
CASC Newsletter | Vol 14
June 2024

1

CASC Newsletter | Vol 14
June 2024

In This Issue:
• From the Director
• Collaborations | EQSIM: Earthquake Simulation Using the SW4 Code
• Lab Impact | zfp: Fast and Accurate Data Compression for Modern

Supercomputing Applications
• Advancing the Discipline | UMap and Metall: ECP Products Under the Argo and

SICM Projects
• Machine Learning & Applications | ExaLearn: Co-design Center for Exascale

Machine Learning Technologies

From the Director
Contact: Jeff Hittinger

“No one can whistle a symphony. It takes an orchestra to play it.” – Halford Luccock

The U.S. Department of Energy now has two exascale-class machines—literally
capable of “billions of billions” (1018) floating point operations per second—and LLNL’s
El Capitan will soon make that three. However, with this scale of capability came new
challenges to realize its potential in terms of the software stack, the algorithms, and the
applications. In 2017, the nearly two-billion-dollar DOE Exascale Computing Project
(ECP) was created to jumpstart our nation’s ability to benefit from incredible scale of
computing, and LLNL—and CASC in particular—have been important performers
playing their parts in the symphony that is ECP. This fiscal year, the ECP successfully
concluded as an outstanding example of what the DOE national laboratories and their
partners can achieve working in concert.

In this issue of the CASC Newsletter, we celebrate the success of the ECP by featuring
four examples of contributions CASC made to this symphony. We start by introducing
the EQSIM earthquake simulation project that relied on highly performant advanced
numerical methods developed in CASC to reach record-breaking fidelity using exascale
resources. This project is a great example of the power of algorithms: While the
exascale hardware was only fifty times more capable than the state-of-the-art in 2017,
the project demonstrated roughly three orders of magnitude speed-up. In the second
offering, we discuss the zfp lossy compressed array algorithm, which offers an

mailto:hittinger1@llnl.gov

CASC Newsletter | Vol 14
June 2024

2

alternative floating point representation that can reduce both memory capacity and
bandwidth usage—key concerns on modern HPC architectures.

Staying with the theme of memory, we discuss UMap, a library that enables custom
memory page management, which can flexibly and scalably support the more complex
memory access patterns we see in modern scientific computing while exploiting deeper
memory hierarchies, e.g., node-local flash solid-state drives (SSDs). Finally, we present
the ExaLearn project, an effort to enable scientific machine learning to benefit from
exascale resources by building on CASC’s LBANN toolkit for parallelizing the training of
convolutional neural networks.

Of course, these are just four of dozens of ECP projects in which CASC participated or
led. You can find out more about LLNL’s ECP involvement at exascale.llnl.gov and the
official ECP website. My congratulations and thanks go out to all of our researchers who
helped to contribute to the success of the ECP. It was a wonderful performance. Well
done!

Collaborations | EQSIM: Earthquake Simulation Using
the SW4 Code
Contact: Anders Petersson

Earthquake hazards and risks are a problem of national importance. The damage that
could result from a large earthquake is a bigger societal problem than most people
imagine. According to the U.S. Geological Survey and the Federal Emergency
Management Agency, earthquakes cost the nation an estimated $14.7 billion annually in
building damage and related losses. As part of the ECP, the EarthQuake SIMulation
(EQSIM) application development project has created a high performance
computational tool set, with the goal of removing the computational limitations as a
barrier to simulation-based scientific exploration of earthquake phenomenology, hazard,
and risk assessment.

At the heart of EQSIM is a wave propagation code called SW4 (Seismic Waves, fourth
order) that was originally developed by CASC researchers Anders Petersson and Bjorn
Sjogreen. SW4 is a summation-by-parts finite difference code for simulating seismic
motions in a 3D model of Earth. It incorporates both a material model of an area (e.g.,
the San Francisco Bay Area) and a rupture model along a specific fault, such as the
Hayward or San Andreas faults. At the start of the EQSIM project in 2017, the SW4
code could capture ground motions up to 2 Hertz in a model of the Bay Area where the
shear speed exceeds 500 m/s. These calculations could, for example, be executed on
1,024 nodes of the Cori multi-core machine at LBNL and took about 24 hours to
complete.

https://exascale.llnl.gov/
https://www.exascaleproject.org/
mailto:petersson1@llnl.gov

CASC Newsletter | Vol 14
June 2024

3

The basic challenge of high frequency seismic wave simulations is that the
computational grid must be fine enough to capture the waves that are propagated
through the model. In a viscoelastic material, the shortest wavelength is proportional to
the slowest wave speed divided by the highest frequency. Because a fixed number of
grid points are needed per wavelength, the number of grid points in the 3D model must
be increased by a factor of 8 every time the frequency is doubled. In addition, doubling
the frequency makes the waves oscillate twice as fast in time and therefore requires the
number of timesteps to be doubled.

