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Fully Implicit Solution of Large-Scale

Non-Equilibrium Radiation Diffusion with

High Order Time Integration ?

Peter N. Brown, Dana E. Shumaker, and Carol S. Woodward 1

Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Livermore, CA 94551

Abstract

We present a solution method for fully implicit radiation diffusion problems dis-
cretized on meshes having millions of spatial zones. This solution method makes
use of high order in time integration techniques, inexact Newton–Krylov nonlinear
solvers, and multigrid preconditioners. We explore the advantages and disadvantages
of high order time integration methods for the fully implicit formulation on both
two- and three-dimensional problems with tabulated opacities and highly nonlinear
fusion source terms.

Key words: radiation diffusion, implicit methods, time integration, parallel
computing
PACS: 65M12, 65M20, 65Y05

1 Introduction

The simulation of nonlinear and coupled physical phenomena requires effi-
cient numerical methods for solution. One application which is computation-
ally intensive is modeling transport of neutral particles. Simulations of this
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application are important in calculations relevant to astrophysics, shielding,
inertial confinement fusion, and atmospheric radiation. The Boltzmann trans-
port equation is often used for modeling these problems. Due to the six degrees
of freedom present in this equation, diffusion approximations are often used to
give coarse estimates of solutions. Solution of the nonlinear diffusion approx-
imation is still a demanding task, however, and the need for computational
methods to efficiently solve these problems is still required.

In this paper, we present a fully implicit solution method for radiation diffusion
problems. Fully implicit methods can allow for larger time steps and more
accurate solves for a given amount of work than can explicit or semi-implicit
methods. Our method makes use of high order in time integration techniques,
inexact Newton–Krylov nonlinear solvers, and multigrid preconditioners. We
target problems discretized on meshes having millions of spatial zones.

The first work on implicit solution of radiation diffusion problems was done
by Axelrod, et.al. in 1984 when they presented a solution method using a high
order GEAR ODE solver [1] for integration in time coupled with a Newton
method and an approximate direct solver [2]. Their work showed a distinct
advantage in both accuracy and run time of the implicit solver over an oper-
ator split approach on multigroup diffusion in one dimension. This work did
not, however, follow with development of solvers for large-scale problems. In
particular, the very effective Newton-Krylov methods [3–5] were not applied
to implicit radiation diffusion problems until much later. One obstacle to use
of these methods was the requirement of effective preconditioners for the lin-
ear Jacobian systems. In 1999 Rider, Knoll, and Olson applied these methods
along with multigrid preconditioning to one- and two-dimensional equilibrium
problems and showed substantial benefit in accuracy of a second order in time
fully implicit solver over a first order semi-implicit solver where nonlinearities
are lagged between time steps [6,7].

For semi-implicit methods, time steps are often chosen to be small enough
to maintain accuracy despite explicit (or lagged) parts of the computation.
When moving to an implicit method, however, the question of how to choose
the time step should be revisited since an implicit method generally allows a
larger step size for a given accuracy within a computation. Rider and Knoll
suggested a method of choosing steps for the fully implicit formulation by using
a hyperbolic model of the system [8]. Brown, et.al. simultaneously pursued
implicit methods based on the work of Axelrod et.al. and employed ODE time
integrator technology for three-dimensional multigroup diffusion [9]. These
methods choose time steps based on solution accuracy requirements of the
user and local time truncation error estimates [10].
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Mousseau, Knoll, and Rider extended the work of Rider, Knoll, and Olson
to problems where the radiation and matter fields are not in equilibrium.
They again applied Newton-Krylov methods with first and second order time
stepping on two-dimensional problems [11,12]. They used an operator splitting
method and multigrid for preconditioning. Brown and Woodward, also looking
at non-equilibrium problems, developed an effective Schur complement-based
preconditioner and demonstrated parallel scalability of a fully implicit solver
based on high order time integration, Newton-Krylov methods, and semicoars-
ening multigrid techniques on three-dimensional problems with hundreds of
millions of unknowns [13]. They found that preconditioners for the implicit
system need to account for the coupling between matter and radiation ef-
fectively and also showed that the choice of preconditioner is crucial to the
success of the fully implicit solve for large-scale problems.

More recently, implicit formulations of radiation diffusion have been combined
with hydrodynamics problems in a coupled manner. Bates et.al. have devel-
oped a nonlinearly consistent solver for the coupled system [14]. Howell and
Greenough have also extended implicit diffusion methods to include coupled
problems with hydrodynamics within the context of adaptive mesh refinement
[15]. Recent work in the area has also included investigations into the relative
performance of Newton-Krylov methods with nonlinear multigrid techniques
[16]. These studies have shown that Newton-Krylov is in general faster for
these problems, but that nonlinear multigrid can have advantages in early
time steps [17–19]. Additionally, Lowrie [20] has compared several implicit
time integration approaches for nonlinear relaxation and diffusion problems,
and Ropp, Shadid and Ober [21] have studied the accuracy of time integra-
tion methods for reaction-diffusion equations, including operator-splitting ap-
proaches.

With the exception of the original work by Axelrod, et.al. and the work of
Brown and Woodward, the above work does not consider high order time in-
tegration and tabulated opacities. High order methods can result in significant
benefits in run time reduction while maintaining high accuracy. Care must be
taken, however, in how these methods are applied as poor tolerance selection
can lead to instabilities. In addition, when using Newton-Krylov methods, a
nonlinear residual evaluation is required at each linear iteration. These eval-
uations require re-computation of opacity values from outside tables. Often
packages developed to use these tables will perform interpolation or spline fits
leading to possible significant computational expense for each opacity eval-
uation. (Note that traditional methods just time-lag these values.) Lastly,
none of the above work examines performance of implicit solvers for problems
with highly nonlinear fusion source terms. These sources result in solutions
which exhibit fast changes. Good solvers will need to capture these changes
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accurately which can most efficiently be done with adaptive time stepping
technology.

In this paper, we present a fully implicit solution method based on ODE time
integration technology targeting large-scale radiation diffusion problems. We
examine its advantages and disadvantages as compared to that of a semi-
implicit method for three-dimensional problems with tabulated opacities from
the LEOS equation of state library [22]. We also consider nonlinearities intro-
duced from fusion source terms in the material energy equation. These terms
are highly nonlinear and give rise to a potentially difficult nonlinear problem
within the implicit formulation. Our results indicate that a fully implicit solu-
tion approach can achieve more accurate solutions than semi-implicit solution
methods in many simulations involving the interaction of radiation and matter
with highly nonlinear source terms. Furthermore, the fully implicit approach
can be as cost effective as semi-implicit approaches in many cases despite the
use of tabulated values for the opacities. Lastly, the solution approach is shown
to scale well to very large problems solved on parallel machines.

Numerical results in this paper compare our fully implicit method with a semi-
implicit method that represents the state-of-the-art in many simulation ar-
eas. This semi-implicit technique (detailed below) time-lags the opacity terms
which have been commonly thought to be too expensive to evaluate with
higher frequency. In addition, the term coupling radiation and matter is lin-
earized. The advantages of the scheme are that a single linear system must be
solved to high accuracy for each time step, that system is symmetric and pos-
itive definite, and many current solvers are particularly efficient on symmetric
systems (such as conjugate gradients or multigrid). The main disadvantage is
the need to take very small steps in order to maintain accuracy after the time-
lagging and linearizations have been done. As stated above, our fully implicit
method can take larger time steps and can easily use high order time integra-
tion methods. In addition, general purpose packages for solution of implicit
systems can easily be used, and a semi-implicit implementation can be taken
advantage of for use in preconditioning an implicit method thereby making
use of an existing semi-implicit code. The main disadvantage of the implicit
method is the need to re-evaluate all nonlinearities at every iteration. The
results in this paper indicate, however, that the implicit method is still faster
than the semi-implicit method even with these extra nonlinearity evaluations.

In the next section of this paper, we outline the model problem we are con-
sidering. The section following overviews both our fully implicit method and
a semi-implicit solution method to which we compare, as well as the nonlin-
ear and linear solvers we use. In the results section, we give comparisons of
the two methods, examinations of some algorithmic elements of our solution
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strategy, and some demonstrations of our method’s performance on a large,
parallel machine. We conclude with some remarks about the viability of fully
implicit methods on radiation diffusion problems.

