

ElMerFold: Exascale Distillation Workflows for Protein Structure Prediction on El Capitan

AI+ Expo June 4, 2025

Nikoli Dryden, Brian Van Essen

Center for Applied Scientific Computing, LLNL

LLNL has been at the forefront of enabling HPC

hardware and software since its founding 20105

19805

CRAY 1

Dynamics in 3D

19705

CDC 7600

Ozone mixing

models

cell

Unprecedented dislocation dynamics

World's most detailed simulation of the human heart in action

Ensembles of high-fidelity 3D weapons

Helping the medical community plan radiation treatment

Global climate modeling

simulations

LLNL-PRES-2006688

19605

CDC 3600

Pioneering

simulations

NNSA's Advanced Simulation & Computing (ASC) underpins the NNSA mission – past and future

Al revolution unlocked new opportunities in national security:

- Agent-driven design
- Cognitive simulation

Bioresilience

Stockpile of Today

W88 W80 W76 B83 W87 W78 **B61**

Stockpile of Tomorrow

W80-4 W87-1

Stockpile of the Future

Phase 0/1 studies

LLNL-PRES-2006688

LLNL is delivering mission impact with AI expertise

Fusion ignition

Al-driven prediction of critical systems

Biodesign

Al acceleration for biodefense and national security materials

Weapon design and certification

AI-enabled innovation and production

We must now scale this up for transformation of our critical missions

4

Al enables accelerated response for emerging bio threats: New approaches are needed for rapid antibody development

Recovery

Acquire serum, screening

Antibody engineering Repeat if fail pre-clinical

- Requires convalescent serum
- Manufacturing challenges
- Produces narrow protection

4-6 months

Emerging Generative model prototype to optimize design + properties

In silico + experimental Cross-reactive, manufacturable optimization loop antibody

- Machine learning models predict antibody design and properties
- High-quality protein folding model is critical
- Explore design space in silico, optimizing for quality
- Manufacture and test most promising designs

Understanding how proteins fold is the basis for many biological applications

Sequence

MSYKIIGDSCLDLTEELKKDSRFATVSLTLQVDDTMVI DDDTFDQKAFLDLVKASENCPKSACSSPDAFKQAM **ECDEDDVYIITLSSHLSGSYNSAVIGKELYEEEHGAD** HKNILVIDSESASAGELNLALGICEMYEEGLDFQAIS EKIMKKRDDENIYFVLDTLDFLRKNGRLTGLQAFFAT ALNIKPIMGADKGVIIKLDQARGINKAFAKMCEFAVK EAGESEKKRVIIAHCNCPERAAQVKQELEKRASFREI LITETAGVATMYAGDGGVILSIEG

MGYP000021002699, OpenFold 2 prediction, mean pLDDT 96.3

Computational prediction of protein structure enables many applications

LLNL-PRES-2006688

Deep learning has revolutionized protein folding

Jumper et al., 2021:

Article

Highly accurate protein structure prediction with AlphaFold

"End-to-end folding by AlphaFold 2 largely solved the single domain protein structure prediction problem" (Pearce & Zhang, J Biol Chem, 2021)

Abramson et al., 2024:

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

Experimental datasets are not sufficient — Distillation datasets are critical for protein folding models

Distillation: Using a pretrained model to produce high-quality data for further training

- Self-distillation & cross-distillation
- Calibrated scoring of predictions is critical
- Anchored by experimental results

Major component of AlphaFold 3

Shen et al., 2024

Jumper et al., 2021

wrence Livermore

LLNL-PRES-2006688

For national security, it is critical for the USG to be able to evolve state-of-the-art models: Collaboration to train OpenFold 3

- AlphaFold 3 is the state-of-the-art
 - Training code and some datasets unavailable
 - Very restrictive license (distillation prohibited!)
- Existing reproductions (e.g., Boltz) use substantially less compute and data
- Open models spur innovation and enable new insights
- Retraining is critical for improving models and addressing future needs

OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

Gustaf Ahdritz, Nazim Bouatta ☑, Christina Floristean, Sachin Kadyan, Qinghui Xia, William
Gerecke, Timothy J. O'Donnell, Daniel Berenberg, Ian Fisk, Niccolò Zanichelli, Bo Zhang,
Arkadiusz Nowaczynski, Bei Wang, Marta M. Stepniewska-Dziubinska, Shang Zhang, Adegoke
Ojewole, Murat Efe Guney, Stella Biderman, Andrew M. Watkins, Stephen Ra, Pablo Ribalta
Lorenzo, Lucas Nivon, Brian Weitzner, Yih-En Andrew Ban, ... Mohammed AlQuraishi ☑

Nature Methods 21, 1514–1524 (2024) | Cite this article

LLNL-PRES-2006688 9

+ Show authors

Distillation requires more compute than training

	Dataset	Description	Sample
Experimental			S
Distillation datasets	Monomer protein structures	Protein Data Bank structures	~200k
	RNA distillation	RNA predictions from Rfam	~65k
	Disordered PDB distillation	OF2-Multimer predictions of PDB proteins	~25k
	Transcription factor distillation	DNA+protein predictions from JASPAR	~16k
	Monomer protein distillation	OF2 predictions of MGnify sequences	~41M

- Estimated OpenFold 3 training time on all of El Capitan:
 3 days (including hyperparameter tuning)
- Estimated time to produce the monomer protein distillation data on all of El Capitan:
 >1 week
- Distillation data generation dominates training time

