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PRECONDITIONING STRATEGIES FOR FULLY IMPLICIT

RADIATION DIFFUSION WITH MATERIAL-ENERGY TRANSFER�

PETER N. BROWNy AND CAROL S. WOODWARDz

Abstract. In this paper, we present a comparison of four preconditioning strategies for Jacobian

systems arising in the fully implicit solution of radiation di�usion coupled with material energy

transfer. The four preconditioning methods are: block Jacobi, Schur complement, and operator

splitting approaches that split the preconditioner solve into two steps. One splitting method includes

the coupling of the radiation and material �elds that appears in the matrix diagonal in the �rst

solve, the other method puts this coupling into the second solve. All preconditioning approaches

use multigrid methods to invert blocks of the matrix formed from the di�usion operator. The Schur

complement approach is clearly seen to be the most e�ective for a large range of weightings between

the di�usion and energy coupling terms. In addition, tabulated opacity studies were conducted

where, again, the Schur preconditioner performed well. Lastly, a parallel scaling study was done

showing algorithmic scalability of the Schur preconditioner.

Keywords: preconditioning, Newton-Krylov, operator splitting, nonlinear solvers, radiation

di�usion

AMS(MOS) subject classi�cation: 65F10, 65N40, 65N55, 65H10

1. Introduction. In this paper, we present a comparison of preconditioners for

a new numerical approach to the solution of very large-scale radiation di�usion prob-

lems. In this model, energy can be transferred to a material through coupling terms

in both the radiation and material energy equations. These problems are important

in modeling photon energy progression through an optically thick regime, a situation

common in some laser and stellar fusion applications. Traditionally, solutions for

these problems have been developed using operator split and time-lag techniques to

reduce the coupled system of nonlinear equations to the solution of a series of linear

problems. These solution techniques, however, lead to requirements of unacceptably

small time steps. Furthermore, as computers have become faster, researchers have

attempted to simulate larger problems, despite existing solution methods that did

not scale well for increased numbers of unknowns.

For these reasons, we have developed a solution method for solving radiation

di�usion problems formulated in a fully implicit manner [5]. The fully implicit formu-

lation allows larger time steps to be taken without sacri�cing accuracy. Furthermore,

recent work in iterative methods has provided computational scientists with new tools

for solving these problems | tools that scale well to large numbers of unknowns. In

order to solve this fully implicit formulation, we employ ODE time integration tech-

niques which then require an implicit solve for the solution at each time step. We

use an inexact Newton method for these solves, with a preconditioned Krylov method

for solving the linear Jacobian systems that arise within the Newton iterations. The

Newton method provides fast nonlinear convergence, and the Krylov method gives a

robust linear solver.

We consider four methods for solving the Jacobian preconditioning step in the

Krylov method. All four schemes neglect the nonlinearity in the di�usion coeÆcient.

The four methods primarily di�er in how they approximate the coupling between the
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2 BROWN AND WOODWARD

radiation and material energies. The �rst scheme is just to use the block diagonal part

of the Jacobian matrix, thereby neglecting the majority of the coupling between the

two �elds. The second scheme is to factor the Jacobian and use a Schur complement

preconditioner. The remaining methods use operator splitting approaches to split the

preconditioner solve into two steps. One method includes the coupling of the radiation

and material �elds that appears in the matrix diagonal in the �rst solve, the other

method puts this coupling into the second solve. All preconditioning approaches use

multigrid methods to invert blocks of the matrix formed from the di�usion operator.

Recent work by Mousseau, Knoll and Rider [15] has considered the fully implicit

formulation of radiation di�usion using an operator splitting preconditioner similar

to the second splitting method mentioned above. They saw this preconditioner to

be quite e�ective in solving one and two dimensional problems. In addition, earlier

work by Knoll, Rider and Olson [14] showed that the fully implicit form of the one di-

mensional radiation di�usion problem gave greater accuracy in shorter times than did

traditional methods. In previous work, we found that the block Jacobi precondition-

ing method was e�ective for test problems in three dimensions on parallel computers

[5]. Further work has shown that this method is not as e�ective as we would like for

cases where the material coupling dominates the di�usion operator. In this paper, we

will compare the four preconditioning methods mentioned above on three-dimensional

test problems. We will show an e�ective, fully implicit, parallel solution strategy for

these problems.

