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Multiphysics Problems

“Multiphysics problems” typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Typical difficulties in simulating multiphysics problems include:

Multi-rate proceses, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, challenging standard standard solvers.

Many codes utilize lowest-order time step splittings, but may suffer from:

Low accuracy – typically O(∆t)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid,& Ober 2005].

Poor/unknown stability – even when each part utilizes a ’stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].
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Increased Implicit Accuracy & Stability

Current production IVP libraries focus on linear multistep methods:

Single implicit solve per step; high order comes through reusing old steps.

Linearly stable up to O
(
∆t2

)
, but stability region shrinks rapidly for higher

order, with little utility over O
(
∆t5

)
.

Adaptivity is based on similarity between predictor (explicit) & corrector
(implicit); primarily valid in regimes where both methods useful,
i.e. questionable for stiff problems.

Runge-Kutta methods:

No Dahlquist barrier – A-stability possible even at high order. B-stability
provable for many methods.

Adaptivity based on embedded methods, allow implicit/stable solves for
both solution & embedding ⇒ applicable across a wider problem set.

Benefits come at the price of multiple implicit solves per step, or a single
but larger implicit solve per step.
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Single-Step Evolution for Space-Time Adaptivity

While temporally adaptive, traditional IVP libraries limit spatial adaptivity:

Assume the solution y ∈ RN , with N fixed throughout solve.

Essential for linear multistep methods since step history generates order.

Spatial adaptivity possible, but requires costly projection of step history
and internal data structures onto new spatial domain.

Runge-Kutta methods:

Since high order is obtained via stages within step, no history is required.

Only need y ∈ RNk , with Nk fixed within (but variable between) steps.

Spatial adaptivity between steps easily incorporated, assuming solver data
structures support vector resizing.
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2-Additive Runge-Kutta Methods [Ascher et al. 1997; Araújo et al. 1997]

ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, T ], y(0) = y0,

M = M(t) is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit physics,

fI(t, y) contains the implicit physics.

We combine two s-stage methods (ERK + DIRK). Denoting tn,j = tn + cj∆t,

Mzi = Myn + ∆t

i−1∑
j=1

AEi,jfE(tn,j , zj) + ∆t
i∑

j=1

AIi,jfI(tn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + ∆t
s∑
j=1

bj (fE(tn,j , zj) + fI(tn,j , zj)) [solution]

Mỹn+1 = Myn + ∆t
s∑
j=1

b̃j (fE(tn,j , zj) + fI(tn,j , zj)) [embedding]
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ARK Coefficients

Allows two Butcher tables that define the method:

{ci}i=1 ...,s are the shared stage times for the two tables

{bi}i=1,...,s are the shared solution coefficients for the two tables{
b̃i
}
i=1,...,s

are the shared embedding coefficients for the two tables{
aEi,j
}
i=1,...,s,j=1,...,i−1

are the explicit method coefficients{
aIi,j
}
i=1,...,s,j=1,...,i

are the diagonally-implicit method coefficients

Notes:

Explicit method: aIi,j = 0 and all physics in fE(t, y).

Implicit method: aEi,j = 0 and all physics in fI(t, y).

ImEx method: coefficients are derived in unison to satisfy coupling
between components (unlike arbitrary splittings).



Motivation ARKode Methods Example Results Conclusions

Solution Algorithm – Stage Solutions, zi, i = 1, . . . , s

ERK stages: The stage is computed explicitly as a linear combination of previous
stage right-hand sides, followed by a simple linear solve (if M 6= I)

Mzi = Myn + h

i−1∑
j=1

AEi,jfE(tn,j , zj)

DIRK stages: The stage is computed as the solution of a nonlinearly implicit
equation, with right-hand side like an ERK method,

Mzi − hAIi,ifI(tn,i, zi) = Myn + h

i−1∑
j=1

AIi,jfI(tn,j , zj)

ARK stages: The stage is computed like a DIRK, but the right-hand side
contains explicit components,

Mzi − hAIi,ifI(tn,i, zi) = Myn + h

i−1∑
j=1

(
AEi,jfE(tn,j , zj) +AIi,jfI(tn,j , zj)

)
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Solution Algorithm – Solution & Error Estimate

Once all stages, zi, i = 1, . . . , s, have been computed, we finish the step:

Solution: just a linear combination of the stage right-hand sides, followed by a
simple linear solve (if M 6= I):

