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Implicit Solution of Large-Scale Radiation Di�usion Problems (U)

Peter N. Brown, Frank Graziani, Ivan Otero, Carol S. Woodward

Lawrence Livermore National Laboratory

In this paper, we present an eÆcient solution approach for fully implicit, large-scale, nonlin-

ear radiation di�usion problems. The fully implicit approach is compared to a semi-implicit

solution method. Accuracy and eÆciency are shown to be better for the fully implicit method

on both one- and three-dimensional problems with tabular opacities taken from the LEOS

opacity library. (U)

Keywords: radiation di�usion, implicit, preconditioners, time integration

Introduction

In this paper, we present a solution method for fully implicit radiation di�usion problems

discretized on meshes having millions of spatial zones. This solution method makes use of

high order in time integration techniques, inexact Newton{Krylov nonlinear solvers, and

multigrid preconditioners. We explore the advantages and disadvantages of the fully implicit

method as compared to a semi-implicit scheme on both one- and three-dimensional problems

with tabulated opacities.

Research in the area of solution methods for fully implicit radiation di�usion has been

active in the last few years. Knoll, Rider, and Olson (1998) showed that the fully implicit

form of the one-dimensional radiation di�usion problem with analytic opacities gave greater

accuracy in shorter times than did traditional methods. Later work by these authors showed

that a fully implicit method with second order time-stepping leads to greater accuracy gains

than �rst order fully implicit (Knoll, et al., 2000). Recent work by Mousseau, Knoll, and

Rider (1999) has considered the fully implicit formulation of radiation di�usion using an

operator splitting preconditioner. They saw this preconditioner to be quite e�ective in

solving one- and two-dimensional problems. In previous work (Brown and Woodward, 2000),

we have addressed issues related to the development of e�ective solvers for large-scale, three-

dimensional, fully implicit radiation problems. We found that preconditioners for the implicit

system need to account for the coupling between matter and radiation e�ectively. We also

showed that the choice of preconditioner is crucial to the success of the fully implicit solve

for large-scale problems.

One criticism of fully implicit solution approaches is that opacity evaluations, which

are required more frequently in this approach than in semi-implicit formulations, can seem

prohibitively expensive for the method. Previous work on fully implicit formulations has

not addressed this issue. In this paper, we present our solution method and compare its

advantages and disadvantages to that of a semi-implicit method for large, three-dimensional

problems with tabulated opacities from the LEOS equation of state library (Corey and

Young, 1997). Our results indicate that a fully implicit solution approach can achieve more

accurate solutions than semi-implicit solution methods in many simulations involving the

interaction of radiation and matter. Furthermore, the fully implicit approach can be as cost

e�ective as semi-implicit approaches in many cases.

In the next section of this paper, we outline the model problem we are considering. The

following section overviews both the fully implicit and semi-implicit solution methods we
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employ, as well as the nonlinear and linear solvers we use. The results section gives some

numerical results comparing the two methods. Lastly, the �nal section gives some conclusions

about the viability of fully implicit methods on radiation di�usion problems.

Radiation Di�usion Model

For this work, we consider the 
ux-limited, two-temperature formulation of radiation

di�usion given by

@ER

@t
= r �

0
@ c

3��R(TR) +
krERk
ER

rER

1
A+ c��P (TM) �

�
aT 4

M � ER

�
(1)

+�(x)caT 4
source;

where ER(x; t) is the radiation energy density (x = (x; y; z)), TM(x; t) is the material tem-
perature, �(x) is the material density, c is the speed of light, and a = 4�=c where � is the

Stephan{Boltzmann constant. The Rosseland opacity, �R, is a nonlinear function of the ra-

diation temperature, TR, which is de�ned by the relation ER = aT 4
R. The Planck opacity, �P ,

is a nonlinear function of material temperature, TM , which is related to the material energy

through an equation of state, EM = EOS(TM). Here, Tsource is a given source temperature,

and �(x) is a function of the spatial variable x. In the limiter, the norm k � k is just the l2

norm of the gradient vector.

