
UCRL-CONF-215802

Graph-based Methods for Orbit
Classification

A. Bagherjeiran, C. Kamath

October 3, 2005

SIAM International Conference on Data Mining
Bethesda, MD, United States
April 20, 2006 through April 22, 2006

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Graph-based Methods for Orbit Classification

Abraham Bagherjeiran, Chandrika Kamath ∗

Abstract

An important step in the quest for low-cost fusion power
is the ability to perform and analyze experiments in
prototype fusion reactors. One of the tasks in the
analysis of experimental data is the classification of
orbits in Poincaré plots. These plots are generated by
the particles in a fusion reactor as they move within
the toroidal device. In this paper, we describe the
use of graph-based methods to extract features from
orbits. These features are then used to classify the orbits
into several categories. Our results show that existing
machine learning algorithms are successful in classifying
orbits with few points, a situation which can arise in
data from experiments.

Keywords: orbit, Poincaré plot, classification.

1 Introduction

The quest for low-cost fusion power has led to the
construction of devices such as the National Com-
pact Stellarator Experiment (NCSX) at the Princeton
Plasma Physics Laboratory (PPPL). These devices al-
low physicists to perform magnetic confinement exper-
iments which determine the best shape for the hot re-
acting plasma and the magnetic fields necessary to hold
it in place. In addition, advances in computational re-
sources, such as parallel computers, massive data stores,
and fast data transfer rates, have made possible the sim-
ulation of these experiments computationally in three
dimensions over time. These simulations allow the
physicists to design new reactors and select the parame-
ters to be used in experiments. The results from the ex-
periments are, in turn, used to validate the simulations.
Thus, the analysis of the data from both simulations
and experiments is a key step in the understanding and
development of fusion reactors.

In this paper, we focus on the problem of the
analysis of Poincaré plots. These two-dimensional
plots are obtained for planes which intersect the torus-
shaped device. A plot consists of several orbits, each
corresponding to a particle moving in the device. An
orbit is composed of several points where each point
represents the intersection of the particle with the plane

∗Center for Applied Scientific Computing, Lawrence Livermore

National Laboratory, Livermore, CA

as it goes around the device. The positions of the points
in an orbit describe a particular shape, based on which
we can assign a class label to an orbit. Once a class
label has been assigned to an orbit, it can be analyzed
further to extract additional characteristics of interest.

In this paper, we describe how we can use graph-
based techniques to extract features describing an orbit.
These features are then used in both rule-based and
feature-based learning algorithms to assign class labels
to orbits. This paper is organized as follows. Section
2 provides an overview of the problem of orbit classi-
fication. Next, in Section 3, we discuss the properties
extracted from each orbit by considering it as a graph.
In Section 4, we describe how we can modify the fea-
tures obtained in an existing rule-based approach, called
KAM [7], so that it can be applied to our datasets.
We also describe the extraction of additional features
from the data to improve the representation of an or-
bit. Section 5 illustrates the discriminative ability of
the features. In Section 6, we show that our additional
features result in higher classification accuracy. We dis-
cuss related work in Section 7 and conclude the paper
in Section 8 with a summary and discussion of ideas for
future work.

2 Problem Definition

Figure 1 shows the schematic of the NCSX. A par-
ticle moving around the torus will trace out a three-
dimensional trajectory over time. Consider a plane in-
tersecting the torus perpendicular to the magnetic axis.
Let a point in this plane be the intersection of the tra-
jectory of the particle with the plane as it starts to move
through the torus. After it completes one round through
the torus, it will likely intersect the plane at a differ-
ent point. The intersections of this trajectory with the
plane as the particle keeps going around the torus form
an orbit.

Depending on the shape of the orbit, it can be
assigned a class label. Figure 2 depicts three differ-
ent orbits–a separatrix, an island chain, and a quasi-
periodic orbit. There is also an additional class of
stochastic orbits, which we will not consider in the
present analysis. From these examples, we see that the
orbits are visually very different. Notably, the quasi-

Figure 1: A schematic of the NCSX reactor currently
under construction at the Princeton Plasma Physics
Laboratory. Inset shows a plane perpendicular to
the magnetic axis illustrating the intersections of the
particles.

periodic orbit appears to be a closed curve, with no
width to the curve. The island chain orbit has two dis-
tinct islands in this example. The separatrix orbit, like
the quasi-periodic orbit, appears closed but has radial
gaps called lobes; there are two such lobes, one on the
top and the other on the bottom, in this orbit. The sep-
aratrix orbit can be considered to be one where there
are several islands, whose tips merge, end-to-end. The
region of dense points where the tips merge (in our ex-
ample, there are two such points, one on the left and
the other on the right) are called cross points.

Typically, all the orbits on a plane are provided
together in what is referred to as a “puncture plot” or
a “Poincaré plot”, as in Figure 3. When the orbits are
considered together in a plot, there is additional analysis
which can be performed by considering the relationships
between orbits. However, in this paper, we will focus on
the classification of a single orbit, considered by itself.

Orbits resulting from computer simulations usually
consist of a thousand or more points, while those from
experiments consist of 50 to 100 points. When the
number of points is small, the correct classification of
an orbit can be a challenge as there may not be enough
information in the data to identify the shape. In our
work, we will consider how the accuracy of a classifier
changes as the number of points in an orbit is reduced.
If we can correctly classify orbits using a few points, it
reduces the time for the extraction of features, leading
to a faster turnaround in the analysis. Further, data
from simulations contain floating point errors which
build up over time, so that it is more accurate to work

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(a) (b) (c)

Figure 2: An example of an orbit from each class. (a)
Quasi-periodic. (b) Island chain with two islands. (c)
Separatrix with two cross points.

with the first few points.