The rest of this paper is organized as follows. In the next section, we present

the mathematical models we are considering for this work. In Sections 3 and 4 we

discuss the spatial and temporal discretization techniques used, and in Section 5 we

detail the four preconditioning methods compared and show analysis indicating what

qualitative behavior we expect of each for di�erent problem parameters. We briey

discuss multigrid methods in Section 6. In Section 7 we give some numerical results

showing algorithm performance on problems with various degrees of diÆculty and in

parallel on problems in three dimensions. Section 8 provides some concluding remarks.

2. Problem Formulation. Our model for radiation di�usion is a simpli�cation

of the full radiation transport equation given in [16]. We assume isotropic radiation

(no angular dependence), Fick's Law of di�usion, no scattering e�ects, and that the

photon energy is Planckian, and then integrate the transport equation in frequency

to get the di�usion model [2],

@ER

@t
= r �

�
c

3��R(TR)
rER

�
+ c��P (TM ) �

�
aT 4

M �ER

�
;(2.1)

where ER(x; t) is the radiation energy density (x = (x; y; z)), TM (x; t) is the material
temperature, �(x) is the material density, c is the speed of light, and a = 4�=c where
� is the Stephan-Boltzmann constant. The Rosseland opacity, �R, is a nonlinear

function of the radiation temperature, TR, which is de�ned by the relation ER = aT 4
R.

The Planck opacity, �P , is a nonlinear function of material temperature, TM , which

is related to the material energy through an equation of state, EM = EOS(TM ). In

many instances, the two opacities will take on similar values.

We also consider a spatially dependent source term in this equation expressing

sources or sinks in the radiation �eld given by,

�(x)caT 4
source;(2.2)
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where Tsource is a given source temperature and �(x) is a function of the spatial

variable x. Computed solutions to (2.1) may result in photon velocities which exceed

the speed of light. To prevent this nonphysical phenomena, a ux-limiter is often

added to the di�usion term [2]. We use a ux-limiter of the form
krERk

ER
, where the

norm k � k is just the l2 norm of the gradient vector.

The resulting radiation di�usion equation we use as our model is,

@ER

@t
= r �

 
c

3��R(TR) +
krERk

ER

rER

!

+c��P (TM ) �
�
aT 4

M �ER

�
+ �(x)caT 4

source:(2.3)

This equation is coupled to an equation expressing conservation of material energy

given by,

@EM

@t
= �c��P (TM ) �

�
aT 4

M �ER

�
:(2.4)

We will focus on the development of solution methods for the system (2.3){(2.4) in

what follows.

3. Solution Method. We apply a method of lines approach to the solution of

(2.3){(2.4). The spatial discretization used is as follows. We use a tensor product grid

with Nx; Ny and Nz cells in the x; y and z directions, respectively. De�ne ER;i;j;k(t) �
ER(xi;j;k; t) and EM;i;j;k(t) � EM (xi;j;k ; t), with xi;j;k = (xi; yj ; zk) the cell centers.
Next, de�ne

ER �

0
B@

ER;1;1;1

...

ER;Nx;Ny;Nz

1
CA and EM �

0
B@

EM;1;1;1

...

EM;Nx;Ny;Nz

1
CA :

We employ a cell-centered �nite di�erence scheme over the computational mesh and

write our discrete equations in terms of a discrete di�usion operator given by L(ER) ��
L1;1;1(ER); � � � ; LNx;Ny;Nz

(ER)
�T
, where

Li;j;k(ER) =

0
@ c

3�i+1=2;j;k�R;i+1=2;j;k +
krERki+1=2;j;k

ER;i+1=2;j;k

ER;i+1;j;k �ER;i;j;k

xi+1 � xi

�
c

3�i�1=2;j;k�R;i�1=2;j;k +
krERki�1=2;j;k

ER;i�1=2;j;k

ER;i;j;k �ER;i�1;j;k

xi � xi�1

1
A

=(xi+1=2 � xi�1=2) + y and z terms;(3.1)

and a local operator S(ER;EM ) � (S1;1;1(ER;EM ); � � � ; SNx;Ny;Nz
(ER;EM ))T , where

Si;j;k(ER;i;j;k ; EM;i;j;k) = c�i;j;k�P;i;j;k
�
aT 4

M;i;j;k �ER;i;j;k

�
:(3.2)

Thus, our discrete scheme is to �nd ER(t) and EM (t) such that,

dER

dt
= L(ER) + S(ER;EM ) +Q;(3.3)

dEM

dt
= �S(ER;EM );(3.4)
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whereQ � caT 4
source(�(x1;1;1); � � � ; �(xNx;Ny ;Nz

))T . The system (3.3){(3.4) is an ODE

system and our time integration technique will be based on ODE time integration

methods.

