ARKode: A library of high order implicit/explicit methods for
multi-rate problems

Daniel R. Reynolds®, Carol S. Woodward*,
David J. Gardner’ and Alan C. Hindmarsh*

reynolds@smu.edu

TDepartment of Mathematics, Southern Methodist University
*Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

SIAM Conference on Parallel Processing for Scientific Computing
February 21, 2014

- M Lawrence Livermore
SMU MATH Ud National Laboratory

Outline

© Motivation
© ARKode Methods
© Example Results

© Conclusions

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

Motivation

Outline

© Motivation

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

Motivation

@00

Multiphysics Problems

“Multiphysics problems” typically involve a variety of interacting processes:
@ System of components coupled in the bulk [cosmology, combustion]

@ System of components coupled across interfaces [climate, tokamak fusion]

Typical difficulties in simulating multiphysics problems include:
@ Multi-rate proceses, but too close to analytically reformulate.
@ Optimal solvers may exist for some pieces, but not for the whole.

@ Mixing of stiff/nonstiff processes, challenging standard standard solvers.

Many codes utilize lowest-order time step splittings, but may suffer from:
o Low accuracy — typically O(At)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid,& Ober 2005].

@ Poor/unknown stability — even when each part utilizes a 'stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Motivation

oeo

Increased Implicit Accuracy & Stability

Current production IVP libraries focus on linear multistep methods:
@ Single implicit solve per step; high order comes through reusing old steps.

e Linearly stable up to O(At?), but stability region shrinks rapidly for higher
order, with little utility over O(A¢%).

@ Adaptivity is based on similarity between predictor (explicit) & corrector
(implicit); primarily valid in regimes where both methods useful,
i.e. questionable for stiff problems.

Runge-Kutta methods:

@ No Dahlquist barrier — A-stability possible even at high order. B-stability
provable for many methods.

o Adaptivity based on embedded methods, allow implicit/stable solves for
both solution & embedding = applicable across a wider problem set.

@ Benefits come at the price of multiple implicit solves per step, or a single
but larger implicit solve per step.

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Motivation

ooe

Single-Step Evolution for Space-Time Adaptivity

While temporally adaptive, traditional IVP libraries limit spatial adaptivity:
@ Assume the solution y € RY, with N fixed throughout solve.
o Essential for linear multistep methods since step history generates order.

@ Spatial adaptivity possible, but requires costly projection of step history
and internal data structures onto new spatial domain.

Runge-Kutta methods:
@ Since high order is obtained via stages within step, no history is required.
@ Only need y € RV, with Ny, fixed within (but variable between) steps.

o Spatial adaptivity between steps easily incorporated, assuming solver data
structures support vector resizing.

- M Lawrence Livermore
SMU MATH Ud National Laboratory

ARKode Methods

Outline

© ARKode Methods

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

ARKode Methods
[1o}

2-Additive Runge-Kutta Methods [Ascher et al. 1997; Aratjo et al. 1997]

ARKode employs an additive Runge-Kutta formulation, supporting up to two split
components: explicit and implicit,

My = fe(t,y) + frt,y), telto,T], y(0)=yo,

@ M = M(t) is any nonsingular linear operator (mass matrix, typically M = I),
@ fr(t,y) contains the explicit physics,
@ f1(t,y) contains the implicit physics.

We combine two s-stage methods (ERK + DIRK). Denoting t, j = tn + ¢; AL,

i—1 7
Mz = Myn + Atz AfjfE(tn,ﬁszj) + AtZAZ{ij(t'n,ijj)v 1=1,...,s,
=1 j=1

S
Myny1 = Myn + At > b (f(tn,j,2) + f1(tn j, 7)) [solution]
j=1

S
Mgp4+1 = Myn + Atz bj (fE(tn,j,25) + f1(tn,j,2;)) [embedding]
j=1

- M Lawrence Livermore
SMU MATH L\g National Laboratory

ARKode Methods
(o] }

ARK Coefficients

Allows two Butcher tables that define the method:
o {ci},_, are the shared stage times for the two tables

o {bi},_, are the shared solution coefficients for the two tables

.....

