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In this paper we present an extension of our general high-order curvilinear finite element approach for
solving the Euler equations in a Lagrangian frame [1] to the case of axisymmetric problems. The numer-
ical approximation of these equations is important in a number of applications of compressible shock
hydrodynamics and the reduction of 3D problems with axial symmetry to 2D computations provides a
significant computational advantage. Unlike traditional staggered-grid hydrodynamics (SGH) methods,
which use the so-called ‘‘area-weighting’’ scheme, we formulate our semi-discrete axisymmetric conser-
vation laws directly in 3D and reduce them to a 2D variational form in a meridian cut of the original
domain. This approach is a natural extension of the high-order curvilinear finite element framework
we have developed for 2D and 3D problems in Cartesian geometry, leading to a rescaled momentum con-
servation equation which includes new radial terms in the pressure gradient and artificial viscosity
forces. We show that this approach exactly conserves energy and we demonstrate via computational
examples that it also excels at preserving symmetry in problems with symmetric initial conditions.
The results also illustrate that our computational method does not produce spurious symmetry breaking
near the axis of rotation, as is the case with many area-weighted approaches.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction and motivation which involves the material derivative d , the kinematic vari-
The Euler equations of compressible hydrodynamics describe
complex, multi-material, high speed flow and shock wave propaga-
tion over general 2D and 3D computational domains. We are inter-
ested in Lagrangian numerical methods for these problems, where
the equations are discretized and solved on a generally unstruc-
tured computational mesh that moves with the fluid velocity. Spe-
cifically, the goal of Lagrangian hydrodynamics is to solve the
following system of conservation laws:

Momentum Conservation : q
dv
dt
¼ r � r; ð1Þ

Mass Conservation :
1
q

dq
dt
¼ �r � v ; ð2Þ

Energy Conservation : q
de
dt
¼ r : rv ; ð3Þ

Equation of Motion :
dx
dt
¼ v ; ð4Þ

Equation of State : r ¼ �EOSðq; eÞI; ð5Þ
ll rights reserved.
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dt

ables for the fluid velocity v and position x, and the thermodynamic
variables for the density q, pressure p ¼ EOSðq; eÞ and internal
energy e of the fluid [2,3]. The equation of state, EOS, is a constitu-
tive relation which in the simplest case of a polytropic ideal gas
with a constant adiabatic index c > 1 has the form p ¼ ðc� 1Þqe.
Our formulation uses a general stress tensor r in order to accom-
modate the inclusion of anisotropic tensor artificial viscosity stres-
ses (see Section 3.2) as well as more complex material constitutive
relations. We focus on purely Lagrangian methods, and do not con-
sider the other components of a full Arbitrary Lagrangian–Eulerian
(ALE) framework in this paper.

Three dimensional simulations of Lagrangian shock hydrody-
namics are of great practical importance [3–5], but are also sub-
stantially more expensive than 2D calculations. Therefore, for
problems with axial symmetry, the reduction of (1)–(5) to compu-
tations in a 2D meridian cut provides a significant computational
advantage. In previous articles [6,1], we developed a general
framework for high-order Lagrangian discretization of the Euler
equations using curvilinear finite elements. In this paper, we pres-
ent the extension of this framework to axisymmetric problems and
demonstrate its ability to both conserve energy exactly and main-
tain symmetry. The realization of both these goals concurrently has
proven challenging for many axisymmetric discretization schemes.

Traditional staggered-grid hydrodynamics (SGH) Lagrangian
methods for axisymmetric problems have used the ‘‘area-weighted’’
ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids

http://dx.doi.org/10.1016/j.compfluid.2012.06.004
mailto:tzanio@llnl.gov
http://dx.doi.org/10.1016/j.compfluid.2012.06.004
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid
http://dx.doi.org/10.1016/j.compfluid.2012.06.004


Fig. 2. Example of numerical symmetry breaking in an axisymmetric multi-
material inertial confinement fusion (ICF) simulation. This is an ALE calculation
where different colors are used to identify the different materials. The jet at the axis
of rotation is spurious and does not disappear under mesh refinement.
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method where the momentum equation is solved in 2D planar
coordinates using the ‘‘area masses’’ at nodes while the internal
energy equation is solved over the real volumes [7,8].
Generally, this approach does not conserve total energy exactly
(unless the compatible approach of [9] is used) and can often lead
to incorrect shock speeds, or cause spurious symmetry breaking in
the internal energy field near the axis of rotation, leading to
non-physical results as illustrated in Figs. 1 and 2. Preservation of
physical symmetries is critical for inertial confinement fusion (ICF)
simulations as uncertainties in whether non-symmetric results are
due to numerical errors or physical processes can limit predictive
capability. New compatible approaches have been proposed to
address this deficiency [9–14], which have led to significant
improvements in energy and symmetry preservation. Other success-
ful methods in this area include the special finite elements proposed
in [15,16] and the recent cell-centered hydro approach of [17,18].

In contrast to the above schemes, our finite element numerical
method is derived by a faithful reduction of the 3D axisymmetric
problem to a 2D variational form in a meridian cut of the domain.
This approach conserves total energy exactly by construction.
Unlike the area-weighted scheme, it leads to a rescaled momentum
conservation equation, which also includes new terms in the pres-
sure gradient and artificial viscosity forces. As in Cartesian coordi-
nates, the high-order finite element approach uses high-order basis
function expansions obtained via a high-order mapping from a
standard reference element. This enables the use of curvilinear
zone geometry and higher order approximations for the fields
within a zone.

