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Exascale supercomputer nodes: commodity 
commercial CPUs and GPUs

Exascale Computing Project

Develop exascale-ready 
applications and solutions 
that address currently 
intractable problems of 
strategic importance and 
national interest.
Create and deploy an 
expanded and vertically 
integrated software stack 
on DOE HPC pre-exascale 
and exascale systems.
Deliver US HPC vendor 
technology advances and 
deploy ECP products to 
DOE HPC pre-exascale and 
exascale systems.



▪ HPC nodes use commercial data center server architectures
— Invest in specific components such as low latency, high bandwidth 

interconnection network
— Influence architectural direction and accelerate timeline with investment 

programs: FastForward, PathForward, Advanced Memory Technologies
— Continue to pursue code refactor and rewrite

• From vector to distributed memory parallel to GPU offload … to AI engines?

▪ Can microelectronics fabrication and packaging innovations 
facilitate developing IP specialized to HPC?
— Is it possible to “Develop purpose-built, advanced architectures that 

define new, perhaps disruptive, hardware designs?”
— Project 38 https://www.nitrd.gov/documents/HPC-Performance-

Improvements-Project-38.pdf posed that problem
— Can it be cost-effective?

General purpose vs purpose built
US Department of Energy perspective

https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf
https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf


Landscape of architectures
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▪ Standard operating procedure for large volume uses
— Hash units
— Compression
— Encryption
— AI matmul in low precision 

▪ Can it work for HPC?
— Challenge is the huge range of science applications and techniques (MD 

→ radiation transport)
— Select widely applicable kernels

• Dense and sparse matmul, mat-vec operations
• FFT
• Programmable Gather/Scatter Engine, K/V lookup accelerator
• Floating point compression for ZFP (fixed rate)

— Chiplet mix and match might make it feasible

Customize with specialized hardware blocks

https://www.keysight.com/blogs/en/tech/sim-
des/2024/2/8/what-is-a-chiplet-and-why-should-
you-care



Chiplet-based plug and play



Outline: Augment server architectures with new 
IP blocks

▪ Memory-centric accelerators

▪ Scientific data compression accelerator

▪ CPU core interface options

▪ Tool chain



▪ Data movement and memory access identified as key challenges to achieving 
high performance

— Led to creation of US DOE Advanced Memory Technologies program

▪ Data movement is necessary – but only move necessary data

▪ Motivating applications include Sparse MatVec, found in HPCG benchmark

▪ Our approach: Near memory programmable gather/scatter engine “Data 
Rearrangement Engine (DRE)”

— Batch operation
— Indexed A[B[i]]
— Strided A[i+c]

▪ Key/Value Store query accelerator
— Motivating application is bioinformatics: K-mer database lookup to identify genetic 

fragments in metagenomic sample
— Gather values for batch of keys

Memory-centric accelerators
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▪ Memory bandwidth to processors increasing
— HBM channels with wide access amount benefit sequential, predictable 

load/store
— Large caches and more memory channels may help some applications
— BUT irregular access such as A[B[i]] impose latency penalty, are usually 

random access and can’t benefit as much from increased bandwidth

▪ Programmable gather/scatter hardware can help
— Operate on a batch of indices
— Gather a dense “view” into scratchpad
— Application code can vectorize the dense representation

Near memory gather/scatter can help applications 
with irregular access patterns



Data Rearrangement Engine (DRE)
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Execution trace in LiME FPGA-based emulator
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setup Specify the location and size of application data structures and other parameters for gather/scatter

/* ImageDiff: Specify image location, dimensions, and decimation factor */
void setup(void *ref, size_t ref_width, size_t ref_height, size_t elem_sz, size_t decimate);
/* PageRank, RandomAccess, SpMV: Specify reference table and index array */
void setup(void *ref, size_t elem_sz, const void *index, size_t len);

fill Copy from DRAM to the view buffer according to the access pattern established during setup

/* Specify view buffer and window offset */

void fill(void *buf, size_t buf_sz, size_t offset);

drain Copy from the view buffer into DRAM according to the access pattern established during setup

/* Specify view buffer and window offset */

void drain(void *buf, size_t buf_sz, size_t offset);

API



▪ Abstract view of memory modeled on FPGA
— Modeled on Hybrid Memory Cube, precursor of HBM
— Latency-centric characterization 

• asymmetric read/write latencies
• Model two different memory module latencies

— Simplified memory model
• Fixed latency or statistical distribution

— Memory sees stream of read or write to physical addresses

▪ Where does address translation occur from virtual to physical
— Scratchpad buffer on memory side holds physical addresses
— Option 1: Route addresses written to or read from scratchpad through MMU
— Option 2: Data is contiguous in physical memory

• We used CMA
• More general approach recently published: K. Zhao, et al.,"Contiguitas: The Pursuit of Physical Memory 

Contiguity in Data Centers" in IEEE Micro, vol. 44, no. 04, pp. 44-51, 2024.