4. Time Integration. We have developed a 3D, parallel simulator that employs

a fully implicit formulation and solution process for the radiation di�usion model

in (3.3){(3.4) and with which algorithms for radiation di�usion can be studied. In

order to allow for accurate time-stepping as well as larger steps than what traditional

methods allow, we use an ODE time integrator to handle the temporal discretization.

This simulator uses the parallel ODE solver, PVODE [8], developed at Lawrence

Livermore National Laboratory and based on the VODPK package [7]. PVODE

employs the �xed leading coeÆcient variant of the Backward Di�erentiation Formula

(BDF) method [4, 12] and allows for variation in the order of the time discretization

as well as in the time step size. Time step sizes are chosen to minimize the local

truncation error, and thus give a solution that obeys a user-speci�ed accuracy bound.

This time integration technique leads to a coupled, nonlinear system of equations

that must be solved at each time step. For the solution of this system, we use an

inexact Newton-Krylov method with Jacobian-vector products approximated by �nite

di�erences. As the methods in PVODE are Predictor-Corrector in nature, an explicit

predictor is used for an initial guess in the nonlinear solve.

In the methods discussed above, we use the scaling technique incorporated into

PVODE. Thus, we include an absolute tolerance (ATOL) for each unknown and a

relative tolerance (RTOL) which is applied to all unknowns. These tolerances are

then used to form a weight which is applied to each solution component during the

time step from tn�1 to tn. This weight is given as,

wi = RTOLjyin�1j+ATOLi;(4.1)

and is also used to weight a root mean square norm which is applied to all error-

like vectors within the solution process. This scaling gives each vector component

equal weight when calculating norms. For our application, we supply two absolute

tolerances, one to be used with the radiation energy unknowns and one to be used

with the material energy unknowns.

5. Preconditioners. The use of Newton-Krylov methods necessitates the use of

preconditioning, and we consider several strategies. Before detailing the four precon-

ditioning strategies we compare in this work, we consider the content and structure

of the Jacobian matrix we are trying to precondition. We formulate our system of

ODEs as _y = f(t; y), set y = (ET
R;E

T
M )T , and then form f using the right-hand-sides

of (3.3)-(3.4). The Jacobian matrices used in the Newton method are of the general

form F 0(y) = (I � J), where J = @f=@y is the Jacobian of the nonlinear function f ,
and the parameter  � �t� with �t the current time step value and � a coeÆcient

depending on the order of the BDF method. Recalling the de�nitions of the discrete

divergence and source operators, de�ned in (3.1) and (3.2), the block form of the

Jacobian of f is

J =

�
@L=@ER + @S=@ER @S=@EM

�@S=@ER �@S=@EM

�
=

�
A+G B
C D

�
;

where A = @L=@ER, G = @S=@ER, B = @S=@EM , C = �@S=@ER and D =

�@S=@EM . We note that G;B;C and D are all diagonal matrices.
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Since Jacobian approximations can be expensive to compute, the preconditioner

is not updated with every Newton iteration. Preconditioner updates occur only when

the Newton iteration fails to converge, 20 time steps pass without an update, or when

there is a signi�cant change in the time step size and order of the ODE method.

On close inspection of the nonlinear di�usion operator L(ER), we can write

L(ER) = L̂(ER)ER;

where L̂ is a nonlinear matrix-valued function of ER. In all of our preconditioning

strategies, we neglect the nonlinearity in the di�usion term and use the approximation

A = @L(ÊR)=@ER � L̂(ÊR) � ~A;

where @L(ÊR)=@ER is the Jacobian of L evaluated at a radiation energy, ÊR. The

size of the neglected term is related to the derivatives of the Rosseland opacity and

the ux-limiter. Our motivation for neglecting this term arises from the fact that

� ~A is symmetric and positive de�nite, whereas A has a �rst order term that leads

to nonsymmetries in its discretized form. This �rst order term includes derivatives of

the Rosseland opacity and ux-limiter. By neglecting the nonlinearity, this term is

removed from the preconditioner, and a symmetric approximation results. In addition,

calculation of ~A is much cheaper than for A, as no derivatives of the ux-limiter need
be computed. We also note that computation of the derivative of the ux-limiter may

lead to numerical errors if rER approaches 0.

Our preconditioning strategies di�er in how they approximately solve systems

with the matrix,

M = I � 

�
~A+G B
C D

�
;

In all cases, multigrid methods are used to invert the ~A blocks. We will discuss the

speci�cs of the multigrid scheme after detailing the four strategies.

