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SUNDIALS Overview

CVODE solves ODEs, ሶ𝑦 = f(t, y), with LMMs, ARKODE solves 
ODEs with one-step methods and supports IMEX + multirate, 
IDA solves DAEs, 𝐹(𝑡, 𝑦, ሶ𝑦) = 0,   KINSOL solves nonlinear 
algebraic systems, S variants add sensitivity analysis.

Languages:

• Optional interfaces to 15 third-party libraries (for 
solvers and other stuff)!

• Supports NVIDIA, AMD, and Intel GPUs directly 
and and through RAJA/Kokkos

• Runs on Windows, MacOS, Linux, x86, ARM, 
Power etc., at a wide range of scales

• Visit computing.llnl.gov/projects/sundials for info

Continuous Integration with:

Documentation:

Atmospheric Dynamics
Cosmology Combustion

https://computing.llnl.gov/projects/sundials
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Implicit integrators require efficient linear solvers
• Implicit time integrators are well suited 

for stiff ODEs, y′ 𝑡 = 𝑓 𝑡, 𝑦(𝑡)

• Require us to solve an implicit system 
iteratively within every time step, 
𝐹 𝑦𝑛 = 𝑦𝑛  −  𝛾𝑓 𝑡𝑛, 𝑦𝑛 − 𝑎𝑛 = 0

• With modified Newton’s method, we 
must solve a linearized system within 
every iteration within every time step,

𝐼 − 𝛾𝐽 𝛿𝑚+1 = −𝐹(𝑦𝑛 𝑚 )

Execution profile for In Medium Similarity 
Renormalization Group simulation using 
implicit method in SUNDIALS CVODE.

𝐽 =
𝜕𝑓

𝜕𝑦
, 𝛿𝑚+1 = 𝑦𝑛 𝑚+1 −𝑦𝑛 𝑚
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• Based on the method, estimate the time step error 
Δ𝑛 ≡ 𝑦𝑛 𝑚 − 𝑦𝑛(0)

• Accept step if ||Δ𝑛||𝑊𝑅𝑀𝑆 ≤ 𝜖; Reject it otherwise

• Choose next step,  so that ||𝑦𝑛 − 𝑦𝑛 0 ||𝑊𝑅𝑀𝑆 should be small

• ARKODE supplies advanced “error controllers” to adapt 
these step sizes while also meeting other objectives: 
• minimize failed steps
• maximize step sizes
• maintain smooth transitions in the step sizes

SUNDIALS integrators have time step adaptivity 

Adaptivity can give much more 
efficient (and  accurate) results
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• Overall goal: keep the nonlinear iteration error from interfering with 
the local error control

• Stopping criteria for the nonlinear solver: 𝑅||𝛿𝑚||𝑊𝑅𝑀𝑆 ≤ 0.1𝜖, 

• The stopping criteria for iterative linear solvers:

 || 𝐼 − 𝛾𝐽 𝛿𝑚 + 𝐹 𝑦𝑛 𝑚 ||𝑊𝑅𝑀𝑆 < 0.05 (0.1𝜖)

• When iterative linear solver libraries only allow 2-norm*, we must 
”translate” our stopping criteria into a 2-norm tolerance
• It would be great if we could provide solvers our norm

Integrator tolerances propagate down to solvers to 
keep the error that propagates up small
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• Integrator logic runs on the CPU, but state data is on the GPU throughout – 
so solvers receive data on the GPU and should return it to us on the GPU

• We have a memory “helper” API to access application memory pools – 
solver libraries could benefit from exploiting this too

SUNDIALS keeps state data on the GPU
Application / 

discretization 
framework:

RHS Function, f 
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver 
Interfaces

zm

F(zm), 
JF(zm)xm, rm 
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• SUNDIALS has 5 built-in iterative matrix-free linear solvers: CG, 
BiCGSTAB, GMRES, FGMRES, PTFQMR

• All leverage scaling and preconditioning to balance error between 
solution components and accelerate convergence

