
LLNL-PRES-869105

Purpose-built IP for High Performance
Computing?

Maya Gokhale
Computing Directorate

September 9, 2024

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No.
DE-AC52-07NA27344.

Exascale supercomputer nodes: commodity
commercial CPUs and GPUs

Exascale Computing Project

Develop exascale-ready
applications and solutions
that address currently
intractable problems of
strategic importance and
national interest.
Create and deploy an
expanded and vertically
integrated software stack
on DOE HPC pre-exascale
and exascale systems.
Deliver US HPC vendor
technology advances and
deploy ECP products to
DOE HPC pre-exascale and
exascale systems.

▪ HPC nodes use commercial data center server architectures
— Invest in specific components such as low latency, high bandwidth

interconnection network
— Influence architectural direction and accelerate timeline with investment

programs: FastForward, PathForward, Advanced Memory Technologies
— Continue to pursue code refactor and rewrite

• From vector to distributed memory parallel to GPU offload … to AI engines?

▪ Can microelectronics fabrication and packaging innovations
facilitate developing IP specialized to HPC?
— Is it possible to “Develop purpose-built, advanced architectures that

define new, perhaps disruptive, hardware designs?”
— Project 38 https://www.nitrd.gov/documents/HPC-Performance-

Improvements-Project-38.pdf posed that problem
— Can it be cost-effective?

General purpose vs purpose built
US Department of Energy perspective

https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf
https://www.nitrd.gov/documents/HPC-Performance-Improvements-Project-38.pdf

Landscape of architectures

Commodity server Domain Specific Fixed Function

TPU: source nextplatform.com

Data center, cloud, HPC AI/ML

Core
Core

Core
CoreCPU

Core Core
Core

Core
CoreCPU

Core

HBM

GP
GPUGP

GPUGP
GPU

network

Security

https://www.cast-inc.com/security/encryption-
primitives/sha-256

▪ Standard operating procedure for large volume uses
— Hash units
— Compression
— Encryption
— AI matmul in low precision

▪ Can it work for HPC?
— Challenge is the huge range of science applications and techniques (MD

→ radiation transport)
— Select widely applicable kernels

• Dense and sparse matmul, mat-vec operations
• FFT
• Programmable Gather/Scatter Engine, K/V lookup accelerator
• Floating point compression for ZFP (fixed rate)

— Chiplet mix and match might make it feasible

Customize with specialized hardware blocks

https://www.keysight.com/blogs/en/tech/sim-
des/2024/2/8/what-is-a-chiplet-and-why-should-
you-care

Chiplet-based plug and play

Outline: Augment server architectures with new
IP blocks

▪ Memory-centric accelerators

▪ Scientific data compression accelerator

▪ CPU core interface options

▪ Tool chain

▪ Data movement and memory access identified as key challenges to achieving
high performance

— Led to creation of US DOE Advanced Memory Technologies program

▪ Data movement is necessary – but only move necessary data

▪ Motivating applications include Sparse MatVec, found in HPCG benchmark

▪ Our approach: Near memory programmable gather/scatter engine “Data
Rearrangement Engine (DRE)”

— Batch operation
— Indexed A[B[i]]
— Strided A[i+c]

▪ Key/Value Store query accelerator
— Motivating application is bioinformatics: K-mer database lookup to identify genetic

fragments in metagenomic sample
— Gather values for batch of keys

Memory-centric accelerators

Maya Gokhale, Scott Lloyd, and Chris Hajas. 2015.
Near memory data structure rearrangement. In
Proceedings of the 2015 International Symposium on
Memory Systems (MEMSYS '15). Association for

Computing Machinery, New York, NY, USA, 283–290.
DOI:https://doi.org/10.1145/2818950.2818986

A. K. Jain, S. Lloyd and M. Gokhale, "Performance
Assessment of Emerging Memories Through FPGA

Emulation," in IEEE Micro, vol. 39, no. 1, pp. 8-16, Jan.-
Feb. 2019, doi: 10.1109/MM.2018.2877291.

G. Scott Lloyd and Maya Gokhale. 2017. Near memory
key/value lookup acceleration. In Proceedings of the

2017 International Symposium on Memory Systems
(MEMSYS ‘17). Association for Computing Machinery,
New York, NY, USA, 26-33.
https://doi.org/10.1145/3132402.3132434

S. Lloyd and M. Gokhale, “In-memory data
rearrangement for irregular, data intensive
computing,” IEEE Computer, pp. 18–25, 2015.

Near-memory data reorganization engine
Patent number 9965187

S. Lloyd and M. Gokhale, “Near memory key/value lookup
acceleration,” International Symposium on Memory Systems
MEMSYS17, 2017.