3 Orbit Preprocessing

In this section, we discuss how we can extract features
from an orbit by considering its graph representation,
as described in [7]. We first partition the graph into
clusters and then use domain-level heuristics to compute
several properties on the vertices and edges in the
graph. These properties are the basis for features used
in several classification algorithms.

3.1 Definitions from Graph Theory We first re-
view a few definitions from graph theory.

Graph: A graph G = {V,E} is a set of vertices V and
edges E.

Edge: An edge e ∈ E is a pair of vertices e =
〈v1 ∈ V, v2 ∈ V 〉.

Adjacency: Two vertices v1 ∈ V and v2 ∈ V are
adjacent–written adj(v1, v2)–if and only if an edge
links v1 to v2:

adj(v1, v2) ⇐⇒ 〈v1, v2〉 ∈ E

Degree: The degree deg(v) of a vertex v ∈ V is the
number of adjacent vertices to v:

deg(v) = |{u | adj(u, v)}|

Vertex Properties Vertex properties are defined for
each vertex in the graph and hold either Boolean or
real-valued information for each vertex. For exam-
ple, we use coordinates (x(v) , y(v)) as properties
for vertices and define the distance between vertices
as the Euclidean distance between the coordinates
of the vertices

w = d(v1, v2)

d(vi, vj) =

√

(x(vi) − x(vj))
2

+ (y(vi) − y(vj))
2

.

Since KAM refers to vertices as nodes, we use the
terms node and vertex interchangeably.

Figure 3: An example of a puncture plot. This plot contains 100 orbits, with the magnetic axis located at
approximately x = 1.0, y= 0.

Edge Properties An edge, e, has a real-valued prop-
erty length(e) ∈ R equal to the Euclidean distance
between its vertices. We sometimes refer to this as
the weight of an edge.

3.2 Generating the Orbit Graph The first pre-
processing step is to compute a graph representation of
an orbit in the form of its Euclidean Minimal Spanning
Tree (MST). The MST of a graph is a tree that contains
all vertices of the graph but the sum of the edge lengths
in the tree is minimal. The use of the MST as the orbit
graph as opposed to some other graph representation is
based on the observation that it characterizes the shape
of the orbit and is similar to the way humans see objects
[7]. For the remainder of this paper, we will refer to the
MST of the orbit as the orbit itself or the orbit graph.

3.3 Partitioning the Graph The next step is to
partition the graph into independent clusters by re-
moving edges. The algorithm used in our implemen-
tation removes all edges whose weight exceeds a thresh-
old tpartition. In other words, edges connecting vertices
which are more than tpartition apart in Euclidean dis-
tance are removed, yielding k subgraphs. Each node in
a subgraph is assigned a cluster property which is set to
the index of the subgraph to which the node belongs.

3.4 Computing Graph Properties The last pre-
processing step applies to the whole orbit graph and all

the partitioned subgraphs. The result is an assignment
of properties to the vertices and edges. The properties
described next serve as the basis for the features that
will be used for classification.

Diameter: The diameter is the defined as the
longest shortest path between any two vertices in the
graph. To compute the diameter of the MST, the
algorithm starts at an arbitrary vertex u and finds
the vertex u′ at the end of the longest depth-first
path from u. The diameter is then the longest path
emanating from u′. At most, the computation requires
two maximum-length depth-first traversals of the tree.
The vertices along the diameter have the Boolean
property diameter set to true; otherwise, it is set to
false. The algorithm also identifies the beginning and
end points of the diameter for later use in feature
extraction.

Branches: For each vertex v, with degree 3 or
more, the algorithm computes the branchLength prop-
erty as the length of the longest path starting at v

and not passing through any other vertex u 6= v

along the diameter. As illustrated in Figure 4, ver-
tices with degree less than 3 are ignored and assigned
branchLength(v) = 0. Using the branchLength prop-
erty, the algorithm assigns two additional Boolean prop-
erties on vertex v. Given thresholds 0 < tshallow < tdeep,
shallowBranch(v) is defined as:

{

true if branchLength(v) ≥ tshallow

false otherwise

Figure 4: Branch calculation example on a small portion
of a larger graph. The thick edges indicate the diameter
of the graph. Vertex labels show the value for the
branchLength property.

and deepBranch(v) is defined as:
{

true if diameter(v) ∧ (branchLength(v) ≥ tdeep)
false otherwise.

The primaryBranch(v) property






true if diameter(v) ∧ shallowBranch(v)∧
(branchPath(v) = maxw branchLength(w))

false otherwise

is assigned to the branch vertex v whose path is the
longest branch path but may not necessarily be a deep
branch. After assigning the primaryBranch property
to all vertices along the diameter, the value of the
property is replicated to all non-diameter descendants
of a primary branch vertex.

In the example of Figure 4, all edges have length
1 and the labels of the vertices indicate the value
of the branchLength property. With the threshold
tshallow = 1, the graph contains 5 vertices with a true

value for shallowBranch property. With threshold
tdeep = 2 and proceeding along the thick edges of the
diameter, the graph contains 2 deep branches vertices
having branch lengths 2 and 3. The second branch
vertex in the graph with branch length 2 is not a
deep branch vertex because it is not rooted along the
diameter. The branch vertex with length 3 is assigned a
true value for the primaryBranch property. Lastly, all
vertices in the circled region are assigned a true value for
the primaryBranch property because they are located
along the primary branch.