(𝑆1𝑃1
−1𝐴𝑃2

−1𝑆2
−1)𝑆2𝑃2𝑥 = 𝑆1 𝑃1

−1𝑏

• 𝑆1 and 𝑆2 are diagonal matrices of scaling factors – within our 
implicit integrators they are equivalent to diag(ATOL)

• Since these iterative methods only require vector operations, they 
are GPU-enabled the moment you use a GPU N _Vector

SUNDIALS iterative “matrix-free” linear solvers
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• Our first interface to an iterative solver library
• Can access most (maybe all) of the iterative 

solvers in Ginkgo: CG, BiCGSTAB, GMRES, …
• SUNMatrix implementation uses Ginkgo for matrix 

storage and operations (sparse or dense)
• Can use any of Ginkgo’s executors (CPU or GPU)
• Presents as a C++ interface to our users (atypical)

• Issues we encountered resolved by Ginkgo 
team:
• Needed matrix operation: 𝑐𝐴 + 𝐼

• Lack of scaling capability hurt performance
• Couldn’t change stopping criteria efficiently

We have an interface to Ginkgo for matrix-based 
iterative solvers

Comparison of Ginkgo batched GMRES  in 
Pele reacting flow problem without scaling 
(left), with scaling only during matrix setup, 
and with scaling during every solve. Y axis is 
the number of linear iterations.
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• We have a unified interface to 
MAGMA for GPU-enabled dense 
direct methods for batched and 
non-batched linear systems

• MAGMA based SUNMatrix and 
SUNLinearSolver implementations

• Since we lag our Jacobian, we can 
reuse factorizations across solves

• Call getrf only when Jac. is updated

• Call getrs every nonlinear iteration

Interface to MAGMA
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• Pele combustion codes simulate reacting flows, 
𝜕𝑢

𝜕𝑡
= 𝐹 + 𝑅, where R is reaction term

• Operator splitting approach yields independent 
ODEs for R in each mesh cell

• We batch the ODEs together for integration
• Increases work for GPU
• The Jacobian becomes block diagonal
• Each block has the same sparsity pattern

• Batched linear solvers provide as much as 10x 
speedup over non-batched in Pele

Batched systems arise in reacting flow simulations
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• Lucas Esclapez conducted PeleLMeX 
simulation strong scaling test on up 
to 1024 nodes of the Frontier 
supercomputer

• Compared unpreconditioned, non-
batched SUNDIALS GMRES to 
batched LU in MAGMA

• advanceChemistry() routine is the 
ODE integration

Reacting flow simulation on Frontier with MAGMA

https://doi.org/10.1177/1094342024128006

https://doi.org/10.1177/10943420241280060
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• With our consultation, Ginkgo team 
developed batched iterative solvers 
(Richardson, BiCGSTAB, GMRES)

• Data always on the GPU, with 3 total kernel 
launches (scale, solve, unscale)

• Monolithic solve kernel allows one matrix 
block per GPU threadblock and allows shared 
memory to be exploited 

• https://doi.org/10.1109/ScalA54577.2021.00
010 for details

We worked with Ginkgo on batched iterative solvers

Solver performance compared to dense direct 
batched method from cuSOLVER for different 
matrices extracted from Pele. Credit Aggarwal et al.

https://doi.org/10.1109/ScalA54577.2021.00010
https://doi.org/10.1109/ScalA54577.2021.00010
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• Implicit time integrators need efficient linear solvers

• The linear solves are are repeated within a nonlinear iteration 
within every time step – information can be reused across solves

• Error based time adaptivity affect the solver stopping criteria – 
would be great if linear solver libraries allowed different norms 

• To achieve good GPU performance – solvers must receive the state 
data on the GPU and give the solution back to us there

• Batched linear solvers allows us to batch ODEs to saturate GPU

Summary and Conclusions
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Questions?

computing.llnl.gov/sundials
This material is based upon work supported by the U.S. Department 

of Energy, Office of Science, Office of Advanced Scientific 
Computing Research, Scientific Discovery through Advanced 
Computing (SciDAC) program through the FASTMath Institute.

This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under Contract 

DE-AC52-07NA27344. LLNL-PRES-2003100.
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