El Capitan: Flagship NNSA Tri-Lab capability for exascale computational science

- #1 on November 2024, Top500 list: 1.74 Eflop/s on High Performance Linpack (HPL)
- 11,136 nodes with 4 AMD MI300A Accelerated Processing Units (APUs) each (44,544 total)
- HPE Slingshot interconnect (3-level Dragonfly), 4 Cassini NICs per node (100 GiB/s)
- Capacity tier storage: Merced, 401 PiB HDD-backed Lustre filesystem
- Performance tier storage: 696 HPE Rabbit modules, 21 PiB configurable NVMe storage

11

Tuolumne: Open science "sister" of El Capitan (1,152 nodes, 4,608 APUs total)

LLNL-PRES-2006688

El Capitan system architecture highlights

Lawrence Livermore National Laboratory

ElMerFold: Scaling distillation data generation to El Capitan

High-performance framework for large-scale inference on El Capitan + OpenFold-specific optimizations

MI300A optimizations

- LBANNv2: Memory optimizations
- Efficient kernel implementations

On-node optimizations

- Workflow orchestration
- Persistent inference servers

I/O optimizations

- I/O offload to Rabbits
- Streaming data (de)compression
- Startup optimizations

13 LLNL-PRES-2006688

OpenFold 3 monomer distillation workflow

OpenFold 2 is a complex model

- Transformer-based, but with multiple non-standard attention mechanisms (EvoFormer)
- Typical inference time is seconds to minutes per sequence
- Runtime is cubic in sequence length (approx. 347,904*S*³ + 764,022,844*S*² + 300,965,502,304*S*)

Lawrence Livermore National Laboratory

15

LBANNv2: Improving performance on AMD MI300A

AMD MI250X (e.g., Frontier)

AMD MI300A

LBANNv2: Improving performance on AMD MI300A

- Elide copies between CPU and GPU devices on unified memory systems
 - Reduce memory overhead and eliminate copies!
- Requires changes to common PyTorch programming model assumptions (tensor.to())

Unified HBM between CCD & XCD No DRAM!

OpenFold 2 data pipeline (data_pipeline.py):

```
import lbannv2
# ...
with lbannv2.MigratableMemory():
    t_result = t_f.get_templates(
        query_sequence=input_sequence,
        hits=hits_cat,
    )
    template_features = t_result.features
# ... Later:
out = lbannv2.migrate(feats, device)
```

← Initialize memory allocators & hooks

All tensors are automatically migratable between CCD and XCD devices

← Like tensor.to() but no copy if possible

https://github.com/LBANN

Higher-level approaches for efficient AI algorithms: Optimizing **EvoFormer in OpenFold**

- OpenFold 2 is well-optimized (for A100s) ... but leaves performance on the table on new systems
 - Reimplementing kernels in HIP / CUDA is unsustainable and nonportable
- Triton provides a portable, high-level (Python) approach for writing efficient GPU kernels
 - FlashAttention-style kernels adapted to EvoFormer
- DaCe allows lower-level control of memory operations to improve performance

Pointwise attention kernel (#residues = 256)

	Time	Mem. read BW	Mem. write BW
Original	2.30 ms	_	_
Triton	1.12 ms	260.79 GB/s	14.49 GB/s
DaCe	167.76 µs	3,630.00 GB/s	178.84 GB/s

LLNL-PRES-2006688 18

Rabbits enable efficient I/O at scale and system flexibility

- Configurable Rabbit storage allows jobs to tailor the I/O subsystem to their needs
- Every node requires ~380 GiB of static data plus storage for intermediates
- Offload intermediate data to near-node Rabbit storage

19

ElMerFold scales distillation to El Capitan

~2400 structures/s

17.2

- Scales to 10,800 nodes (43,200 APUs) of El Capitan with **72.9**% parallel efficiency
- Delivers sustained performance of ~2400 structures/second & 8.6M atoms/s (including I/O and all other overheads)
- 17.2× improvements on the OpenFold 3 monomer protein distillation dataset

Lawrence Livermore National Laboratory

Distillation datasets and large-scale inference is the future present

- Distillation enables training better models in data-scarce regimes
- Large-scale inference improves data quality
- Widely used for producing synthetic data already!

Abramson et al., 2024

DOE-led convergence of AI, high-performance computing, and automated biotech is transforming biology for national security

DOE partnership with DoD for AI Acceleration of Molecular Design for Biodefense

Accelerating antibody design from months to <2 weeks to ensure warfighter readiness

Connecting DOE capabilities to industry partners amplifies innovation → 3 new medicines in clinical trials

Harnessing Al + Biology for **Efficient Rare Earth Element** Separation

Microsoft

The future of scientific AI workloads will be driven by inference

Enabling large-scale inference on leadership-class HPC unlocks:

- Uncertainty quantification of AI models
- Test-time compute and reasoning agents
- Robust predictions for generative models
- Distillation-driven data sets and future model training

Calibrated model confidence and operator trust is critical to enabling adoption for high-consequence missions

The Elmer Fold Team

ElMerFold accelerates distillation dataset generation on El Capitan for NNSA missions

17.2×

- MI300A innovations enable leadership-class AI workloads on El Capitan
- 17.2× improvements on the OpenFold 3 monomer protein distillation dataset at full El Capitan scale
 - Workflow scaled to 10,800 nodes (43,200 MI300A APUs)
- Unparalleled capability for generating distillation datasets enables key advances in NNSA mission needs and open science applications

atory LLNL-PRES-2006688 25

OpenFold 2 is a complex model

OpenFold 2 is a complex model

On-node optimizations: Persistent inference servers and workflow orchestration

- Inference servers avoid repeated initialization & loading overhead
- Online memory management enables fine-grained oversubscription
- On-node workflow orchestration ensures efficient resource utilization