J. Landgraf, S. Lloyd, and M. Gokhale, “Combining emulation and
simulation to evaluate a near memory key/value lookup
accelerator,” arxiv.org/abs/2105.06594, 2021.

https://doi.org/10.1145/3132402.3132434

▪ Memory bandwidth to processors increasing
— HBM channels with wide access amount benefit sequential, predictable

load/store
— Large caches and more memory channels may help some applications
— BUT irregular access such as A[B[i]] impose latency penalty, are usually

random access and can’t benefit as much from increased bandwidth

▪ Programmable gather/scatter hardware can help
— Operate on a batch of indices
— Gather a dense “view” into scratchpad
— Application code can vectorize the dense representation

Near memory gather/scatter can help applications
with irregular access patterns

Data Rearrangement Engine (DRE)

Page Rank
Edge
List
Vertex
i

Page Rank View
Vertex i

float
float

int

0

M

edges

0

M

edges

0

N

vertices

DRE
assembles view based on index
array

Index array

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

W
a

tt
s

Seconds

Image Difference Power
DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

CPU Only CPU+DRE HMC CPU+DRE Narrow

Execution trace in LiME FPGA-based emulator

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

W
a

tt
s

Seconds

Image Difference Power
DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

CPU Only CPU+DRE HMC CPU+DRE Narrow

setup Specify the location and size of application data structures and other parameters for gather/scatter

/* ImageDiff: Specify image location, dimensions, and decimation factor */
void setup(void *ref, size_t ref_width, size_t ref_height, size_t elem_sz, size_t decimate);
/* PageRank, RandomAccess, SpMV: Specify reference table and index array */
void setup(void *ref, size_t elem_sz, const void *index, size_t len);

fill Copy from DRAM to the view buffer according to the access pattern established during setup

/* Specify view buffer and window offset */

void fill(void *buf, size_t buf_sz, size_t offset);

drain Copy from the view buffer into DRAM according to the access pattern established during setup

/* Specify view buffer and window offset */

void drain(void *buf, size_t buf_sz, size_t offset);

API

▪ Abstract view of memory modeled on FPGA
— Modeled on Hybrid Memory Cube, precursor of HBM
— Latency-centric characterization

• asymmetric read/write latencies
• Model two different memory module latencies

— Simplified memory model
• Fixed latency or statistical distribution

— Memory sees stream of read or write to physical addresses

▪ Where does address translation occur from virtual to physical
— Scratchpad buffer on memory side holds physical addresses
— Option 1: Route addresses written to or read from scratchpad through MMU
— Option 2: Data is contiguous in physical memory

• We used CMA
• More general approach recently published: K. Zhao, et al.,"Contiguitas: The Pursuit of Physical Memory

Contiguity in Data Centers" in IEEE Micro, vol. 44, no. 04, pp. 44-51, 2024.

▪ Improve fidelity of simulation for specific memory type, specific interface
— E.g. https://arxiv.org/pdf/2311.10378 “Near-Memory Parallel Indexing and Coalescing: Enabling Highly

Efficient Indirect Access for SpMV”
— Model multiple independent channels as with HBM

▪ Detect gather/scatter pattern in instruction stream
— .g. A. Naithani, J. Roelandts, S. Ainsworth, T. Jones and L. Eeckhout, "Decoupled Vector Runahead for

Prefetching Nested Memory-Access Chains" in IEEE Micro, vol. 44, no. 04, pp. 20-26, 2024.

Annoying details

https://arxiv.org/pdf/2311.10378

Key/Value Store Lookup Accelerator
Use gather/scatter engine as component (LSU)

Open Addressing

Hash Table

Fred

0

N

buckets

John

Sue

Mike

Hash Function

Mary

John

Bob

Kelly

Sue

1

Mike

PSL = 3

Probe

Sequence

Length (PSL)

value

value

value

value

value

value

value

PSL = 2

PSL = 1

2

3

4

5

6

7

8

9

10

…

Keys

Lookup accelerator

▪ Key/value table is filled with a scientific data set consisting of k-length
genomic sequences (k-mers)

▪ 32 million entry table is allocated at first and filled to varying degrees

▪ Table entries consist of k-mers (64-bit keys) and sequence numbers
(32-bit values)

Experiment Design

Parameters Values

Load factor 10%–90%

Hit ratio 10%, 50%, 90%

Key repeat frequency Uniform, Zipf

Memory Latency (ns) 85R/106W, 200R/400W

Query block size 1024 keys

▪ Accel
— Near memory hardware lookup accelerator
— Collision resolution: open addressing and Robin Hood hashing
— Hash function: adapted from SpookyHash
— Lookup uses linear probing

