
Graph-based Methods for Orbit Classification

Abraham Bagherjeiran, Chandrika Kamath ∗

Abstract

An important step in the quest for low-cost fusion power
is the ability to perform and analyze experiments in
prototype fusion reactors. One of the tasks in the
analysis is the classification of orbits in Poincaré plots
generated by the particles in a fusion reactor as they
move within the toroidal device. In this paper, we
describe the use of graph-based methods to extract
features from orbits. These features are then used
to classify the orbits into several categories. Our
results show that existing machine learning algorithms
are successful in classifying orbits with few points, a
situation which can arise in data from experiments.

Keywords: orbit, Poincaré plot, classification.

1 Introduction

The quest for low-cost fusion power has led to the
construction of devices such as the National Com-
pact Stellarator Experiment (NCSX) at the Princeton
Plasma Physics Laboratory (PPPL). These devices al-
low physicists to perform magnetic confinement exper-
iments which determine the best shape for the hot re-
acting plasma and the magnetic fields necessary to hold
it in place. In addition, advances in computational re-
sources have made possible the computational simula-
tion of these experiments in three dimensions over time.
This allows the physicists to design new reactors and
select the parameters to be used in experiments. The
experimental results are, in turn, used to validate the
simulations. Thus, the analysis of data from both simu-
lations and experiments is a key step in the understand-
ing and development of fusion reactors.

Figure 1 shows the schematic of the NCSX. A
particle moving around the torus will trace out a three-
dimensional trajectory over time. Consider a plane
intersecting the torus perpendicular to the magnetic
axis–a vertical slice through the torus. Let a point in
this plane be the intersection of the trajectory of the
particle with the plane as it starts to move through the
torus. After it completes one round through the torus,
it will likely intersect the plane at a different point. The

∗Center for Applied Scientific Computing, Lawrence Livermore

National Laboratory, Livermore, CA

Figure 1: A schematic of the NCSX reactor. Inset shows
a plane perpendicular to the magnetic axis illustrating
the intersections of the particles.

intersections of this trajectory with the plane form an
orbit.

Depending on the shape of the orbit, it can be
assigned a class label. Figure 2 depicts three different
orbits: a separatrix, an island chain, and a quasi-
periodic orbit. There is also an additional class of
stochastic orbits, which we will not consider in the
present analysis. Note that the quasi-periodic orbit
appears to be a closed curve with no apparent width.
The island chain orbit has two distinct islands in this
example. The separatrix orbit appears closed but has
radial gaps called lobes; there are two such lobes in this
orbit. Typically, all the orbits on a plane are provided
together in what is referred to as a “puncture plot” or
a “Poincaré plot”, as in Figure 1, inset.

Orbits from computer simulations usually consist
of a thousand or more points. In contrast, plots from
experiments consist of 50 to 100 noisy points, which
may be too few to correctly identify the shape. In our
work, we will consider how the accuracy of a classifier
changes as the number of points in an orbit is reduced.
If we can correctly classify orbits using a few points, it
reduces the time for the extraction of features and leads
to a faster turnaround in the analysis.

We next briefly describe our approach to the classi-
fication of orbits. Further details are available in [1, 2].

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(a) (b) (c)

Figure 2: Sample orbits from each class. (a) Quasi-
periodic, (b) Island Chain, and (c) Separatrix.

2 Orbit Preprocessing

Our approach to orbit classification is derived from a
graph-based method described in [6]. First, we compute
a graph representation of an orbit in the form of its
Euclidean Minimal Spanning Tree (MST). The MST of
a graph is a tree that contains all nodes of the graph
but the sum of the edge lengths in the tree is minimal.
Next, we partition the graph into independent clusters,
or subgraphs, by removing edges whose length exceeds
a threshold tpartition. Finally, we assign properties to
the nodes and edges of the entire orbit graph as well
as all the partitioned subgraphs. We next describe a
few illustrative properties extracted from the graphs. A
complete list can be found in [1].

• Each node has the cluster property, which is the
index of the subgraph to which the node belongs.

• The nodes along the diameter of the graph have
the property diameter set to true; otherwise, it is
set to false. The diameter is defined as the longest
shortest path between any two nodes in the graph.