Primary Nodes: A primary node v has the
primary(v) property defined as:

{

true if diameter(v) ∨ primaryBranch(v)
false otherwise

Primary nodes are the nodes along the diameter or are
contained in the longest branch whose root is at the
diameter. The intuition behind this property is that
for some graphs, the diameter may not contain a large
branch in the graph. The primary node property is
designed to compensate for the large branch not on the
diameter by adding the primary branch.

Hyperbolic Structure: The last set of properties
characterizes the branching structure of the graph and
is specifically designed to describe separatrix orbits.
Figure 5 shows an example of the ideal cross point
of a separatrix orbit, with two deep branch vertices.
Following the set of edges D along the diameter, the
algorithm adds each edge e ∈ D to a set l. When it
encounters a deep branch, it saves the current set L =
L∪ l and creates a new set l = ∅. This continues for the
remainder of the diameter. At the end of the process,
the edge sets L form a mutually exclusive partitioning
of the diameter. Next, the algorithm assigns one of two
labels to each line segment l ∈ L:

shortLine(l) =

{

true if length(l) < thyperbolic

false otherwise

longLine(l) =

{

true if length(l) ≥ thyperbolic

false otherwise

length(l) =
∑

e∈l

length(e)

where the length of a line segment is the sum of the
lengths of its constituent edges. The result of this
labeling is a sequence of labels that characterizes the
diameter. In the example of Figure 5, the line segment
sequence is

. . . longLine, deepBranch, shortLine,

deepBranch, longLine . . .

proceeding from top to bottom along the thick edges of
the diameter of the figure. The orbit has a hyperbolic
structure if and only if the line segment sequence
contains the pattern longLine, deepBranch, shortLine,
deepBranch at least twice. The vertices and edges
that form the pattern are called hyperbolic segments.
The two deep branches in the hyperbolic segment are
then assigned a true value for the hyperbolicBranch

property. The cross point of the separatrix is the short
line between the hyperbolic branches and is circled in
the figure.

Figure 5: Example of hyperbolic structure for a portion
of a separatrix orbit. The thick lines and filled circles
indicate the diameter of the graph. The circled region
is the cross point.

Property Thresholds
diameter

shallowBranch tshallow

deepBranch tdeep

primaryBranch

hyperbolicBranch thyperbolic

primary

cluster tpartition

Table 1: Properties extracted from the orbit graph and
their corresponding thresholds.

3.5 Summary of Orbit Pre-processing As shown
in Table 1, we extract several vertex-, edge-, and graph-
level properties from the minimal spanning tree of the
points in the orbit. These properties are then used to
derive several features for use in various classifiers.

4 Features and Classification Algorithms

We next use the properties described in the previous sec-
tion to create the features for classification algorithms.
We consider the rule-based approach of [7], which we call
the default KAM, a customized version of KAM which
has been modified for our data, and several standard
machine learning classifiers.

When describing the features, all lengths are given
as fractions of the diameter length. Since orbits can
vary in size, the reference to the diameter length makes
length-based features robust to the size of the orbit. We
use the following notation in the rest of this section.

• fX : A feature X that is a fraction with range [0, 1].

• nX : Number of vertices that satisfy property X.

Since all vertices have the property node(v), the
value nnode is the number of vertices in the graph.

4.1 The Default KAM classifier For the default
KAM classifier, we first extract the features described
in the book [7] and then apply a set of static rules on the
features. We use the following features for the default
KAM classifier:

• d: The Euclidean distance between the initial and
final vertices of the diameter as a fraction of the
total path length between the vertices.

• fhyperbolic: Fraction of hyperbolic nodes with re-
spect to shallow branch nodes:

nhyperbolicBranch

nshallowBranch
.

Separatrices should have high values for this fea-
ture; all other classes should have low values.

• fprimary: Fraction of primary nodes:
nprimary

nnode
.

Quasi-periodic orbits should have high values, is-
lands medium, and separatrices low.

• nshallow: Number of shallow branch nodes.

• fshallow: Fraction of shallow branch nodes:
nshallow

nnode
. Quasi-periodic orbits should have low val-

ues; separatrices should have high values.

• nclusters: The number of clusters found in the
graph partitioning process.

• fQP : Fraction of clusters that are quasi-periodic
given the QPCluster rule defined in Table 2.

• Hyperbolic: Indicates if the graph has a hyperbolic
structure. Obviously, separatrices are the only class
of orbits where this feature should be true.

• Origin: Indicates if the orbit contains the origin of
the predefined magnetic axis. This is computed
as the number of crossings of the magnetic axis
along edges in the MST. There must be between
3 and 4 total crossings with at least 1 crossing
in each direction. Quasi-periodic orbits should
contain the origin, but islands and separatrices do
not necessarily contain the origin.

After extracting the feature, the KAM classifier
applies the set of static rules listed in Table 2 to
determine whether an orbit belongs to one of the classes.
KAM assigns to an orbit the label of the first rule it
satisfies following the order of the table. We modified
the rules given the constraints of our domain as follows:

• We use variable parameters instead of hard-coding
the threshold values as done in KAM.

Rule Formula
QPCluster nclusters = 1 ∧ (nshallow < pbranch) ∧ (d ≤ pd)

Quasiperiodic QPCluster ∧ Origin

Island (nclusters ≥ 1) ∧ (fQP ≥ pQP)
Separatrix Hyperbolic ∧ (fhyperbolic ≥ phyperbolic) ∧ (fprimary ≥ pprimary)
Chaotic fprimary < pprimary

Unknown Chaotic ∨ ¬(Quasiperiodic ∨ Island ∨ Separatrix)

(a)
Parameter Value

pd 5%
pbranch 1
pQP 100%

phyperbolic 100%
pprimary 80%

(b)

Table 2: (a) KAM Rules. (b) The values of the parameters used in the rules.