This equation is coupled to an equation expressing conservation of material energy given

by

@EM

@t
= �c��P (TM) �

�
aT 4

M � ER

�
: (2)

We consider Dirichlet, Neumann, and Robin boundary conditions for the system (1){(2),

and our focus here is on the development of solution methods for this system.

Solution Methods

For both the fully implicit and semi-implicit formulations, we employ a cell-centered �nite

di�erence approach for the spatial discretization. We use a tensor product grid with Nx; Ny;

and Nz cells in the x; y; and z directions, respectively. De�ning ER;i;j;k(t) � ER(xi;j;k; t) and
EM;i;j;k(t) � EM(xi;j;k; t), with xi;j;k = (xi; yj; zk), and

ER �

0
BB@

ER;1;1;1

...

ER;Nx;Ny;Nz

1
CCA and EM �

0
BB@

EM;1;1;1

...

EM;Nx;Ny;Nz

1
CCA ;

we can write our discrete equations in terms of a discrete di�usion operator given by L(ER) ��
L1;1;1(ER); � � � ; LNx;Ny;Nz(ER)

�T
, and a local coupling operator given by S(ER;EM) �

(S1;1;1(ER;EM); � � � ; SNx;Ny;Nz(ER;EM))
T , where

Li;j;k(ER) =

0
B@ c

3�i+1=2;j;k�R;i+1=2;j;k +
krERki+1=2;j;k
ER;i+1=2;j;k

ER;i+1;j;k � ER;i;j;k

�xi+1=2;j;k
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�
c

3�i�1=2;j;k�R;i�1=2;j;k +
krERki�1=2;j;k
ER;i�1=2;j;k

ER;i;j;k � ER;i�1;j;k

�xi�1=2;j;k

1
CA =�xi (3)

+ y and z terms;

and

Si;j;k(ER;i;j;k; EM;i;j;k) = c�i;j;k�P;i;j;k
�
aT 4

M;i;j;k � ER;i;j;k

�
: (4)

Thus, our discrete scheme is to �nd ER(t) and EM(t) such that,

dER

dt
= L(ER) + S(ER;EM) +Q; (5)

dEM

dt
= �S(ER;EM); (6)

where Q includes the source term along with terms from the discretized boundary conditions.

For more details, see Brown and Woodward (2000).

Fully Implicit Formulation. For the fully implicit formulation, we use an ODE time

integrator to handle the implicit time step selection for the system (5)-(6). In particular,

we employ the parallel ODE solver, PVODE (Byrne and Hindmarsh, 1999), developed at

Lawrence Livermore National Laboratory and based on the VODPK package (Byrne, 1992).

PVODE employs the �xed leading coeÆcient variant of the Backward Di�erentiation Formula

(BDF) method (Brown et al., 1989, Jackson and Sacks-Davis, 1980) and allows for variation

in the order of the time discretization as well as in the time step size.

The methods in PVODE are Predictor-Corrector in nature, so each time step begins with

the calculation of an explicit predictor. An implicit corrector is then employed to solve for

the time step solution. This time integration technique leads to a coupled, nonlinear system

of equations that must be solved at each time step. For example, solving the ODE system

_y = f(t; y); (7)

with the backward Euler method (i.e., the BDF method of order 1), leads to the following

nonlinear system

0 = F (y) � y ��tf(tn; y)� yn�1

�
i.e.,

yn � yn�1

�t
= f(tn; yn)

�
(8)

that must be solved for y = yn at each time step. For the solution of this system, we use

an inexact Newton{Krylov method with Jacobian-vector products approximated by �nite

di�erences of the form

F 0(y)v �
F (y + �v)� F (y)

�
; (9)

where � is a scalar. Within the Newton{Krylov paradigm, only the implementation of the

nonlinear function is necessary, and Jacobian matrix entries need never be formed or stored.

Heuristic arguments for the case of systems arising from the implicit integration of ODEs

show that � = 1 works quite well (Brown and Hindmarsh, 1986) and is the choice used in
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PVODE. Finally, the explicit predictor, yn(0), is used as an initial guess to the nonlinear

system (8).