{I;i} are the shared embedding coefficients for the two tables
1=1,...,s

E
{am}Z,:L_MS’J,:L”_’F1 are the explicit method coefficients

{a'{vj}izl,...,s,jzl,...,i are the diagonally-implicit method coefficients

Notes:
o Explicit method: a{,j = 0 and all physics in fe(t,y).
o Implicit method: (LFJ = 0 and all physics in f1(t,y).

@ ImEx method: coefficients are derived in unison to satisfy coupling
between components (unlike arbitrary splittings).

- M Lawrence Livermore
SMU MATH Ud National Laboratory

ARKode Methods
°

Solution Algorithm — Stage Solutions, z;, i =1,...,s

@ ERK stages: The stage is computed explicitly as a linear combination of previous
stage right-hand sides, followed by a simple linear solve (if M # I)

i—1
Mz; = Myp +hZAEjfE(tn,j7Zj)
j=1
@ DIRK stages: The stage is computed as the solution of a nonlinearly implicit
equation, with right-hand side like an ERK method,
i—1
Mz — AL f1(tni,2) = Myn+hY Al fi(tnj,2)

j=1

@ ARK stages: The stage is computed like a DIRK, but the right-hand side
contains explicit components,

i—1
Mz; — hAL f1(tn,i,z) = Myn + hZ (AfjfE(tnm zj) + Ai[’jfl(tn,jazj))
j=1

- M Lawrence Livermore
SMU MATH L\g National Laboratory

ARKode Methods
@O0

Solution Algorithm — Solution & Error Estimate

Once all stages, z;, it = 1,...,s, have been computed, we finish the step:

@ Solution: just a linear combination of the stage right-hand sides, followed by a
simple linear solve (if M # I):

Myni1 = Myn +h> b (f.;+ f1;)
j=1

@ Local Error Estimate: the embedding is like ¥, 41 but with coefficients Bj, so we
compute the local temporal error estimate T by computing/solving:

MT = hZ(bj—l;j) (fej+ f13)
=1

@ Scalar Error Estimate: to determine step success/failure, we ensure that the
scalar error estimate satisfies (where y, € RVk):
1/2

1 S

I (L) <1
WRMS = ~ N >~ .
Ny, i—1 \Ttol [Yn,i| + Gtol

- M Lawrence Livermore
SMU MATH Ud National Laboratory

ARKode Methods
(o] J

Implicit Solver — with multiple solves per step, efficiency is paramount

Nonlinear:

e Modified Newton (serial, dense linear algebra) — Newton method that
reuses Jacobian between multiple stages/steps for increased efficiency.

@ Inexact Newton — linear solver tolerances are modified at each step to
achieve superlinear convergence with minimal linear solver work.

® Andersen-accelerated fixed-point (see Carol Woodward's talk, MS 6) —
fixed point solver with GMRES-like subspace acceleration.

@ Nonlinear tolerances adjusted by solver to attain requested solution
accuracy without oversolves.

Linear:

@ Direct — full and band solvers from SUNDIALS or LAPACK; KLU &
SuperLU coming soon.

o Krylov — GMRES, FGMRES, BiCGStab, TFQMR or PCG.
@ User-supplied right/left preconditioning supported.

@ Newton and mass-matrix solvers can be mix-and-matched.

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

ARKode Methods
L]

Efficiency Enhancements

Additional options that may increase efficiency:

o Implicit predictors — supports simple/safe predictors, through quadratic
Hermite predictors. Also allows user-supplied predictors.

o Advanced temporal adaptivity controllers — supports modern
control-theoretic algorithms for maximizing step sizes while reducing
error/convergence failures. Also supports user-supplied controllers.

o Explicit stability control — supports user-supplied routines that provide
maximally stable explicit step, to minimize error failures.

o Data structure resize capability — for problems with changing Ny, data
structures may be resized without requiring destruction/reinitialization.