• Quasi-periodic orbits must contain the origin but
not if they are clusters.

• We allow the cases of a separatrix with 1 pair of
hyperbolic branches or a 1-island chain that are
disallowed in the original version of KAM [7] but
can appear in our dataset.

• Chaotic orbits do not appear in our dataset and are
therefore labeled as unknown.

Since the KAM rules are heuristics based on a visual
evaluation of orbits and domain knowledge, we were
interested in seeing if a decision tree would learn similar
rules. So, using a training set with 600 orbits, where the
class label had been assigned using KAM, we created
the tree shown in Figure 6. This decision tree learns
the KAM predications to over 99% accuracy on the
training set. Interestingly, the decision-tree rules have
some similarity to the original KAM rules.

• Quasi-periodic orbits must contain the origin, have
few branches, and have close endpoints.

• Separatrices must have a high fraction of hyperbolic
branches.

• Islands must either contain quasi-periodic orbits or
must be quasi-periodic orbits that do not contain
the origin.

4.1.1 Selection of Thresholds Although the de-
fault KAM classifier discussed here uses the parameters
from the KAM book as shown in Table 2, it does not

Figure 6: Decision tree trained to predict the KAM
evaluation.

recommend values for the thresholds shown in Table
1. We use a class-conditional probability distribution
approach to find these thresholds. We separate the or-
bits by class and then estimate the various probability
densities for each threshold. For branch thresholds, we
compute and then estimate the density of the branch
lengths of all branches for all orbits in each of the classes.
The shallow branch threshold is the point at which the
distributions of the island and quasi-periodic densities
cross. The deep branch threshold is the point at which
the island and separatrix densities cross. The approach
thus selects the thresholds that best separate the two
classes. We performed similar estimations for the hy-
perbolic and partition thresholds.

4.2 The Custom KAM classifier An analysis of
the performance of default KAM on our dataset indi-
cated that we could improve the results by some simple
additions. Our extension to KAM, called custom KAM,
also uses static rules, and in addition to all the features
of the default KAM classifier, includes one additional
feature with a new threshold, as follows:

• fLS : Fraction of clusters that are individually
line segments. A line segment is a graph whose
Euclidean distance between the initial and final
vertex of the diameter is a large fraction of the total
diameter path length with respect to the threshold
tLS .

Further, to allow more expressive rules in our custom
KAM algorithm, we use real-valued instead of Boolean
predicates and real-valued combination operators. The
purpose is to allow for a partial evaluation (instead of a
Boolean evaluation) and to make the evaluation tolerant
to poorly selected thresholds and parameters. This is
useful both for classification and to aid the selection
of parameters and thresholds. We also allow the user
to change both the parameters and the thresholds.
Recall that in the default KAM classifier, we used the
parameters listed in the rules defined in the KAM book,
but obtained the thresholds used in the features via a
distributional approach.

The quasi-periodic rule evaluation KQ has three
components that mirror the default KAM rules:

KQ1
= nshallow ≤ pbranch

KQ2
= d < pd

KQ3
= Origin

the final evaluation is the average of the component
predicates. For the QPCluster rule, the final evaluation
is:

KQPCluster =
KQ1

+ KQ2

2

For the quasi-periodic rule, the evaluation is:

KQ =
1

3
(KQ1

+ KQ2
+ KQ3

)

The island chain rule evaluation

KI = 1 − |pqp − max {fQP , fLS}|

is defined as the degree to which all clusters are either in-
dividually quasi-periodic or individually line segments.
The parameter pqp is a user-defined fraction that con-
veys the maximum evaluation of the components.

The separatrix evaluation KS has two components
that also mirror the default rules:

∆h =
phyperbolic − fhyperbolic

phyperbolic

KS1
=

{

1 − ∆h if ∆h > 0
1 otherwise

∆p =
pprimary − fprimary

pprimary

KS2
=

{

1 − ∆p if ∆p > 0
1 otherwise

The main difference between these components and
those of the default rules is that these are real-valued
evaluations that are 0 when completely false, 1 when
completely true, and in between to indicate a partial
satisfaction of the predicate. The final evaluation is
again the average of the components.

KS =
KS1

+ KS2

2

The chaotic evaluation is:

KU = γ(1 − KS2
)

where the discount factor γ = 0.75 is designed to
prevent the rule from being activated very often.

With the use of real-valued predicates, the final
evaluation of the class is slightly more complicated. We
use the max fuzzy disjunction operator for the final
voting strategy. The predicate with the highest value
determines the class. In the event of ties, the vote
follows the same order as the default KAM rules. In
the event that no predicate achieves a minimum value
of 0.5, the final class is unknown.

The real-valued predicates allow for greater flexibil-
ity in the ultimate evaluation. For example, an incor-
rectly calibrated shallow branch threshold may cause
a quasi-periodic orbit to have a few small branches. In
the default KAM rules, this invalidates the possibility of
a quasi-periodic evaluation. In the custom rules, how-
ever, the maximum evaluation would be 0.66 making
the correct evaluation possible if no other predicate has
a higher evaluation.