▪ Soft
— Software version of the hardware lookup algorithm
— Collision resolution: same as Accel
— Hash function: same as Accel
— Unlike the hardware, the software algorithm terminates probe sequence

search as soon as a key has been found

▪ STL
— Hash table uses the Standard Template Library (STL) unordered map
— Collision resolution: separate chaining with linked lists
— Hash function: simple

Lookup Algorithms Evaluated

Lookup Performance
90% hit rate

64.32

9.13
5.02

2.60
0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lo
o

ku
p

s/
s

M
il

lio
n

s

Load Factor

ARM_32 - R85,W106 - Uniform - Hit 90%

Accel

Soft

STL

64.46

9.13

30.42

8.24
0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Lo

o
ku

p
s/

s

M
il

lio
n

s
Load Factor

ARM_32 - Accel - Zipf=.99 - Hit 90%

R85,W106

R200,W400

Accelerator vs. Software Low vs. Moderate Latency

▪ Accel. performance does not vary with hit rate or key repeat frequency (scans entire PSL)

▪ Accel. performance decreases with increasing load (PSL) and memory latency

▪ Accel. performance comes from parallelism and more outstanding near memory requests

▪ Software is slower because of serialization and fewer outstanding far memory requests

better

Speedup of Uniform and Zipfian Key Distributions
90% hit rate

12.80

3.51

10.19

2.90

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sp
e

ed
u

p

Load Factor

ARM_32 - Accel/Soft - R85,W106 - Hit 90%

Uniform Zipf

▪ Zipfian has less speedup because software has more query hits in CPU cache (lower)

▪ At higher load factors, the software is disadvantaged with more cache misses (convergence)

9.47

5.54
6.85

4.33

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sp

e
ed

u
p

Load Factor

ARM_32 - Accel/Soft - R200,W400 - Hit 90%

Uniform Zipf

Low Latency (DRAM) Moderate Latency (SCM)

better

Speedup of 10% and 90% Hit Rate
Zipf skew factor 0.99

6.62

10.19

2.90

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sp
e

ed
u

p

Load Factor

ARM_32 - Accel/Soft - R85,W106 - Zipf=.99

hit 10% hit 90%

▪ Hit rate does not affect speedup at low load factors since probe sequence is short

▪ Software is challenged on longer searches (low hit, high load) with more sequential memory accesses

▪ Higher latency pushes the trend even more

10.91

6.85

4.33

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sp

e
ed

u
p

Load Factor

ARM_32 - Accel/Soft - R200,W400 - Zipf=.99

hit 10% hit 90%

Low Latency (DRAM) Moderate Latency (SCM)

better

▪ Interface matters
— Blocks of requests/responses to enable efficient pipelining

▪ Evaluation matters
— Under what conditions will the hardware IP block be worthwhile?
— FPGA-based emulator was a big investment in time

• Fast
• High visibility
• But …

— Combining with software SST simulator gave new insights and
adjustments to the design

https://github.com/llnl/lime

https://github.com/LLNL/lime-apps

Key points

https://github.com/llnl/lime
https://github.com/LLNL/lime-apps

Compression for HPC: block compression of 1D,
2D, 3D floating point arrays

ZHW hardware codec fully
interoperable with zfp
• Encode with zhw, decode with zfp
• Encode with zfp, decode with zhw

ZHW supports fixed rate 1, 2, 3D arrays
organized as blocks

ZHW implemented in SystemC, using
templating features of C++ to
parameterize floating point format
(32b or 64b), block size, and
compression factor

ZHW: hardware ZFP compression pipeline for floating
point arrays

encode

find_emax fwd_cast encode_block encode_ints

sspl it

encode_stream

Reduced
stream of bits

for block

Block (4d) of
floating-point

numbers enter

in a stream

Configuration
from CPU

Find max
exponent

Stream Split

Normalize block,
convert to

integer

Transform,
reorder block,

convert to

negabinary

Encode bit
planes

Serialize bit
planes

emax

minbits
maxbits

maxprec

minexp

block block

emax

plane

4d+2
1

Est imated cycles
d = block dimension

p = bit planes

6d+1 2 p+3

FP block_
buffer

FIFO

14d

block

Block
buffer

FP

decode

decode_stream decode_ints decode_block inv_cast

ZFP encoded
stream of bits

for block

Block (4d) of
floating-point

numbers exit

in a stream

Configuration
from CPU

Deserialize
bit planes

Decode bit
planes

Convert f rom
negabinary,

reorder block,

transform

Convert f rom
integer to FP

emax

minbits
maxbits

maxprec

minexp

blockblock

emax

block

p+3

Est imated cycles
d = block dimension

p = bit planes

6d+1 4d

plane block_
buffer

FIFO

12

Block
buffer

FP

ZFP: software floating point library for scientific floating point arrays. 2023 R&D 100 award winner.
M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw: A numerical codec for big data scientific computation,” Field Programmable
Technology Conference (FPT ’22), December 2022.