Myn+1 = Myn + h
s∑
j=1

bj
(
fE,j + fI,j

)
Local Error Estimate: the embedding is like yn+1 but with coefficients b̃j , so we
compute the local temporal error estimate T by computing/solving:

MT = h

s∑
j=1

(bj − b̃j)
(
fE,j + fI,j

)
Scalar Error Estimate: to determine step success/failure, we ensure that the
scalar error estimate satisfies (where yn ∈ RNk ):

‖T‖WRMS :=

 1

Nk

Nk∑
i=1

(
Ti

rtol |yn,i|+ atol

)2
1/2

≤ 1.
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Implicit Solver – with multiple solves per step, efficiency is paramount

Nonlinear:

Modified Newton (serial, dense linear algebra) – Newton method that
reuses Jacobian between multiple stages/steps for increased efficiency.

Inexact Newton – linear solver tolerances are modified at each step to
achieve superlinear convergence with minimal linear solver work.

Andersen-accelerated fixed-point (see Carol Woodward’s talk, MS 6) –
fixed point solver with GMRES-like subspace acceleration.

Nonlinear tolerances adjusted by solver to attain requested solution
accuracy without oversolves.

Linear:

Direct – full and band solvers from SUNDIALS or LAPACK; KLU &
SuperLU coming soon.

Krylov – GMRES, FGMRES, BiCGStab, TFQMR or PCG.

User-supplied right/left preconditioning supported.

Newton and mass-matrix solvers can be mix-and-matched.
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Efficiency Enhancements

Additional options that may increase efficiency:

Implicit predictors – supports simple/safe predictors, through quadratic
Hermite predictors. Also allows user-supplied predictors.

Advanced temporal adaptivity controllers – supports modern
control-theoretic algorithms for maximizing step sizes while reducing
error/convergence failures. Also supports user-supplied controllers.

Explicit stability control – supports user-supplied routines that provide
maximally stable explicit step, to minimize error failures.

Data structure resize capability – for problems with changing Nk, data
structures may be resized without requiring destruction/reinitialization.

All internal solver parameters are fully documented and modifiable by the
user to tune for a particular problem.
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ARKode, the newest member of SUNDIALS

As a part of the FASTMath SciDAC Institute, ARKode is being integrated as a
new component solver within SUNDIALS.

Similar user interface as CVODE, albeit with separate user-specified
fE(t, y) and fI(t, y), and potentially user-supplied M or My routines.

Data structure agnostic – as long as the basic vector kernels are supplied,
problem-specific data structures are allowed. Will even call a user-supplied
vector “resize” function to expand/contract the data structure.

High-order accurate dense output, allowing efficient interpolation of results
between integration steps.

Parameters optimized for iterative solvers and large-scale parallelism.

Exhaustive suite of example and regression test problems.

Main site: http://faculty.smu.edu/reynolds/arkode

Repository: http://bitbucket.org/drreynolds/arkode pub
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ParaDiS – Parallel Dislocation Dynamics Simulator

Modeling material strain hardening:

A dislocation is a line defect in the
regular crystal lattice structure.

Plasticity is caused by multiple
dislocation lines forming in response
to an applied stress/strain.

ParaDiS simulates the motion,
multiplication, and interactions of
discrete dislocation lines.

Attempts to connect dislocation
physics with material strength, to
understand how material strength
changes under applied load.

Growth factor calculations in an explosively

driven Rayleigh-Taylor instability:

[Park et al., PRL, 104, 135504 (2010)]

[Barton et al., J. App. Phys., 109, 073501 (2011)]
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The ParaDiS Model

Discretize dislocation lines as
segments terminated by nodes
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Force calculations utilize local and
FMM methods

MPI + OpenMP parallelization

Fully adaptive data structure, with
topology changes at every step
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Algorithm flow:

Nodal force calculation:

f tot
i (t, r) = f self

i (r) + f seg
i (r) + f ext

i (t, r)

Nodal velocity calculation
(material-dependent Mij):

vi(t, r) =
dri

dt
= Mij fj(t, r)

Time integration:

ri(t+ ∆t) = ri(t) +

∫ t+∆t

t
vi(t, r) dt

Topology changes (insert/merge nodes):
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ParaDiS Results – Frank-Read Source

Simple test problem:

Single initial dislocation

Constant strain bends/reconnects,
creating two concentric dislocations
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Strain rate 1 s−1; Final time 50 µs

Comparison between:

Native Trapezoid solver:
basic fixed-point (2,3 iters)
KINSOL Trapezoid solver:
AA (2-4 iters)
DIRK, O