2 Flux-Limited Radiation Diffusion Model

For this work, we consider the flux-limited, two-temperature formulation of
radiation diffusion given by [23,24]

∂ER

∂t
=∇ ·


 c

3ρκR(TR) + ‖∇ER‖
ER

∇ER


 + cρκP (TM) ·

(
aT 4

M − ER

)

+χ(x)caT 4
source, (1)

where ER(x, t) is the radiation energy density (x = (x, y, z)), TM(x, t) is the
material temperature, ρ(x) is the material density, c is the speed of light, and
a = 4σ/c where σ is the Stephan–Boltzmann constant. The Rosseland opacity,
κR, is a nonlinear function of the radiation temperature, TR, which is defined
by the relation ER = aT 4

R. The Planck opacity, κP , is a nonlinear function of
material temperature, TM , which is related to the material energy through an
equation of state, EM = EOS(TM). Here, Tsource is a given source temperature,
and χ(x) is a function of the spatial variable x. In the limiter, the norm ‖ · ‖
is taken to be the l2 norm of the gradient vector.

This equation is coupled to an equation expressing conservation of material
energy given by

∂EM

∂t
= −cρκP (TM) ·

(
aT 4

M − ER

)
+ µ(x, t)T 5

M , (2)

where µT 5
M is a fusion source term with µ(x, t) a function of both space and

time.

This system is highly nonlinear due to the opacity dependencies on temper-
atures as well as the fusion source term. Opacities typically depend on tem-
peratures as a power law with typical expressions like κ = CT−p where C
is a constant, and p may be 3 − 5 depending on the material and physical
regime [25,26]. We consider Dirichlet, Neumann, and Robin boundary con-
ditions for the system (1)–(2), and our focus here is on the development of
solution methods for this system.
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3 Solution Methods

For both the fully implicit and semi-implicit formulations, we employ a cell-
centered finite difference approach for the spatial discretization. We use a
tensor product grid with Nx, Ny, and Nz cells in the x, y, and z directions,
respectively. Defining ER,i,j,k(t) ≈ ER(xi,j,k, t) and EM,i,j,k(t) ≈ EM(xi,j,k, t),
with xi,j,k = (xi, yj, zk), and

ER ≡




ER,1,1,1

...

ER,Nx,Ny,Nz




and EM ≡




EM,1,1,1

...

EM,Nx,Ny ,Nz




,

we can write our discrete equations in terms of a discrete diffusion operator
given by

L(ER) ≡
(
L1,1,1(ER), · · · , LNx,Ny,Nz(ER)

)T
, (3)

a local coupling operator given by

S(ER,EM) ≡ (S1,1,1(ER,EM), · · · , SNx,Ny ,Nz(ER,EM))T , (4)

and a material source term

R(EM) ≡ (R1,1,1(EM), · · · , RNx,Ny,Nz(EM))T , (5)

where

Li,j,k(ER) ≡(
Di+1/2,j,k

ER,i+1,j,k − ER,i,j,k

∆xi+1/2,j,k

−Di−1/2,j,k
ER,i,j,k − ER,i−1,j,k

∆xi−1/2,j,k

)
/∆xi (6)

+

(
Di,j+1/2,k

ER,i,j+1,k − ER,i,j,k

∆yi,j+1/2,k

−Di,j−1/2,k
ER,i,j,k − ER,i,j−1,k

∆yi,j−1/2,k

)
/∆yj

+

(
Di,j,k+1/2

ER,i,j,k+1 − ER,i,j,k

∆yi,j,k+1/2

−Di,j,k−1/2
ER,i,j,k − ER,i,j,k−1

∆zi,j,k−1/2

)
/∆zk

with
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Di+1/2,j,k ≡ c

3ρi+1/2,j,kκR,i+1/2,j,k + ‖∇ER‖i+1/2,j,k/ER,i+1/2,j,k

,

Di−1/2,j,k ≡ c

3ρi−1/2,j,kκR,i−1/2,j,k + ‖∇ER‖i−1/2,j,k/ER,i−1/2,j,k

,

Di,j+1/2,k ≡ c

3ρi,j+1/2,kκR,i,j+1/2,k + ‖∇ER‖i,j+1/2,k/ER,i,j+1/2,k

,

Di,j−1/2,k ≡ c

3ρi,j−1/2,kκR,i,j−1/2,k + ‖∇ER‖i,j−1/2,k/ER,i,j−1/2,k

,

Di,j,k+1/2 ≡ c

3ρi,j,k+1/2κR,i,j,k+1/2 + ‖∇ER‖i,j,k+1/2/ER,i,j,k+1/2

,

Di,j,k−1/2 ≡ c

3ρi,j,k−1/2κR,i,j,k−1/2 + ‖∇ER‖i,j,k−1/2/ER,i,j,k−1/2

,

and

Si,j,k(ER,i,j,k, EM,i,j,k) = cρi,j,kκP,i,j,k

(
aT 4

M,i,j,k − ER,i,j,k

)
, and (7)

Ri,j,k(EM,i,j,k) = µi,j,kT
5
M,i,j,k. (8)

Thus, our discrete scheme is to find ER(t) and EM(t) such that,

dER

dt
= L(ER) + S(ER,EM) + Q, (9)

dEM

dt
= −S(ER,EM) + R(EM), (10)

where Q includes the source term along with terms from the discretized bound-
ary conditions. For more details, see [13].

3.1 Fully Implicit

For the fully implicit formulation, we use an ODE time integrator to han-
dle the implicit time step selection for the system (9)-(10). In particular, we
employ the parallel ODE solver, CVODE [10], developed at Lawrence Liver-
more National Laboratory and based on the VODPK package [27]. CVODE
employs the fixed leading coefficient variant of the Backward Differentiation
Formula (BDF) method [28,29] and allows for variation in the order of the
time discretization as well as in the time step size.

The methods in CVODE are Predictor-Corrector in nature, and so each time
step begins with the calculation of an explicit predictor. An implicit corrector
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is then employed to solve for the time step solution. This time integration
technique leads to a coupled, nonlinear system of equations that must be
solved at each time step. For example, solving the ODE system

ẏ = f(t, y), (11)

with the backward Euler method (i.e., the BDF method of order 1), leads to
the following nonlinear system

0 = F (y) ≡ y −∆tf(tn, y)− yn−1

(
i.e.,

yn − yn−1

∆t
= f(tn, yn)

)
(12)

that must be solved for y = yn at each time step. For the solution of this
system, CVODE uses an inexact Newton–Krylov method with Jacobian-vector
products approximated by finite differences of the form

F ′(y)v ≈ F (y + θv)− F (y)

θ
, (13)

where θ is a scalar. Within the Newton–Krylov paradigm, only the imple-
mentation of the nonlinear function is necessary, and Jacobian matrix entries
need never be formed or stored. The explicit predictor, yn(0), is used as an
initial guess to the nonlinear system (12). The details of the how tolerances
are selected for the nonlinear and linear iterations in CVODE are discussed in
detail in the overview paper [30]. Finally, when the initial nonlinear residual,
F (yn(0)), is small enough (i.e., meets the nonlinear system stopping toler-
ance), CVODE sets the linear solver answer to s0 = −F (yn(0)), which then
gives yn(1) = yn(0) + s0 = ∆tf(tn, yn(0)) + yn−1. This amounts to one step of
functional iteration for solving (12), and so the number of linear iterations can
be 0 for some Newton iterations.

In the methods discussed above, we use the scaling technique incorporated into
CVODE. Thus, we include an absolute tolerance (ATOL) for each unknown
and a relative tolerance (RTOL) applied to all unknowns. These tolerances are
then used to form a weight that is applied to each solution component during
the time step from tn−1 to tn. This weight is given as

wi = RTOL · |yi
n−1|+ ATOLi, (14)
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and then the weighted root mean square norm

‖y‖WRMS =

[
N−1

N∑

i=1

(yi/wi)
2

]1/2

(15)

is applied on all error-like vectors within the solution process. This scaling
gives each solution component equal weight when measuring the size of errors
in y. For our application, we supply two absolute tolerances, one to be used
with the radiation energy unknowns and one to be used with the material
energy unknowns.

3.1.1 Time Step Selection

Time step sizes are chosen in an attempt to maximize step sizes while con-
trolling the local truncation error, and thus give a solution that obeys a user-
specified accuracy bound. For a typical linear multistep method (under mild
assumptions on the step sizes), the local truncation error (LTE), at order q
and step size ∆t, satisfies an asymptotic relation of the form

LTE = C(∆t)q+1y(q+1) + O((∆t)q+2),

where y(q+1) is the q + 1st derivative of y, and C is a constant. A similar
relation holds for the predictor yn(0). These are combined to get the following
order q + 2 estimate used in CVODE, namely

LTE(∆tn) ≡ Cq(yn − yn(0)), (16)

where yn is the final iterate in the Newton iteration and Cq is a constant that
depends on the BDF method order q but is independent of the solution. If
‖LTE(∆tn)‖WRMS < 1, then the time step is accepted. If this condition is
violated, the step size is cut, and the solution is recomputed. New steps are
chosen by estimating the local truncation error at the new step, ∆t′, as

‖LTE(∆t′)‖WRMS ≈
(

∆t′

∆tn

)q+1

‖LTE(∆t)‖WRMS, (17)

where q is the current method order. The new step is chosen to give the largest
time step still satisfying ‖LTE(∆t′)‖WRMS < 1. CVODE also changes the BDF
method order by comparing the local truncation errors for the BDF methods
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of order q − 1 and q + 1 when using order q, and then taking the order that
allows the largest time step.