ZHW Encoder as an IP block

▪ Encoder is synthesizable at
293MHz

▪ IP block outperforms Vision 5
RISC-V64 core by 3.43X

▪ Slower than x86 Mac laptop

▪ Provide encoder as custom
instruction issued by RISC-V
core in SoC

X. Liu, P. Gonzalez-Guerrero, I. B. Peng, R. Minnich, and M.
B. Gokhale, “Accelerator integration in a tile-based soc:
lessons learned with a hardware floating point compression
engine,” SC-W ’23: Proceedings of the SC ’23 Workshops of
The International Conference on High Performance
Computing, Network, Storage, and Analysis, 2023.

4.
3

7E
-0

7

2.
3

2E
-0

6

6.
7

6E
-0

7

M AC RI SC - V 6 4 Z HW

ENCODER ELAPSED TIME IN
SECONDS FOR ONE BLOCK

Encoder uses LBNL Mosaic SoC

▪ Tile architecture, heterogeneous
and configurable

— HW: RSIC-V CPU, scratchpad, NoC

— SW: RISC-V tool chain with
customized NoC message protocols

— Configuration: tools to generate
different tile sizes and layouts

▪ Full implementation in Verilog
RTL, testing framework with
FPGA

ZHW encoder as an accelerator tile on NoC

▪ Connect ZHW RTL with standard
NoC interface
— NoC buffer to convert clock

frequency in different domains
— NoC decoder/encoder handles

header metadata and transfers data
to/from accelerator (header: input
command, output destination and
command)

— Width converter (NoC data width is
32bits and ZHW is 64 bits)

▪ Control&Status Register
programming
— Accelerator config (maxbits, minbits)
— Output NoC routing information

(dest, op, size)

9/25/202425

Accelerator Software Programming – CPU
centric method

▪ Utilizing existing MoSAIC APIs with
custom RISC-V instructions

▪ mPut/mGet – address-based
communication
— Originally designed to communicate

with scratchpad tile
— Used to configure CSRs in ZHW

▪ qPut/qGet – message queue bypass
CPU cache/memory hierarchy
— Use software for loop to send/retrieve

data

9/25/202426

Scratchpad DMA optimization

▪ CPU-centric approach incurs significant CPU
instruction overhead (80% for single block)

▪ Optimization: Utilize stand-alone scratchpad
tile to transfer data
— Create new instruction: mGetDMA
— Revise scratchpad logic to send output to

assigned memory tile/address
— Reduce number of CPU instructions
— Offload memory operations to scratchpad

9/25/202427

Evaluation

▪ Baseline performance scales linearly as
number of floating point blocks increases
— qPut/qGet instruction count scales linearly

▪ SP DMA has better speedup scalability
— Average cycles per block decrease for higher

number of blocks

9/25/202428

better

Tool chain

ZHW uses C++ abstraction features

template<typename FP, int DIM, typename B>
SC_MODULE(encode)

template<typename FP, int DIM, typename B>
SC_MODULE(encode_stream) {
 static constexpr int tbc_w = log2rz(bp_w(DIM)*FP::bits+FP::ebits+1)+1;
 static constexpr int buf_w = max(bp_w(DIM),B::dbits)+B::dbits;
 enum state_e {START, ZERO, EXPO, PLANES, PAD};
 struct state_t { // ...
 };
 bool pack_bits(state_t &ts, sc_uint<tbc_w> bc, sc_bv<buf_w> bp) { // ...
 }
 bool out_bits(state_t &ts, bool done) { // ...
 }
};

Constant expressions, functions, enums, and internal
structs

Heavily templated design

SCCL Overview

Clang

Matchers

SystemC-
specific

structural
Info.

SystemC
prog.cpp

Module
Analysis

Thread
Analysis

Synthesis
Transforms

Hcode
AST

RTL
Generator

SystemVerilog
RTL

FIRRTL

MLIR

Front end Hcode Lowering

Front end analyzes
• Templated modules
• Module inheritance
• Functions
• User-defined classes

Hcode phase
translates SystemC
and C++ descriptions
into a simplified
SystemC-oriented AST

Hcode to bitstream

Backend phase is
independent of Clang: RTL
generators only need HCode

Wu, Z., Gokhale, M.B., Lloyd, S., & Patel, H.D. (2023). SCCL: An open-source SystemC to RTL translator. 2023 IEEE 31st Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), 23-33.