In the methods discussed above, we use the scaling technique incorporated into PVODE.

Thus, we include an absolute tolerance (ATOL) for each unknown and a relative tolerance

(RTOL) applied to all unknowns. These tolerances are then used to form a weight that is

applied to each solution component during the time step from tn�1 to tn. This weight is

given as

wi = RTOL � jyin�1j+ATOLi; (10)

and then the weighted root mean square norm

kykWRMS =

"
N�1

NX
i=1

(yi=wi)
2

#1=2
(11)

is applied on all error-like vectors within the solution process. This scaling gives each solution

component equal weight when measuring the size of or errors in y. For our application, we

supply two absolute tolerances, one to be used with the radiation energy unknowns and one

to be used with the material energy unknowns.

Time step sizes are chosen in an attempt to maximize step sizes while controlling the local

truncation error, and thus give a solution that obeys a user-speci�ed accuracy bound. The

local truncation error can, in general, only be estimated, and so PVODE uses the estimate

LTE(�tn) � Cq(yn � yn(0)); (12)

where yn is the �nal iterate in the Newton iteration and Cq is a constant that depends on

the BDF method order q but is independent of the solution. If kLTE(�tn)kWRMS < 1, then

the time step is accepted. If this condition is violated, the step size is cut, and the solution

is recomputed. New steps are chosen by estimating the local truncation error at the new

step, �t0, as

kLTE(�t0)kWRMS �

 
�t0

�tn

!q+1
kLTE(�t)kWRMS; (13)

where q is the current method order. The new step is chosen to give the largest time step

still satisfying kLTE(�t0)kWRMS < 1. PVODE also changes the BDF method order by

comparing the local truncation errors for the BDF methods of order q � 1 and q + 1 when

using order q, and then taking the order that allows the largest time step.

We use the GMRES Krylov iterative solver for solution of the linear Jacobian system at

each Newton iteration (Saad and Schultz, 1986). The tolerance for the Newton iteration is

taken to guarantee that iteration error introduced from the nonlinear solver is smaller than

the local truncation error. The default linear system tolerance in PVODE is taken to be the

factor � = 0:05 times the nonlinear system tolerance. This factor can be optionally set in

the PVODE solver, and for some of the problems discussed below we use a smaller value of

�, as the default of 0.05 did not work for the larger RTOL values. The default maximum

subspace dimension for GMRES in PVODE is 5, and we use this default in all of our tests.

Preconditioning is generally essential when using Krylov linear solvers. To describe our

preconditioning strategy, we begin by considering the content and structure of the Jacobian
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matrix. In (7), set y = (ET
R;E

T
M)T , and then form f using the right-hand sides of (5)-(6).

The Jacobian matrices used in the Newton method are of the general form F 0(y) = (I�
J),

where J = @f=@y is the Jacobian of the nonlinear function f , and the parameter 
 � �t�

with �t the current time step value and � a coeÆcient depending on the order of the BDF

method. Recalling the de�nitions of the discrete divergence and source operators, the block

form of the Jacobian of f is

J =

 
@L=@ER + @S=@ER @S=@EM

�@S=@ER �@S=@EM

!
=

 
A+G B

�G �B

!
;

where A = @L=@ER, G = @S=@ER, and B = @S=@EM . We note that G and B are diagonal

matrices.

On close inspection of the nonlinear di�usion operator L(ER), we can write

L(ER) = L̂(ER)ER; (14)

where L̂ is a nonlinear matrix-valued function of ER. In all of our preconditioning strategies,

we neglect the nonlinearity in the di�usion term and use the approximation

A = @L(ÊR)=@ER � L̂(ÊR) � ~A;

where @L(ÊR)=@ER is the Jacobian of L evaluated at a radiation energy, ÊR. The size of

the neglected term is related to the derivatives of the Rosseland opacity and the 
ux-limiter.

Our motivation for neglecting this term arises from the fact that � ~A is symmetric and

positive de�nite, whereas �A is not. In addition, the derivative of the 
ux-limiter may lead

to numerical errors if rER approaches 0.