We use the GMRES Krylov iterative solver for solution of the linear Jacobian
system at each Newton iteration [31]. The tolerance for the Newton iteration
is taken to guarantee that iteration error introduced from the nonlinear solver
is smaller than the local truncation error. The default linear system tolerance
in CVODE is taken to be the factor α = 0.05 times the nonlinear system
tolerance. This factor can be optionally set in the CVODE solver, and for some
of the problems discussed below we use a smaller value of α, as the default of
0.05 did not work for the larger RTOL values. The default maximum subspace
dimension for GMRES in CVODE is 5, and we use this default in all of our
tests. For more details regarding the step size and order selection strategies in
CVODE, as well as acceptance of a step and nonlinear convergence, we refer
the reader to the review article [30].

3.1.2 Preconditioning

Preconditioning is generally essential when using Krylov linear solvers. To
describe our preconditioning strategy, we begin by considering the content
and structure of the Jacobian matrix. In (11), set y = (ET

R,ET
M)T , and then

form f using the right-hand sides of (9)-(10). The Jacobian matrices used in
the Newton method are of the general form F ′(y) = (I−γJ), where J = ∂f/∂y
is the Jacobian of the nonlinear function f , and the parameter γ ≡ ∆tβ with
∆t the current time step value and β a coefficient depending on the order
of the BDF method. Recalling the definitions of the discrete divergence and
source operators, the block form of the Jacobian of f is

J =




∂L/∂ER + ∂S/∂ER ∂S/∂EM

−∂S/∂ER −∂S/∂EM + ∂R/∂EM




=




A + G B

−G −B + C


 ,

where A = ∂L/∂ER, G = ∂S/∂ER, B = ∂S/∂EM , and C = ∂R/∂EM . We
note that G,B and C are diagonal matrices.

On close inspection of the nonlinear diffusion operator L(ER), we can write

L(ER) = L̂(ER)ER, (18)
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where L̂ is a nonlinear matrix-valued function of ER. In all of our precondi-
tioning strategies, we neglect the nonlinearity in the diffusion term and use
the approximation

A = ∂L(ÊR)/∂ER ≈ L̂(ÊR) ≡ Ã,

where ∂L(ÊR)/∂ER is the Jacobian of L evaluated at a radiation energy, ÊR.
The size of the neglected term is related to the derivatives of the Rosseland
opacity and the flux-limiter. Our motivation for neglecting this term arises
from the fact that −Ã is symmetric and positive definite, whereas −A is not.
Making this approximation leads to a symmetric preconditioning matrix. Sym-
metry matters within the preconditioner since we will be applying multigrid
methods which work most efficiently on symmetric and positive definite sys-
tems. In addition, symmetric preconditioning matrices require half the storage
of nonsymmetric systems. Lastly, we note that the derivative of the flux-limiter
may lead to numerical errors if ∇ER approaches 0.

Our preconditioning strategy is to factor the matrix, I − γJ , as




P Q

U T


 ≡




I − γ(Ã + G) −γB

γG I − γ(C −B)


 = M

into the following:

MSchur =




I QT−1

0 I







P −QT−1U 0

0 T







I 0

T−1U I


 .

Letting S = P −QT−1U , we write the solution to MSchurx = b as




x1

x2


 =




S−1(b1 −QT−1b2)

T−1(−Ux1 + b2)


 .

If the Schur complement, S, is exactly inverted, there will be no error associ-
ated with this preconditioner for the non-flux-limited, constant opacity case.
In addition, because B, C and hence T is diagonal, there is no penalty associ-
ated with inverting T for every iteration of a method that inverts S, as there
would be if a material energy diffusion term were added to the equations. Also
note that S is formed by modifying the diagonal of P and thus is composed
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of a symmetric diffusion-like matrix with a modified diagonal. Hence, we can
employ multigrid methods to invert this Schur complement.

The Rosseland opacity will exhibit large changes where material interfaces
exist in the domain. The temperature dependence gives rise to large value
changes as well. These changes imply that the problem can be very hetero-
geneous. As a result, to invert the Schur complement matrix (S), we use a
multigrid method designed to handle large changes in problem coefficients. In
particular, we use one V-cycle of a semi-coarsening multigrid algorithm, such
as the ParFlow semi-coarsening MultiGrid (PFMG)[32] or the Semi-coarsening
MultiGrid (SMG) developed by Schaffer [33,34] as our multigrid solver. Semi-
coarsening multigrid methods have been found to be quite effective on highly
heterogeneous problems. A comparison of PFMG and SMG can be found in
[35]. Details of both these methods can be found in the cited references, and
more information about multigrid methods in general can be found in [36].

Since Jacobian approximations can be expensive to compute, in CVODE the
preconditioner is not updated with every Newton iteration. Preconditioner
updates occur only when the Newton iteration fails to converge, 20 time steps
pass without an update, or when there is a significant change in the time step
size and order of the ODE method.

In summary, the main advantage of the fully implicit method is that we have
accurate error control in the time step selection process allowing step sizes to
automatically adjust to the problem physics while maintaining accuracy. The
main disadvantage of the method is that opacities must be calculated for every
linear iteration, as a nonlinear function evaluation is required in the matrix-
vector product approximation (13). In general, fully implicit methods require
more sophisticated solvers than semi-implicit methods. The solution method
presented above has been tested on very large, three-dimensional problems
and has been shown to be parallel scalable [13].

3.2 Semi-Implicit

In the semi-implicit method we compare against, a backward Euler time step-
ping technique is applied, wherein opacities, flux-limiters, and material sources
are evaluated at the start of a new time step using the solution from the pre-
vious step, and the term coupling radiation to matter, cρκP (Tn

M)(a(Tn+1
M )4−

En+1
R ), is linearized about the solution from the previous step. The problem is

put in a residual formulation so that the single linear solve required at each
time step gives the increment to the solution values from the previous step’s
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solution.

3.2.1 Linearization

Beginning with the discrete system (9)–(10) and using (18), we can write

En+1
R − En

R

∆t
= L̂(En

R)En+1
R + K(Tn

M)(a(Tn+1
M )4 − En+1

R ) + Qn+1, (19)

En+1
M − En

M

∆t
= −K(Tn

M)(a(Tn+1
M )4 − En+1

R ) + R(Tn+1
M ), (20)

where K(Tn
M) is a diagonal matrix with entries given by Ki,j,k ≡ cρκP (T n

M,i,j,k)

and En+1
M,i,j,k = EOS(T n+1

M,i,j,k). Next, letting Tn+1
M = Tn

M +∆Tn
M we linearize to

obtain

(Tn+1
M )4 = (Tn

M + ∆Tn
M)4 ≈ (Tn

M)4 + 4(Tn
M)3∆Tn

M .

Similarly, we linearize EM = EOS(TM) to obtain

En+1
M = EOS(Tn

M + ∆Tn
M) ≈ EOS(Tn

M) +
∂EOS

∂TM

(Tn
M)∆Tn

M ,

or

En+1
M − En

M ≈ ∂EOS

∂TM

(Tn
M)∆Tn

M .

Thus,

(Tn+1
M )4 ≈ (Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M).

We apply a similar linearization to the fusion source term, µ(T n+1)5. Substi-
tuting this last relationship into (19)–(20), we have

En+1
R − En

R = ∆tL̂(En
R)En+1

R + ∆tQn+1 + ∆tK(Tn
M) · (21)

a


(Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


− En+1

R


 ,
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and

En+1
M − En

M = ∆tµ
[
(Tn

M)5 + 5(Tn
M)4· (22)

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


−∆tK(Tn

M) ·

a


(Tn

M)4 + 4(Tn
M)3

[
∂EOS

∂TM

(Tn
M)

]−1

(En+1
M − En

M)


− En+1

R


 ,

where we solve for the changes, ∆En
R ≡ En+1

R −En
R and ∆En

M ≡ En+1
M −En

M ,
given the previous values of En

R and En
M .

We solve the linear system (21)–(22) using the same linear solver as described
above: the GMRES Krylov iterative solver with a Schur complement factor-
ization preconditioner. The same multigrid method is used to invert the Schur
complement matrix as in the fully implicit case. The linear iteration is per-
formed until the relative residual is bounded by an input tolerance times the
norm of the right-hand side,

‖r‖WRMS ≤ ε‖b‖WRMS, (23)

where r is the linear system residual, b is the linear system right-hand side,
and ε is an input parameter. The WRMS norm is calculated in the same way
as that for CVODE, using RTOL and ATOL values chosen as in the CVODE
case.