4.2.1 Selection of Thresholds In the custom KAM
classifier, where both the parameters and the thresh-
olds can be changed, it is difficult to use a distribu-
tional approach as the parameters and thresholds are
highly inter-dependent. For example, the Hyperbolic

feature depends on the hyperbolic line length threshold
thyperbolic and on the branch length thresholds tshallow

and tdeep. It does not explicitly depend on the parti-
tion threshold tpartition which determines the clusters,
except that the custom KAM rules would classify an
orbit with many clusters as an island if the separatrix
evaluation is not strong enough. We use a genetic algo-
rithm to search this multi-modal threshold parameter
space [1].

The genetic algorithm manipulates the thresholds
from Table 1, the parameters for the default KAM
classifier in Table 2, and the tLS threshold for the
custom KAM classifier. The fitness of an individual is
the average similarity between idealized feature vectors
for each orbit class and the extracted feature vectors of
a few example orbits.

4.3 The Standard Machine Learning Classifiers

We use the features extracted for both the default
and custom KAM classifiers to train standard machine
learning classifiers. In addition to the KAM features, we
include the custom KAM predicate evaluations as well
as features that convey the underlying statistics of the
edges and clusters of the orbits. As we will demonstrate
in Section 5, these statistical features appear to be
robust to few points.

• µlength: Average edge length.

• σlength: Standard deviation of the edge length.

• u: Diameter uniformity defined as the difference
between the average edge length and what would
occur if the points were equally spread across the

diameter:
|µlength−ū|

ū
. If the points were distributed

at equal intervals along the diameter, the average
edge length would be ū = 1

ndiameter
. Quasi-periodic

orbits have high diameter uniformity, island chains
medium, and separatrices low.

• µd: Average diameter endpoint distance for each
cluster.

• fcluster: Fraction of clusters to nodes: nclusters

nnode
or

the percent of nodes that are clusters.

• fcluster − fshallow: Difference between the fraction
of clusters and the fraction of shallow branch nodes.
A low value for this feature means that the graph
has as many branches as clusters. In this case, the

orbit could be a separatrix wrongly labeled as an
island chain.

• KQ: Quasi-periodic predicate evaluation.

• KI : Island predicate evaluation.

• KS : Separatrix predicate evaluation.

• KU : Unknown or chaotic predicate evaluation.

We use these features in traditional classification al-
gorithms, including the standard Näıve Bayes, Multi-
layer Perceptron, Support Vector Machine, 1-Nearest-
Neighbor, 3-Nearest-Neighbor, and Decision Tree clas-
sifiers available as part of the Weka machine learning
toolkit [4, 5].

5 Feature Evaluation

In this section, we evaluate the discriminative ability of
all the previously described features with respect to the
classes by computing the information gain (Equation 5,
Page 400 in [4]) with respect to the true orbit classes
for each individual feature. We consider two cases: one
where each orbit is described by 1000 points and the
other where each orbit is described by the first 150
points. Figure 7 shows that most of the features have
positive information gain, which indicates that each
feature can individually discriminate among the classes.
The most relevant features are those related to edge
statistics as indicated by high values for the diameter
distance d, the diameter uniformity u, and the standard
deviation of the edge lengths σlength. Note that σlength

and µlength are referred to as stdWeight and uWeight
in Figure 7, respectively. These results suggest that the
point-level density of the points is a good discriminant
for the class. Also, the chaotic evaluation seems to be
useful in that it indicates when many points lie along
the diameter and is conceptually similar to the fprimary

feature.

6 Experimental Results

We evaluate our approach to orbit classification through
two experiments. In the first experiment, we compare
the accuracy of the two KAM implementations to stan-
dard feature-based classifiers from the Weka software
toolkit [5]. In the second experiment, we evaluate the
robustness of the classifiers when they are applied to
orbits with few points.

6.1 Experimental Procedure We used 6 multi-
orbit plots each containing 100 orbits from simulations
of the CDX tokamak at PPPL. The number of points in
each orbit is variable. We hand labeled these orbits to

Figure 7: Comparative feature evaluation results with
150 and 1000 points. Higher values indicate better
discriminative ability.

create a training set. In both experiments, for instance-
based classifiers such as the nearest-neighbor algorithm,
we normalized the features to be in the range [0, 1].

Experiment 1: Classification Accuracy We
compare the accuracy of various classifiers by perform-
ing 10 runs of 10-fold stratified cross-validation. Using
our training set of 600 orbits, the classifiers both trained
and tested on features extracted from orbits using the
first N points. The number of points for each run is in
the set

N ∈ {50, 100, 200, . . . , 1000, 1500, 1800, 2000, 2500}

where the maximum number of possible points for any
orbit in the dataset was 3000.

Experiment 2: Reduced Number of Points

In this experiment, we perform a similar comparison by
performing 10 runs of 10-fold stratified cross-validation.
The classifiers are trained on features from orbits with
2500 points, but tested on orbits with N points. This
allows us to determine the accuracy when we train on
orbits with a large number of points and test on orbits
with a reduced number of points. The classifiers used
the same orbits in the same order as in the previous
comparison; only the number of points was changed.

6.2 Results and Discussion Tables 3 and 4 show
the results from the two experiments. We indicate how
well each classifier performs relative to the custom KAM
classifier which was chosen instead of the default KAM
classifier as it was designed to be more suitable for our
data sets. Figure 8 is a graphic illustration of the results
and is included for clarity. The standard deviations for
the KAM classifiers are zero because KAM determinis-
tically applies static rules and is unaffected by training.

This also explains why the results from the default and
custom KAM classifiers are identical in Tables 3 and 4.

Figure 9 shows the time to extract features for an
average orbit as we increase the number of points. This
indicates the tradeoffs we need to make between the
higher accuracy resulting from the inclusion of more
points in the orbit and the corresponding increase in
the cost of extraction of the features.