(
∆t3

)
→ O

(
∆t5

)
:

NK and AA (4 iters each)

Method Steps %Speedup

Trap FP I2 6284 0.0

Trap FP I3 4990 20.0

Trap AA I2 V1 6447 -4.9

Trap AA I3 V2 2316 61.7

Trap AA I4 V3 2017 66.3

DIRK3 NK I4 242 93.0

DIRK4 NK I4 213 95.3

DIRK5 NK I4 212 92.1

DIRK3 AA I4 V3 127 97.5

DIRK4 AA I4 V3 194 95.6

DIRK5 AA I4 V3 128 96.9

[Graphic: http://classes.geology.illinois.edu/07fallclass/geo411/ductile/ductile.html]
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ParaDiS Results – Target Test Problem

“Real” problem, mid-simulation:

Body-centered-cubic crystal structure,
Ω = 4.25 µm3

Strain rate 102 s−1

3.3 µs ≤ t ≤ 6.25 µs

∼2850 initial nodes, ∼5000 final

MPI test runs with 16 cores

Comparison between:

Native Trapezoid solver:
basic fixed-point (2 iters)

KINSOL Trapezoid solver:
AA (2-6 iters)

DIRK O
(
∆t3

)
solver:

AA (2-6 iters), εn = 1

Larger tests (∼250k cores) ongoing

Method Steps %Speedup

Trap FP I2 9137 0.0

Trap AA I4 V3 3262 42.9

Trap AA I5 V4 2987 45.0

Trap AA I6 V5 2032 55.1

Trap AA I7 V6 1981 53.5

DIRK3 AA I4 V3 323 65.1

DIRK3 AA I5 V4 297 66.9

DIRK3 AA I6 V5 303 64.9

DIRK3 AA I7 V6 311 63.0

DIRK5 AA I4 V3 280 51.2

DIRK5 AA I5 V4 241 53.9

DIRK5 AA I6 V5 246 50.5

DIRK5 AA I7 V6 274 45.0
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Conclusions

ARK methods allow accurate/stable methods for a variety of problems:

No Dahlquist barrier – high accuracy & stability simultaneously possible

Allows adaptive ERK, DIRK or fully-coupled ImEx methods

Embeddings allow robust error estimation and timestep adaptivity

Single-step methods play well with spatial adaptivity

ImEx allows “convenient” preconditioners that treat only stiff components

The ARKode library:

Flexible solver infrastructure, with a variety of nonlinear/linear solvers

Support for non-identity mass matrices (FEM)

Allows on-the-fly vector resizing

Freely-available, included in the upcoming SUNDIALS release
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Temporary File Systems 
Parallel File Systems 
LC provides several large parallel file systems for parallel I/O. 
These temporary file systems are typically found in a directory 
named /p/l*, where l* indicates Linux Lustre file systems. 
There are no quotas on the parallel file systems, but they are subject 
to purging as described in the news item accessible by typing news 
purge.policy. 
Type quota –v to see current file system usage. For more 
information on LC file systems, see the EZFILES manual at 
https://computing.llnl.gov/LCdocs/ezfiles.  
Serial File Systems 
There are two other temporary file system choices on LC systems. 
These file systems are targeted for serial I/O and should not be used 
for parallel I/O. 

/nfs/tmp2  Large file system, globally available to all LC 
OCF and SCF systems with a per-user crash barrier of 
2 TB. 

/var/tmp (/usr/tmp)  Each node has a small /var/tmp 
(/usr/tmp) accessible only from that node. 

All temporary file systems share these characteristics: 
• They are not backed up. 
• Files are subject to purge as needed. The purge may remove files 

that meet a criterion, often more than 10 days since last access 
(or 5 days when necessary) to make room on the file system. 

• For long-term storage of files, use the archival storage facility. 
Temporary file system quota and purge information is described in 
the news item accessible by typing news purge.policy. 
Storage (High Performance Storage System) 
HPSS is an archival storage facility on both the OCF and SCF. This 
facility provides long-term storage for each user. All LC users are 
given a storage account. Type ftp storage.llnl.gov to 
access your storage account. Use FTP commands to put files into 
storage and to retrieve them. 
There is a yearly growth quota on HPSS storage. Type aquota to 
reveal your current yearly growth and the pools from which you 
have quota allocations. 
For information about other higher-performance interfaces to 
storage see the EZSTORAGE manual at 
https://computing.llnl.gov/LCdocs/ezstorage. 
Development Environment 
LC provides support for compilers, debuggers, performance 
analysis tools, and parallel tools and libraries on all LC platforms. 
Languages include C, C++, and Fortran; parallel APIs include MPI, 
OpenMP, and Pthreads. For additional details, see: 