@ All internal solver parameters are fully documented and modifiable by the
user to tune for a particular problem.

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

ARKode Methods

ARKode, the newest member of SUNDIALS

As a part of the FASTMath SciDAC Institute, ARKode is being integrated as a
new component solver within SUNDIALS.

o Similar user interface as CVODE, albeit with separate user-specified
fe(t,y) and f1(t,y), and potentially user-supplied M or My routines.

@ Data structure agnostic — as long as the basic vector kernels are supplied,
problem-specific data structures are allowed. Will even call a user-supplied
vector “resize” function to expand/contract the data structure.

o High-order accurate dense output, allowing efficient interpolation of results
between integration steps.

o Parameters optimized for iterative solvers and large-scale parallelism.
o Exhaustive suite of example and regression test problems.

@ Main site: http://faculty.smu.edu/reynolds/arkode
Repository: http://bitbucket.org/drreynolds/arkode_pub

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Example Results

Outline

© Example Results

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

Example Results
[]

ParaDiS — Parallel Dislocation Dynamics Simulator

Growth factor calculations in an explosively
Modeling material strain hardening: driven Rayleigh-Taylor instability:

With material strength No ftrength
@ A dislocation is a line defect in the ; i3
regular crystal lattice structure. =

@ Plasticity is caused by multiple

dislocation lines forming in response [Park et al., PRL, 104, 135504 (2010)]

to an applied stress/strain. 25 : . .
—— multiscale
o) - - SG
@ ParaDiS simulates the motion, 20 H 2.
multiplication, and interactions of = pRad data
discrete dislocation lines. Rt -l
= .
. . Z 10 ; S
@ Attempts to connect dislocation g (3
physics with material strength, to B
understand how material strength 2
changes under applied load. o -)))

0 2 4 6 8 10
time (us)

[Barton et al., J. App. Phys., 109, 073501 (2011)]

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

mple Results

The ParaDiS Model

@ Discretize dislocation lines as
segments terminated by nodes

Algorithm flow:
@ Nodal force calculation:

FRH) = f3 () + S () + S e)

@ Nodal velocity calculation
(material-dependent M;;):

. . dr;
@ Force calculations utilize local and vi(t,r) = !
FMM methods dt

@ Time integration:

= Mi; f;(¢,7)

@ MPI 4+ OpenMP parallelization AL
'r',(t—i—At) :Ti(t) +/ 'Ui(t,'l‘) dt
@ Fully adaptive data structure, with ¢

topology changes at every step @ Topology changes (insert/merge nodes):

@ smU ey o1)\ _\)Ik \L ermore

Naaonarcanoratory

Example Results
oeo

ParaDiS Results — Frank-Read Source

Simple test problem:

Method Steps % Speedup
@ Single initial dislocation
@ Constant strain bends/reconnects, Trap FP 12 6284 0.0
creating two concentric dislocations Trap FP 13 4990 20.0
. . Trap AA 12 V1 6447 -4.9
f - U
- 3 9 2 Trap AAI3V2 2316 617
4 -
ooy Trap AA 14 V3 2017 66.3
@ Strain rate 1 s~ !; Final time 50 us DIRK3 NK 14 242 93.0
@ Comparison between: DIRK4 NK 14 213 95.3
o Native Trapezoid solver: DIRK5 NK 14 212 92.1
basic fixed-point .(2,3 iters) DIRK3 AA 14 V3 127 97.5
o KINSOL Trapezoid solver:
AA (2-4 iters) DIRK4 AA 14 V3 194 95.6
° DIRK, O(At?) — O(A): DIRK5 AA 14V3 128 96.9

NK and AA (4 iters each)

