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BLAST is a high-order finite element ALE code
We solve the Euler equations by a Lagrange + remap method

§ Multi-material support for general EOS,
strength and elasto-plastic flow models.

§ Support for 2Dxy, 2Drz and 3D curved
tri/tet/quad/hex meshes.

§ Robustness and symmetry, reduction of 
mesh imprinting.

§ High-order convergence on smooth tests
for the full ALE algorithm.

§ FLOP-intensive numerical kernels.

§ Coupled to single-group rad-diffusion,
MHD coupling is in progress.
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Curvilinear zones represent material flow better

thermodynamic 
basis

kinematic 
basis

High-order fields lead to sub-zonal resolution

§ Continuous HO kinematics for
position 𝑥, velocity 𝑣.

§ Discontinuous HO thermodynamics
for specific internal energies 𝑒!.

§ Point-wise closure computations for
volume fractions 𝜂!, increments 𝛼! and 𝑝.

§ Point-wise mass conservation for densities 𝜌!.
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Multi-material Lagrangian phase overview
Sub-zonal resolution by combining 𝐻!, 𝐿", and point-wise quantities
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LAGHOS: LAGrangian High-Order Solver
Laghos is a new MFEM miniapp for high order hydrodynamics

§ Public GitHub website: https://github.com/CEED/Laghos
— Email list: laghos@llnl.gov

§ Resembles the single material Lagrangian phase of BLAST.

§ Supports full assembly and partial assembly options.

§ Supports 2D and 3D unstructured meshes - quads / hexes, triangles / tets.

§ C++ code with domain-decomposed MPI parallelism.

§ Optional in-situ visualization with GLVis.

https://github.com/CEED/Laghos
mailto:laghos@llnl.gov
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§ We extend the Target-Matrix Optimization Paradigm (TMOP)
to high-order meshes.
— P. Knupp’s rigorous theory is used to define high-order mesh quality.
— Quality metrics are defined with respect to shape / size / alignment.
— Metrics are computed on quadrature point level.

§ We define a global variational minimization problem to
find the optimal node positions:

§ Nonlinear solver is applied to the resulting system.

§ Capabilities include for compositions of metrics,
limited movement, space-time coefficients.
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Example of a 𝑄! zone

Example of optimization
by different strategies

High-order mesh optimization phase overview
Based on node movement that is controlled by the TMOP paradigm
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Remap phase overview
Conserved fields are evolved by a sequential FCT algorithm

V. Dobrev, Tz. Kolev, R. Rieben,  “High-order curvilinear finite element methods
for Lagrangian hydrodynamics”, SIAM J. Sci. Comp., 34(5):604–641, 2012.
V. Dobrev, Tz. Kolev, R. Rieben, V. Tomov, “Multi-material closure model for
high-order finite element Lagrangian hydrodynamics”, IJNMF, 82(10):689-706, 2016.
R. Anderson, V. Dobrev, Tz. Kolev, R. Rieben, V. Tomov, “High-order multi-material
ALE hydrodynamics”, Under Review, 2017.
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§ Formulated as pseudo-time advection.

§ We remap (solve for) momentum, volumes,
masses, internal energies.
— Conserved on semi-discrete level.
— Monotone and conservative transitions to these new variables.

§ Bounds are preserved for the primal variables:

§ Monotonicity is achieved by a sequential FCT method.
— Compute 𝜂! 	→ compute 𝜂𝜌 ! 	→ compute 𝜂𝜌𝑒 !
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Coupling to grey radiation diffusion
We utilize the 𝐻(𝑑𝑖𝑣) flux formulation

§ Avoiding DG jump terms, we choose  E ∈ 𝐿", 𝐹 ∈ 𝑅𝑇.

§ Implicit treatment for 𝑒! and 𝐸, leading to a non-linear system.

§ The hydro terms are explicit, and we lag opacities.

§ General EOS and temperature-dependent opacity model for each material.

HO thermodynamics HO MHD HO rad-diff.
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Fully-discrete discretization details
The problem is reduced to inverting a Jacobian system

§ General implicit time step:

§ Semi-discrete system:

§ We use Newton’s method to solve the resulting non-linear system:

§ The Jacobian matrix of the grey diffusion approximation has this form:

𝐿 matrices are local 𝐿!
𝑅 matrices are global 𝑅𝑇
𝐷 matrix is transition 𝐿! − 𝑅𝑇
𝐻 is non-linear operator on 𝐿!
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Approach #1: inverting the Jacobian matrix
Reduces to a global 𝐻(𝑑𝑖𝑣) linear system and local 𝐿" problems

§ Approach #1:
— Eliminate the material energy blocks (all k!") and the radiation energy k#.
— Solve the global 𝐻(𝑑𝑖𝑣) linear system to find 𝐹.