▪ Improve fidelity of simulation for specific memory type, specific interface
— E.g. https://arxiv.org/pdf/2311.10378 “Near-Memory Parallel Indexing and Coalescing: Enabling Highly 

Efficient Indirect Access for SpMV”
— Model multiple independent channels as with HBM

▪ Detect gather/scatter pattern in instruction stream
— .g. A. Naithani, J. Roelandts, S. Ainsworth, T. Jones and L. Eeckhout, "Decoupled Vector Runahead for 

Prefetching Nested Memory-Access Chains" in IEEE Micro, vol. 44, no. 04, pp. 20-26, 2024.

Annoying details

https://arxiv.org/pdf/2311.10378


Key/Value Store Lookup Accelerator
Use gather/scatter engine as component (LSU)

Open Addressing

Hash Table

Fred

0

N

buckets

John

Sue

Mike

Hash Function

Mary

John

Bob

Kelly

Sue

1

Mike

PSL = 3

Probe 

Sequence 

Length (PSL)

value

value

value

value

value

value

value

PSL = 2

PSL = 1

2

3

4

5

6

7

8

9

10

…

Keys

Lookup accelerator



▪ Key/value table is filled with a scientific data set consisting of k-length 
genomic sequences (k-mers)

▪ 32 million entry table is allocated at first and filled to varying degrees

▪ Table entries consist of k-mers (64-bit keys) and sequence numbers 
(32-bit values)

Experiment Design

Parameters Values

Load factor 10%–90%

Hit ratio 10%, 50%, 90%

Key repeat frequency Uniform, Zipf

Memory Latency (ns) 85R/106W, 200R/400W

Query block size 1024 keys



▪ Accel
— Near memory hardware lookup accelerator
— Collision resolution: open addressing and Robin Hood hashing
— Hash function: adapted from SpookyHash
— Lookup uses linear probing

▪ Soft
— Software version of the hardware lookup algorithm
— Collision resolution: same as Accel
— Hash function: same as Accel
— Unlike the hardware, the software algorithm terminates probe sequence 

search as soon as a key has been found

▪ STL
— Hash table uses the Standard Template Library (STL) unordered map
— Collision resolution: separate chaining with linked lists
— Hash function: simple

Lookup Algorithms Evaluated



Lookup Performance
90% hit rate
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Speedup of Uniform and Zipfian Key Distributions
90% hit rate
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Speedup of 10% and 90% Hit Rate
Zipf skew factor 0.99
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▪ Interface matters
— Blocks of requests/responses to enable efficient pipelining

▪ Evaluation matters
— Under what conditions will the hardware IP block be worthwhile?
— FPGA-based emulator was a big investment in time

• Fast
• High visibility
• But …

— Combining with software SST simulator gave new insights and 
adjustments to the design

https://github.com/llnl/lime

https://github.com/LLNL/lime-apps

Key points

https://github.com/llnl/lime
https://github.com/LLNL/lime-apps


Compression for HPC: block compression of 1D, 
2D, 3D floating point arrays

ZHW hardware codec fully 
interoperable with zfp
• Encode with zhw, decode with zfp
• Encode with zfp, decode with zhw

ZHW supports fixed rate 1, 2, 3D arrays 
organized as blocks

ZHW implemented in SystemC, using 
templating features of C++ to 
parameterize floating point format 
(32b or 64b), block size, and 
compression factor



ZHW: hardware ZFP compression pipeline for floating 
point arrays
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ZFP: software floating point library for scientific floating point arrays. 2023 R&D 100 award winner.
M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw: A numerical codec for big data scientific computation,” Field Programmable 
Technology Conference (FPT ’22), December 2022.



ZHW Encoder as an IP block

▪ Encoder is synthesizable at 
293MHz

▪ IP block outperforms Vision 5 
RISC-V64 core by 3.43X

▪ Slower than x86 Mac laptop

▪ Provide encoder as custom 
instruction issued by RISC-V 
core in SoC

X. Liu, P. Gonzalez-Guerrero, I. B. Peng, R. Minnich, and M. 
B. Gokhale, “Accelerator integration in a tile-based soc: 
lessons learned with a hardware floating point compression 
engine,” SC-W ’23: Proceedings of the SC ’23 Workshops of 
The International Conference on High Performance 
Computing, Network, Storage, and Analysis, 2023.
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Encoder uses LBNL Mosaic SoC

▪ Tile architecture, heterogeneous 
and configurable

— HW: RSIC-V CPU, scratchpad, NoC

— SW: RISC-V tool chain with 
customized NoC message protocols

— Configuration: tools to generate 
different tile sizes and layouts

▪ Full implementation in Verilog 
RTL, testing framework with 
FPGA



ZHW encoder as an accelerator tile on NoC

▪ Connect ZHW RTL with standard 
NoC interface
— NoC buffer to convert clock 

frequency in different domains
— NoC decoder/encoder handles 

header metadata and transfers data 
to/from accelerator (header: input 
command, output destination and 
command)

— Width converter (NoC data width is 
32bits and ZHW is 64 bits)