We note here that due to the lagging of opacity values and flux limiters, the
semi-implicit method is only first order in time. Without changing how the
lagging is handled (and thus adding new opacity evaluation requirements),
this method cannot be changed to higher order.

3.2.2 Time Step Selection

Time steps are chosen to try to restrict changes in radiation energy and mate-
rial temperature within a step. For specified minimum values, Emin and Tmin,
and specified fractional variations allowed in a step, Efrac and Tfrac, the new
step is computed by first calculating a maximum variation for each variable,

vR = max
i,j,k

(
∆En

R

0.5(En−1
R + En

R) + Emin

)
, and
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vM = max
i,j,k

(
∆T n

M

0.5(T n−1
M + T n

M) + Tmin

)
.

Then, the new step is chosen as

∆tnew = ∆told ·min(Efrac/(vR + δ), Tfrac/(vM + δ)), (24)

where δ = 10−7 limits the maximum change in the step size. If the linear iter-
ation fails to converge, that is, the convergence criterion, (23), is not satisfied
in the allotted maximum number of iterations, then the step is repeated with
∆tnew = 0.5 ·∆told.

3.2.3 Comparison With Fully Implicit

Note that this selection process is similar to the error control for the fully
implicit case. However, while the semi-implicit approach bounds the maximum
change in solution components over a time step, the fully implicit approach
is bounding the maximum local truncation error made on a step with no
direct control on the solution components. To see the similarity, consider the
radiation energy case. The semi-implicit method selects the step so that

vR/Efrac =
∆En

R

0.5(En−1
R + En

R)Efrac + EminEfrac

< 1. (25)

Taking ATOLR = EminEfrac, RTOL = Efrac, and noting that 0.5(En−1
R +

En
R) is an approximation to the current radiation energy, we see that the ith

component of the variation that is being bounded in the semi-implicit case is
just,

∆En
R

RTOL · En
R + ATOL

. (26)

The variation in local truncation error that is bounded in the fully implicit case
is just this expression. But instead of looking at the variation over a time step
in ∆En

R, we look at the variation between the predictor and the corrector. Since
the error in each of these approximations can be bounded, the variation in the
predictor and corrector gives us a concrete estimate on the local truncation
error. In [37,38], the authors describe and analyze time step selection strategies
for ODEs that control the relative change in the numerical solution, similar
to that described above for our semi-implicit method. As remarked in [37],
the great applicability of controlling the relative change is also its greatest
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weakness. That is, it treats all methods like a first order method. Thus, it
can be very inefficient if used to control the time step size for higher order
methods.

4 Numerical Results

In this section we present numerical results of solving nonlinear diffusion prob-
lems with the high order fully implicit method. We compare the method with
a semi-implicit scheme for both accuracy and computational speed. We also
investigate some of the advantages of the high order integration method and
look at which orders give the highest benefit. Lastly, we show results of solving
very large-scale nonlinear diffusion problems in parallel.

In the following subsections, the numerical statistical counters and parameters
are

RTOL = relative tolerance,

MO = maximum order allowed, implicit method only

NST = time steps,

NNI = nonlinear iterations,

NLI = linear iterations,

RT = run time in seconds,

FAC = specified fractional variation allowed in both energies

within a step, semi-implicit only.

In the following examples we will use step and bi-cubic functions to define the
spatial and temporal extent of the source functions χ(x) and µ(x, t) in (1) and
(2) respectively, given by

H(x, ε) ≡
{

1, if |x| ≤ ε;
0, otherwise.

(27)

B(x, ε) ≡





2
(

ε+x
2ε

)2 (
6− 8 ε+x

2ε

)
, if −ε < x ≤ 0;

2
(

ε−x
2ε

)2 (
6− 8 ε−x

2ε

)
, if 0 ≤ x < ε;

0, otherwise.

(28)

The simulations in this paper use the LEOS equation-of-state data base [22].
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This data base allows for the extraction of total energy and Planck and Rosse-
land opacities using various interpolation methods. We use bi-cubic inter-
polation for the material energy EOS(TM) and bi-linear for the Planck and
Rosseland opacities. Although this data base provides methods of returning
out-of-bound values, we have designed the test problems presented here so
that there were no out-of-bounds data requests.

Due to its robustness, the SMG algorithm was used for the multigrid portion
of the preconditioner for all runs in subsections 4.1-4.3. Due to its superior
scalability features, we used the PFMG method for multigrid solves, unless
otherwise specified, for the studies done in subsection 4.4.

4.1 Demonstration of accuracy

In this section, we present a test case which demonstrates accuracy of the
fully implicit and semi-implicit codes compared to analytic solutions. All runs
in this and the next subsection were done on a single processor in a Compaq
cluster of 1 GHz EV68 Alpha processors.

Our first numerical test case is the Su-Olson problem, a one-dimensional Mar-
shak problem that has a published analytic solution [39]. The problem starts
with a homogeneous initial condition for the radiation and material tempera-
ture. A Robin boundary condition of the form,

E(0, t)−
(

2

3κR

)
∂E(0, t)

∂x
= 1, (29)

is applied at x = 0, and a homogeneous Dirichlet condition is applied at
x = ∞. In practice, this right-hand boundary condition is applied at x = 20.

The material specific heat is given by, cv = a
ε
T 3

M and the equation of state is,
EM(TM) = ρcvTM . The flux limiter is not used in this simulation. The Planck
and Rosseland opacities are both set to a constant, κP = κR = 1.0 cm2/g,
and ε = 0.1. Heat is applied to the left-hand boundary as a result of the above
boundary condition. As the temperature of the radiation field increases, energy
is transfered to the material. Simulations were run to a time of 3.34× 10−5µs.
At this time the wave front is still far enough away from the right boundary
that the boundary condition does not affect the solution.

Table 1 gives a comparison of implicit and semi-implicit method statistics for
this problem. The maximum order, MO, was set to 5 for all implicit runs, and
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the relative errors reported are the maximum over the spatial grid computed at
the end of the simulation. Relative error is with respect to analytic evaluations
as described in Su and Olson [39]. Note also in the table that the number
of time steps is larger than the number of linear iterations for the implicit
method. As noted earlier, it is possible for there to be no linear iterations on a
Newton iteration if the prediction is good enough. For the semi-implicit runs,
the preconditioner is very effective, and hence only 1 linear iteration per time
step is needed.

The table shows that for each spatial grid, both methods produce approxi-
mately the same errors and that these errors are converging with the same
rate as the grid spacing is refined. We also see that the discretization errors
are independent of the time integration tolerances, indicating that the inte-
gration error is not polluting the spatial discretization error. Thus, the two
codes have similar spatial discretization accuracies and we can consider that
differences in solutions between the codes are related only to handling of time
discretizations and nonlinear couplings.

We note that the effect of the weighted root mean square norm is evident in
the fully implicit results for this system. The fully implicit method chooses
time steps in order to bound the estimated local truncation error measured
in the weighted root mean square norm (15) in terms of the relative (RTOL)
and absolute (ATOL) tolerances provided by the user. If CVODE used just
a Euclidean 2-norm to choose time steps, then as the problem size got larger
(the number of unknowns increased) and if each component of the estimated
truncation error stayed about the same as in the smaller problem, the esti-
mated error could get very large. The weighted root mean square norm thus
scales the estimated error by the number of unknowns to reduce this effect.
To see the motivation for this scaling in the PDE context, consider the fol-
lowing Banach L2-norm for a spatially dependent function, z, over a domain

Ω, (
∫
Ω(z(x))2dx)

1/2
. A discrete approximation of this norm over a domain of

length, L, decomposed into a grid of N uniform cells of size, ∆x, is

(
N∑

i=1

(zi)
2∆x

)1/2

=
(

L

N

)1/2
(

N∑

i=1

(zi)
2

)1/2

, (30)

where we used the relationship ∆x = L/N . This last expression is just the
root mean square norm multiplied by a constant related to the domain size.
The result of using the root mean square norm and its induced scaling by the
number of unknowns in our case is that time steps do not decrease as fast as
one might expect for larger runs.
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Table 1
Statistics for both fully implicit and semi-implicit solutions of the Su-Olson problem.
Maximum relative error given is for radiation temperature.