The results for the cross-validation test (Experi-
ment 1) show that the customized KAM classifier is a
vast improvement over the original KAM in most cases.
In addition, the features allowed the other traditional
classification algorithms to outperform both the KAM
classifiers in most cases. Interestingly, the simplest
classifiers–decision tree and nearest neighbor–appear to
be the overall winners in this comparison.

The results for the point test (Experiment 2), how-
ever, show that training on a large number of points and
then testing on a small number of points does not seem
to significantly improve accuracy results. Comparing
the results of the two experiments, we observe that the
performance is similar for large numbers of points. That
is, training and testing on a large number of points (Ex-
periment 1) gives similar accuracy to training on a large
number of points, but testing on a slightly smaller num-
ber of points (Experiment 2). However, for orbits with
a smaller number of points (50 to 400), the accuracy is
significantly improved when training on these low-point
orbits. That is, training and testing on a small num-
ber of points (Experiment 1) gives better accuracy than
training on a large number of points, but testing on a
small number of points (Experiment 2).

This effect of a reduced number of points in an orbit
is best explained in Figure 10. The figure shows 3 ex-
ample orbits with 150 and 1000 points. At 1000 points,
the MST correctly identifies the outline of the shapes.
At 150 points, however, the separatrix contains far too
few branches because the MST forms a “zig-zag” pat-
tern connecting points that are branches at 1000 points.
In the quasi-periodic orbit, KAM detects multiple clus-
ters misclassifying both it and the separatrix as island
chains. At 1000 points, only the island chain orbit has
several clusters. Although the feature-based classifiers
perform better than KAM, they use the features gen-
erated by the graph-based approach of KAM. If KAM
cannot correctly identify the branching structure and
clusters, and as a result generates poor quality features,
the feature-based classifiers will be doomed from the
start.

This reliance on the graph-based KAM features
also explains why the feature-based algorithms perform
better when trained and tested on the same number of
points. Orbits with few points clearly appear different

Dataset CKAM DKAM NB MLP SVM 1NN 3NN DT

50 39.67 51.67 ◦ 75.00±0.26 ◦ 81.90±0.87 ◦ 80.87±0.32 ◦ 76.98±0.83 ◦ 79.43±0.64 ◦ 81.63±0.65 ◦
100 50.00 53.17 ◦ 78.12±0.35 ◦ 81.45±0.98 ◦ 81.10±0.12 ◦ 76.67±0.75 ◦ 78.35±0.25 ◦ 82.70±0.55 ◦
200 68.67 58.17 • 74.10±0.57 ◦ 80.88±0.38 ◦ 81.85±0.05 ◦ 76.58±0.69 ◦ 79.97±0.55 ◦ 81.32±0.51 ◦
300 70.17 61.33 • 73.30±0.13 ◦ 82.27±0.47 ◦ 81.67±0.19 ◦ 77.42±0.46 ◦ 81.15±0.81 ◦ 82.95±0.66 ◦
400 73.67 63.17 • 74.07±0.47 82.42±0.53 ◦ 82.85±0.20 ◦ 76.48±0.63 ◦ 80.00±0.36 ◦ 81.97±0.41 ◦
500 73.00 63.00 • 73.88±0.27 ◦ 83.83±0.53 ◦ 82.75±0.09 ◦ 80.50±0.54 ◦ 81.68±0.56 ◦ 82.92±0.93 ◦
600 73.83 63.17 • 74.18±0.33 ◦ 83.12±0.47 ◦ 83.35±0.15 ◦ 79.83±0.66 ◦ 82.07±0.61 ◦ 83.08±0.47 ◦
700 73.33 63.67 • 74.17±0.27 ◦ 84.27±0.57 ◦ 83.25±0.24 ◦ 81.87±0.71 ◦ 83.62±0.77 ◦ 83.90±0.64 ◦
800 74.17 63.33 • 74.30±0.28 84.73±0.56 ◦ 83.85±0.18 ◦ 83.87±0.57 ◦ 85.12±0.44 ◦ 85.48±0.81 ◦
900 74.33 63.17 • 74.53±0.28 85.63±0.68 ◦ 84.02±0.18 ◦ 84.67±0.49 ◦ 85.93±0.58 ◦ 86.13±0.56 ◦
1000 74.50 63.33 • 75.38±0.21 ◦ 85.75±0.71 ◦ 84.10±0.16 ◦ 84.98±0.54 ◦ 86.77±0.34 ◦ 85.73±0.59 ◦
1500 73.17 61.33 • 76.32±0.18 ◦ 86.90±0.74 ◦ 85.77±0.27 ◦ 85.53±0.29 ◦ 86.95±0.54 ◦ 87.40±0.85 ◦
1800 75.50 60.83 • 75.60±0.20 86.32±0.55 ◦ 86.75±0.37 ◦ 86.05±0.49 ◦ 87.13±0.47 ◦ 88.27±0.70 ◦
2000 74.17 61.00 • 76.23±0.12 ◦ 86.50±0.53 ◦ 87.02±0.34 ◦ 86.63±0.37 ◦ 88.32±0.34 ◦ 88.12±0.54 ◦
2500 74.33 60.33 • 75.85±0.31 ◦ 88.48±0.52 ◦ 87.57±0.57 ◦ 88.72±0.35 ◦ 90.58±0.40 ◦ 89.58±0.51 ◦

◦, • statistically significant improvement or degradation

Table 3: Results from Experiment 1 showing accuracy and significance with respect to the custom KAM classifier.
All classifiers were trained and tested on orbits with an increasing number of points as indicated in the Dataset
column.