Our preconditioning strategy is to factor the matrix 
P Q
R T

!
�

 
I � 
( ~A+G) �
B


G I + 
B

!
=M

into the following:

MSchur =

 
I QT�1

0 I

! 
P �QT�1R 0

0 T

! 
I 0

T�1R I

!
:

Letting S = P �QT�1R, we write the solution to MSchurx = b as 
x1
x2

!
=

 
S�1(b1 �QT�1b2)

T�1(�Rx1 + b2)

!
:

If the Schur complement, S, is exactly inverted, there will be no error associated with

this preconditioner for the non-
ux-limited, constant opacity case. In addition, because B

and hence T is diagonal, there is no penalty associated with inverting T for every iteration

of a method that inverts S, as there would be if a material energy di�usion term were added

to the equations. Also note that S is formed by modifying the diagonal of P . Hence, we can
employ multigrid methods to invert this Schur complement.

The Rosseland opacity will exhibit large changes where material interfaces exist in the

domain. The temperature dependence gives rise to large value changes as well. These
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changes imply that the problem can be very heterogeneous. As a result, to invert matrix

blocks formed from the di�usion operator, we use a multigrid method designed to handle

large changes in problem coeÆcients. In particular, we use one V-cycle of the SMG algorithm

developed by Scha�er (Scha�er, 1998 and Brown et al., 2000) as our multigrid solver. Other

multigrid methods have been developed for highly heterogeneous problems. A comparison

of SMG and another of these methods can be found in Jones and Woodward (2000). We use

SMG here because it is highly robust and scales extremely well. Details of the SMG method

can be found in the cited references. More information about multigrid methods in general

can be found in Briggs et al. (2000).

Since Jacobian approximations can be expensive to compute, the preconditioner is not

updated with every Newton iteration. Preconditioner updates occur only when the Newton

iteration fails to converge, 20 time steps pass without an update, or when there is a signi�cant

change in the time step size and order of the ODE method.

In summary, the main advantage of the fully implicit method is that we have accurate

error control in the time step selection process allowing step sizes to automatically adjust to

the problem physics while maintaining accuracy. The main disadvantage of the method is

that opacities must be calculated for every linear iteration, as a nonlinear function evaluation

is required in the matrix-vector product approximation (9). In general, fully implicit meth-

ods require more sophisticated solvers than semi-implicit methods. The solution method

presented above has been tested on very large, three-dimensional problems and has been

shown to be parallel scalable up to almost 6,000 processors (Brown and Woodward, 2000).

Semi-Implicit Method. The semi-implicit method we compare against was developed to

match traditional methods. In this formulation, a backward Euler time stepping technique

is applied, opacities and 
ux-limiters are evaluated at the start of a new time step using the

solution from the previous step, and the coupling term is linearized about the solution from

the previous step. The problem is put in a residual formulation so that the single linear

solve required at each time step gives the increment to the solution values from the previous

step's solution.

Beginning with the discrete system (5){(6) and using (14), we can write

En+1
R �En

R

�t
= L̂(En

R)E
n+1
R +K(Tn

M)(a(Tn+1
M )4 � En+1

R ) +Qn+1; (15)

En+1
M �En

M

�t
= �K(Tn

M)(a(Tn+1
M )4 �En+1

R ); (16)

where K(Tn
M) is a diagonal matrix whose entries are given by Ki;j;k � c��P (T

n
M;i;j;k) and

En+1
M;i;j;k = EOS(T n+1

M;i;j;k). Next, letting T
n+1
M = Tn

M +�Tn
M we linearize to obtain

(Tn+1
M )4 = (Tn

M +�Tn
M)4 � (Tn

M)4 + 4(Tn
M)3�Tn

M :

Similarly, we linearize EM = EOS(TM) to obtain

En+1
M = EOS(Tn

M +�Tn
M) � EOS(Tn

M) +
@EOS

@TM

(Tn
M)�Tn

M ;
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or

En+1
M �En

M �
@EOS

@TM

(Tn
M)�T

n
M :

