
1LLNL-PRES-2003100

Prepared by LLNL under Contract DE-AC52-07NA27344.

1Center for Applied Scientific Computing, LLNL
2Southern Methodist University

1Cody Balos, 1David Gardner, 2Daniel Reynolds, 1Steven Roberts, 1Carol Woodward

3/3/25
SIAM CSE25, MS9

GPU Accelerated Linear Solvers for
Implicit Time Integrators in the
SUNDIALS Library

2LLNL-PRES-2003100

SUNDIALS Overview

CVODE solves ODEs, ሶ𝑦 = f(t, y), with LMMs, ARKODE solves
ODEs with one-step methods and supports IMEX + multirate,
IDA solves DAEs, 𝐹(𝑡, 𝑦, ሶ𝑦) = 0, KINSOL solves nonlinear
algebraic systems, S variants add sensitivity analysis.

Languages:

• Optional interfaces to 15 third-party libraries (for
solvers and other stuff)!

• Supports NVIDIA, AMD, and Intel GPUs directly
and and through RAJA/Kokkos

• Runs on Windows, MacOS, Linux, x86, ARM,
Power etc., at a wide range of scales

• Visit computing.llnl.gov/projects/sundials for info

Continuous Integration with:

Documentation:

Atmospheric Dynamics
Cosmology Combustion

https://computing.llnl.gov/projects/sundials

3LLNL-PRES-2003100

Implicit integrators require efficient linear solvers
• Implicit time integrators are well suited

for stiff ODEs, y′ 𝑡 = 𝑓 𝑡, 𝑦(𝑡)

• Require us to solve an implicit system
iteratively within every time step,
𝐹 𝑦𝑛 = 𝑦𝑛 − 𝛾𝑓 𝑡𝑛, 𝑦𝑛 − 𝑎𝑛 = 0

• With modified Newton’s method, we
must solve a linearized system within
every iteration within every time step,

𝐼 − 𝛾𝐽 𝛿𝑚+1 = −𝐹(𝑦𝑛 𝑚)

Execution profile for In Medium Similarity
Renormalization Group simulation using
implicit method in SUNDIALS CVODE.

𝐽 =
𝜕𝑓

𝜕𝑦
, 𝛿𝑚+1 = 𝑦𝑛 𝑚+1 −𝑦𝑛 𝑚

4LLNL-PRES-2003100

• Based on the method, estimate the time step error
Δ𝑛 ≡ 𝑦𝑛 𝑚 − 𝑦𝑛(0)

• Accept step if ||Δ𝑛||𝑊𝑅𝑀𝑆 ≤ 𝜖; Reject it otherwise

• Choose next step, so that ||𝑦𝑛 − 𝑦𝑛 0 ||𝑊𝑅𝑀𝑆 should be small

• ARKODE supplies advanced “error controllers” to adapt
these step sizes while also meeting other objectives:
• minimize failed steps
• maximize step sizes
• maintain smooth transitions in the step sizes

SUNDIALS integrators have time step adaptivity

Adaptivity can give much more
efficient (and accurate) results

5LLNL-PRES-2003100

• Overall goal: keep the nonlinear iteration error from interfering with
the local error control

• Stopping criteria for the nonlinear solver: 𝑅||𝛿𝑚||𝑊𝑅𝑀𝑆 ≤ 0.1𝜖,

• The stopping criteria for iterative linear solvers:

 || 𝐼 − 𝛾𝐽 𝛿𝑚 + 𝐹 𝑦𝑛 𝑚 ||𝑊𝑅𝑀𝑆 < 0.05 (0.1𝜖)

• When iterative linear solver libraries only allow 2-norm*, we must
”translate” our stopping criteria into a 2-norm tolerance
• It would be great if we could provide solvers our norm

Integrator tolerances propagate down to solvers to
keep the error that propagates up small

6LLNL-PRES-2003100

• Integrator logic runs on the CPU, but state data is on the GPU throughout –
so solvers receive data on the GPU and should return it to us on the GPU

• We have a memory “helper” API to access application memory pools –
solver libraries could benefit from exploiting this too

SUNDIALS keeps state data on the GPU
Application /

discretization
framework:

RHS Function, f
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver
Interfaces

zm

F(zm),
JF(zm)xm, rm

7LLNL-PRES-2003100

• SUNDIALS has 5 built-in iterative matrix-free linear solvers: CG,
BiCGSTAB, GMRES, FGMRES, PTFQMR

• All leverage scaling and preconditioning to balance error between
solution components and accelerate convergence

(𝑆1𝑃1
−1𝐴𝑃2

−1𝑆2
−1)𝑆2𝑃2𝑥 = 𝑆1 𝑃1

−1𝑏

• 𝑆1 and 𝑆2 are diagonal matrices of scaling factors – within our
implicit integrators they are equivalent to diag(ATOL)