• Supported Software and Computing Tools 
https://computing.llnl.gov/code/content/software_tools.php 

• Available Compilers 
https://computing.llnl.gov/code/content/compilers.php 

• MPI/OpenMP Usage 
https://computing.llnl.gov/mpi/libraries.html 

LC Batch System
User work on LC systems is done within LC’s batch system, Moab. You 
can use msub to submit jobs and showq or checkjob to monitor jobs. 
For more information: 

• See man pages for msub, showq, and checkjob 
• Computing resource management documentation is available at 

https://computing.llnl.gov/jobs/content/crm.php. 
• Type news job.lim.<cluster-name> on any LC system for 

information about batch and interactive job limits  
(e.g., news job.lim.cab). 

File Interchange Service 
FastFIS can be used to move files from the OCF CZ/RZ to the SCF. You 
must request a FIS account from the LC Hotline to use this service. For 
information about FastFIS, refer to the File Interchange Service manual at 
https://computing.llnl.gov/LCdocs/fis/. 
Additional Information 

• Message of the day (MOTD) 
The announcements print out when you log in to an LC machine. 

• News postings 
The latest unread news items are listed following the MOTD and can 
be read by typing news <item_name>. To list all news items, type 
news –n. 

• System status 
CZ/RZ machine and file system status are available from the  
System Status navigation link at https://computing.llnl.gov/. 

• Technical Bulletins  
https://lc.llnl.gov/computing/techbulletins/ 

• Forms 
https://computing.llnl.gov/forms/ 

• Training (tutorials) 
https://computing.llnl.gov/training/ 

• Documentation 
https://computing.llnl.gov/documentation/ 

• E-mail lists 
You will be alerted via e-mail to changes, scheduled events, and 
problems on those system(s) on which you have an account. 

 

LC Quick Guide 
 
 

User Information 
https://computing.llnl.gov/ 

LC Hotline Technical Consultants 

OCF e-mail: lc-hotline@llnl.gov 
SCF e-mail: lc-hotline@pop.llnl.gov 

Phone: (925) 422-4531, option 1 

LC Hotline Account Specialists 
OCF e-mail: lc-support@llnl.gov 

SCF e-mail: lc-support@pop.llnl.gov 

Phone: (925) 422-4531, option 2 

Walk-in: B453, Room 1103 
Monday–Friday, 8:00 a.m.–noon, 1:00–4:45 p.m. 

LC Operations 
(Available 24 hours a day/7 days a week) 

OCF e-mail: lc-operator@llnl.gov 
SCF e-mail: ops@pop.llnl.gov 

Phone: (925) 422-4531, option 3 
 

 

 
at 

Lawrence Livermore National Laboratory 
 
 
UCRL-TB-148428  This work performed under the auspices of the  
U.S. Department of Energy by Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. 

Revised July 30, 2013 
 

Software:

ARKode – http://faculty.smu.edu/reynolds/arkode

SUNDIALS – https://computation.llnl.gov/casc/sundials

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.
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First-Order Splittings

Denote Si(h, u(tn)) as a solver for the component ∂tu = fi(t, u) over a time
step tn → tn + h ≡ tn+1, with initial condition u(tn).

To evolve u(tn)→ u(tn+1), we can use different solvers at the same h,

û = S1 (h, u(tn)),

u(tn+1) = S2 (h, û),

or we may subcycle time steps for individual components,

ûj+1 = S1

(
h
m
, ûj
)
, j = 0, . . . ,m, û0 = u(tn),

u(tn+1) = S2 (h, ûm),

Unless the Si commute [i.e. S1(h, S2(h, u)) = S2(h, S1(h, u))] or the splitting
is symmetric, these methods are at best O(h) accurate
(no matter the accuracy of the individual solvers).
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Fractional Step (Strang) Splitting [Strang 1968]

“Strang splitting” attempts to achieve a higher-order method using these
separate component solvers, through manually symmetrizing the operator:

û1 = S1

(
h
2
, u(tn)

)
,

û2 = S2 (h, û1),

u(tn+1) = S1

(
h
2
, û2

)
.

This approach is O(h2) as long as each Si is O(h2).