As a result, every time the frequency is doubled, the computational effort increases 16-
fold. The goal of the EQSIM project was to increase the frequency resolution in the Bay
Area model from 2 to 10 Hertz while reducing the simulation time from 24 to 5 hours.
Increasing the frequency from 2 to 10 Hertz makes the simulation 625 times harder.
Factoring in the additional reduction in runtime from 24 to 5 hours results in a total
speedup goal of a factor of 3,000.

One of the most significant algorithmic improvements during the EQSIM project was to
completely modify the mesh used by the SW4 code. At the beginning of the project,
SW4 combined a curvilinear grid near the model surface to follow the Earth’s
topography and a Cartesian grid at depth for improved efficiency. Both grids had about
the same grid size, which had to be fine enough to resolve the motion through the
slowest material in the model, near the surface. The saving grace of seismic wave
simulations is that the material wave speeds are only very low near the top surface and
are often an order of magnitude larger below the MoHo discontinuity, near the bottom of
the computational domain at 30 km depth. This makes seismic wave simulations an
ideal candidate for local mesh refinement.

For example, in the San Francisco Bay Area, the shear wave speed exceeds 1,000 m/s
below a depth of 800 meters. If the lowest wave speed near the surface is restricted to
500 m/s, this means that the finest grid is only needed in the top 800 meters of the
model and can be doubled below depth 800 meters. Further grid coarsening can be
made once the wave speed exceeds 2000 m/s, and so on. While the benefits of the
mesh coarsening are conceptually easy to understand, the details of its implementation
are quite involved. The EQSIM project developed a carefully designed mesh coarsening
algorithm that ensures time-stepping stability through energy conservation and retains
overall fourth order accuracy of the solution [2][5]. An example of the resulting mesh is
shown in Figure 1.

CASC Newsletter | Vol 14
June 2024

4

Figure 1: A vertical cross-section of the computational mesh used by SW4.

With the mesh coarsening algorithm in hand, the researchers could further improve the
realism of their Bay Area simulations by more accurately representing the shear wave
speed in the top 800 meters of the model. Thus, instead of restricting the shear wave
speed to exceed 500 m/s, the work enabled the capture of shear wave speeds down to
140 m/s by further refining the mesh near the surface. The resulting mesh for the Bay
Area model has 391 billion grid points, of which 80% are in the top 145 meters of the
model.

While the algorithmic improvements of SW4 were important, the code also had to
undergo significant software changes to run well on CPU-based multi-core machines, or
GPU-based hardware. Early in the EQSIM project, the researchers made the decision
to use the RAJA library to achieve portability across different hardware platforms. This
library allows essentially the same C++ source code to be compiled to run on either
CPU-based multi-core machines using OpenMP for multi-threading, or GPU-based
machines using backends for Cuda, HIP, or Sycl.

The key performance prediction (KPP) metric for the EQSIM project was defined for a
scenario magnitude 7.0 earthquake on the Hayward fault in the Bay Area model.
Starting at the normalized value of KPP=1 in 2017, thanks to great teamwork within
EQSIM and help from the RAJA team, the EQSIM project finally reached KPP=3,500 on
the Frontier system in September of 2023. Late in the project, the increased capabilities

CASC Newsletter | Vol 14
June 2024

5

of SW4 allowed the group to consider a much larger rupture with magnitude 7.5 on the
San Andreas fault. Snapshots from both the Hayward and San Andreas simulations are
shown in Figure 2.

Figure 2: Ground motion simulations of (left) a 7-magnitude Hayward fault earthquake
and (right) a 7.5-magnitude San Andreas fault earthquake were recently completed on
Frontier. The images illustrate the major growth in computational domain size with
earthquake magnitude and the ability to model much larger events, thanks to exascale
computing.

[1] D. McCallen, et al. “Regional-scale fault-to-structure earthquake simulations with the
EQSIM framework: Workflow maturation and computational performance on GPU-
accelerated exascale platforms,” Earthquake Spectra., 2024,
doi:10.1177/87552930241246235.

[2] L. Zhang, S. Wang, and N. A. Petersson, “Elastic wave propagation in curvilinear
coordinates with mesh refinement interfaces by a fourth order finite difference method,”
SIAM J. Sci. Comp., 2021, 43(2):A1472–A1496.