[Graphic: http://classes.geology.illinois.edu/07fallclass/geo411/ductile/ductile.html]

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Example Results
ooce

ParaDiS Results — Target Test Problem

“Real” problem, mid-simulation:

Method Steps % Speedup
@ Body-centered-cubic crystal structure,
Q = 4.25 pm3 Trap FP 12 9137 0.0
@ Strain rate 102 s—! Trap AA 14 V3 3262 42.9
Trap AA 15 V4 2987 45.0
@33pus <t < 6.25us
Trap AA 16 V5 2032 55.1
@ ~ 2850 initial nodes, ~ 5000 final Trap AA 17 V6 1981 53.5
@ MPI test runs with 16 cores DIRK3 AA 14 V3 323 65.1
@ Comparison between: DIRK3 AA I5 V4 297 66.9
DIRK3 AA 16 V5 303 64.9
o Native Trapezoid solver:
basic fixed-point (2 iters) DIRK3 AA 17 V6 311 63.0
o KINSOL Trapezoid solver: DIRK5 AA 14 V3 280 51.2
AA (2-6 iters) DIRK5 AA I5 V4 241 53.9
o DIRK O(At?) solver: DIRK5 AA 16 V5 246 50.5
AA (2-6 iters), e, =1
DIRK5 AA 17 V6 274 45.0

@ Larger tests (~250k cores) ongoing

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Conclusions
Outline

© Conclusions

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

Conclusions
o

Conclusions

ARK methods allow accurate/stable methods for a variety of problems:
@ No Dahlquist barrier — high accuracy & stability simultaneously possible
o Allows adaptive ERK, DIRK or fully-coupled ImEx methods

@ Embeddings allow robust error estimation and timestep adaptivity

Single-step methods play well with spatial adaptivity

o ImEx allows “convenient” preconditioners that treat only stiff components

The ARKode library:

o Flexible solver infrastructure, with a variety of nonlinear/linear solvers
@ Support for non-identity mass matrices (FEM)
o Allows on-the-fly vector resizing

@ Freely-available, included in the upcoming SUNDIALS release

_— M Lawrence Livermore
SMU MATH Ud National Laboratory

Conclusions
°

Thanks & Acknowledgements

Collaborators/Students:
@ Carol S. Woodward [LLNL]
@ Alan C. Hindmarsh [LLNL]
o David J. Gardner [SMU, PhD]

U.S. DEPARTMENT OF ENERGY

Q
.|
m

LEADERSHIP COMPUTING

Current Grant/Computing Support:
@ DOE SciDAC & INCITE Programs
@ LLNL Computation

@ SMU Center for Scientific
Computation

Software:
@ ARKode — http://faculty.smu.edu/reynolds/arkode
@ SUNDIALS — https://computation.llnl.gov/casc/sundials

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.

s u\g Lawrence Livermore
ASTMATH National Laboratory

Extra Slides

Outline

@ Extra Slides

= - M Lawrence Livermore
SMU MATH L\é National Laboratory

Extra Slides
[Jelele]e}

First-Order Splittings

Denote S;(h,u(t,)) as a solver for the component d;u = f;(t,u) over a time
step tn — tn + h = tny1, with initial condition w(t,).

To evolve u(t,) — u(tn+1), we can use different solvers at the same h,

Unless the S; commute [i.e. Si(h, S2(h,u)) = S2(h, Si(h,u))] or the splitting
is symmetric, these methods are at best O(h) accurate
(no matter the accuracy of the individual solvers).

- M Lawrence Livermore
SMU MATH Ud National Laboratory

Extra Slides
[¢] le]e]e}

Fractional Step (Strang) Splitting [Strang 1968]

“Strang splitting” attempts to achieve a higher-order method using these
separate component solvers, through manually symmetrizing the operator:

i = S1 (%, u(tn)),
iy = Sz (h, 1),
U(tnt1) = St (%7112)-

This approach is O(h?) as long as each S; is O(h?).
However:

@ This asymptotic accuracy may not be achieved until h is very small, since
error terms are dominated by inter-process interactions
[Ropp, Shadid,& Ober 2005].