Non-symmetric for general space-dependent densities and opacities:

— Back-substitute to find k# and each k!" (by local 𝐿$ inversions).

§ We use algebraic hybridization for solving the resulting 𝐻(𝑑𝑖𝑣) systems.
V. Dobrev, Tz. Kolev, C. S. Lee, V. Tomov, P. Vassilevski, “Algebraic hybridization and static condensation
with application to scalable H(div) preconditioning”, Under Review, 2017.
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Approach #2: decomposition to overlapping blocks
The nonlinear solve resembles a block Gauss-Seidel type iteration

§ Approach #2 (originally proposed by P. Nowak):
— Perform local nonlinear solves in the 𝐿$ blocks (material and rad energies),

keeping the rad flux 𝐹 explicit.
— Using the calculated k#, solve the global 𝐻 𝑑𝑖𝑣  linear system.
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§ More appropriate than approach #1 in the multi-group discretization:
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Smooth radiation diffusion test / Marshak wave

§ Convergence on a manufactured smooth problem (𝑄$/𝑅𝑇$ spaces):
— Designed so that all terms have similar magnitude.

T. Brunner, “Development of a grey
nonlinear thermal radiation diffusion
Verification problem”, Transactions of
the American Nuclear Society,
95:876-878, 2006.

A. Irvine, I. Boyd, N. Gentile, “Reducing the spatial Discretization
error of thermal emission in implicit Monte Carlo simulations”,
Journal of Comp. and Theoretical Transport, 45:99-122, 2016.

§ Simulation of a Marshak-type wave:
— Opacities are evaluated at a common continuous

temperature (a high-order H1 function).
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The crooked pipe problem in 2Drz and 3D

§ Models propagation in a low opacity region (𝜎' = 0.02), surrounded
by a thick (𝜎' = 200) region.

Incoming radiation
temperature BC
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Adding back the material motion
We derive a conservative 2nd order IMEX time integrator

§ Material motion is altered by scattering of photons:

§ The new terms are explicit in both equations.
— Only the RHS of the nonlinear system is affected.

§ IMEX time integrator is used to mix the velocity and energy updates.
— Conservative 2-stage predictor-corrector method.
— Hydro terms are evolved by a modified RK2-type of step.
— Implicit terms are handled by backward Euler and Crank-Nicolson steps.
— Evolves the moments of the radiation energy (time-dependent mass matrix).
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Smooth rad-hydro test / Lowrie shock tube

§ Combination of the Taylor-Green vortex and Brunner’s smooth diffusion test:
— Analytic sources keep the manufactured solution constant in time while the mesh evolves.

§ Lowrie shock tube with temperature-dependent opacities, Mach 2 and 45:
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Extension to full ALE radiation hydrodynamics

§ We simply remap 𝐸 as a conservative variable (by the FCT advection).
— There is no need for synchronization with the hydro variables.
— The radiation flux 𝐹 is recomputed from the result of the remap.

§ Example: radiating Kelvin-Helmholtz instability:
— 5 materials (ideal gases), 𝑄#𝑄$ discretization, constant opacities.
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Single group ICF capsule implosion simulation

§ 4 materials, tabular EOS, constant material opacities.
— Originally proposed by R. Tipton.

§ Implosion is achieved by a 4-stage temperature drive.
— The four shock waves collide to achieve the final implosion.

§ Results in ≈40 times reduction in the DT-gas radius.
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Single group ICF capsule implosion simulation

§ Density, radiation temperature, material positions at times 2 / 2.4 / 2.5. 

§ Final shape of the gas for round / perturbed initial material interfaces.
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Summary

§ We utilize the 𝐻(𝑑𝑖𝑣) diffusion flux formulation to combine the
𝐻(, 𝐿$ and 𝐻 𝑑𝑖𝑣  high-order finite element spaces.

§ We propose two methods for solving the resulting nonlinear system:
— #1: Elimination of the energy unknowns, 𝐻(𝑑𝑖𝑣) linear solve and back-substitution.
— #2: block Gauss-Seidel iteration (appropriate for multigroup).

§ IMEX time discretization combines explicit hydro and implicit radiation diffusion.

§ High-order convergence in space and time for smooth problems.
— Achieved for thick and thin regimes, structured and unstructured meshes.

§ The remap of radiation energy does not complicate the remap phase.

§ The method is valid for 2Dxy, 2Drz and 3D unstructured curved meshes,
general opacity and material models.