[3] D. McCallen, et al. “EQSIM - a multidisciplinary framework for fault-to-structure
earthquake simulations on exascale computers part I: computational models and
workflow,” Earthquake Spectra, 2021 37(2):707–735, doi:10.1177/8755293020970982.

[4] A. Rodgers, et al. “Regional-scale three-dimensional ground motion simulations of
MW 7 earthquakes on the Hayward Fault, Northern California resolving frequencies 0-
10 Hz and including site response corrections,” Bull. Seismo. Soc. Amer., 2020,
110(6):2862–2881.

CASC Newsletter | Vol 14
June 2024

6

[5] S. Wang and N. A. Petersson, “Fourth order finite difference methods for the wave
equation with mesh refinement interfaces,” SIAM J. Sci. Comput., 2019, 41(5):A3246–
A3275, arXiv:1809.04310.

[6] H. Johansen, et al. “Toward Exascale Earthquake Ground Motion Simulations for
Near-Fault Engineering Analysis,” Comput. Sci. Eng., 2017, 19(5):27–37.

Lab Impact | zfp: Fast and Accurate Data Compression
for Modern Supercomputing Applications
Contact: Peter Lindstrom

The zfp data compression algorithm epitomizes efficiency and versatility in the realm of
data storage and transmission. With its unique support for random access to data
elements coupled with guarantees on either storage size or numerical accuracy, zfp
offers a dynamic solution tailored to diverse applications, from scientific simulations to
Big Data analytics. By balancing compression ratios and data integrity, zfp is able to
achieve resource-efficient data management and numerical computations, empowering
users to optimize storage space and enhance computational performance with
unparalleled ease and effectiveness.

zfp was developed by a team of LLNL researchers led by CASC computer scientist
Peter Lindstrom and includes ASQ computer scientists Danielle Asher and Mark C.
Miller. In addition, three former Lab employees—Stephen Herbein, Matthew Larsen,
and Markus Salasoo—were part of the team. zfp [1] presents a new compressed
number format for floating-point and integer arrays intended to reduce in-memory and
offline storage and transfer time of large data sets that arise in HPC. zfp effectively
expands available CPU and GPU memory by as much as 10x; reduces offline storage
by one to two orders of magnitude; and—by reducing data volumes—speeds up data
movement between memory and disk, distributed compute nodes, CPU and GPU
memory, and even main memory and CPU registers. Such reductions in data
movement are critical to today’s HPC applications, whose performance is largely limited
by data movement rather than compute power.

Unlike the majority of today’s lossy file compressors [2], quite a bit is known about the
numerical errors introduced by zfp’s lossy compression modes. For instance, it is known
that the zfp error distributions are essentially normal (or Gaussian), but with finite
support (i.e., errors are bounded) due to the mixing of uniform roundoff errors that occur
in its decorrelating transform. This normality is attractive as it allows a user to reason
about the propagation of such errors; e.g., the sum of two normal random variables is
also normal. Moreover, the errors can be shown to be unbiased and uncorrelated [3],
which is important in many physics applications to ensure conservation of mass,
energy, and momentum, and in statistics. Absolute error bounds for zfp compressed

mailto:lindstrom2@llnl.gov

CASC Newsletter | Vol 14
June 2024

7

data have been established [4], which allow scientists to set an acceptable error
tolerance wherein zfp reduces the data as much as possible while respecting the
tolerance.

Figure 3: When zfp is the primary representation of the evolving solution in a PDE
solver, compression errors are introduced in each time step. Such errors could
potentially accumulate over time and cause the solution to blow up. The zfp team has
established error bounds not just for a single application of compression but for the
cumulative error over time in iterative solvers. This allows scientists to choose an
appropriate compression ratio with the assurance that compression errors are far below
other sources of error.