Method RTOL FAC NST NNI NLI Max. Err. RT

200 grid points

Implicit 10−5 NA 1,609 1,654 1,604 4.43× 10−2 7.49

Implicit 10−6 NA 2,341 2,405 2,338 4.43× 10−2 9.54

Semi-Imp. NA 10−2 3,919 NA 3,919 4.45× 10−2 15.5

Semi-Imp. NA 10−3 39,053 NA 39,053 4.43× 10−2 72.9

1,000 grid points

Implicit 10−5 NA 2,561 2,619 2,557 9.69× 10−3 84.6

Implicit 10−6 NA 3,759 3,832 3,755 9.69× 10−3 83.1

Semi-Imp. NA 10−2 5,573 NA 5,573 9.91× 10−3 86.2

Semi-Imp. NA 10−3 55,782 NA 55,782 9.64× 10−3 2,281.8

10,000 grid points

Implicit 10−5 NA 3,788 3,853 3,781 1.05× 10−3 809.1

Implicit 10−6 NA 5,600 5,685 5,595 1.05× 10−3 1,332.1

Semi-Imp. NA 10−2 7,621 NA 7,621 1.34× 10−3 1,190.7

Semi-Imp. NA 10−3 76,540 NA 76,540 1.04× 10−3 17,935.2

4.2 Comparisons of fully and semi-implicit

In this section we present results of two 3D simulations with radiation sources,
one in hydrogen and the other in carbon, and results of a 2D problem in hydro-
gen which includes a time-dependent material energy source. The 3D hydrogen
problem is characterized by a rapid diffusion of radiation energy which will be
limited by the flux limiter. Diffusion in the 3D carbon problem is slower, and
the flux limiter is of less importance. The 2D problem is characterized by a
very fast heating rate due to the nonlinear source term. These test problems
demonstrate the benefit and accuracy of fully implicit over semi-implicit.
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4.2.1 Radiation source problem

In this 3D simulation, energy is supplied to the radiation field by a source
with a specified black body temperature. The radiation energy is involved in
four physical processes, heating from the source, diffusion of energy out of
the heated region, transfer of energy to the material, and interaction with
boundaries. The material energy is involved in only one process, heating via
transfer of energy from the radiation field.

In these simulations we use the LEOS equation of state data base as described
above and a 20 × 20 × 20 grid with 0.01 cm on each side. Homogeneous
Neumann conditions are used on all boundaries, and the initial radiation and
material temperatures are 15 eV .

The source is spherical positioned in a corner with a sharp boundary of radius
0.004 cm,

χ(x) = H
(√

(x− 0.01)2 + (y − 0.01)2 + (z − 0.01)2, 0.004
)

,

where H is given by (27). The source temperature, Tsource, is 300 eV .

These simulations were run for a short time interval of 10−6 µs. This final
time was kept short as these tests were designed to compare the two methods
on transient problems. Although the grid used in these examples is coarse, the
previous test case shows that errors due to the spatial approximation are the
same in both codes and hence cancel when the solutions are subtracted from
each other.

Figure 1 shows the Planck and Rosseland opacities over the temperature
ranges included in these runs. We see that the material energy for hydro-
gen varies more readily with temperature than it does with carbon. Similarly,
we see the opacity values decrease faster with temperature for hydrogen than
for carbon. These differences result in a more difficult problem for hydrogen
than for carbon.

Tables 2 and 3 summarize simulations using hydrogen and carbon, respec-
tively. We see in all cases that allowing the implicit method to go to higher
orders (above 2) results in a solution requiring fewer time steps than the sec-
ond order scheme. Fewer steps are required because the integration method
can take larger steps and lower the resulting error by using a higher order
method. Comparing the implicit and semi-implicit methods in terms of com-
putation run time and number of steps, the implicit method is faster than the
semi-implicit for higher levels of requested accuracy. For the highly resolved
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Fig. 1. Opacities over relevant temperature ranges in the 3D hydrogen (left) and
carbon (right) simulations for ρ = 1.0g/cc.

solutions, for example, implicit with RTOL = 10−8 and semi-implicit with
FAC = 10−3, implicit can be several times faster.

For the hydrogen case, we see that the fully implicit method has trouble
converging in a reasonable number of time steps for large values of RTOL. We
believe this difficulty results from the method becoming numerically unstable.
As noted in [40], BDF methods coupled with iterative linear solvers such as
GMRES are essentially explicit time integration methods. The iterative solver
must do a good job of solving in the subspace generated by the dominant
eigenvectors (i.e., the stiff modes). If this doesn’t happen, then these modes can
cause the combined BDF-iterative method to become unstable. Because the
larger RTOL tolerances allow more error in the solution, we believe unstable
modes are growing and causing numerical instabilities. For smaller RTOL
values, these modes are damped and do not grow. Also, as RTOL is reduced,
we see significant benefits to using the high order in time integration both in
fewer numbers of time steps and also in decreased run time as compared to
the second order method. For more details on the stability of BDF methods
with iterative linear solvers, see [40] and [41].

Figure 2 shows the relative error in the radiation temperatures for both the 3D
hydrogen and carbon problems. In most cases, we see that going to higher or-
der gives better agreement with the fully resolved run than lower order for the
fully implicit method. This difference results from the lower order method re-

21



Table 2
Statistics for 3D Hydrogen problem. (DNF = Did not finish.)

Method RTOL MO FAC NST NNI NLI RT

Implicit 10−5 2 NA DNF

Implicit 10−5 5 NA DNF

Implicit 10−6 2 NA 1,673 1,728 4,798 370

Implicit 10−6 5 NA 708 796 2,993 266

Implicit 10−7 2 NA 3,681 3,784 8,900 726

Implicit 10−7 5 NA 1,037 1,153 3,674 333

Implicit 10−8 2 NA 7,924 8,166 17,085 2,089

Implicit 10−8 5 NA 2,133 2,346 6,313 524

Semi-Imp. NA NA 10−1 181 NA 1,013 100

Semi-Imp. NA NA 10−2 1,807 NA 9,343 667

Semi-Imp. NA NA 10−3 18,089 NA 78,166 6,595

Table 3
Statistics for 3D Carbon problem.

Method RTOL MO FAC NST NNI NLI RT

Implicit 10−5 2 NA 648 670 1,693 156

Implicit 10−5 5 NA 401 412 1,099 88

Implicit 10−6 2 NA 1,434 1,483 3,329 314

Implicit 10−6 5 NA 807 852 2,024 192

Implicit 10−7 2 NA 3,150 3,284 6,583 581

Implicit 10−7 5 NA 1,658 1,758 3,969 377

Implicit 10−8 2 NA 6,894 7,285 12,955 1,323

Implicit 10−8 5 NA 3,462 3,832 8,112 985

Semi-Imp. NA NA 10−1 149 NA 654 61

Semi-Imp. NA NA 10−2 1,468 NA 4,986 561

Semi-Imp. NA NA 10−3 14,653 NA 29,302 4,662

quiring smaller time steps in order to maintain accuracy and thus taking more
time steps. We know that asymptotically, the local truncation error is smaller
for higher order methods. Because we control this local truncation error per
step, the global error behaves like a sum of local errors and is consequently
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dependent on the number of steps. Thus, we expect that the lower order run
would have a greater error than the higher order run for a given tolerance.
In addition, since we are using iterative solvers for both nonlinear and linear
solution methods, extra time steps can result in more chances for one solution
to deviate (within tolerances) from another solution. Lastly, round off error
can accumulate. The results of these sources of error is the difference that we
see between the lower and higher order runs. We also see that for all tolerances
considered, the fully implicit method is more accurate than the semi-implicit
method. Given that the semi-implicit run times are generally longer than that
for the implicit method, significant speed benefits can be delivered with the
implicit method.
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Fig. 2. Evolution of relative errors for radiation temperature in solution of 3D hydro-
gen (left) and carbon (right) problems. Relative error is with respect to the implicit
simulation with RTOL = 10−8 and MO = 5.

4.2.2 Fusion source problem

Our next example is a 2D fusion source problem. In this problem we have
added a material energy source which has a temperature dependence of T 5

M .
This is a good fit to a tritium-deuterium reaction rate at low temperature
(less than a few keV) such as in a tokamak fusion experiment [42] (p. 29). The
source function, µ(x, t), is a product of a step function in cylindrical radius and
a bi-cubic in time. The source, given in units of erg

cm3
1
s

1
eV 5 , which is positioned

in the upper right corner of the domain with a sharp boundary in space is
given by,

µ(x, t) =
(
2.31× 10−11

)
H

(√
(x− 0.01)2 + (y − 0.01)2, 0.005

)
×
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B
(
t− 10−8, 10−8

)
,

where H and B are given by (27) and (28) respectively.

These simulations in hydrogen use a 20 × 20 grid with 0.01 cm on each side.
The initial temperatures for both radiation and material are 100 eV , and the
density was taken to be 1 gm/cm3. All boundary conditions are Neumann,
and flux limiting is used for all runs. The LEOS equation of state package is
used for opacity values. The simulations are run to a final time of 2.5× 10−8

µs.