The remainder of the paper is organized as follows. In Section
2 we introduce notation and recall some basic facts about axi-
symmetric scalar, vector and tensor fields. These are used in
Section 3, where we describe the derivation of our axisymmetric
semi-discrete finite element method, followed by discussion of
the artificial viscosity, the fully-discrete algorithm and the rela-
tion to some classical SGH methods. In Section 4, we present an
extensive set of numerical results that demonstrate the robust-
ness of our algorithm with respect to symmetry and energy
conservation on a range of challenging axisymmetric problems.
Finally, we summarize our experience and draw some conclusions
in Section 5.
Fig. 1. Scatter plot of the density from a traditional SGH calculation of the spherical
Sedov blast wave in axisymmetric mode [19]. The exact solution corresponds to the
black line. While the ‘‘area-weighted’’ approach preserves the symmetry of
accelerations, the corresponding energy update is not conservative. In this
calculation this results in a 6% spurious gain in energy leading to incorrect shock
speed and location. These do not improve under mesh refinement.
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2. Axisymmetric scalar, vector and tensor fields

In this section we recall some basic facts about axisymmetric
fields that will be used in the development of our finite element
discretization method in the following section.

We assume that at any given time, the domain X occupied by
the fluid is a body of revolution, as illustrated in Fig. 3. In cylindri-
cal coordinates ðr; h; zÞ;X can be obtained from a ‘‘meridian cut’’ C
in the r–z plane by a rotation around the axis r ¼ 0:

X ¼ fðr; h; zÞ : ðr; zÞ 2 Cg:

A scalar function f, defined on the axisymmetric domain X, is it-
self called axisymmetric if it is independent of h, i.e.
f ðr; h; zÞ ¼ f ðr; zÞ, so f is uniquely determined by its values in C. If
f is given in Cartesian coordinates, it is axisymmetric if and only if

@

@h
f ðr cos h; r sin h; zÞ ¼ 0;

i.e. if f is only spatially varying in the r–z plane
A key property of axisymmetric functions is that their integrals

over X can be reduced to integrals over C:Z
X

f ðr; h; zÞ ¼ 2p
Z

C
rf ðr; zÞ: ð6Þ

The local cylindrical coordinate system vectors at a point ðr; h; zÞ are
given by

~er ¼ ðcos h; sin h;0Þ; ~eh ¼ ð� sin h; cos h;0Þ; ~ez ¼ ð0;0;1Þ:
Fig. 3. Schematic depiction of the reduction of a 3D axisymmetric problem to a 2D
‘‘meridian cut’’ in the r–z plane.

ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids
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Let x and n ¼ ðr; h; zÞ be the Cartesian and cylindrical coordinates of
a point, respectively, so that

x ¼ xðnÞ ¼ ðr cos h; r sin h; zÞ:

The material derivative of n can be expressed as

dn
dt
¼ @n
@x

dx
dt
;

which after some simple manipulations can be written as

d
dt

r; h; zð Þ ¼ v r ;
vh

r
;vz

� �
; ð7Þ

where ðv r; vh;vzÞ are the cylindrical components of the velocity:

dx
dt
¼ v ¼ v r~er þ vh~eh þ vz~ez:

Identity (7) represents the cylindrical version of the equation of
motion (4). Furthermore, using (7) together with the definitions of
~er;~eh, and~ez, the acceleration vector can be expressed as

dv
dt
¼ dv r

dt
� v2

h

r

� �
~er þ

dvh

dt
þ v rvh

r

� �
~eh þ

dvz

dt
~ez: ð8Þ

The material derivative of a scalar field f is given by

df
dt
¼ @f
@t
þ @f
@n

dn
dt
¼ @f
@t
þ @f
@r

v r þ
@f
@h

vh

r
þ @f
@z

vz;

hence if f ;v r , and vz are axisymmetric then so is df
dt.

A vector field v, defined on the axisymmetric domain X, is called
axisymmetric if

v ¼ v rðr; zÞ~er þ vhðr; zÞ~eh þ vzðr; zÞ~ez;

i.e. if v remains invariant under arbitrary rotation around the axis
r ¼ 0. This is the most general axial symmetry assumption for a vec-
tor field which requires the use of the additional (compared to a 2D
method) velocity component vh and is generally more complex to
handle. Therefore, here we consider the more standard additional
assumption that vh � 0, i.e. axisymmetric vector fields without
components in the normal direction of the meridian cut. With this
assumption the equation of motion (7) and the left hand side of the
momentum conservation equation (1), as well as (8), simplify and
become identical to the 2D case in the meridian cut C.

The gradient operator in cylindrical coordinates is given by

rrzf ¼
@f
@r
~er þ

1
r
@f
@h
~eh þ

@f
@z
~ez: ð9Þ

Therefore, rrzf is axisymmetric if and only if f is. In this case, the
formula simplifies to

rrzf ¼
@f
@r
~er þ

@f
@z
~ez;

which is just the regular 2D gradient in C. Note that this property is
one of the motivating factors for using area-weighting schemes, as
it implies that gradient operators are unchanged in axisymmetric
coordinates.

The divergence in cylindrical coordinates is more complicated:

rrz � v ¼
@v r

@r
þ 1

r
@vh

@h
þ @vz

@z
þ v r

r
; ð10Þ

but rrz � v is still axisymmetric, provided that v is. In this case, the
formula simplifies to

rrz � v ¼
@v r

@r
þ @vz

@z
þ v r

r
;
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which has an extra term compared to the regular 2D divergence in
C.