One important consideration, especially for accelerating data movement via
compression, is the speed of compression and decompression. That is, to realize a net
performance gain in data transfers, the total time spent on compression (by the sender),
transfer of compressed data, and decompression (by the receiver) must not exceed the
time needed to transfer the data uncompressed. As documented extensively through
numerous publications, zfp is one of the fastest—if not the fastest—lossy numerical
compressor available [5]. The zfp CUDA-based GPU implementation achieves up to
700 GB/s throughput in compression and decompression, as shown in Figure 3. This is
substantially faster than the throughput of I/O, supercomputer interconnects, and PCI
Express for channeling data between CPU and GPU. Several success stories of using

CASC Newsletter | Vol 14
June 2024

8

zfp to accelerate I/O [6], communication, and CPU-GPU transfers [7] have
demonstrated speedup factors of up to 40, 6, and 2.2, respectively.

zfp is recognized as one of the leading solutions for numerical data compression and
has consequently seen widespread adoption in industry, academia, and national labs.
With over 1.5 million measurable downloads per year (from GitHub, Anaconda, and
PyPI), the following features are largely responsible for zfp’s impact and rapid adoption:

• Unique features like random access, prescribed and guaranteed memory
footprint, and fine-grained access not supported by other compressors

• Effectiveness at compressing data, competing with best of breed
• Floating-point compressor speed (fastest available)
• High parallelizability by design
• Attractive error properties and error guarantees not available through other

compressors
• C, C++, Python, and Fortran bindings, with other language bindings available

through third parties (Rust, Julia, and WebAssembly)

zfp has been used in SW4 earthquake simulations (see EQSIM article above) and NIF
HYDRA simulations, and is supported by the Livermore Equation of State (LEOS)
library, to name a few applications. It also has been adopted by various Intel products,
the MVAPICH MPI library, ArcGIS, and others. In 2023, it won the prestigious R&D 100
award.

[1] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions on
Visualization and Computer Graphics, 2014, 20(12):2674–2683,
doi:10.1109/TVCG.2014.2346458.

[2] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: tensor compression
for multidimensional visual data,” IEEE Transactions on Visualization and Computer
Graphics, 2020, 26(9):2891–2903, doi:10.1109/ TVCG.2019.2904063.

[3] D. Hammerling, A. Baker, A. Pinard, and P. Lindstrom, “A collaborative effort to
improve lossy compression methods for climate data,” IEEE DRBSD-5, 2019,
10.1109/DRBSD-549595.2019.00008.

[4] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom, “Error analysis of
zfp compression for floating-point data,” SIAM Journal on Scientific Computing, 2019,
41(3):A1867–A1898, doi:10.1137/18M1168832.

[5] S. Li, P. Lindstrom, and J. Clyne, “Lossy scientific data compression with SPERR,”
IPDPS 2023, doi:10.1109/IPDPS54959.2023.00104.

CASC Newsletter | Vol 14
June 2024

9

[6] P. Lindstrom, P. Chen, and E.-J. Lee, “Reducing disk storage of full-3D seismic
waveform tomography (F3DT) through lossy online compression,” Computers &
Geosciences, 2016, 93:45–54, doi:10.1016/j. cageo.2016.04.009.

[7] L. Noordsij, S. van der Vlugt, M. Bamakhrama, Z. Al-Ars, and P. Lindstrom,
“Parallelization of variable rate decompression through metadata,” Euromicro PDP
2020, doi:10.1109/PDP50117.2020.00045.

Advancing the Discipline | UMap and Metall: ECP
Products Under the Argo and SICM Projects
Contact: Maya Gokhale

Today’s emerging exascale workloads are expected to incorporate data-intensive
processing in close coordination with traditional physics simulations. These emerging
scientific, data analytics, and machine learning applications need to access a wide
variety of datastores in flat files and structured databases. Programmer productivity is
greatly enhanced by mapping datastores into the application process’s virtual memory
space to provide a unified “in-memory” interface. A team of researchers in CASC, led by
Maya Gokhale and includes Roger Pearce, Keita Iwabuchi, and CASC alumnus Ivy
Peng, have developed two products, called UMap and Metall, that can help address this
need by optimizing applications’ interactions with large, out-of-core datastores.

UMap is part of the ECP Argo project, which is focused on augmenting and optimizing
existing operating system and runtime components. By exploiting locally attached flash
solid-state drives (SSDs) that can reduce the divide between storage and memory, the
research team built UMap [1][2], which is a user-level file memory mapping library, to
access non-memory-resident data. Peng, who has since left the Lab, was the primary
developer of UMap while she was a CASC researcher. With a pluggable datastore
manager, the UMap library enables development of custom memory page management
strategies tuned to access patterns of highly concurrent, multi-threaded applications.
UMap’s advantages include high flexibility to configure page size and queue
management, scalability at large thread counts, and extensibility to future-proof the
library.