Dataset CKAM DKAM NB MLP SVM 1NN 3NN DT

50 39.67 51.67 ◦ 56.73±0.80 ◦ 59.97±1.18 ◦ 64.27±0.29 ◦ 58.12±0.80 ◦ 67.98±0.51 ◦ 56.05±2.62 ◦
100 50.00 53.17 ◦ 69.05±0.29 ◦ 68.92±0.85 ◦ 73.32±0.60 ◦ 69.82±0.59 ◦ 76.43±0.40 ◦ 67.10±1.45 ◦
200 68.67 58.17 • 72.15±0.36 ◦ 72.83±0.69 ◦ 76.63±0.68 ◦ 78.30±1.67 ◦ 79.38±0.86 ◦ 69.42±1.13
300 70.17 61.33 • 73.33±0.19 ◦ 75.27±0.67 ◦ 78.50±0.77 ◦ 80.17±0.81 ◦ 80.13±0.69 ◦ 70.35±0.87
400 73.67 63.17 • 73.40±0.22 • 77.42±0.78 ◦ 80.15±0.76 ◦ 79.62±0.96 ◦ 79.65±0.86 ◦ 70.92±0.94 •
500 73.00 63.00 • 75.17±0.31 ◦ 77.62±0.91 ◦ 80.75±0.83 ◦ 77.38±0.51 ◦ 77.93±0.38 ◦ 71.40±1.09 •
600 73.83 63.17 • 74.68±0.32 ◦ 79.38±0.62 ◦ 81.95±0.65 ◦ 76.35±0.54 ◦ 78.68±0.35 ◦ 71.52±1.26 •
700 73.33 63.67 • 75.55±0.25 ◦ 80.77±0.48 ◦ 82.73±0.57 ◦ 74.22±0.51 ◦ 77.73±0.75 ◦ 71.68±1.13 •
800 74.17 63.33 • 75.47±0.19 ◦ 81.10±0.40 ◦ 83.17±0.48 ◦ 75.95±0.34 ◦ 76.35±0.39 ◦ 72.62±1.05 •
900 74.33 63.17 • 75.80±0.19 ◦ 82.02±0.36 ◦ 83.35±0.48 ◦ 75.85±0.39 ◦ 77.65±0.36 ◦ 78.30±0.74 ◦
1000 74.50 63.33 • 76.15±0.18 ◦ 82.48±0.44 ◦ 83.42±0.36 ◦ 75.90±0.47 ◦ 78.32±0.49 ◦ 79.15±0.95 ◦
1500 73.17 61.33 • 76.58±0.24 ◦ 84.45±0.44 ◦ 85.43±0.34 ◦ 79.12±0.53 ◦ 83.55±0.44 ◦ 82.88±0.75 ◦
1800 75.50 60.83 • 77.17±0.32 ◦ 87.12±0.43 ◦ 86.58±0.39 ◦ 84.68±0.31 ◦ 86.82±0.42 ◦ 85.48±0.57 ◦
2000 74.17 61.00 • 77.30±0.29 ◦ 87.37±0.49 ◦ 86.82±0.39 ◦ 87.30±0.31 ◦ 88.73±0.33 ◦ 85.97±0.26 ◦
2500 74.33 60.33 • 75.85±0.31 ◦ 88.48±0.52 ◦ 87.57±0.57 ◦ 88.72±0.35 ◦ 90.58±0.40 ◦ 89.58±0.51 ◦

◦, • statistically significant improvement or degradation

Table 4: Results from Experiment 2 showing accuracy and significance with respect to the custom KAM classifier.
All classifiers trained on orbits with 2500 points and tested on orbits with an increasing number of points as
indicated in the Dataset column.

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
cc

ur
ac

y
in

 %

Number of Points

Experiment 1: Cross Validation

CKAM
DKAM

NB
MLP
SVM
1NN
3NN

DT

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
cc

ur
ac

y
in

 %

Number of Points

Experiment 2: Test on Increasing Number of Points

CKAM
DKAM

NB
MLP
SVM
1NN
3NN

DT

Figure 8: Comparative performance for Experiment 1 on accuracy of classifiers (left) and Experiment 2 on the
effect of reduced number of points (right).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

T
im

e
P

er
 O

rb
it

(s
)

Number of Points

Per Orbit Feature Extraction Time

Figure 9: Per-orbit feature extraction time for orbits
with an increasing number of points.

from orbits with many points. As a result, the features
extracted are different. Therefore, one cannot expect
a feature-based classifier trained on orbits with many
points to perform well on orbits with few points.

Interestingly, the feature-based classifiers achieve
relatively good performance in spite of the difficulties
with few points. In the quasi-periodic orbit from
the figure, the MST is visually similar with 150 or
1000 points. Although the difference is much larger
for separatrices, the edge-related features such as the
uniformity and edge statistics are preserved. These
features have the highest informative value as shown in
Figure 7. In contrast, the default KAM classifier focuses
more on the intuitive but less informative features
such as fhyperbolic and ncluster, resulting in poorer
performance.