Thus,

(Tn+1
M )4 � (Tn

M)4 + 4(Tn
M)

3

"
@EOS

@TM

(Tn
M)

#�1
(En+1

M � En
M):

Substituting this last relationship into (15){(16), we have

En+1
R �En

R = �tL̂(En
R)E

n+1
R +�tK(Tn

M) � (17)0
@a

2
4(Tn

M)4 + 4(Tn
M)

3

"
@EOS

@TM

(Tn
M)

#�1
(En+1

M �En
M)

3
5� En+1

R

1
A+�tQn+1;

En+1
M �En

M = ��tK(Tn
M) � (18)0

@a
2
4(Tn

M)4 + 4(Tn
M)3

"
@EOS

@TM

(Tn
M)

#�1
(En+1

M � En
M)

3
5�En+1

R

1
A ;

where we solve for the changes, �En
R � En+1

R � En
R and �En

M � En+1
M � En

M , given the

previous values of En
R and En

M .

We solve the linear system (17){(18) using the same linear solver as described above:

the GMRES Krylov iterative solver with a Schur complement factorization preconditioner.

The same multigrid method is used to invert the Schur complement matrix as in the fully

implicit case. The linear iteration is performed until the relative residual is bounded by an

input tolerance times the norm of the right-hand side,

krkWRMS � �kbkWRMS; (19)

where r is the linear system residual, b is the linear system right-hand side, and � is an
input parameter. The WRMS norm is calculated in the same way as that for PVODE, using

RTOL and ATOL values chosen as in the PVODE case.

Time steps are chosen to try to restrict changes in radiation energy and material temper-

ature within a step. For speci�ed minimum values, Emin and Tmin, and speci�ed fractional

variations allowed in a step, Efrac and Tfrac, the new step is computed by �rst calculating a

maximum variation for each variable,

vR = max
i;j;k

 
�En

R

0:5(En�1
R + En

R) + Emin

!
; vM = max

i;j;k

 
�T n

M

0:5(T n�1
M + T n

M) + Tmin

!
: (20)

Then, the new step is chosen as

�tnew = �told �min(Efrac=(vR + Æ); Tfrac=(vM + Æ)); (21)

where Æ = 10�7 limits the maximum change in the step size. Note that this selection process

is similar to the error control for the fully implicit case. However, while the semi-implicit

approach bounds the maximum change in solution components over a time step, the fully

7
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implicit approach is bounding the maximum local truncation error made on a step with no

direct control on the solution components. Finally, if the linear iteration fails to converge,

then the step is repeated with �tnew = 0:5 ��told.

Numerical Results

We consider three problems. The �rst problem is a one-dimensional problem from Su

and Olson (1996), and is an excellent test problem in that they provide an analytic solution

to compare results against. The second problem is a one-dimensional Marshak wave problem

using tabulated opacities, while the third is a three-dimensional internal source problem. In

the tables below,

PVODE = PVODE was used as the solver,

S-Imp = the semi-implicit solver was used,

RTOL = the RTOL value used,

ORD = the maximum order allowed for PVODE, and

FRAC = the Efrac(= Tfrac) value used,

and the statistical counters are

NST = total number of time steps,

NNI = total number of nonlinear iterations,

NLI = total number of linear iterations,

NFE = total number of f(t; y) evaluations,
NPE = total number of preconditioner evaluations,

NPS = total number of preconditioner solves,

RT = run time in seconds.

All runs done with PVODE allowed a BDF method of order up to 2 unless speci�ed as order

1. In this case, BDF methods of order 1 only were allowed.

Su{Olson Test Problem. As this problem has an analytic solution, we have veri�ed that

our numerical results for both methods converge to the true solution as the spatial mesh is

re�ned and tolerances for time stepping are tightened. Thus, as both methods are accurate

we focus on the eÆciency and robustness of the two approaches in the following two problems.