The gradient of the axisymmetric vector function
v ¼ vrðr; zÞ~er þ vzðr; zÞ~ez can be written as

rrzv ¼~er �
@v
@r
þ 1

r
~eh �

@v
@h
þ~ez �

@v
@z

¼ @v r

@r
~er �~er þ

@vz

@r
~er �~ez þ

v r

r
~eh �~eh

þ @v r

@z
~ez �~er þ

@vz

@z
~ez �~ez;

so the matrix form of the gradient in the z� r � h ordering is

rrzv ¼

@vz
@z

@vr
@z 0

@vz
@r

@vr
@r 0

0 0 vr
r

0B@
1CA ¼ r2dv 0

0 vr
r

 !
: ð11Þ

A tensor field r is axisymmetric if its components in the local cylin-
drical basis are independent of h and have the form

r ¼
rzz rzr 0
rrz rrr 0
0 0 rhh

0B@
1CA ¼ r2d 0

0 rhh

� �
:

Since the local cylindrical basis is orthonormal, the contraction
(or double dot product) of r and rrzv is given by

r : rrzv ¼ r2d : r2dv þ rhh
v r

r
;

which is a scalar axisymmetric field, i.e. it is independent of h.

3. Finite element discretization

In this section we derive and discuss a finite element-based
numerical approximation scheme for the Euler equations (1)–(5)
in axisymmetric form. The presentation follows the finite element
form of the general semi-discrete Lagrangian discretization meth-
od from [1], to which we refer for additional details.

3.1. Semi-discrete formulation

We first discuss the semi-discrete axisymmetric method, which
is concerned only with the spatial approximation of the continuum
equations. The fully-discrete methods that incorporate time dis-
cretization will be presented in Section 3.3.

Let XðtÞ be the continuous 3D axisymmetric medium (fluid or
elastic body) which is deforming in time according to (1)–(5) start-
ing from an initial configuration at time t ¼ t0. Let CðtÞ be the corre-
sponding meridian cut, as discussed in Section 2. Following [1], we
introduce a 2D finite element mesh on eC � Cðt0Þ with zones (or
elements) fCzðt0Þg. This also induces a decomposition of eX � Xðt0Þ
into toroidal zones fXzðt0Þg obtained by revolution of the 2D mesh
elements around the axis r ¼ 0 in cylindrical coordinates:

Xzðt0Þ ¼ fðr; h; zÞ : ðr; zÞ 2 Czðt0Þg: ð12Þ

A main feature of our approach is that the finite element mesh
is described through the locations of high-order particles (or con-
trol points) that are tracked by the semi-discrete algorithm. This
results in curvilinear zones that can better represent the naturally
developing curvature in the flow. Specifically, the current position
at time t; x ¼ ðr; zÞ 2 CðtÞ, corresponding to a particle at an initial
position ~x ¼ ð~r;~zÞ 2 eC is discretized using the expansion

xð~x; tÞ ¼
XNV
i¼1

xiðtÞwið~xÞ ¼ xðtÞTwð~xÞ; ð13Þ

where xðtÞ is an unknown time-dependent vector of coefficients in
the kinematic basis fwigNV

i¼1, and w is a column vector of all the basis
ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids
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functions fwig. The kinematic basis functions are defined through
Cartesian products of nodal finite element basis functions fĝigNv

i¼1

defined on a standard reference zone bCz, which is the unit square
in all cases considered in this paper. The curvilinear zones at time
t are then reconstructed as

CzðtÞ ¼ fx ¼ Uzðx̂; tÞ : x̂ 2 bCzg; ð14Þ

where Uz is the parametric mapping from the reference element

Uzðx̂; tÞ ¼
XNv

i¼1

xz;iðtÞ ĝiðx̂Þ: ð15Þ

We denote the Jacobian of this mapping by Jz ¼ rx̂Uz.
Note that the same nodal basis is used for discretization of

both the position and the velocity fields, so each component of
a wijCz

corresponds to a mapped basis function, ĝp �U�1
z , for

some index p (the index of the particle i on the reference
element). The discrete velocity field corresponding to the motion
(13) is given by

vð~x; tÞ ¼
X

i

dxi

dt
ðtÞwið~xÞ ¼ vðtÞTwð~xÞ; i:e: v ¼ dx

dt

in agreement with (4) and (7).
We next discuss the reduction of the mass conservation law,

which is fundamental in the Lagrangian framework. We start from
the following equivalent form of (2): let X0ðtÞ be the revolution of
an arbitrary set C0ðtÞ# CðtÞ, then mass conservation postulates
thatZ

X0 ðtÞ
qðtÞ ¼

Z
X0 ðt0Þ

qðt0Þ;

i.e. the total mass in any axisymmetric volume X0ðtÞ at time t equals
the initial mass at time t0. Due to (6), this is equivalent to

2p
Z

C0ðtÞ
rqðtÞ ¼ 2p

Z
C0 ðt0Þ

rqðt0Þ:

Since C0ðtÞ is arbitrary, we can reduce this further using a change of
variables to eC � Cðt0Þ:

rðtÞqðtÞjeJðtÞj ¼ rðt0Þqðt0Þ;

where jeJðtÞj is the determinant of the Jacobian of the mapping
x ¼ xð~x; tÞ. In the finite element setting, the above equality can be
written as

rðtÞqðtÞjJzðtÞj ¼ rðt0Þqðt0ÞjJzðt0Þj: ð16Þ

We refer to the above semi-discrete principle as strong mass con-
servation, and we note that the only difference between this axi-
symmetric version and the Cartesian version from (4.8) in [1] is
the extra r term on both sides of (16). Strong mass conservation
allows us to express the density at time t as a (non-polynomial)
function of the original density, effectively eliminating q from
the semi-discrete algorithm, and can be viewed as a high order
generalization of zonal mass conservation. Since (16) is not well-
defined on the axis of rotation, we make sure to only apply it at
points where r – 0.