In the following discussion, we will be examining the preconditioner performance

responses to changes in the �P ; �R and �t parameters in the problem. For these

discussions, it will be useful to consider the same radiation di�usion model as given

in (3.3)-(3.4) but neglecting ux-limiting and assuming �P and �R constant. In this

case, we see that ~A = O(1=�R) and that B;C, and D are all O(�P ).

5.1. Block Jacobi. Our �rst strategy is to approximate the Jacobian system

with,

MJacobi = I � 

�
~A+G 0

0 D

�
:

This method e�ectively neglects the coupling between the radiation and material

energy �elds.

We now examine the error, ErrJacobi = (I � J)�MJacobi. We see that

ErrJacobi = 

�
~A�A �B
�C 0

�
:

Thus, the error for this block Jacobi preconditioning strategy is O(�t). In addition,

for the non-ux-limited, constant opacity case, we see that ~A = A and the error is

O(�t � �P ) since both B and C are O(�P ). When �t � �P gets large, we would

expect this preconditioner to perform poorly.
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5.2. Schur Complement. Our second preconditioning strategy is to factor the

matrix �
P Q
R T

�
�

�
I � ( ~A+G) �B

�C I � D

�
=M

into the following,

MSchur =

�
I QT�1

0 I

��
P �QT�1R 0

0 T

��
I 0

T�1R I

�
:

Letting S = P �QT�1R, we write the solution to MSchurx = b as�
x1
x2

�
=

�
S�1(b1 �QT�1b2)
T�1(�Rx1 + b2)

�
:

The error in this preconditioner, ErrSchur = (I � J)�MSchur, is given by,

ErrSchur = 

�
~A�A 0

0 0

�
:

If the Schur complement, S, is exactly inverted, there will be no error associated

with this preconditioner for the non-ux-limited, constant opacity case. In addition,

because D and hence T is diagonal, there is no penalty associated with inverting T
for every iteration of a method that inverts S, as there would be if a material energy

di�usion term were added to the equations. Also note that S is formed by modifying

the diagonal of P , so we can still employ multigrid methods to invert this Schur

complement, as we would to invert the ~A matrix.

5.3. Matrix Split. Our third strategy is motivated by a preconditioner devel-

oped in [11] where a splitting of the Jacobian matrix is used. Our preconditioner is

written as,

Mmatrix split = (I � Jdiag)(I � Jborder);(5.1)

where

Jdiag =

�
~A+G 0

0 0

�
; and Jborder =

�
0 B
C D

�
:

Solving systems of the form Mmatrix splitx = b requires two steps. The �rst step

consists of a solve with the system (I � Jdiag)y = b, and the second step consists of

a solve with the system (I � Jborder)x = y. Multigrid methods can be used to solve

the �rst system.

To see how the second system can be easily inverted, we consider a re-ordering

of the unknowns and equations of the system, so that unknowns are �rst ordered

by space and then by energy type for each spatial point. Equations are re-ordered

similarly. With this new ordering, I � Jborder will be a block diagonal matrix with

2� 2 blocks. Each of these blocks can be written as,

(I � Jborder)i =

�
1 bi
ci di

�
=

�
1 0

ci 1

��
1 bi
0 d0

�
;

where d0 = di � bici. Solutions of the second step in the application of Mmatrix split

are easily obtained with this factorization.
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The error in this preconditioner, Errmatrix split = (I �J)�Mmatrix split, is given

by,

Errmatrix split= 

�
�A+ ~A 0

0 0

�
� 2

�
0 ( ~A+G)B
0 0

�
:(5.2)

For the non-ux-limited, constant coeÆcient case, ~A = A. The term ( ~A +G)B is of

order O(( 1
�R

+ �P )�P ) � O(�2P ). Thus, this preconditioner has error O((�t)
2 � �2P ).

So, as �t � �P gets large, we would expect this preconditioner's e�ectiveness to

deteriorate rapidly.

5.4. Operator Split. Our last strategy is motivated by a preconditioner devel-

oped in [6] where an operator splitting of the Jacobian operator is used to split the

preconditioning into two steps. This preconditioner is very similar to the previous

strategy except that the G term is part of the second step, rather than the �rst. This

preconditioner is written as,

Moperator split = (I � Jdi�)(I � Jcoupling);(5.3)

where

Jdi� =

�
~A 0

0 0

�
; and Jcoupling =

�
G B
C D

�
:

Again, the �rst step consists of a solve with the system (I � Jdi�)y = b, and the

second step consists of a solve with the system (I � Jcoupling)x = y. Multigrid

methods can be used to solve the �rst system.