In addition, the accuracy of the default KAM
classifier worsens with more points. In contrast, the
other classifiers and the custom KAM improve with
more points. This is largely the result of applying
static rules and static thresholds under some implicit
assumptions about the orbits that do not hold in our
dataset. The default KAM approach was designed using
the Henon map as the source of the plots [7]. Figure 11
shows a cross–point region of a separatrix orbit from a
Henon map and from our data set, along with the MST.
In the Henon map, there is a dense collection of points
near the cross-point compared to points further along
the diameter. The lobes are also significantly wider
than the inter–point distance along the diameter. As
a result, the MST can effectively capture the structure
of the orbit with as few as 150 points. In our data set,
the lobes are much thinner, with the width of the lobe
approaching the inter-point distance along the diameter.
As a result, the MST has branches that cross the lobes.
When the number of points is small, the MST can no
longer capture the structure of the orbit. Further, in

Original 150 Points 1000 Points

Figure 10: Orbits illustrating the effects of reduced
number of points for the quasiperiodic (top), island
chain (middle), and separatrix orbits (bottom).

the separatrix from the Henon map, one can identify a
clear cross point, even with 150 points. In contrast, for
our data, the cross points are very noisy and contain
many small branches. As a result, the KAM approach
can only identify cross points near their true location.

7 Related Work

The analysis of Poincaré plots, in particular, the prob-
lem of classification of orbits, has been studied both in
the physics and in the machine learning communities.
Depending on the information available, the approaches
taken very. For example, if the equations describing the
particle trajectories are known, orbits can be classified
based on the parameters of the equations [3].

In our case, however, we are provided the points
which make up an orbit. The approach typically
used is to classify the orbits based on a description
extracted from the points. In the paradigm known as
spatial aggregation [8, 6], an approach based on visual
reasoning is proposed. Starting with an image-like input
(e.g. the points of an orbit), the idea is to transform
the point representation into more economical symbolic
representations using techniques similar to those in
computer vision. Such techniques are also used to
manipulate topological structures in spatial data. The
early work in the use of geometric and spatial reasoning

150 Points 1000 Points

Henon Map

Our data set

Figure 11: Zoomed-in areas of a Separatrix lobe from
orbits with 50 and 1000 points, illustrating the differ-
ences in separatrices in our data and in the one from the
KAM book [7]. Top row: Henon map with parameters
x = 0.5551, y = 0.1774, and α = 1.3284305. Bottom
row: a separatrix orbit from our data set with thin lobes.
Cross points are at the centers of the figures.

includes the analysis of Hamiltonian systems in the
KAM approach [7] used in this paper and the MAPS
system, which designs control laws based on a geometric
analysis of the state equations of a dynamical system [8].

More recently, the area of Qualitative Spatial Rea-
soning [2] has evolved to provide a solution to problems
where numerical methods cannot describe the geomet-
ric and topological structures in data sets required to
answer high-level spatial queries. This idea of spatial
reasoning is broadly applicable to problems in scientific
domains such as geographic information systems, me-
tereological and fluid flow analysis, and CAD systems.

8 Conclusion

In this paper, we consider the problem of classification
of orbits from fusion devices. We implemented and ex-
tended an existing rule-based algorithm called KAM
which uses features extracted from the graph represen-
tation of the orbit. We customized KAM to be more
suitable for our dataset and compared the performance
of the rule-based approach with several feature-based
classification algorithms.

Our experimental results show that the default
KAM algorithm performs very badly on our dataset
but that our customized version is comparable to the
other algorithms. The poor performance of the KAM
algorithm is best explained as the result of applying an
algorithm to a dataset for which it was not designed.
In addition, when the number of points in an orbit is
small, as is the case in experimental data, the accuracy
of our approach is relatively stable. Accuracy improves

when the algorithm can train and test on orbits with
the same number of points.

Our conclusion is that existing classification algo-
rithms like the k–nearest neighbor and the decision tree
hold the promise of providing automated classification
of orbit data. They outperform both the default and
our customized KAM classifier, have high accuracy, and
good tolerance for orbits with as few as 100 points. Ad-
ditionally, they are sufficiently straightforward to imple-
ment in the analysis pipeline after off-line training.

Our future work will concentrate on evaluation of
more sophisticated single-orbit features as well as fur-
ther testing with orbit data from different simulations.

Acknowledgments UCRL-CONF-215802: This
work was performed under the auspices of the U.S.
Department of Energy by University of California
Lawrence Livermore National Laboratory under con-
tract No. W-7405-Eng-48.

We gratefully acknowledge the domain expertise
provided by Neil Pomphrey and Don Monticello at
PPPL. We would also like to acknowledge Scott Klasky
for introducing us to this problem and for his support
of this work, including the access to the datasets.

Abraham Bagherjeiran is a graduate student at the
University of Houston. This work was done when he
was a student intern at LLNL during summer 2005.

References

[1] A. Bagherjeiran and C. Kamath. Graph-based tech-
niques for orbit classification: Early results. Tech-
nical Report UCRL-TR-215690, Lawrence Livermore
National Laboratory, 2005.

[2] C. Bailey-Kellogg and F. Zhao. Qualitative spatial rea-
soning: extracting and reasoning with spatial aggre-
gates. AI Magazine, 24(4):47–60, 2004.

[3] W. G. F. Core. Non-standard particle orbits in
a thermonuclear tokamak plasma. Nuclear Fusion,
40(10):1715–1719, 2000.

[4] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification. Wiley-Interscience, 2001.

[5] Ian H. Witten and Eibe Frank. Data Mining: Prac-

tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

[6] K. Yip and F. Zhao. Spatial aggregation: Theory
and applications. Journal of Artificial Intelligence

Research, 5:1–26, 1996.
[7] Kenneth Man-Kam Yip. KAM: A System for Intel-

ligently Guiding Numerical Experimentation by Com-

puter. MIT Press, 1991.
[8] F. Zhao. Extracting and representing qualitative be-

haviors of complex systems in phase space. Artificial

Intelligence, 69:51–92, 1994.