We now focus on the derivation of the axisymmetric form of the
momentum conservation equation. Multiplying (1) by a revolved
test function wj and integrating by parts, we get the weak varia-
tional formulationZ

XðtÞ
q

dv
dt
�wj ¼ �

Z
XðtÞ

r : rwj þ
Z
@XðtÞ

n � r �wj; ð17Þ

where n is the outward pointing unit normal vector of the surface
@XðtÞ. Assuming the boundary integral term vanishes and applying
(6) we obtain
Please cite this article in press as: Dobrev VA et al. High-order curvilinear fin
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2p
Z

CðtÞ
rq

dv
dt
�wj ¼ �2p

Z
CðtÞ

rrrz : rrzwj: ð18Þ

Using (11) and contraction of axisymmetric tensors, we can write
(18) in the formZ

CðtÞ
rq

dv
dt
�wj ¼ �

Z
CðtÞ

r r2d : r2dwj
� �

þ rhhðwjÞr;

where r2d and r2d are just the regular 2D stress and gradient ten-
sors in C and ðwjÞr denotes the radial component of the vector basis
function wj. This can be viewed as a perturbation of the Cartesian
case, where the weak variational formulation readsZ

CðtÞ
q

dv
dt
�wj ¼ �

Z
CðtÞ

r2d : r2dwj:

We emphasize that even though the two versions are similar, they
are not the same due to the r weighing of the integrals and the extra
stress term rhh (which includes the pressure and the artificial stress:
rhh ¼ �pþ ra;hh) on the right-hand side of the axisymmetric case.
This is in contrast to the ‘‘area-weighting’’ scheme which essentially
uses the Cartesian form in axisymmetric computations. While our
approach is more faithful to the original 3D equations on X, we
do not automatically inherit the symmetry-preservation properties
of the Cartesian form. Nevertheless, we do observe good symmetry
preservation in practice as illustrated in Section 4.

Let MV be the axisymmetric kinematic mass matrix (we skip the
2p factor)

MV ¼
Z

CðtÞ
rqwwT; ð19Þ

where we have defined the basis wðtÞ by moving wðt0Þ according to
the Lagrangian motion (13). This means that dw

dt ¼ 0, which together
with (16) implies

dMV

dt
¼ 0;

i.e., the kinematic mass matrix is independent of time. This is an
important feature of our approach.

With the above notation, we can write our semi-discrete
momentum conservation briefly as

MV
dv
dt
¼ �

Z
CðtÞ

rrrz : rrzw: ð20Þ

To discretize the energy conservation law, we introduce a
thermodynamic approximation space with basis f/ig

NE
j¼1 which is

analogous to the kinematic basis, except that it is discontinuous
(we make this choice due to the local nature of the equation of
state). The internal energy is then approximated as

eð~x; tÞ ¼
X

j

ejðtÞ/jð~xÞ ¼ eðtÞT/ð~xÞ;

where eðtÞ is an unknown time-dependent vector of size NE and
/ð~xÞ is a column vector of all the basis functions f/jg

NE
j¼1.

The weak variational formulation of the energy conservation Eq.
(3) is obtained by multiplying it by /i and integrating over the do-
main XðtÞ:Z

XðtÞ
q

de
dt

� �
/i ¼

Z
XðtÞ
ðr : rvÞ/i: ð21Þ

Using (6), this reads

2p
Z

CðtÞ
r q

de
dt

� �
/i ¼ 2p

Z
CðtÞ

rðrrz : rrzvÞ/i;

which can be written briefly as
ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids
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ME
de
dt
¼
Z

CðtÞ
rðrrz : rrzvÞ /; ð22Þ

where ME is the axisymmetric thermodynamic mass matrix

ME �
Z

CðtÞ
rq//T: ð23Þ

Similarly to MV , this matrix is independent of time.
We finally introduce the so-called axisymmetric force matrix that

connects the kinematic and thermodynamic spaces:

Fij ¼
Z

CðtÞ
r rrz : rrzwið Þ/j: ð24Þ

This allows us to summarize our axisymmetric semi-discrete
Lagrangian conservation laws in the following simple form:

Momentum Conservation : MV
dv
dt
¼ �F � 1; ð25Þ

Energy Conservation : ME
de
dt
¼ FT � v; ð26Þ

Equation of Motion :
dx
dt
¼ v: ð27Þ

Here 1 is a vector representing the constant one in the thermody-
namic basis f/ig.

The above semi-discrete form is identical to the one from the 2D
Cartesian case [1], with the only differences being the r-scaling in
the integrals and the extra terms in the force matrix. In particular,
the time independence of the mass matrices and the compatible
right-hand sides of (25) and (26) imply that the above semi-dis-
crete scheme will conserve total energy exactly on a semi-discrete
level. The proof of this fact can be found in [1]; we present it below
for completeness.