• For each node v, with degree 3 or more, we compute
the branchLength property (Figure 3) as the length
of the longest path starting at v and not passing
through any other node along the diameter. Nodes
with degree less than 3 are ignored and assigned
branchLength(v) = 0. Each node is then assigned
two Boolean properties. Given thresholds 0 <
tshallow < tdeep, shallowBranch(v) is defined as:

true if branchLength(v) ≥ tshallow

false otherwise

and deepBranch(v) is defined as:

true if diameter(v) ∧ (branchLength(v) ≥ tdeep)
false otherwise

• The primaryBranch(v) property is defined as:

true if diameter(v) ∧ shallowBranch(v)∧
(branchLength(v) = maxw branchLength(w))

false otherwise

Figure 3: Branch calculation example on a subgraph.
The thick edges indicate the diameter of the graph.
Node labels indicate the branchLength values. Nodes
in the circled region are on the primaryBranch.

It is assigned to the branch node v whose path
is the longest branch path but not necessarily a
deep branch. After assigning the primaryBranch
property to all nodes along the diameter, the value
of the property is replicated to all non-diameter
descendants of a primary branch node.

3 Features and Classification Algorithms

We next use the properties described in the previous sec-
tion to create the features for classification algorithms.
We consider three approaches: the rule-based approach
of [6], which we call the default KAM, a customized ver-
sion of KAM which has been modified for our data, and
several standard machine learning classifiers.

Since orbits can vary in size, all lengths are given as
fractions of the diameter length. We use the following
notation in the rest of this section.

• fX : A feature X that is a fraction with range [0, 1].

• nX : Number of nodes that satisfy property X.
Since all nodes have the property node(v), the value
nnode is the number of nodes in the graph.

3.1 The Default KAM classifier For the default
KAM classifier, we first extract the features described
in the book [6]. Example features include:

• d: The Euclidean distance between the initial and
final nodes of the diameter as a fraction of the total
path length between the nodes.

• nshallow: Number of shallow branch nodes.

• fshallow: Fraction of shallow branch nodes:
nshallow/nnode.

• nclusters: The number of clusters found in the
graph partitioning process.

• Origin: Indicates if the orbit contains the origin of
the predefined magnetic axis.

After extracting the features, the KAM classifier applies
a set of static rules to determine whether an orbit
belongs to one of the classes. For example, an orbit is
quasi-periodic if it includes the origin and satisfies the
following rule: (nclusters = 1) ∧ (nshallow < pbranch) ∧
(d ≤ pd) where pd is a parameter set by the user.
The rules for other orbit classes, the values of the
parameters, and the determination of thresholds, are
described in [1].

3.2 The Custom KAM classifier Our work on the
default KAM approach indicated that we could improve
the results by including one additional feature with a
new threshold:

• fLS : Fraction of clusters that are line segments. A
line segment is a graph whose Euclidean distance
between the initial and final node of the diameter
is a large fraction of the total diameter path length
with respect to the threshold tLS .

Further, to allow more expressive rules in our custom
KAM algorithm, we use real-valued instead of Boolean
predicates and real-valued combination operators. This
allows for a partial (instead of Boolean) evaluation
which is tolerant to poorly selected thresholds and
parameters. Thus, the quasi-periodic rule evaluation
KQ has three components that mirror the default KAM
rules:

KQ1
= nshallow ≤ pbranch

KQ2
= d < pd

KQ3
= Origin

The final evaluation is the average of the component
predicates:

KQ =
1

3
(KQ1

+ KQ2
+ KQ3

)

The remainder of the rules are similarly defined as
averages of their respective components predicates. The
process for evaluation of the parameters and thresholds
is described in [2].

3.3 The Standard Machine Learning Classifiers

We use the features extracted for both the default
and custom KAM classifiers to train standard machine
learning classifiers. We include additional features that
convey the underlying statistics of the edges and clusters
of the orbits, such as

• µlength: Average edge length.

• σlength: Standard deviation of the edge length.