@ Numerical stability isn't guaranteed even if h is stable for each component
[Estep et al., 2007]. -

- M Lawrence Livermore
SMU MATH Ud National Laboratory

Extra Slides

[e]e] lele}

Operator-Splitting Issues — Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either
component, due to numerical resonance instabilities [Grubmiiller 1991].

Brusselator Example (Reaction-Diffusion):

8T = LV?T 4+ 0.6 — 3T +T°C,

40

2C = LVPC +2T - T°C,

Three solvers:

(a) Basic split: D (trap.) then R
(subcycled BDF).

(b) Strang: %R, hD, %R,
(c) Fully implicit trapezoidal rule,

Results:
(a) is stable but inaccurate for all tests;
(b) unusable until & is “small enough”.

SMU N rim

10
,---.__,_-o—-“'--
107
8
210
5
£
H
2
S
107
o’ L
10° - —- FS-DR
o -o Strang RDR
- Trap. Rule
107 10° 10° 107" 10°
At
- - Strang RDR, At = 0,131
— Reference Solution
3.
ah o I o
o 1 I il
L T o [
25 ! I o o
o [ahy n oo
L [M
M T
2 o
. e Sl
s 1 . o v
I |
e oo 2t i o
i . o ey
[" (I [
] I o I)
AT o 0

Extra Slides
[e]e]e] o}

Operator Splitting Issues — Accuracy [Estep 2007]

Consider Q = Q1 U Q2 where the subdomains share a boundary T' = 9921 N 00Na:
Oruy = V2u17 r € Qq, Orug = %V2u2, z € Qa,
up = ug, Vui -n =Vug - n, forz eT.

Solved using one Gauss-Seidel iteration: S7 on Q1, then S2 on Q2 (both trapezoidal).
Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:

0.05 0.4 5 o Fully Coupled Solution
—+— Operator Decomposition
0.04 03
5 5 5
£ 003 E g
= 502 = s
£ 5 =
: 0.02 E E
0.01 01 -6
0 — 0 -7
0 01 02 03 04 05 0 01 02 03 04 05 15 P 25 3 35
Time Time log(sqrt(degrees of freedom))
@ Error from incomplete iteration decreased with time.
@ Transfer error accumulated and became dominant with time.

@ While each S; was O(h?), the coupled method was only O(h). .
<\ SMU S L\d Lawrence Livermore
MATH National Laboratory

Extra Slides
[e]e]e]e] }

Operator-Splitting Issues — Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):
Bu = —Au+ u?, u(0) =wuo, ¢>0.
Phase 1 (R): Oiu, = uZ, Uy (tn) = Un, t € [tn,tnti],

Phase 2 (D) atud = —/\ud, Ud(tn) = va(tn+1), te [tn,tn+1].

At
. upe . . .
True solution, w(t) = —— 77—, is well-defined V¢ if A > uo.
1450 (e —1)
—Ah
. . u(tn)e P .
Split solution, u(tn4+1) = L, can blow up in finite time.
1— u(tn)h
1 . . , 2 . . . 2 . —
1%R” per “D” 5“R” per “D” 10 “R” per “D”
08} 1 st | s i
Results using 50 £ o6k 1 B g
time steps, with 35 '_E | 1
varying amounts % 04 {1 @ &
of subcycling. |
02} 1

=)

@ sSMU s

time

	Motivation
	Multiphysics/Multirate Problems

	ARKode Methods
	Formulation
	Solution
	Solution
	The ARKode Library
	The ARKode Library

	Example Results
	ParaDiS
	ParaDiS Model

	Conclusions
	Conclusions
	Acknowledgements

	Appendix
	Extra Slides
	Historical Operator Splitting Methods