The change in the total energy

EðtÞ ¼
Z

XðtÞ
q
jv j2

2
þ qe ð28Þ

can be expressed in the semi-discrete settings using (6) as:

dE
dt
¼ 2p d

dt
1
2

v �MV � v þ 1 �ME � e
� �

:

Since MV ;ME and 1 are independent of time and MV is symmetric,
we have

1
2p

dE
dt
¼ v �MV �

dv
dt
þ 1 �ME �

de
dt
:

Substituting Eqs. (25) and (26) in the right hand side we get

1
2p

dE
dt
¼ �v � F � 1þ 1 � FT � v ¼ 0;

where the last equality follows from the identity x � A � y ¼P
ijxiAijyj ¼ y � AT � x. Thus, we can conclude that the total energy

remains constant in time.

Remark 1. As an alternative to the more explicit C-based perspec-
tive presented in this section, one can also consider the direct
discretization of the 3D domain X using the rotated versions of the
finite element mesh, cf. (12), as well as the kinematic and
thermodynamic spaces. Though the resulting 3D approximation
spaces V and E are not of finite element type, they are finite
dimensional, so the abstract semi-discrete Lagrangian variational
formulation from Section 3 in [1] still applies. In particular, we can
conclude that the above semi-discrete equations (with integrals
computed e.g. by reduction to the meridian cut) exactly satisfy the
properties of mass, momentum and energy conservation as well as
the geometric conservation law, based on Theorem 3.1 from [1].
Please cite this article in press as: Dobrev VA et al. High-order curvilinear fin
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3.2. Axisymmetric tensor artificial viscosity

In this section we briefly outline the modifications to the ten-
sor artificial viscosity term from Section 6 in [1] which are neces-
sary for the axisymmetric case. The changes are minor, so we
simply outline them for the specific case of the artificial stress
type 2,

ra;2 ¼ leðvÞ: ð29Þ

Similar considerations apply to the other viscosity types considered
in [1].

First, we note that the symmetrized gradient of the velocity
field,

eðvÞ � 1
2
ðrv þ vrÞ;

has the following form in the axisymmetric case (using the z� r � h
ordering from Section 2

eðvÞ ¼
e2dðvÞ 0

0 vr
r

 !
where e2dðvÞ is simply the symmetrized gradient in C. There is no
problem with division by zero in the hh component of the stress
tensor, since when it is used in the force computations of (24),
eðvÞhh generates the extra term vr

r ðwiÞr/j, which is zero on r ¼ 0
due to the boundary conditions of symmetry in the kinematic space.
Furthermore, ra;2 is only being evaluated at Gaussian quadrature
points, which all have r – 0.

The coefficient l in (29) is based on a ‘‘shock direction’’ vector s,
which we assume to lie in the meridian cut plane C, i.e. we ignore
the~eh eigenvector of eðvÞ and compute s only from e2dðvÞ (same as
in 2D).

The overall form of the directional viscosity coefficient is

ls ¼ ~q q2w2‘
2
s jDsv j þ q1w0w1‘scs

� 	
where we use the axisymmetric strong mass conservation to com-
pute ~q:

~q ¼ qðt0Þ
rðt0ÞjJzðt0Þj
rðtÞjJzðtÞj

:

The measure of compression jDsv j and the directional length scale ‘s

are the same as in 2D because s lies in C. The only other difference is
in the vorticity/compression measure, which incorporates the rz
divergence of (10)

w0 ¼
jr2d � v þ v r=rjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr2dvk2 þ jv r=rj2

q :

Again, division by zero on the axis r ¼ 0 does not arise, since the
Gaussian quadrature points in which w0 is being evaluated are in
the interior of the computational zones.
3.3. Fully-discrete method

Let ftngNt
n¼0 be different moments in time and denote Cn � CðtnÞ

and Xn � XðtnÞ. We use a superscript n to identify the quantities
associated with tn.

As in [1], let Y ¼ v; e; xð Þ be a vector of the hydrodynamic state
variables. Our semi-discrete conservation equations then are:

dY
dt
¼ FðY ; tÞ;
ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids
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where

FðY ; tÞ ¼
F vðv; e; xÞ
F eðv; e;xÞ
F xðv; e;xÞ

0B@
1CA ¼ �M�1

V F � 1
M�1
E FT � v

v

0B@
1CA

We can apply standard high-order time integration solvers to
the above system of nonlinear ODEs, including variants of explicit
Runge–Kutta methods, such as RK4, or the RK2-Average scheme
from Section 7.1 in [1]:

vnþ1
2 ¼ vn � ðDt=2ÞM�1

V Fn � 1;

enþ1
2 ¼ en þ ðDt=2ÞM�1

E ðF
nÞT � vnþ1

2;

xnþ1
2 ¼ xn þ ðDt=2Þvnþ1

2;

vnþ1 ¼ vn � Dt M�1
V Fnþ1

2 � 1;

enþ1 ¼ en þ Dt M�1
E ðF

nþ1
2ÞT � �vnþ1

2;

xnþ1 ¼ xn þ Dt �vnþ1
2;

where Fn ¼ FðYnÞ and �vnþ1
2 ¼ ðvn þ vnþ1Þ=2. This choice has the

attractive property that it conserves the discrete total energy
exactly [1] and is the default time integrator in the numerical
experiments in Section 4.

Our automatic time-step control for determining Dt is based on
the density, sound speed, viscosity coefficient and minimal singu-
lar values of the Jacobian Jz, which do not require any modifications
in the axisymmetric case.

3.4. Relation to SGH methods

In this section we describe several connections between our
finite element framework and some classical discretization
schemes under additional discretization assumptions.