Figure 3 shows the history of the radiation and material source function at a
point interior to the source region for this problem. For this problem energy
is supplied to the material via the source term, transferred to the radiation
and lost via diffusion. The strong nonlinear dependence of the source term on
material temperature, T 5

M , can lead to very rapid increases in temperature. In
these problems the source is turned off by the time dependence in µ(x, t).
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Fig. 3. Evolution of radiation and material temperatures as well as material source
function (heating curve) profile in time for the 2D source problem.

The large heating rates can also lead to some problems with respect to au-
tomatic time step control in the semi-implicit simulations. In the initial time
period, before the source turns on, the automatic time step control for the
semi-implicit method will advance to the maximum allowed time step, HMAX.
This advancement results in the system missing the turn-on of the source. In
the simulations presented here, for the semi-implicit methods, we bypass this
problem by using a small maximum time step. It should be noted that for all
the semi-implicit simulations shown in this section, this maximum step size
only limits the step selection during the initial stages of the source. No limi-
tations due to this parameter were observed for other times in the simulation.
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Table 4
Statistics for implicit solution of 2D matter source problem.

RTOL MO NST NNI NLI RT

10−4 2 44 63 136 0.99

10−4 5 36 60 130 1.57

10−5 2 91 126 220 1.66

10−5 5 66 100 175 1.57

10−6 2 175 218 356 3.41

10−6 5 108 167 256 2.08

10−7 2 369 425 632 6.32

10−7 5 201 262 367 3.52

10−8 2 755 849 1212 16.40

10−8 5 300 403 538 4.49

10−9 5 503 695 848 16.90

(A more consistent way of performing this simulation would be to have a third
equation in the system which models the depletion of a fusion fuel density as
its energy is added to the material. Implicit solutions of this three equation
system will be the subject of a following paper.)

Tables 4 and 5 show results of our implicit and semi-implicit simulations for
the material source problem, respectively. The values of RTOL, HMAX, and
FAC have been chosen by trial-and-error to yield a set of runs with similar
relative error. In the implicit runs we see that using higher order can lead to a
reduction in run time by a factor of two or three for the more accurate small
RTOL runs. For similar accuracy the semi-implicit method is much slower.
The maximum time step limit, HMAX, is used in these simulations to restrict
the accumulation of error in early times. Without this restriction, the semi-
implicit method initially takes a larger time step and is not able to reduce the
time step fast enough to resolve the dynamics. The time step is controlled by
HMAX up to about 0.1×10−8 sec in these simulations. After this initial short
period of time the automatic time step control reduces the time step below
HMAX.

Figure 4 shows relative errors of the material temperatures for the 2D source
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Table 5
Statistics for semi-implicit solution of 2D matter source problem.

FAC HMAX NST NLI RT

10−3 10−9 904 1,635 17

10−4 10−10 9,754 17,388 191

10−5 10−11 96,884 130,481 1,539

10−6 10−12 751,153 751,152 11,744

problem. All methods show the same behavior, a significant increase in er-
ror once the source turns on, and a leveling off of the error once the source
turns off. All methods show convergence, with tolerance, to the highly resolved
solution. Although not shown, relative errors in radiation temperature show
similar results, but over a smaller scale.
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Fig. 4. Evolution of relative errors for material temperatures in the solution of the
2D source problem. Relative error is with respect to the implicit simulation with
RTOL = 10−9 and MO = 5 at a point interior to the source region.

4.3 Order Studies for the High Order Method

In this section, we explore the benefits of higher order and address the issue
of which orders give the most gain in computational speed to solution for a
given accuracy.

The first test is on a 3D fusion source problem. The source function, µ(x, t),
is a product of a bi-cubic function in spherical radius and a bi-cubic in time.
The source is positioned in the center of the domain and given in units of

26



Table 6
Statistics for implicit solution of 3D matter source problem.

RTOL MO NST NNI NLI RT

10−7 1 NA NA NA DNF

10−7 2 316 336 381 2,037

10−7 3 168 187 259 1,310

10−7 4 or 5 169 188 275 1,367

10−8 1 5,193 5,408 5,395 29,218

10−8 2 676 720 820 4,268

10−8 3 360 408 549 2,736

10−8 4 or 5 342 395 581 2,750

erg
cm3

1
s

1
eV 5 as,

µ(x, t) =
(
4.75× 10−11

)
B

(
t, 1.02× 10−8

)
×

B
(√

(x− 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.0025
)

,

where B is given by (28). These simulations in hydrogen use a 100×100×100
grid with 0.01 cm on each side. The initial temperatures for both radiation
and material were 100 eV , and the density was taken to be 1 gm/cm3. All
boundary conditions were Dirichlet with a 100 eV temperature, and flux lim-
iting was used for all runs. The LEOS equation of state package was applied
for opacity values, and the simulations were run to a final time of 2.5× 10−7

µs. All runs were done on 8 processors of ASCI Frost which is an IBM SP par-
allel machine at Lawrence Livermore National Laboratory running the AIX
operating system with 1,088 375 MHz processors grouped into 16-processor
nodes.

Table 6 shows solver statistics for this problem with maximum allowed order
of the time integration set at 1, 2, 3, and 5. For the simulations in this table
the maximum order actually attained was 4. Thus, the runs with maximum
allowed order 4 and 5 are the same. We see a significant gain in going from
first to second order and in going from second to third order. Little benefit is
seen in going to higher than third order. For this problem, third order is high
enough to give the required accuracy and going higher introduces overhead in
testing for changes to higher orders which will not give benefit.
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Figure 5 shows the solutions, heating time, and histories of time steps and
order choices for a similar test problem with a density of 2 gm/cm3 and a
final time of 2.5× 10−4 µs. We used a higher density in this case to result in
more transfer of energy from the matter to the radiation field. Also in this case
we increased the strength of the material heating source. We use the µ(x, t) of
the above simulation with the leading constant factor increased to 9.5×10−11.
This problem was run with MO = 5 and RTOL = 10−7. A longer time was
used to give more information on order and step selection. In this problem,
we clearly see the heating stage where the matter temperature undergoes
significant increases then levels off while some of the energy is transferred to
the radiation. Both fields decrease in energy toward the end of the run as
energy leaves the domain due to the Dirichlet boundary condition.

The order history shows the method initially using third order as the heat-
ing region is traversed. After heating, the method reduces to second order for
the majority of the rest of the run. The step size stays constant initially, then
increases before the exponential portion of the heating begins. When the heat-
ing becomes significant, the step size is reduced, then increases again after the
heating phase. The step continues to increase with a brief pause coinciding
with a move to fourth order. These changes are a result of the method adjust-
ing to the solution “settling down” after the large changes from heating and
transfer of energy from matter to radiation. As the energy leaves the system,
we see the order and step sizes change simultaneously. In general, a larger
time step creates a larger error and a larger order reduces the error. Thus,
we see that the method will raise the step and reduce the order, then adjust
back. Toward the end of the run, we see these adjustments happen frequently
as the solution shows energy decreases. The statistics for this simulation are,
NST = 744, NNI = 1132, NLI = 1870 and RT = 4, 584 sec.

These results show the ability of the variable order, variable step method to
adjust to solution changes while maintaining a given requirement on the size
of the local time integration truncation error. This type of adaptivity results
in fewer time steps.

4.4 Results for Large-Scale Computations

In this section, we present results of parallel scalability studies for the fully
implicit high order solution method. These studies give a measure of how well
the solution method makes use of additional resources to solve larger problems.
Although use of tabulated opacities and nonlinear sources doesn’t directly af-
fect parallel efficiency of the implicit method, if these terms are not handled
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Fig. 5. Left: Heating time and temperature solutions for the 3D matter source
problem. Temperatures are recorded at the center of the source. Right: Time step
and order history for implicit high order solution method.

well in the preconditioner, we would see large iteration counts and unaccept-
ably large solution times, making large-scale runs impossible. Thus, to show
the implicit method is effective for large-scale problems with these physical
attributes, we conduct scalability studies for the three situations: a diffusion
problem with constant opacities and a constant radiation source, a diffusion
problem with tabulated opacities and a constant radiation source, and a dif-
fusion problem with tabulated opacities and a nonlinear matter source. The
first study was done with a constant opacity problem running on ASCI Red
at Sandia National Laboratory. This system consist of 4,536 nodes each con-
taining two 200 MHz Intel Pentium Pro processors. The next two studies were
done using the LEOS tabulated opacity data base on radiation source and
fusion source problems running on ASCI Frost.

In all studies in this section except the last, we used the PFMG multigrid
method [32]. We applied this algorithm because the PFMG method scales
to very large numbers of processors. Our last study was done with the SMG
method and compares scaling results using this preconditioner with the PFMG
method.