The second system here is also easily inverted by a simple LU decomposition of

a re-ordered problem. However, the 2� 2 blocks have a non-identity upper left entry,

so that the decomposition is:

(I � Jcoupling)i =

�
gi bi
ci di

�
=

�
gi 0

ci 1

��
1 bi=gi
0 d0

�
;

where d0 = di � (bici)=gi.
The error associated with this preconditioner, Erroperator split = (I � J) �

Moperator split, is given by,

Erroperator split= 

�
�A+ ~A 0

0 0

�
� 2

�
~AG ~AB
0 0

�
:(5.4)

Again, for the non-ux-limited, constant coeÆcient case, ~A = A and the terms ~AG
and ~AB are of order O(�P

�R
). Thus, this preconditioner has O((�t)2� �P

�R
) error. Thus,

if �R � �P , we would expect this preconditioner to show minimal deterioration in

e�ectiveness as the opacities get large.

Note that G = �C and B = �D so that as �t ! 1, the second stage of

this preconditioner I � Jcoupling becomes singular. As a result, we may expect this

preconditioner to deteriorate for extremely large time steps.

6. MultigridMethods. The Rosseland opacity will exhibit large changes where

material interfaces exist in the domain. The temperature dependence gives rise to

large value changes as well. These changes imply that the problem can be very

heterogeneous. As a result, to invert matrix blocks formed from the di�usion operator,
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we use a multigrid method designed to handle large changes in problem coeÆcients. In

particular, we use 1 V-cycle of the PFMG algorithm developed by Ashby and Falgout

[1] as our multigrid solver. Other multigrid methods have been developed for highly

heterogeneous problems. A comparison of PFMG and another of these methods can

be found in [13]. We use PFMG here because it is fast and scales extremely well.

More information about multigrid methods can be found in [3].

7. Numerical Results. To understand how these preconditioning strategies

perform for problems with varying degrees of diÆculty, we performed a number of

studies. Our �rst study looked at the e�ects of changing the relative weighting of the

di�usion and coupling terms in the radiation equation by setting the two opacities

constant and equal and then investigating preconditioner responses to increasing the

value. Our second study looked at the e�ects of tabulated opacities, as are currently

used in applications of interest, on these preconditioners. Lastly, we performed a

parallel scaling study with the most e�ective preconditioner to verify algorithmic

scalability of the solution method.

For all runs, we used the PVODE package default settings with the following

exception. Some of our tests led to nonstable solutions with higher order methods,

so we have limited the ODE method order to 2 for all cases, except where explicitly

noted. We are presently looking into why these situations occur. Some work has been

done in the area of avoiding these sorts of instabilities [10], and we will investigate its

applicability here. Note that the default setting for the maximum number of GMRES

iterations for PVODE is 5. No restart is performed.

7.1. Constant Opacity Results. In our �rst study, we set the Rosseland and

Planck opacities equal to a single parameter, �. We then changed the value of this

parameter from � = 1 to � = 100; 000.
For this problem, we set EM = TM . The system (2.3){(2.4) is solved on the box

D � fx = (x; y; z) : 0 � x; y; z � 1cmg. The function �(x) in (2.3) is de�ned by

�(x) =

�
1; if 0:4 � x; y; z � 0:6, and
0; otherwise.

(7.1)

The parameter Tsource was 3; 481; 440
ÆK (approximately 300eV ), and the initial con-

ditions were taken as ER = aT 4
R;0 and EM = TM;0, where TR;0 = TM;0 = 300 ÆK.

Dirichlet boundary conditions were consistent with the initial conditions. The density

was taken to be 1:0g=cc. The spatial grid was uniform with Nx = Ny = Nz = 20.

We examined solver statistics at 50 intervals of about 0:1002s with a �nal simu-

lation time of about 5:0104s. Flux-limiting was applied to the problem as discussed

above. We asked for a relative tolerance on each solution component of 10�4 and an

absolute tolerance on each of the energies of 200.

Figures 7.1 and 7.2 show the solutions over the x-line for y = z = 0:475cm at

times 0:1002s and 1:5031s for the value � = 100cm2=g. The time 0:1002s is the �rst
output time we recorded. The solutions have felt the e�ects of the source at this point.

By 1:5031s, the energies have increased due to the source at the domain center. We

also see the e�ects of the di�usion operator spreading out the radiation energy.