One-Dimensional Marhsak Wave Problem. We give results of using the two solution

approaches on a one-dimensional Marshak wave problem involving the use of tabular opaci-

ties. We use the LEOS (Corey and Young, 1997) package to give the Rosseland and Planck

opacities as nonlinear functions of the radiation temperature TR and material temperature

TM , respectively. The system (1){(2) is solved on the box D � fx = (x; y; z) : 0 � x; y; z �
1cmg with Dirichlet boundary conditions at x = 0 and x = 1, and homogeneous Neumann

boundary conditions on the other faces. The function �(x) in (1) is identically zero for

this problem. The left Dirichlet boundary condition for the radiation energy density was

ER;left = aT 4
R;left, where TR;left = 3; 481; 440 ÆK (approximately 300eV ), the initial conditions

were taken as ER = aT 4
R;0 and EM = EOS(�; TM;0), where TR;0 = TM;0 = 300 ÆK. The

right Dirichlet boundary value for ER is taken to be consistent with the initial condition.

The material used was carbon at a reference density of � = 1:05g=cc. The spatial grid was

uniform with Nx = 80; Ny = Nz = 1. While several values of RTOL are used, only one

8
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set of ATOL values was used for all the problems in this section. For the radiation energy

density, an ATOL value of ATOLR = aT 4
R;ATOL was used, where TR;ATOL = 200 ÆK, and

for the material energy density an ATOL value of ATOLM = 200 ÆK was used. A value of

� = 10�6 was used in (19), along with the values Emin = Tmin = 0:1keV . Finally, a linear

stopping tolerance factor of � = 0:01 was used for all the PVODE runs.

For this problem, the time behavior consists of an initial transient in which the mate-

rial heats up in the region of the left boundary (from 0 to .02 microseconds), followed by

a radiation front traveling to the right boundary (continuing to 1 microsecond), and then

a �nal phase in which the solution approaches a steady state. Figures 1, 2, 3, and 4 show

the solutions and relative errors (as compared to the PVODE solution using RTOL = 10�5)

plotted at .016 microseconds. Figures 5 and 6 show the maximum relative errors (as com-

pared to the PVODE solution using RTOL = 10�5) in x plotted for each output point from

0 to .02 microseconds, while Figures 7 and 8 show the same values for the interval from 0.4

to 0.5 microseconds. Table 1 compares the statistics of the two solvers when integrating the

problem from 0 to 1 microsecond.

As can be seen from the plots and the table, the PVODE solution obtained using RTOL =

10�3 with a maximum order of 1 give errors roughly equivalent to the semi-implicit solution

using Efrac = Tfrac = 0:1. However, the run time for the PVODE solver is only 65% that

of the semi-implicit solver. Also, the PVODE solution with RTOL = 10�4 and maximum

order 2 is at least 1 order of magnitude more accurate than the semi-implicit solution with

FRAC= 0:1, and at the same time it is faster. It is also interesting to note that the potentially

more accurate semi-implicit solution using FRAC= 0:01 is actually the least accurate for

the larger output times. This is due to the accumulation of roundo� errors, as there is a

prohibitively large number of steps when using the tighter FRAC value.

Table 1: Solver statistics for one-dimensional Marshak wave problem

Method NST NNI NLI NPE NPS RT RTOL ORD FRAC

PVODE 7146 9736 15135 1102 24861 125 1.e-3 2 {

PVODE 17532 26295 33533 3968 59811 325 1.e-4 2 {

PVODE 38048 53683 69301 8932 122924 679 1.e-5 2 {

PVODE 19270 21385 41583 1194 62949 281 1.e-3 1 {

PVODE 61005 68499 122693 4452 191165 875 1.e-4 1 {

S-Imp 13348 { 36087 13352 49435 431 1.e-4 { 0.1

S-Imp� 106643 { 305017 106643 411660 >3600 1.e-4 { 0.01
�(computed only 634 of 1000 output snapshots in 3600 seconds)

Three-Dimensional Source Problem. In this problem, the system (1){(2) is solved on

the box D � fx = (x; y; z) : 0 � x; y; z � 1cmg with Dirichlet boundary conditions. The

function �(x) in (1) is de�ned by

�(x) =

(
1; if 0:45 � x; y; z � 0:55, and

0; otherwise.
(22)
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Figure 1: Radiation energy density for one-dimensional Marshak wave