The first study ran on 5,832 processors of ASCI Red using one processor per
node running MPI for parallel communications. The system (1)-(2) was solved
on the box D ≡ {(x, y, z) : 0 ≤ x, y, z ≤ 1cm} with no matter source and a
constant radiation source with Tsource = 300eV at the center of the domain.
Constant Dirichlet conditions of T = 300K were applied on all boundaries.
Initial conditions for both the radiation and matter were given by TR,0 =
TM,0 = 300K. The equation of state was given simply as TM = EM , and the
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Table 7
Statistics for scalability study on ASCI Red with constant opacity problem.

Processor NST NNI NLI RT Avg. Cost Step Scaled

Topology per Step Efficiency

1× 1× 1 123 140 186 2,485 20.2 100%

2× 2× 2 113 127 160 2,518 22.3 91%

4× 4× 4 105 119 154 2,424 23.1 88%

8× 8× 8 119 136 191 2,761 23.2 87%

16× 16× 16 116 129 212 2,970 25.6 79%

18× 18× 18 112 130 214 3,001 26.8 75%

matter density was taken as ρ = 1.0g/cc. The Planck and Rosseland opacities
were set constant and equal as κP = κR = 105cm2/g. Flux-limiting was turned
on for all runs, and the simulation was run to 0.01s.

For this study, we added both unknowns and processors as we scaled up the
problem keeping a spatial grid of Nx = Ny = Nz = 40 on each processor. Thus,
problem size and computational resources were simultaneously increased.

Table 7 contains the results of the study. The reported scaled efficiency for a
run on N processors was calculated by dividing the cost per step for the single
processor run by the cost per step for the N processor case. As can be seen,
all the statistics scaled extremely well. As this problem is dominated by the
local coupling of the two fields (and not the diffusion operator), a high scaled
efficiency is expected. In fact, we see 75% scaled efficiency for the largest test
case with 373.2M grid cells.

Our next scalability study used tabulated opacities from the LEOS equation
of state data base and was run on ASCI Frost. The system (1)-(2) was solved
on the box D ≡ {(x, y, z) : 0 ≤ x, y, z ≤ 0.01cm} filled with carbon with
no matter source and a constant radiation source with Tsource = 300eV . The
source which is positioned in the center of the domain with a sharp boundary
and radius of 0.002 cm is given by,

χ(x) = H
(√

(x− 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.002
)

,

where H is given by (27). Neumann conditions were applied on all boundaries,
and the initial temperature for radiation and material was 15 eV . No flux-
limiting was applied. The problem was run to a final time of 2.5 × 10−8 µs
with a relative tolerance of 10−6.
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Table 8
Statistics for scalability study on ASCI Frost with tabulated opacity, radiation heat-
ing source problem.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1× 1× 1 489 521 901 1,401 100% 100%

2× 1× 1 563 590 1,098 1,673 84% 96%

2× 2× 2 588 611 1,085 1,718 82% 98%

4× 2× 2 559 579 1,177 1,836 76% 87%

4× 4× 4 529 548 1,082 1,716 82% 88%

6× 6× 6 479 498 983 1,735 81% 79%

8× 8× 7 463 482 958 1,704 82% 78%

There were 40×40×40 grid cells per processor, and we scaled up the number
of processors from 1 to 448 giving a total of 28.67M grid cells. Since ASCI
Frost has 16 processors per node and communication can be faster within a
node than without, we used 8 processors per node for all but the two largest
runs where we used 12 and 14 processors per node, respectively.

Table 8 shows the solver statistics and scaled efficiencies for this study. We see
that as the problem size gets larger, the number of steps and solver iterations
go up then decrease, but do not change dramatically. These results indicate
that the solution method is able to solve these refined problems effectively.
In addition, the run time does not significantly increase with scaling up the
processors and unknowns simultaneously. We see a leveling off of the scaled
efficiency for the total simulation run time at about 82%.

Our last scalability study used a nonlinear matter source and was run on
ASCI Frost with the LEOS equation-of-state data base. The system (1)-(2)
was solved on the box D ≡ {(x, y, z) : 0 ≤ x, y, z ≤ 0.01cm} with no radia-
tion source and a nonlinear material heating source. The box was filled with
hydrogen, and flux-limiting was applied. The material heating source, given
in units of erg

cm3
1
s

1
eV 5 , is positioned in the center of the domain with a smooth

boundary at a radius of 0.0025 cm and is given by

µ(x, t) =
(
4.75× 10−11

)
B

(
t, 10−8

)
×
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B
(√

(x− 0.005)2 + (y − 0.005)2 + (z − 0.005)2, 0.0025
)

,

where B is given by (28). In this simulation, the source is turned off by the
time dependence in µ(x, t). The time dependence of this function is a max-
imum at t = 0 then turned off with a half width in time of 1.0 × 10−8 µs.
Neumann conditions were applied on all boundaries. The initial temperature
for radiation and material was 100 eV . The problem was run to a final time
of 2.5× 10−8 µs with a relative tolerance of 10−7.

Similar to the previous example, we used 40× 40× 40 grid cells per processor
and scaled up the number of processors from 1 to 448 with the same numbers
of processors per node in use.

We performed two scalability studies for this test problem. In the first, we
applied the PFMG multigrid method to solve the Schur complement system
(3.1.2). Results for this study are found in Table 9 where we see a scaled
efficiency of the simulation of about 67% for 448 processors. Table 10 contains
the results of the same study but with the SMG method applied to solve the
Schur complement system. Here the scaled efficiencies are still decreasing and
are at 46% for 448 processors. The difference between these two studies is due
to the fact that the SMG solver includes more coupling and thus requires more
parallel communication. The increased couplings result in better algorithmic
scaling, as can be seen from the nearly level numbers of time steps, nonlinear
iterations, and linear iterations with the SMG preconditioner, but results in
less parallel efficiency. These two scaling studies show a classic tradeoff between
algorithm and implementation scalabilities. We further note that both the
PFMG and SMG preconditioners used in these studies were taken from the
hypre library [43,44], and the developers of this library indicated that they
have seen similar differences between the two methods.

From these three scaling studies we observe that the fully implicit method
is able to make use of additional computational resources to solve increas-
ingly larger problems with both highly nonlinear sources and with tabulated
opacities. The good scaling results mainly from effective preconditioning.

5 Conclusions

We have presented a fully implicit solution method for radiation diffusion
problems with highly nonlinear sources. Our method makes use of high order
in time integration techniques, inexact Newton-Krylov nonlinear solvers, and
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Table 9
Statistics for scalability study on ASCI Frost with tabulated opacity, material heat-
ing source problem, PFMG multigrid method.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1× 1× 1 124 145 258 439 100% 100%

2× 1× 1 118 136 278 454 97% 92%

2× 2× 2 112 129 255 431 102% 92%

4× 2× 2 133 142 333 529 93% 89%

4× 4× 4 120 134 259 459 96% 93%

6× 6× 6 124 138 269 500 88% 88%

8× 8× 7 144 156 338 654 67% 78%

Table 10
Statistics for scalability study on ASCI Frost with tabulated opacity, material heat-
ing source problem, SMG multigrid method.

Processor NST NNI NLI RT Scaled Scaled

Topology Efficiency Efficiency

simulation per step

1× 1× 1 117 141 164 393 100% 100%

2× 1× 1 110 127 171 419 94% 88%

2× 2× 2 101 115 150 414 95% 82%

4× 2× 2 99 110 151 448 88% 74%

4× 4× 4 97 109 156 531 74% 61%

6× 6× 6 106 119 165 688 57% 52%

8× 8× 7 101 113 163 858 46% 40%

multigrid preconditioning. We have incorporated the use of tabular opacities
in our model in an effort to enhance the accuracy of our test problems as well
as to evaluate the added costs of additional function evaluations in the fully
implicit approach. Our results indicate that a fully implicit solution approach
can achieve more accurate solutions than semi-implicit solution methods in
many simulations involving the interaction of radiation and matter with highly
nonlinear source terms. Furthermore, the fully implicit approach can be as
cost effective as semi-implicit approaches in many cases despite the use of
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tabulated values for the opacities. We did see, however, that when only low
accuracy results are required, the semi-implicit method may be the preferred
method due to speed and (in the case of very low accuracy) robustness. Lastly,
the solution approach is shown to scale well to very large problems solved on
parallel machines.

Acknowledgments

The authors wish to thank Alan Hindmarsh for enlightening discussions of
numerical stability and Frank Graziani for valuable discussions of the physics
of radiation transport. The authors would also like to thank John Bolstad for
providing accurate evaluations of the Su-Olson formulas.