▪ Control&Status Register 
programming
— Accelerator config (maxbits, minbits)
— Output NoC routing information 

(dest, op, size)

9/25/202425



Accelerator Software Programming – CPU 
centric method

▪ Utilizing existing MoSAIC APIs with 
custom RISC-V instructions

▪ mPut/mGet – address-based 
communication
— Originally designed to communicate 

with scratchpad tile
— Used to configure CSRs in ZHW

▪ qPut/qGet – message queue bypass 
CPU cache/memory hierarchy
— Use software for loop to send/retrieve 

data

9/25/202426



Scratchpad DMA optimization

▪ CPU-centric approach incurs significant CPU 
instruction overhead (80% for single block)

▪ Optimization: Utilize stand-alone scratchpad 
tile to transfer data
— Create new instruction: mGetDMA
— Revise scratchpad logic to send output to 

assigned memory tile/address
— Reduce number of CPU instructions
— Offload memory operations to scratchpad

9/25/202427



Evaluation

▪ Baseline performance scales linearly as 
number of floating point blocks increases
— qPut/qGet instruction count scales linearly

▪ SP DMA has better speedup scalability
— Average cycles per block decrease for higher 

number of blocks

9/25/202428

better



Tool chain



ZHW uses C++ abstraction features

template<typename FP, int DIM, typename B>
SC_MODULE(encode)

template<typename FP, int DIM, typename B>
SC_MODULE(encode_stream) {
  static constexpr int tbc_w = log2rz(bp_w(DIM)*FP::bits+FP::ebits+1)+1; 
  static constexpr int buf_w = max(bp_w(DIM),B::dbits)+B::dbits; 
  enum state_e {START, ZERO, EXPO, PLANES, PAD};
  struct state_t { // ...
  }; 
  bool pack_bits(state_t &ts, sc_uint<tbc_w> bc, sc_bv<buf_w> bp) { // ...
  }
  bool out_bits(state_t &ts, bool done) { // ...
  }
};

Constant expressions, functions, enums, and internal 
structs

Heavily templated design



SCCL Overview
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Front end analyzes
• Templated modules
• Module inheritance
• Functions
• User-defined classes

Hcode phase 
translates SystemC 
and C++ descriptions 
into a simplified 
SystemC-oriented AST

Hcode to bitstream

Backend phase is 
independent of Clang: RTL 
generators only need HCode

Wu, Z., Gokhale, M.B., Lloyd, S., & Patel, H.D. (2023). SCCL: An open-source SystemC to RTL translator. 2023 IEEE 31st Annual International 
Symposium on Field-Programmable Custom Computing Machines (FCCM), 23-33.



▪ SCCL-generate System Verilog compiled through FPGA tool 
chain
— Hardware worked correctly on FPGA board

▪ SCCL-generate System Verilog did not initially pass through 
open source ASIC tool chain OpenRoad automatically
— Unsupported features
— Bugs

▪ Using SiliconCompiler OpenRoad tool chain, synthesis, 
Place&Route completed with7nm and 45nm technology nodes

From System Verilog to FPGA/ASIC



ASIC synthesis results for decoder and encoder 

▪ Decoder was compiled using SiliconCompiler 
and OpenRoad 
(https://www.siliconcompiler.com/):
o Used Asap7 7 nm technology
o f_max was 27.963 MHz
o Area was 49,053.8 um2

▪ Encoder was compiled using 
SiliconCompiler:
o Used Asap7 7 nm technology
o Best f_max was 292.763 MHz
o Area was 23,318.7 um2

▪ Decoder was compiled through CMC:
o Used OpenPDK45 45 nm technology
o Max frequency was 31.2 MHz
o Area was 330,625 um2

Decoder ASIC generated by Siliconcompiler

U Waterloo collaboration



People!

Scott Lloyd:
DRE and Lookup
Accelerator, ZHW

Xueyang Liu:
ZHW on MoSaic

Patricia Gonzalez-Guerrero:
MoSaic

SystemC to SystemVerilog:
Zhuanhao Wu
Hiren Patel
Maya Gokhale

Michael Barrow: ZHW decoder
Michael Gionet: ZHW flow in SiliconCompiler, Boom core
Peter Lindstrom: ZFP library
Joshua Landgraf: Lookup accelerator in SST



▪ Specialized HPC-centric hardware modules can improve performance
— Programmable DMA engine for irregular memory access can potentially 

improve performance
• Coordination with cache hierarchy and MMU required

— Zhw shows speedup over RISC-V core, but further improvements will require 
algorithm/hardware co-design

▪ Large variety of scientific data, problems, approaches
— Are there kernels/operations used widely enough to justify expense in labor, 

fab, maintenance?

▪ Tool chains continue to challenge
— Hardware tool access should be as ubiquitous as software

• Open source
• Proprietary but free
• Interoperable

▪ Verification/Validation
— Multiple levels
— SystemC valuable for hardware/software interface validation
— RTL simulation uncovers lower layers of issues

Discussion
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