Figures 7.3 and 7.4 show the solutions at these times but for � = 105cm2=g. Here
the \bump" in the domain center is much more pronounced. This di�erence from

the lower � case is due to the increased coupling between the two energy �elds. For

higher values of �, the radiation energy di�uses much less, and more of its energy is

transferred to the material. For these cases, the local physics is clearly dominating

the calculation.
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Fig. 7.1. Radiation and material energies for � = 100, time = 0:1002s; y = z = 0:475cm.
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Fig. 7.2. Radiation and material energies for � = 100, time = 1:5031s; y = z = 0:475cm.

Table 7.1 shows the cumulative solver statistics for these runs. In this and sub-

sequent tables,

S = Schur Preconditioner,

BJ = Block Jacobi Preconditioner,

MS = Matrix Split Preconditioner, and

OS = Operator Split Preconditioner,

and the statistical counters are
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Fig. 7.3. Radiation and material energies for � = 105, time = 0:1002s; y = z = 0:475cm.
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Fig. 7.4. Radiation and material energies for � = 105, time = 1:5031s; y = z = 0:475cm.

NST = total number of time steps,

NNI = total number of nonlinear iterations,

NLI = total number of linear iterations,

NFE = total number of f(t; y) evaluations,
NPE = total number of preconditioner evaluations,

NPS = total number of preconditioner solves,

HU = step size that was used on the last step (scaled by c),
RT = run time in seconds,

NCFN = total number of nonlinear convergence failures, and

NCFL = total number of linear convergence failures.
We see that the Schur preconditioner is consistently performing better and faster than
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Table 7.1

Solver statistics for constant opacity problem

PC � NST NNI NLI RT NCFN NCFL

S 1 1,831 1,884 2,168 2,648 0 0

BJ 1 1,830 1,886 2,167 2,711 0 0

MS 1 1,830 1,884 2,171 2,617 0 0

OS 1 1,830 1,884 2,170 2,626 0 0

S 100 1,782 1,875 3,065 3,145 0 0

BJ 100 1,778 1,874 3,273 3,366 0 0

MS 100 1,786 1,894 3,141 3,213 3 17

OS 100 1,782 1,877 2,995 3,129 0 0

S 10,000 660 723 1,271 1,315 0 0

BJ 10,000 694 831 2,299 2,116 8 88

MS 10,000 2,828 4,939 19,343 17,371 930 2,893

OS 10,000 670 733 2,285 1,950 0 134

S 100,000 424 474 786 846 0 0

BJ 100,000 1,288 2,084 6,010 5,822 88 439

MS 100,000 2,359 3,787 14,780 12,995 518 2,090

OS 100,000 650 949 2,912 2,609 8 214

the others. As the coupling term between the radiation and material grows in weight

relative to the di�usion term, we see that the matrix split preconditioner is the �rst to

show signi�cant signs of struggle. This degradation in the matrix split preconditioner

performance is expected since its error was on the order of �2P . However, all but the
Schur preconditioner are struggling for � = 104 and � = 105. The operator split

preconditioner shows the second best performance, which is also expected since its

error is on the order of �P =�R. For lower opacity values, the preconditioners all

perform fairly well.

Figure 7.5 shows the cumulative numbers of nonlinear iterations taken by each of

the preconditioners for the 50 output times for the two cases of � = 100cm2=g and

� = 105cm2=g. For the lower � value, all preconditioners result in about the same

number of nonlinear iterations at each time step. For the higher � value, however,

the preconditioners show distinctly di�erent performances. During the transition to

steady state, the matrix split preconditioner has the most degradation with the block

Jacobi preconditioner also showing degradation, but less. These results bear out the

analysis given above in that these two preconditioner have the strongest dependence

on the � value with the matrix split the strongest. After the solution gets close to

steady state, however, the four preconditioners all require very few nonlinear iterations

to resolve the physics. Similar results bear out for the linear iteration counts.

7.2. Tabular Opacities Results. In this section we give results of using the

above preconditioners on several problems involving the use of tabular opacities. We

use the LEOS [9] package to give the Rosseland and Planck opacities as nonlinear

functions of the radiation temperature TR and material temperature TM , respectively.

The system (2.3){(2.4) is solved on the box D � fx = (x; y; z) : 0 � x; y; z � 1cmg
with Dirichlet boundary conditions. The function �(x) in (2.3) is de�ned by

�(x) =

�
1; if 0:3 � x; y; z � 0:7, and
0; otherwise.

(7.2)
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and � = 105cm2
=g.

The parameter Tsource was 3; 481; 440
ÆK (approximately 300eV ), and the initial con-

ditions were taken as ER = aT 4
R;0 and EM = EOS(�; TM;0), where TR;0 = TM;0 =

116; 100 ÆK (approximately 10eV ), and EOS(�; TM ) is the equation of state function

in the LEOS package giving EM as a function of � and TM . The Dirichlet boundary

values for ER and EM are taken to be consistent with the initial conditions. The

material used was carbon at a reference density of � = 1:05g=cc. The spatial grid was

uniform with Nx = Ny = Nz = 20.