As in Section 5.1 of [1], we first consider the evaluation of the
axisymmetric kinematic mass matrix in the case of a piecewise
bilinear kinematic approximation and a single point quadrature
rule with mass lumping. This produces a diagonal matrix, with
‘‘nodal masses’’

mn ¼
X
Cz3n

1
4

mz; where mz ¼ rzqzjCzj: ð30Þ

Here, jCzj is the area of the zone, rz and qz denote the values of r and
the density in the zone center, and the sum is taken over all zones
containing a fixed node (vertex) n.

In our algorithm, the zonal density qz is computed through the
strong mass conservation principle (16) at the center of the zone
Xz, i.e.

rzðtÞqzðtÞjCzðtÞj ¼ rzðt0Þqzðt0ÞjCzðt0Þj: ð31Þ

This ensures that the nodal (kinematic) and zonal (thermodynamic)
masses mn and mz remain constant in time.

Note that we can write (30) in the form

mn ¼
1
4

X
Cz3n

rzm2d
z ; where m2d

z ¼ qzjCzj;

which is an r-weighted version of the two-dimensional SGH nodal
masses from [7].

Applying the same one point quadrature rule in the computa-
tion of the force representing the right-hand side of the momen-
tum equation we get (analogously to [1])

fn ¼
X
Cz3n

fz;n; ð32Þ
Please cite this article in press as: Dobrev VA et al. High-order curvilinear fin
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where the axisymmetric corner force vector fz;n relates to the 2D
HEMP corner forces f2d

z;n of [7] as follows:

fz;n ¼ rzf2d
z;n þ

pzjCzj
4

0
1

� �
z�r

; ð33Þ

i.e. fz;n is an r-weighted version of f2d
z;n plus an extra pressure term in

its r component.
To summarize, under the specified simplifying assumptions, our

axisymmetric momentum equation for the nodal accelerations an

reads

mnan ¼ fn; ð34Þ

or

1
4

X
Cz3n

rzm2d
z

 !
an ¼

X
Cz3n

rzf
2d
z;n þ

pzjCzj
4

0
1

� �
;

which is similar to, but differs from the ‘‘area-weighted’’ (Cartesian)
version

1
4

X
Cz3n

m2d
z

 !
a2d

n ¼
X
Xz3n

f2d
z;n:

We next discuss the discretization of the internal energy equa-
tion for the specific case of a piece-wise constant thermodynamic
basis. In the Wilkins approach, [7] the rz velocity divergence in
the center of a zone is approximated through the rate of change
of its revolved volume

1
jXzðtÞj

djXzðtÞj
dt

¼ r � v : ð35Þ

This formula is related to the so-called geometric conservation law,

djXðtÞj
dt

¼
Z

XðtÞ
r � v; ð36Þ

but we remark that unlike the Cartesian case, (35) is only an
approximation to, and not equivalent with (36).

In the general compatible hydro approach [20,9,21], the right-
hand side of the energy equation is evaluated through the corner
forces computed in the momentum equation:

mz
dez

dt
¼ �

X
n2Cz

fz;n � vn: ð37Þ

It is straightforward to check that we recover the above formula un-
der the specified simplifying assumptions, with mz defined in (30)
and vn denoting the velocity vector at node n.

Finally, we comment that the simplified SGH-like scheme based
on (34) and (37) with the definitions (30)–(33) inherits the exact
total energy conservation property, in the sense that

d
dt

X
n

mn
jvnj2

2
þ
X
Cz

mzez

 !
¼ 0:

Indeed, since the nodal masses do not change, we have

d
dt

X
n

mn
jvnj2

2
¼
X

n

mnan � vn ¼
X

n

fn � vn:

On the other hand, (32) and the constant zonal masses imply after
interchanging the summation order

X
n

fn � vn ¼
X
Cz

X
n2Cz

fz;n � vn ¼ �
d
dt

X
Cz

mzez;

which completes the proof.
ite elements for axisymmetric Lagrangian hydrodynamics. Comput Fluids

http://dx.doi.org/10.1016/j.compfluid.2012.06.004


V.A. Dobrev et al. / Computers & Fluids xxx (2012) xxx–xxx 7
4. Numerical results

We now present a series of numerical results using the newly
developed axisymmetric curvilinear finite element formulation.
For all test cases considered, we solve the global linear system
for momentum conservation using a diagonally scaled conjugate
Fig. 4. Curvilinear mesh and density field sampled at multiple points per zone for
the cylindrical Saltzman piston problem at t ¼ 0:7;0:8;0:88, 0:92;0:94;0:96;
0:975; 0:985;0:987;0:99 and 0:992 for a total of 7 bounces. Each image is rescaled
to an aspect ratio of 5 : 1.

Fig. 5. Curvilinear mesh and density field sampled at multiple points per zone for
the axisymmetric Sedov problem on a 40� 40 Cartesian grid at time t ¼ 1:0.

Fig. 6. Scatter plots of density vs. radius sampled at 9 points per zone (top) and 1
point per zone (bottom) for the axisymmetric Sedov problem on a Cartesian grid.
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Fig. 8. Scatter plots of density vs. radius sampled at 9 points per zone (top) and 1
point per zone (bottom) for the axisymmetric Noh problem on a Cartesian grid.