The research team prioritized four design choices for UMap based on surveying realistic
use cases. First, they chose to implement UMap as a user-level library so that it can
maintain compatibility with the fast-moving Linux kernel without the need to track and
modify for frequent kernel updates. Second, they employed the recent userfaultfd
mechanism to reduce overhead and performance variance in multi-threaded
applications. Third, they targeted an adaptive solution that sustains performance even
at high concurrency for data-intensive applications, which often employ a large number
of threads for hiding data access latency.

mailto:gokhale2@llnl.gov

CASC Newsletter | Vol 14
June 2024

10

Finally, for flexible and portable tuning on different computing systems, UMap provides
both API and environmental controls to enable configurable page sizes, eviction
strategy, application-specific prefetching, and detailed diagnosis information to the
programmer. UMap as a userspace service outperforms an optimized kernel-based
mmap service across a wide range of intra-node concurrency at a level of 22–90%.

Figure 4: UMap evaluations show superior performance relative to the system mmap
service: (a) breadth-first search on scale 31 RMAT graph, (b) metagenomics queries on
a k-mer database, (c) YCSB transactions on the NStore database, and (d) sorting an
array of integers.

Analogous to heap management libraries for data in main memory, the research team
also created Metall [3], a persistent memory allocator that stores dynamically allocated
persistent objects in memory-mapped files. Metall is part of the ECP SICM project,
which is focused on addressing the emerging complexity of exascale memory
hierarchies. Applications that generate and analyze complex data structures rely on
dynamic allocation and release. Metall enables applications to transparently allocate
custom C++ data structures into various types of persistent memories. It incorporates a
concise and high performance memory management algorithm inspired by Supermalloc
and the rich C++ interface developed by Boost.Interprocess library.

Metall achieved performance improvements of up to a factor of 11.7 and 48.3 over
Boost.Interprocess and memkind (PMEM kind), respectively, on a dynamic graph
construction workload. To optimize storage of the Metall persistent heap, the research
team developed the Privateer library [4], which optimizes I/O performance and storage
space at the abstraction level of virtual memory and backing store management. Karim
Youssef was the primary developer of Privateer; he is currently a postdoc in CASC.
Privateer uses private memory-mapping with optimized writeback and content-
addressable data storage and can deliver 30% storage space improvement for storing

CASC Newsletter | Vol 14
June 2024

11

snapshots of an incrementally growing graph while delivering comparable performance
to the baseline Metall.

In terms of application, Metall has been integrated into MiniVite, which is a distributed
graph community detection application that is part of the ECP proxy application suite. In
this application, graph generation takes up to 20 times longer than the analytics and is a
bottleneck in timely graph analysis. By using Metall, MiniVite can perform graph
generation once, and then store and re-use use graph objects in the Metall persistent
heap. Figure 5 shows the use of Metall in MiniVite on the ORNL Summit and Crusher
systems. The generated graph is copied to the global file system for long term storage,
and then copied to local SSD for use in a graph analytic, reducing analytic startup time
by more than an order of magnitude.

Figure 5: Overview of the evaluation system for Metall in MiniVite on the ORNL
systems. The generated graph is copied to the global file system (GPFS) for long term
storage, and then copied to local SSD for use in a graph analytic, reducing analytic
startup time by more than an order of magnitude.

CASC Newsletter | Vol 14
June 2024

12

[1] I. Peng, et al., “UMap: enabling application-driven optimizations for page
management,” Proc. IEEE/ACM Workshop Memory Centric High Performance
Computing, 2019, pp. 71–78.

[2] I. Peng, M. Gokhale, K. Youssef, K. Iwabuchi, and R. Pearce, “Enabling scalable and
extensible memory-mapped datastores in userspace,” IEEE Transactions on Parallel
and Distributed Systems, 2022, 33(4):866–877, doi:10.1109/TPDS.2021.3086302.

[3] K. Iwabuchi, K. Youssef, K. Velusamy, M. Gokhale, and R. Pearce, “Metall: A
persistent memory allocator for data-centric analytics,” Parallel Computing, 2022, vol
111(102905), ISSN 0167-8191, doi:10.1016/j.parco.2022.102905.

[4] K. Youssef, K. Iwabuchi, W.-C. Feng, and R. Pearce, “Privateer: multi-versioned
memory-mapped data stores for high-performance data science,” IEEE High
Performance Extreme Computing Conference (HPEC), 2021, pp.1–7.

Machine Learning & Applications | ExaLearn: Co-
design Center for Exascale Machine Learning
Technologies
Contact: Brian Van Essen

In 2018, ECP created the ExaLearn project to develop AI/ML algorithms and tools that
were optimized for the emerging advanced technology and leadership-class exascale
HPC systems that were coming online. It was an eight-lab effort that focused on
developing scientific machine learning (SciML) with a particular thrust on four
methodology pillars: surrogate, control, inverse, and design models and methods.
Within each of these pillars, exemplar applications were selected as the focus of the
project.