For this problem, the time behavior consists of an initial transient in which the

material heats up in the region of the source (from 0 to .01 microseconds), followed

by a radiation front traveling to the boundary (continuing to .41 microseconds), and

then a �nal phase in which the solution approaches a steady state (integrated to

about 1.33 microseconds). Figures 7.6 and 7.7 show the solutions plotted on the

line y = z = 0:475cm at .01 and .03 microseconds. The only preconditioner that was

e�ective for the entire course of the simulation was the Schur preconditioner. We note

that for the initial conditions, the starting values of the Rosseland and Planck opacities

are on the order of 104 and 105, respectively. Table 7.2 compares the statistics of the

PVODE solver at .01 microseconds.

At this early output time, the matrix split preconditioner is actually performing

the best. However, in the next phase of the solution all the preconditioners start hav-

ing large numbers of linear convergence failures except for the Schur preconditioner.

It has zero linear and nonlinear convergence failures for this problem. When a linear

convergence failure occurs and the preconditioner is current, the PVODE solver re-

duces the step size and tries the step over. This has the e�ect of increasing the total

number of steps for the simulation. Also note that the step sizes used by PVODE

are much larger than one would expect for the split and Jacobi preconditioners to be

e�ective. With step sizes of order 1, the errors in the split and Jacobi preconditioners

are extremely large. Hence, it is not hard to understand the failure of these precondi-

tioners (or their high cost since the step sizes must be kept small) for the latter part of

the simulation. Figures 7.8 and 7.9 show the step size behavior as a function of output
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times for the Schur and Block Jacobi preconditioners. While the step sizes change

fairly smoothly for the Schur preconditioner, the behavior has a sawtooth avor for

the Block Jacobi preconditioner. The �nal statistics for the Schur preconditioner are

given in Table 7.3, as well as the �nal computed statistics for the other precondition-

ers. For this problem, we requested 400 output snapshots. The Schur preconditioner

�nished the computation in under a 2 hour limit, while the Block Jacobi reached 285

output points, the Operator Split reached 14, and the Matrix Split reached only 7.

For the Schur preconditioner, there were on average 1.1 nonlinear iterations per time

step, and 2.0 linear iterations per nonlinear iteration.

Table 7.2

Statistics for LEOS Problem 1 at .01 Microseconds

PC NST NNI NLI NFE NPE NPS HU RT NCFN NCFL

S 323 420 562 985 59 975 1.52 298.43 0 0

BJ 305 518 1023 1544 68 1534 .95 488.59 0 14

MS 226 308 280 591 54 581 6.54 188.91 0 0

OS 493 663 1511 2179 103 2164 .78 663.87 0 33
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Fig. 7.6. Snapshot of ER and EM for the �rst LEOS problem on the line y = z = 0:475cm at

.01 microseconds

Table 7.3

Statistics for LEOS Problem 1 at 1.33 Microseconds

PC NST NNI NLI NPE HU RT NCFN NCFL

S 2654 2942 5930 189 4421 2592 0 0

BJ >4197 >4969 >23387 >451 15.11 >7208 >55 >1720
MS >3226 >5261 >20691 >1653 .00166 >6559 >473 >1680
OS >4743 >6720 >22528 >962 .321 >6867 >10 >185

For this �rst problem, we also investigated the e�ect of restricting the ODE

solver to �rst order (i.e., backward Euler). While this had a signi�cant e�ect on
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Fig. 7.7. Snapshot of ER and EM for the �rst LEOS problem on the line y = z = 0:475cm at

.03 microseconds
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Fig. 7.8. Plot of step size comparisons for �rst LEOS problem. Note that the time steps are

actually c�t.

reducing the number of linear and nonlinear convergence failures for all but the matrix

split preconditioner, the number of time steps increased dramatically. As a result,

all of the preconditioners failed to produce the requested 400 output points within

the two hour run time limit. Table 7.4 gives statistics and �nal times reached for

each preconditioner. From these results, it is apparent that the higher order time

integration methods can be extremely e�ective in reducing overall run time costs.