Fig. 7. Curvilinear mesh and density field sampled at multiple points per zone for
the axisymmetric Noh problem on a 64� 64 Cartesian grid at time t ¼ 0:6.
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gradient algorithm to a residual tolerance of 10�8 and unless other-
wise specified, we use an ideal gas equation of state with a con-
stant adiabatic index c ¼ 5=3 and the type 2 tensor artificial
viscosity described in Section 3.2 with linear and quadratic coeffi-
cients q1 ¼ 1=2 and q2 ¼ 2. Furthermore, in most of these examples
we only consider the use of a Q 2 � Q 1 method for the sake of brev-
ity. The only exceptions are Section 4.4 where we consider a
Q4 � Q3 method to demonstrate that our axisymmetric formula-
tion is valid for arbitrary order basis functions as described in [1]
and Section 4.5 where we compare against the lowest order
Q1 � Q0 method. The axisymmetric Q 2 � Q 1 method consists of 9
kinematic degrees of freedom per zone and four discontinuous
thermodynamic degrees of freedom per zone. The results in this
section have been computed with our high-order finite element
Lagrangian hydrocode BLAST [22], which is based on the parallel
modular finite element methods library MFEM [23]. We also used
the related OpenGL visualization tool GLVis [24] to plot the com-
puted curvilinear meshes and high-order fields. In all r–z plots,
the z and r axes are the horizontal and vertical axes, respectively.

4.1. Cylindrical Saltzman piston

In this test problem, a 1D piston shock wave is propagated over
an initially distorted 2D mesh. The problem domain is a cylinder
with z 2 ½0;1� and r 2 ½0; 0:1� with initial thermodynamic condi-
tions q ¼ 1; p ¼ 0 and e ¼ 0. The details of how the initial skewed
mesh is constructed can be found in [25]. The velocity is initially
zero everywhere except at the wall z ¼ 0, where a constant veloc-
ity source of vz ¼ 1:0 is applied for all time. This problem tests the
ability of our axisymmetric methods to maintain a 1D planar shock
front on a mesh that is not aligned with the shock flow and pro-
vides an indication of the robustness of our method with respect
to mesh imprinting. It is also a good test of possible symmetry
breaking near the axis of rotation.

In Fig. 4 we plot the density field and curvilinear mesh at snap-
shots in time corresponding to t ¼ 0:7;0:8;0:88;0:92; 0:94;0:96,
0:975;0:985;0:987;0:99 and 0:992. Note that the shock front has
bounced from the boundary walls for a total of seven times. To
our knowledge this is the latest time to which this problem has
been shown to run in a purely Lagrangian manner. Note also that
the shock front remains largely flat for all time and only at extre-
mely late times do we begin to observe the minor effect of symme-
try breaking near the axis of rotation.

4.2. Spherical Sedov explosion

The Sedov problem consists of an ideal gas (c ¼ 1:4) with a delta
function source of internal energy deposited at the origin such that
the total energy Etot ¼ 1. The sudden release of the energy creates
an expanding spherical shock wave, converting the initial internal
energy into kinetic energy. The delta function energy source is
approximated by setting the internal energy e to zero in all degrees
Fig. 9. Initial conditions for the axisymmetric multi-material shock triple point
interaction problem.
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of freedom except at the origin where the value is chosen so that
the total internal energy is 1.

For this particular problem we used a finite element (discontin-
uous Q1) discretization of the pressure, based on a weak variational
form of the equation of state, see §2.8 in [6]. This version of the
algorithm produced results with better symmetry near the origin
than our default method in which the pressure is treated as a func-
tion sampled through the EOS at the quadrature points.

In Fig. 5 we plot the density field and curvilinear mesh at the fi-
nal time of t ¼ 1:0. In Fig. 6 we show scatter plots of the density
versus the radius sampled at 9 points per zone and at 1 point per
Fig. 10. Snapshots of curvilinear mesh and density field (log scale) for the
axisymmetric triple point problem obtained using the Q4 � Q3 method at
t ¼ 1;2;3;4, and 5 (top to bottom).
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zone (at the zone center) on a sequence of refined meshes. The
oscillations in the data near the shock front are at the sub-zonal
level, the zone centered values do not exhibit this behavior. Note
that in this calculation, the total numerical energy was conserved
to machine precision for all time and we have convergence to
the exact shock location, cf. Fig. 1.
4.3. Spherical Noh implosion

The Noh problem consists of an ideal gas with c ¼ 5=3, initial
density q0 ¼ 1 and initial energy e0 ¼ 0. The value of each velocity
degree of freedom is initialized to a radial vector pointing toward
the origin, v ¼ �~r=k~rk. The initial velocity generates a spherical
stagnation shock wave that propagates outward with a speed of 1

3
and produces a peak post-shock density of q ¼ 64.

In Fig. 7 we plot the density field and curvilinear mesh at the
final time of t ¼ 0:6. In Fig. 8 we show scatter plots of the density
versus the radius sampled at 9 points per zone and at 1 point per
zone (at the zone center) on a sequence of refined meshes. As with
the previous problem, the oscillations in the data near the shock
front are at the sub-zonal level, the zone centered values do not ex-
hibit this behavior. Note that in this calculation, the total numeri-
cal energy was conserved to machine precision for all time.
4.4. Axisymmetric multi-material shock triple point interaction

The triple point problem describes the interaction of three
materials with ideal gas equations of state. The initial domain,
materials and initial conditions are shown in Fig. 9. Slip wall
Fig. 11. Full 3D visualization of the materials in the axisymmetric triple point
problem obtained using the Q4 � Q3 method at t ¼ 5; revolved axisymmetric mesh
(top) and density (bottom).
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boundary conditions are imposed everywhere on the boundary, i.e.
vz ¼ 0 at z ¼ 0; z ¼ 7 and v r ¼ 0 at r ¼ 0; r ¼ 3.