References

[1] A. C. Hindmarsh, Preliminary documentation of GEARBI: Solution of ODE
systems with block-iterative treatment of the Jacobian, Tech. Rep. UCID-30149,
Lawrence Livermore National Laboratory (Dec. 1976).

[2] T. S. Axelrod, P. F. Dubois, C. E. Rhoades, An implicit scheme for calculating
time- and frequency-dependent flux limited radiation diffusion in one dimension,
J. Comp. Phys. 54 (1984) 205–220.

[3] P. N. Brown, A. C. Hindmarsh, Reduced storage matrix methods in stiff ODE
systems, J. Appl. Math. & Comput. 31 (1989) 40–91.

[4] P. N. Brown, Y. Saad, Hybrid Krylov methods for nonlinear systems of
equations, SIAM J. Sci. Statist. Comput. 11 (1990) 450–481.

[5] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: a survey of
approaches and applications, J. Comp. Phys. 193 (2) (2004) 357–397.

[6] D. A. Knoll, W. J. Rider, G. L. Olson, An efficient nonlinear solution method for
nonequilibrium radiation diffusion, J. Quant. Spec. and Rad. Trans. 63 (1999)
15–29.

[7] W. J. Rider, D. A. Knoll, G. L. Olson, A multigrid Newton-Krylov method
for multimaterial equilibrium radiation diffusion, J. Comp. Phys. 152 (1999)
164–191.

[8] W. J. Rider, D. A. Knoll, Time step selection for radiation diffusion calculations,
J. Comp. Phys. 152 (1999) 790–795.

34



[9] P. N. Brown, B. Chang, F. Graziani, C. S. Woodward, Implicit solution of
large-scale radiation-material energy transfer problems, in: D. R. Kincaid, A. C.
Elster (Eds.), Iterative Methods in Scientific Computation IV, International
Association for Mathematics and Computers in Simulations, New Brunswick,
NJ, 1999, pp. 343–356.

[10] G. D. Byrne, A. C. Hindmarsh, PVODE, an ODE solver for parallel computers,
Int. J. High Perf. Comput. Appl. 13 (1999) 354–365.

[11] V. A. Mousseau, D. A. Knoll, W. J. Rider, Physics-based preconditioning
and the Newton–Krylov method for non-equilibrium radiation diffusion, J. of
Comput. Phys. 160 (2000) 743–765.

[12] D. A. Knoll, W. J. Rider, G. L. Olson, Nonlinear convergence, accuracy, and
time step control in nonequilibrium radiation diffusion, J. Quant. Spec. and
Rad. Trans. 70 (1) (2001) 25–36.

[13] P. N. Brown, C. S. Woodward, Preconditioning strategies for fully implicit
radiation diffusion with material-energy transfer, SIAM J. Sci. Comput. 23 (2)
(2001) 499–516.

[14] J. W. Bates, D. A. Knoll, W. J. Rider, R. B. Lowrie, V. A.Mousseau,
On consistent time-integration methods for radiation hydrodynamics in the
equilibrium diffusion limit: Low-energy-density regime, J. Comp. Phys. 167
(2001) 99–130.

[15] L. H. Howell, J. A. Greenough, Radiation diffusion for multi-fluid eulerian
hydrodynamics with adaptive mesh refinement, J. Comp. Phys. 184 (2003) 53–
78.

[16] A. Brandt, Multigrid techniques: 1984 guide with applications to fluid dynamics,
Tech. Rep. monograph, Weizmann Institute of Science, available as GMD-Studie
No. 85, from GMD-FIT, Postfach 1240, D-5205, St. Augustin 1, Germany (Feb.
1984).

[17] D. J. Mavriplis, Multigrid approaches to non-linear diffusion problems on
unstructured meshes, Num. Lin. Alg. with App. 8 (8) (2001) 499–512.

[18] D. J. Mavriplis, An assessment of linear versus nonlinear multigrid methods for
unstructured mesh solvers, J. Comp. Phys. 175 (2002) 302–325.

[19] L. Stals, Comparison of non-linear solvers for the solution of radiation transport
equations, Elec. Trans. Num. Anal. 15 (2003) 78–93.

[20] R. B. Lowrie, A comparison of implicit time integration methods for nonlinear
relaxation and diffusion, J. Comp. Phys. 196 (2004) 566–590.

[21] D. L. Ropp, J. N. Shadid, C. C. Ober, Studies of the accuracy of time integration
methods for reaction-diffusion equations, J. Comp. Phys. 194 (2004) 544–574.

35



[22] E. M. Corey, D. A. Young, A new prototype equation of state data library, Tech.
Rep. UCRL-JC-127698, Lawrence Livermore National Laboratory, Livermore,
CA, submitted to American Physical Society Meeting (1997).

[23] G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon, New
York, 1973.

[24] R. L. Bowers, J. R. Wilson, Numerical Modeling in Applied Physics and
Astrophysics, Jones and Bartlett, Boston, 1991.

[25] M. Basko, A model for the conversion of ion-beam energy into thermal radiation,
Phys. Fluids B 4 (11) (1992) 3753–3763.

[26] E. Minguez, P. Martel, J. Gil, J. Rubiano, R. Rodriguez, Analytical opacity
formulas for ICF elements, Fusion Engineering and Design 60 (2002) 17–25.

[27] G. D. Byrne, Pragmatic experiments with Krylov methods in the stiff ODE
setting, in: J. R. Cash, I. Gladwell (Eds.), Computational Ordinary Differential
Equations, Oxford University Press, Oxford, 1992, pp. 323–356.

[28] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE: A variable-coefficient
ODE solver, SIAM J. Sci. Stat. Comput. 10 (5) (1989) 1038–1051.

[29] K. R. Jackson, R. Sacks-Davis, An alternative implementation of variable step-
size multistep formulas for stiff ODEs, ACM Trans. Math. Software 6 (1980)
295–318.

[30] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, C. S. Woodward, SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers, ACM Trans. Math. Soft.To appear. Also
available as Lawrence Livermore National Laboratory Technical Report UCRL-
JP-200037.

[31] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (3) (1986)
856–869.

[32] S. F. Ashby, R. D. Falgout, A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations, Nuclear Science and
Engineering 124 (1) (1996) 145–159.

[33] S. Schaffer, A semi-coarsening multigrid method for elliptic partial differential
equations with highly discontinuous and anisotropic coefficients, SIAM J. Sci.
Comp. 20 (1) (1998) 228–242.

[34] P. N. Brown, R. D. Falgout, J. E. Jones, Semicoarsening multigrid on distributed
memory machines, SIAM J. Sci. Stat. Comput. 21 (5) (2000) 1823–1834.

[35] J. E. Jones, C. S. Woodward, Newton-Krylov-multigrid solvers for large-scale,
highly heterogeneous, variably saturated flow problems, Advances in Water
Resources 24 (2001) 763–774.

36



[36] W. F. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, 2nd.
Edition, SIAM, Philadelphia, PA, 2000.

[37] L. F. Shampine, Error estimation and control for ODEs, J. Sci. Comput. To
appear, also available at http://faculty.smu.edu/lshampin/errest.pdf.

[38] L. F. Shampine, A. Witt, A simple step size selection algorithm for ODE codes,
J. Comp. and Appl. Math. 58 (1995) 345–354.

[39] B. Su, G. L. Olson, Benchmark results for the non-equilibrium Marshak
diffusion problem, J. Quant. Spec. and Rad. Trans. 56 (3) (1996) 337–351.

[40] M. Botchev, G. Sleijpen, H. van der Vorst, Stability control for approximate
time stepping schemes with minimal residual iterations, Applied Numerical
Mathematics 31 (3) (1999) 239–253.

[41] C. W. Gear, Y. Saad, Iterative solution of linear equations in ODE codes, SISC
4 (4) (1983) 583–601.

[42] T. J. Dolan, Fusion Research Vol. 1, Principles, Pergamon Press, 1980, p. 29.

[43] R. D. Falgout, U. M. Yang, hypre: a library of high performance preconditioners,
in: P. Sloot, C. Tan, J. Dongarra, A. Hoekstra (Eds.), Computational Science -
ICCS 2002 Part III, Vol. 2331 of Lecture Notes in Computer Science, Springer–
Verlag, 2002, pp. 632–641.

[44] hypre: High performance preconditioners, http://www.llnl.gov/CASC/hypre/.

37



U
ni

ve
rs

it
y 

of
 C

al
if

or
ni

a
L

aw
re

nc
e 

L
iv

er
m

or
e 

N
at

io
na

l L
ab

or
at

or
y

Te
ch

ni
ca

l I
nf

or
m

at
io

n 
D

ep
ar

tm
en

t
L

iv
er

m
or

e,
 C

A
 9

45
51

 