However:

This asymptotic accuracy may not be achieved until h is very small, since
error terms are dominated by inter-process interactions
[Ropp, Shadid,& Ober 2005].

Numerical stability isn’t guaranteed even if h is stable for each component
[Estep et al., 2007].
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Operator-Splitting Issues – Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either
component, due to numerical resonance instabilities [Grubmüller 1991].

Brusselator Example (Reaction-Diffusion):

∂tT = 1
40
∇2T + 0.6− 3T + T 2C,

∂tC = 1
40
∇2C + 2T − T 2C,

Three solvers:

(a) Basic split: D (trap.) then R
(subcycled BDF).

(b) Strang: h
2

R, hD, h
2

R,

(c) Fully implicit trapezoidal rule,

Results:
(a) is stable but inaccurate for all tests;
(b) unusable until h is “small enough”.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit
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Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.
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very disturbing convergence behavior when both spatial and temporal discretizations are considered. For
example, for a fixed time step, decreasing the mesh spacing can cause an increase in the error at moderate
integration times of 6.7s.

This instability was also observed in [15], in which a model of chemotaxis was studied. This paper did not
come to the attention of the authors until after the first draft of the current paper, so that model is not
examined here.

If we compare the operator forms of FS-DR and Strang RDR, we have for FS-DR

un ¼ SDtDDtun"1 ¼ SDtDDt # # # SDtDDtu0 ¼ SDtDDtð Þnu0;

while for Strang RDR we have

un ¼ SDt=2DDtSDt=2un"1 ¼ SDt=2DDtSDtDDt # # #DDtSDt=2u0 ¼ SDt=2DDt SDtDDtð Þn"1SDt=2u0:

Thus, with the exception of their starting and stopping steps, the order and frequency of the split steps
are equivalent for these two methods. We therefore heuristically conclude that any difference in stability
between the FS-DR and Strang RDR methods is due to differences in stability of the methods used for
the split steps. Since the reaction steps are all solved with the same method, we suspect that the stability
of FS-DR is due to the backward Euler method!s strong damping of high wave number modes in the dif-
fusion step. Similarly, the instability of Strang RDR may be due to the trapezoidal rule!s poor damping of
high wave number modes. Indeed, though not shown here, FS-DR is unstable if the trapezoidal rule is used
for diffusion, while Strang RDR is stable if backward Euler is used for diffusion. We analyze the FS-DR
method further in Section 4.

4. Stability of operator-splitting methods: A-stability

The definitions of stability we use here consider the linear system

du
dt

¼ k; uð0Þ ¼ u0; ð5Þ
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Fig. 2. Solution using Strang RDR with Dt = 1.6 & 0.13s at t = 32 & 2.7s (s = 12). The reference solution at this time is also plotted.
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Operator Splitting Issues – Accuracy [Estep 2007]

Consider Ω = Ω1 ∪ Ω2 where the subdomains share a boundary Γ = ∂Ω1 ∩ ∂Ω2:

∂tu1 = ∇2u1, x ∈ Ω1, ∂tu2 = 1
2
∇2u2, x ∈ Ω2,

u1 = u2, ∇u1 · n = ∇u2 · n, for x ∈ Γ.

Solved using one Gauss-Seidel iteration: S1 on Ω1, then S2 on Ω2 (both trapezoidal).
Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:

Parabolic Problems Coupled Through a Boundary
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The error arising from incomplete iteration on each step
becomes negligible as time passes

The transfer error accumulates with time and becomes the
largest source of error

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 23/65

Parabolic Problems Coupled Through a Boundary
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Though we use second order accurate methods for each
component, the error in the operator decomposition
approximation is only first order in space

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 24/65

Error from incomplete iteration decreased with time.

Transfer error accumulated and became dominant with time.

While each Si was O(h2), the coupled method was only O(h).
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Operator-Splitting Issues – Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):

∂tu = −λu+ u2, u(0) = u0, t > 0.

Phase 1 (R): ∂tur = u2
r, ur(tn) = un, t ∈ [tn, tn+1],

Phase 2 (D): ∂tud = −λud, ud(tn) = ur(tn+1), t ∈ [tn, tn+1].

True solution, u(t) =
u0e
−λt

1 + u0
λ

(e−λt − 1)
, is well-defined ∀t if λ > u0.

Split solution, u(tn+1) =
u(tn)e−λh

1− u(tn)h
, can blow up in finite time.

Results using 50
time steps, with
varying amounts
of subcycling.

!  Example from Estep et al. (2007),   ! = 2, u0 = 1 
!  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  
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