• Since these iterative methods only require vector operations, they
are GPU-enabled the moment you use a GPU N _Vector

SUNDIALS iterative “matrix-free” linear solvers

8LLNL-PRES-2003100

• Our first interface to an iterative solver library
• Can access most (maybe all) of the iterative

solvers in Ginkgo: CG, BiCGSTAB, GMRES, …
• SUNMatrix implementation uses Ginkgo for matrix

storage and operations (sparse or dense)
• Can use any of Ginkgo’s executors (CPU or GPU)
• Presents as a C++ interface to our users (atypical)

• Issues we encountered resolved by Ginkgo
team:
• Needed matrix operation: 𝑐𝐴 + 𝐼

• Lack of scaling capability hurt performance
• Couldn’t change stopping criteria efficiently

We have an interface to Ginkgo for matrix-based
iterative solvers

Comparison of Ginkgo batched GMRES in
Pele reacting flow problem without scaling
(left), with scaling only during matrix setup,
and with scaling during every solve. Y axis is
the number of linear iterations.

9LLNL-PRES-2003100

• We have a unified interface to
MAGMA for GPU-enabled dense
direct methods for batched and
non-batched linear systems

• MAGMA based SUNMatrix and
SUNLinearSolver implementations

• Since we lag our Jacobian, we can
reuse factorizations across solves

• Call getrf only when Jac. is updated

• Call getrs every nonlinear iteration

Interface to MAGMA

10LLNL-PRES-2003100

• Pele combustion codes simulate reacting flows,
𝜕𝑢

𝜕𝑡
= 𝐹 + 𝑅, where R is reaction term

• Operator splitting approach yields independent
ODEs for R in each mesh cell

• We batch the ODEs together for integration
• Increases work for GPU
• The Jacobian becomes block diagonal
• Each block has the same sparsity pattern

• Batched linear solvers provide as much as 10x
speedup over non-batched in Pele

Batched systems arise in reacting flow simulations

11LLNL-PRES-2003100

• Lucas Esclapez conducted PeleLMeX
simulation strong scaling test on up
to 1024 nodes of the Frontier
supercomputer

• Compared unpreconditioned, non-
batched SUNDIALS GMRES to
batched LU in MAGMA

• advanceChemistry() routine is the
ODE integration

Reacting flow simulation on Frontier with MAGMA

https://doi.org/10.1177/1094342024128006

https://doi.org/10.1177/10943420241280060

12LLNL-PRES-2003100

• With our consultation, Ginkgo team
developed batched iterative solvers
(Richardson, BiCGSTAB, GMRES)

• Data always on the GPU, with 3 total kernel
launches (scale, solve, unscale)

• Monolithic solve kernel allows one matrix
block per GPU threadblock and allows shared
memory to be exploited

• https://doi.org/10.1109/ScalA54577.2021.00
010 for details

We worked with Ginkgo on batched iterative solvers

Solver performance compared to dense direct
batched method from cuSOLVER for different
matrices extracted from Pele. Credit Aggarwal et al.

https://doi.org/10.1109/ScalA54577.2021.00010
https://doi.org/10.1109/ScalA54577.2021.00010

13LLNL-PRES-2003100

• Implicit time integrators need efficient linear solvers

• The linear solves are are repeated within a nonlinear iteration
within every time step – information can be reused across solves

• Error based time adaptivity affect the solver stopping criteria –
would be great if linear solver libraries allowed different norms

• To achieve good GPU performance – solvers must receive the state
data on the GPU and give the solution back to us there

• Batched linear solvers allows us to batch ODEs to saturate GPU

Summary and Conclusions

14LLNL-PRES-2003100

Questions?

computing.llnl.gov/sundials
This material is based upon work supported by the U.S. Department

of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program through the FASTMath Institute.

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344. LLNL-PRES-2003100.

	Slide 1: GPU Accelerated Linear Solvers for Implicit Time Integrators in the SUNDIALS Library
	Slide 2: SUNDIALS Overview
	Slide 3: Implicit integrators require efficient linear solvers
	Slide 4: SUNDIALS integrators have time step adaptivity
	Slide 5: Integrator tolerances propagate down to solvers to keep the error that propagates up small
	Slide 6: SUNDIALS keeps state data on the GPU
	Slide 7: SUNDIALS iterative “matrix-free” linear solvers
	Slide 8: We have an interface to Ginkgo for matrix-based iterative solvers
	Slide 9: Interface to MAGMA
	Slide 10: Batched systems arise in reacting flow simulations
	Slide 11: Reacting flow simulation on Frontier with MAGMA
	Slide 12: We worked with Ginkgo on batched iterative solvers
	Slide 13: Summary and Conclusions
	Slide 14