• u: Diameter uniformity defined as the difference
between the average edge length and what would
occur if the points were equally spread across the

diameter:
|µlength−ū|

ū
. If the points were distributed

at equal intervals along the diameter, the average
edge length would be ū = 1

ndiameter
.

• µd: Average diameter endpoint distance for each
cluster.

• fcluster: Fraction of clusters to nodes: nclusters

nnode
or

the percent of nodes that are clusters.

These features are used in the following traditional
classification algorithms: Näıve Bayes, Multilayer Per-
ceptron, Support Vector Machine, k-Nearest-Neighbor,
and Decision Tree, which are available as part of the
Weka machine learning toolkit [4].

4 Experimental Results

We perform two experiments to evaluate our approach
on 6 plots each containing 100 orbits from simulations
of the CDX tokamak at PPPL. The number of points
in each orbit is variable. We hand labeled these orbits
to create a training set. For instance-based classifiers
such as the nearest-neighbor algorithm, we normalized
the features to be in the range [0, 1].

Experiment 1: Classification Accuracy We
compare the accuracy of various classifiers by perform-
ing 10 runs of 10-fold stratified cross-validation. The
classifiers are both trained and tested on features ex-
tracted from the orbits using the first N points. The
number of points for each run is in the set

N ∈ {50, 100, 200, . . . , 1000, 1500, 1800, 2000, 2500}

where the maximum number of possible points for any
orbit in the dataset was 3000.

Experiment 2: Reduced Number of Points

We perform a similar comparison by performing 10 runs
of 10-fold stratified cross-validation. The classifiers are
trained on features from orbits with 2500 points, but
tested on orbits with N points. This allows us to
determine the accuracy when we train on orbits with a
large number of points and test on orbits with a reduced

number of points. The classifiers used the same orbits
in the same order as in the previous comparison; only
the number of points was changed.

4.1 Results and Discussion Figure 4 shows the
time to extract features for an average orbit as the
number of points is increased. This indicates the trade-
offs between the higher accuracy resulting from more
points and the corresponding increase in the cost of
feature extraction.

Figure 5 shows the results from the two experi-
ments, indicating the average accuracy. The results for
Experiment 1 show that the customized KAM classifier
is a vast improvement over the original KAM in most
cases. Also, the features allowed the other traditional
classification algorithms to outperform both the KAM
classifiers in most cases. Interestingly, the simplest
classifiers–decision tree and nearest neighbor–appear to
be the overall winners in this comparison.

The results for Experiment 2, however, show that
training on a large number of points and then testing on
a small number of points does not seem to improve the
accuracy results, significantly. Comparing the results
of the two experiments, we observe that for orbits
with more than 1500 points, training on orbits with
a large number of points does give similar accuracy
to that of Experiment 1. However, for orbits with a
smaller number of points (50 to 400), the accuracy is
significantly improved when both training and testing
on these low-point orbits as in Experiment 1.

This effect of a reduced number of points in an
orbit is best explained in Figure 6. The figure shows
3 example orbits with 150 and 1000 points. At 1000
points, the MST correctly identifies the outline of
the shapes. At 150 points, however, the separatrix
contains far too few branches because the MST forms a
“zig-zag” pattern connecting points that are branches
at 1000 points. In the quasi-periodic orbit, KAM
detects multiple clusters misclassifying both it and the
separatrix as island chains. At 1000 points, only the
island chain orbit has several clusters. Although the
feature-based classifiers perform better than KAM, they
use the features generated by the graph-based approach
of KAM. The results, therefore, reflect the quality of
these features.

The reliance on graph-based KAM features also ex-
plains why the feature-based algorithms perform bet-
ter when trained and tested on the same number of
points. Orbits with few points clearly appear different
from orbits with many points. As a result, the features
extracted are different. Therefore, one cannot expect
a feature-based classifier trained on orbits with many
points to perform well on orbits with few points.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

T
im

e
P

er
 O

rb
it

(s
)

Number of Points

Per Orbit Feature Extraction Time

Figure 4: Per-orbit feature extraction time for orbits
with an increasing number of points.