▪ SCCL-generate System Verilog compiled through FPGA tool
chain
— Hardware worked correctly on FPGA board

▪ SCCL-generate System Verilog did not initially pass through
open source ASIC tool chain OpenRoad automatically
— Unsupported features
— Bugs

▪ Using SiliconCompiler OpenRoad tool chain, synthesis,
Place&Route completed with7nm and 45nm technology nodes

From System Verilog to FPGA/ASIC

ASIC synthesis results for decoder and encoder

▪ Decoder was compiled using SiliconCompiler
and OpenRoad
(https://www.siliconcompiler.com/):
o Used Asap7 7 nm technology
o f_max was 27.963 MHz
o Area was 49,053.8 um2

▪ Encoder was compiled using
SiliconCompiler:
o Used Asap7 7 nm technology
o Best f_max was 292.763 MHz
o Area was 23,318.7 um2

▪ Decoder was compiled through CMC:
o Used OpenPDK45 45 nm technology
o Max frequency was 31.2 MHz
o Area was 330,625 um2

Decoder ASIC generated by Siliconcompiler

U Waterloo collaboration

People!

Scott Lloyd:
DRE and Lookup
Accelerator, ZHW

Xueyang Liu:
ZHW on MoSaic

Patricia Gonzalez-Guerrero:
MoSaic

SystemC to SystemVerilog:
Zhuanhao Wu
Hiren Patel
Maya Gokhale

Michael Barrow: ZHW decoder
Michael Gionet: ZHW flow in SiliconCompiler, Boom core
Peter Lindstrom: ZFP library
Joshua Landgraf: Lookup accelerator in SST

▪ Specialized HPC-centric hardware modules can improve performance
— Programmable DMA engine for irregular memory access can potentially

improve performance
• Coordination with cache hierarchy and MMU required

— Zhw shows speedup over RISC-V core, but further improvements will require
algorithm/hardware co-design

▪ Large variety of scientific data, problems, approaches
— Are there kernels/operations used widely enough to justify expense in labor,

fab, maintenance?

▪ Tool chains continue to challenge
— Hardware tool access should be as ubiquitous as software

• Open source
• Proprietary but free
• Interoperable

▪ Verification/Validation
— Multiple levels
— SystemC valuable for hardware/software interface validation
— RTL simulation uncovers lower layers of issues

Discussion

This work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under contract

DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

	Slide 1: Purpose-built IP for High Performance Computing?
	Slide 2: Exascale supercomputer nodes: commodity commercial CPUs and GPUs
	Slide 3: General purpose vs purpose built US Department of Energy perspective
	Slide 4: Landscape of architectures
	Slide 5: Customize with specialized hardware blocks
	Slide 6: Chiplet-based plug and play
	Slide 7: Outline: Augment server architectures with new IP blocks
	Slide 8: Memory-centric accelerators
	Slide 9: Near memory gather/scatter can help applications with irregular access patterns
	Slide 10: Data Rearrangement Engine (DRE)
	Slide 11: Execution trace in LiME FPGA-based emulator
	Slide 12: API
	Slide 13: Annoying details
	Slide 14: Key/Value Store Lookup Accelerator Use gather/scatter engine as component (LSU)
	Slide 15: Experiment Design
	Slide 16: Lookup Algorithms Evaluated
	Slide 17: Lookup Performance 90% hit rate
	Slide 18: Speedup of Uniform and Zipfian Key Distributions 90% hit rate
	Slide 19: Speedup of 10% and 90% Hit Rate Zipf skew factor 0.99
	Slide 20: Key points
	Slide 21: Compression for HPC: block compression of 1D, 2D, 3D floating point arrays
	Slide 22: ZHW: hardware ZFP compression pipeline for floating point arrays
	Slide 23: ZHW Encoder as an IP block
	Slide 24: Encoder uses LBNL Mosaic SoC
	Slide 25: ZHW encoder as an accelerator tile on NoC
	Slide 26: Accelerator Software Programming – CPU centric method
	Slide 27: Scratchpad DMA optimization
	Slide 28: Evaluation
	Slide 29: Tool chain
	Slide 30: ZHW uses C++ abstraction features
	Slide 32: SCCL Overview
	Slide 33: From System Verilog to FPGA/ASIC
	Slide 34: ASIC synthesis results for decoder and encoder
	Slide 35: People!
	Slide 36: Discussion
	Slide 37