A second problem was run with hydrogen as the material at a reference density

of � = :874g=cc. This problem has the same general behavior as the �rst, except that

the time to reach steady state is an order of magnitude lower, i.e., the simulation was
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Table 7.4

Statistics for LEOS Problem 1 Restricted to First Order

PC NST NNI NLI Final Time RT NCFN NCFL

Reached (�s)

S 9236 9726 14725 .0097 7142 0 0

BJ 5970 6280 16256 .0047 6862 0 18

MS 6564 8177 13717 .0031 6894 191 701

OS 5629 5968 18706 .0053 7161 0 64

run to .133 microseconds. Figures 7.10, 7.11 and 7.12 show the solutions plotted on

the line y = z = 0:475cm at .01, .02 and .133 microseconds. Table 7.5 contains the

statistics for this problem. As before, the Schur preconditioner was the only e�ective

preconditioner for the entire run. There were on average 1.1 nonlinear iterations per

time step, and 2.15 linear iterations per nonlinear iteration. Note that there were 13

linear convergence failures and 1 nonlinear failure.

Table 7.5

Statistics for LEOS Problem 2 at .133 Microseconds

PC NST NNI NLI NFE NPE NPS HU RT NCFN NCFL

S 834 943 2029 2976 81 2967 26.69 879 1 13

7.3. Scalability Study with Tabulated Opacities. A scalability study was

performed on a third problem. The system (2.3){(2.4) was solved on the box D �

fx = (x; y; z) : 0 � x; y; z � 1cmg with Dirichlet boundary conditions. The function

�(x) in (2.3) is de�ned by (7.1). The parameter Tsource was 3; 481; 440
ÆK, and the

initial conditions were obtained using TR;0 = TM;0 = 300 ÆK. The Dirichlet boundary

values were taken to be consistent with the initial conditions. The material used was

carbon at a reference density of � = 1:05g=cc, and the spatial grid per processor was
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Fig. 7.10. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0:475cm

at .01 microseconds
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Fig. 7.11. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0:475cm

at .02 microseconds

uniform with Nx = Ny = Nz = 40. Thus, problem size and computational resources

were simultaneously increased for this study. Only the Schur preconditioner was used.

Table 7.6 contains the results of the scalability study. The reported scaled eÆciency

for a run on N processors was calculated by dividing the run time for the single

processor case by the run time for the N processor case. As can be seen, except for

the run times, all the statistics scaled extremely well. (We note that when this study

was performed, the run time environment on the IBM ASCI Blue Paci�c machine

at LLNL was under a state of ux. Earlier scalability studies performed showed a

much better scalability of run times.) The simulation was run until approximately
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Fig. 7.12. Snapshot of ER and EM for the second LEOS problem on the line y = z = 0:475cm

at .133 microseconds

.001 microseconds, which is very early in the time history.

Table 7.6

Statistics for Scalability Study

Processor NST NNI NLI NPE RT RT Scaled Avg. Cost

Topology EÆciency per Step

1� 1� 1 217 329 423 70 2015 { 9.3

2� 2� 2 214 324 411 75 2287 88.1% 10.7

4� 4� 4 196 295 378 66 2220 90.7% 11.3

8� 8� 8 197 273 374 57 2575 78.2% 13.1

16� 8� 8 190 273 376 60 3106 64.8% 16.4

8. Conclusions. We have presented a comparison of four preconditioning strate-

gies for Jacobian systems arising in the fully implicit solution of radiation di�usion

coupled with material energy transfer. The four preconditioning methods are: block

Jacobi, Schur complement, and operator splitting approaches that split the precondi-

tioner solve into two steps. From our results, it is apparent that the Schur complement

approach is clearly seen to be the most e�ective for a large range of weightings between

the di�usion and energy coupling terms. For problems using tabulated opacities, the

Schur preconditioner outperformed the other preconditioners by a wide margin. One

conclusion we can draw from our studies is that it appears to be more e�ective to use

full matrix approaches to developing preconditioners for radiation transport problems

rather than approaches based on splittings or on only parts of the matrix.

While limiting the time integration methods to �rst order helps lower the number

of step failures, there is a marked increase in the number of steps. At least for the

problems we have considered, the better preconditioner allows for much larger step

sizes within the allowed error bounds used by the PVODE solver, and this signi�cantly

reduces the overall work. Our parallel scaling study demonstrated good algorithmic
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scalability of our solution approach. Finally, when material di�usion is added to equa-

tion (2.4), the Schur approach may fail to be competitive. In addition, extending the

physics in the problem to include multigroup di�usion (where the radiation energy

spectrum is resolved) leads to a Schur complement that is a full matrix. Our future

work will include exploring the use of system-based multigrid solvers as precondi-

tioners, as well as other multilevel methods, to address material energy di�usion and

multigroup energy resolution.
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