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
cc

ur
ac

y
in

 %

Number of Points

Experiment 1: Cross Validation

CKAM
DKAM

NB
MLP
SVM
1NN
3NN

DT

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
cc

ur
ac

y
in

 %

Number of Points

Experiment 2: Test on Increasing Number of Points

CKAM
DKAM

NB
MLP
SVM
1NN
3NN

DT

Figure 5: Comparative performance for Experiment 1
on accuracy of classifiers (top) and Experiment 2 on the
effect of reduced number of points (bottom).

Original 150 Points 1000 Points

Figure 6: Orbits illustrating the effects of reduced
number of points for the quasiperiodic (top), island
chain (middle), and separatrix orbits (bottom).

5 Related Work

The analysis of Poincaré plots, in particular, the prob-
lem of classification of orbits, has been studied in both
the physics and machine learning communities. When
the points that make up an orbit are available, the ap-
proach typically used is to classify the orbits based on
a description extracted from the points. In spatial ag-
gregation [7, 5], an approach based on visual reasoning
starts with an image-like input (e.g. the points of an or-
bit), and transforms the point representation into more
economical symbolic representations using techniques
similar to those in computer vision. Such techniques are
also used to manipulate topological structures in spatial
data. The early work in the use of geometric and spatial
reasoning includes the analysis of Hamiltonian systems
in the KAM approach [6] used in this paper and the
MAPS system, which designs control laws based on a
geometric analysis of the state equations of a dynami-
cal system [7].

More recently, the area of Qualitative Spatial Rea-
soning [3] has evolved to provide a solution to problems
where numerical methods cannot describe the geomet-
ric and topological structures in data sets required to
answer high-level spatial queries. This idea of spatial
reasoning is broadly applicable to problems in scientific
domains such as geographic information systems, mete-

orological and fluid flow analysis, and CAD systems.

6 Conclusion

In this paper, we considered the problem of classifying
orbits from fusion devices. We showed how an existing
rule-based algorithm called KAM, which uses features
extracted from the graph representation of the orbit,
can be customized to be more suitable for our dataset.
Comparing the performance of several feature-based
classification algorithms, we find that they outperform
both the default and our customized KAM classifiers,
have high accuracy, and good tolerance for orbits with
few points. They are also sufficiently straightforward to
implement in the analysis pipeline after off-line training.

Our future work will concentrate on evaluation of
more sophisticated single-orbit features as well as fur-
ther testing with orbit data from different simulations.

Acknowledgments UCRL-CONF-215802: This
work was performed under the auspices of the U.S.
Department of Energy by University of California
Lawrence Livermore National Laboratory under con-
tract No. W-7405-Eng-48.

We gratefully acknowledge the domain expertise
provided by Neil Pomphrey and Don Monticello at
PPPL. We also acknowledge Scott Klasky for introduc-
ing us to this problem and for his support of this work.

Abraham Bagherjeiran is a graduate student at the
University of Houston. This work was done when he
was a student intern at LLNL during Summer 2005.

References

[1] A. Bagherjeiran and C. Kamath. Graph-based meth-
ods for orbit classification (extended version). Techni-
cal Report UCRL-CONF-215802, Lawrence Livermore
National Laboratory, 2005.

[2] A. Bagherjeiran and C. Kamath. Graph-based tech-
niques for orbit classification: Early results. Tech-
nical Report UCRL-TR-215690, Lawrence Livermore
National Laboratory, 2005.

[3] C. Bailey-Kellogg and F. Zhao. Qualitative spatial rea-
soning: extracting and reasoning with spatial aggre-
gates. AI Magazine, 24(4):47–60, 2004.

[4] Ian H. Witten and Eibe Frank. Data Mining: Prac-

tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

[5] K. Yip and F. Zhao. Spatial aggregation: Theory
and applications. Journal of Artificial Intelligence

Research, 5:1–26, 1996.
[6] Kenneth Man-Kam Yip. KAM: A System for Intel-

ligently Guiding Numerical Experimentation by Com-

puter. MIT Press, 1991.
[7] F. Zhao. Extracting and representing qualitative be-

haviors of complex systems in phase space. Artificial

Intelligence, 69:51–92, 1994.