Additionally, multiple cross-cut thrusts were created, which included scalability and
performance, I/O, proxy applications, and workflow. The LLNL team, led by CASC
researcher Brian Van Essen, was responsible for the scalability and performance cross-
cut and worked with the surrogate application pillar to develop unique capabilities and
algorithms optimized for the Exascale systems.

mailto:vanessen1@llnl.gov

CASC Newsletter | Vol 14
June 2024

13

Figure 6: Overview of the ExaLearn application pillars and exemplar problems.

Focusing on the interplay between achieving strong scaling on large SciML models and
developing surrogates for scientific simulations, the LLNL team developed novel
methods in the LBANN toolkit for parallelizing the training of convolutional neural
networks along the spatial, channel, and filter dimensions. This allowed the training and
inference of neural network architectures on simulation volumes that were previously
inaccessible with traditional deep learning toolkits.

This is exemplified by LBANN’s application to CosmoFlow and CosmoGAN models from
LBNL. CosmoFlow is a deep learning tool that allows for the determination of the initial
condition (IC) parameters of a Universe based on the simulated 3D distribution of mass
in the Universe using 3D convolutional neural networks, and CosmoGAN applies
Generative Adversarial Networks to the problem of generating weak lensing
convergence maps. The LLNL team used both low- and high-resolution simulations
from Nyx to train CosmoFlow and CosmoGAN.

For CosmoFlow, the expectation is that a high granularity (5123, 10243, or larger) input
will allow the determination of the ICs with high precision. Its end product is the ability to
infer cosmological parameters such as matter density and perturbation amplitudes,
spectral index, and Hubble’s constant from a simulation or a surrogate model. The
LBANN team has been experimenting with adjusting the loss function to handle a
variety of physical and spectral constraints. Using LBANN to move to the full 3D
CosmoFlow data sets has shown that the generator network produces maps that are
described by the same summary statistics as the fully simulated maps, with high
statistical confidence. Using the parallelization strategies developed by the LLNL team,

CASC Newsletter | Vol 14
June 2024

14

ExaLearn was able to demonstrate the scalable training of the CosmoFlow model on
both Lassen and the Frontier system at ORNL as part of the ECP KPP-3 milestone,
using up to 16,000 GPUs.

LBANN also demonstrated the ability to generate high-fidelity surrogates from a trained
model with CosmoGAN in a fraction—0.01%—of the time it takes to run a Nyx
simulation. They performed the demonstration run on the Lassen system at LLNL and
published their findings in [1]. They also performed a demonstration run on the Frontier
system at ORNL, using an updated CosmoFlow model that has been aligned with the
MLPerf HPC version and updated to work with 5123 volumes.

Additionally, the LLNL team developed custom 3D convolutional compute kernels that
were optimized for the unique dimensions encountered within these SciML models. The
first high-level result achieved was a 58.11-factor speedup on Frontier with respect to
Lassen when using 16,000 GPUs of Frontier versus 256 GPUs of Lassen. Looking at
the relative performance on only Frontier shows a 39.20x speedup using 16,000 GPUs
versus 256 GPUs. This led to a set of parallel efficiencies on Frontier of 0.72x for 256
GPUs and 0.44x for 16,000 GPUs.

Figure 7: (left) Comparison of speedup on Frontier versus Lassen. (right) Parallel
efficiency of strong scaling the training on Frontier.

[1] Y. Oyama, et al. “The case for strong scaling in deep learning: training large 3D
CNNs with hybrid parallelism,” IEEE Transactions on Parallel and Distributed Systems,
2020, 32(7):1641–1652.

CASC Newsletter Sign-Up

Was this newsletter link passed along to you? Or did you happen to find it on social
media? Sign up to be notified of future newsletters.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. LLNL-MI-865782. Edited by Ming Jiang.

https://computing.llnl.gov/casc/newsletter
mailto:jiang4@llnl.gov

	In This Issue:
	From the Director
	Collaborations | EQSIM: Earthquake Simulation Using the SW4 Code
	Lab Impact | zfp: Fast and Accurate Data Compression for Modern Supercomputing Applications
	Advancing the Discipline | UMap and Metall: ECP Products Under the Argo and SICM Projects
	Machine Learning & Applications | ExaLearn: Co-design Center for Exascale Machine Learning Technologies
	CASC Newsletter Sign-Up