The parameter Tsource was 3keV and the initial conditions were taken as ER = aT 4
R;0 and

EM = EOS(�; TM;0), where TR;0 = TM;0 = 8:616976eV (approximately 10; 000 ÆK). The

boundary conditions are taken to be consistent with the initial conditions. The material used

was carbon at a reference density of � = 0:00893g=cc. The spatial grid was uniform with

Nx = Ny = Nz = 80. While several values of RTOL are used, only one set of ATOL values

was used for all the problems in this section. For the radiation energy density, an ATOL

value of ATOLR = aT 4
R;ATOL was used, where TR;ATOL = 0:01643keV , and for the material

energy density an ATOL value of ATOLM = 0:01keV was used. A value of � = 10�6 was

used in (19), along with the values Emin = ATOLR and Tmin = 0:01keV . Finally, the default

linear stopping tolerance factor of � = 0:05 was used for all the PVODE runs.

Table 2 shows the statistics for this run. The problem was integrated from 0 to 5:2 � 10�7

microseconds. The time behavior consists of an initial transient in which the material heats

up in the region of the source, followed by a radiation front traveling to the boundary, and

then a �nal phase in which the solution approaches a steady state. Figures 9 and 10 show the

solutions plotted along the line y = z = 0:5cm at the �nal time (which is very early in the

overall time behavior of the solution). Figures 11 and 12 show the maximum relative errors

(as compared to the PVODE solution using RTOL = 10�5) in x plotted for each output point

from 0 to the �nal time. The 10�3 tolerance PVODE solution appears to be less accurate

early in the simulation than the semi-implicit solution, and then the two achieve about the

same accuracy for later times. However, the 10�3 tolerance PVODE run time is an order

of magnitude cheaper than the semi-implicit approach. In addition, we see that the 10�4

tolerance PVODE run gives about an order of magnitude more accurate relative errors than

the semi-implicit run and requires about half the run time than the semi-implicit run.
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Figure 2: Material energy density for one-dimensional Marshak wave

Table 2: Solver statistics for three-dimensional source problem

Method NST NNI NLI NPE NPS RT RTOL ORD FRAC

PVODE 47 58 180 13 235 542 1.e-3 2 {

PVODE 165 287 1076 25 1360 2383 1.e-4 2 {

PVODE 3104 3249 6861 180 10106 13250 1.e-5 2 {

S-Imp 370 { 1324 370 1694 4434 1.e-4 { 0.1

Conclusions

In this paper, we have demonstrated the superior accuracy of a fully implicit solution

approach to the radiation di�usion system (5){(6) when compared to a standard semi-implicit

time integration approach. We have incorporated the use of tabular opacities in our model

in an e�ort to enhance the accuracy of our test problems as well as to evaluate the added

costs of additional function evaluations in the fully implicit approach. While our testing is

limited, these results indicate that a fully implicit solution approach is a viable, cost-e�ective

option in many simulations involving the interaction of radiation and matter.
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Figure 5: Radiation energy density maximum relative errors (measured against a PVODE

run with RTOL= 10�5) for one-dimensional Marshak wave
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Figure 6: Material energy density maximum relative errors (measured against a PVODE run

with RTOL= 10�5) for one-dimensional Marshak wave
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Figure 7: Radiation energy density relative errors (measured against a PVODE run with

RTOL= 10�5) for one-dimensional Marshak wave
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Figure 8: Material energy density maximum relative errors (measured against a PVODE run

with RTOL= 10�5) for one-dimensional Marshak wave
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Figure 9: Radiation energy density for three-dimensional problem
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Figure 10: Material energy density for three-dimensional problem
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Figure 11: Radiation energy density maximum relative error (measured against a PVODE

run with RTOL= 10�5) for three-dimensional Problem
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Figure 12: Material energy density maximum relative error (measured against a PVODE

run with RTOL= 10�5) for three-dimensional problem
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