We discretize the problem using the Q 4-Q3 finite element space
pair (see [1]) which is based on bi-quartic continuous velocity and
displacement spaces (25 kinematic degrees of freedom per zone)
Fig. 12. Snapshots of curvilinear mesh and density field (log scale) sampled at
multiple points per zone at times t ¼ 0; t ¼ 0:08 and t ¼ 0:15 for the axisymmetric
multi-material spherical implosion problem on an unstructured uniform mesh
using the Q2 � Q1 method.

Please cite this article in press as: Dobrev VA et al. High-order curvilinear fin
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and a bi-cubic discontinuous thermodynamic space (16 thermody-
namic degrees of freedom per zone). The initial mesh is a 56� 24
uniform Cartesian mesh. For all discretization parameters we use
Fig. 13. Snapshots of curvilinear mesh and density field (log scale) sampled at
multiple points per zone at times t ¼ 0; t ¼ 0:08 and t ¼ 0:15 for the axisymmetric
multi-material spherical implosion problem on an unstructured random using the
Q2 � Q1 method.
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Fig. 14. Average interface radius vs. time (top) and percent symmetry error vs. time
(bottom) for the axisymmetric multi-material spherical implosion problem on an
unstructured uniform and random mesh, using both a Q1 � Q0 and a Q2 � Q1

method.
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their default values except for the tensor artificial viscosity where
we use type 4 (see [1]) modified appropriately for the axisymmet-
ric case. For the time discretization we use the standard explicit
RK4 time stepping method.
Fig. 15. Comparison of curvilinear mesh and density field (log scale) sampled at multip
implosion problem on an unstructured random mesh using a Q1 � Q0 method on a refin

Please cite this article in press as: Dobrev VA et al. High-order curvilinear fin
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In Fig. 10, we present a sequence of snapshots of the computa-
tional mesh and density up to time t ¼ 5. Note the extreme mesh
distortion in the vortex region, near the horizontal material inter-
face, and near the r ¼ 0 axis. Even in the presence of such extreme
deformations, our method still maintains its robustness. In Fig. 11,
we plot the full 3D material domains at the final time t ¼ 5 ob-
tained by revolving the solution from the meridian cut about the
axis of symmetry r ¼ 0.
4.5. Multi-material spherical implosion

Here we consider a simple 1D multi-material implosion prob-
lem on unstructured 2D meshes. The problem consists of a low
density material with q1 ¼ 0:05 in the radial range r 2 ½0;1� sur-
rounded by a shell of high density material q2 ¼ 1:0 in the radial
range r 2 ½1:0;1:2�. Each material is at an initial pressure of
p ¼ 0:1 and uses an ideal gas equation of state with c ¼ 5=3.

This problem was originally proposed by [26] for cylindrical
symmetry. Here we make a simple modification for spherical sym-
metry, instead of applying a time dependent pressure source to the
outermost radial surface of the problem, we apply a constant
velocity source of v ¼ �5~r=k~rk. The outer surface drives a spherical
shock wave inward. Ideally, the interface between the high and
low density materials should remain perfectly spherical for all time
due to the spherical symmetry of the velocity drive. However, the
discretization errors of the initial geometry of this surface and sub-
sequent error introduced by the numerical algorithm will be
amplified over time since the interface is subject to both Richtm-
yer–Meshkov (RM) and Rayleigh–Taylor (RT) instabilities.

In Fig. 12 we show plots of the mesh and density on a log scale
at three snapshots in time for the case of a uniform unstructured
mesh. In Fig. 13 we show identical plots for the same problem on
a randomly perturbed unstructured mesh. In both cases we use a
Q2 � Q1 method and the initial mesh is curved by mapping all
position degrees of freedom in the outer high density shell to a
spherical surface. Note that the randomly perturbed mesh has both
non-uniform angular spacing as well as non-uniform aspect ratios
in the central ‘‘box’’ region. Maintaining spherical symmetry on
such a mesh with a Lagrangian method is a non-trivial task, cf.
Fig. 2.

In Fig. 14 we plot the average radius of the entire material inter-
face using 5 points per edge for both cases and compare these to a
reference 1D result (obtained from a high resolution 1D Lagrangian
SGH calculation). We also compare to results obtained using a low
order Q1 � Q0 method on refined versions of the same meshes
(yielding the same total number of kinematic and thermodynamic
le points per zone at time t ¼ 0:15 for the axisymmetric multi-material spherical
ed mesh (left) and a Q2 � Q1 method (right).
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degrees of freedom) with 3 plot points per edge (yielding the same
total number of interface plot points). For the Q 2 � Q 1 case, each
mesh yields essentially identical results in the average radius and
both are in good agreement with the 1D high resolution reference
solution. In addition, the Q 2 � Q 1 values are in better agreement
with the reference solution than the Q 1 � Q 0 values. In Fig. 14
we also plot the normalized standard deviation of this radial sur-
face which indicates the symmetry error over time. For all cases,
we observe a sharp rise in symmetry error as the shock first passes
over the interface around t ¼ 0:03 and impulsively accelerates it,
due to the RM instability. As the shell begins to decelerate due to
multiple shock reflections from the origin around t ¼ 0:11, the
interface is subject to RT instability an we observe another sharp
increase in symmetry error. The Q2 � Q 1 method is significantly
better at preserving the interface symmetry on the random mesh
with errors less than 0:1% at the final time of t ¼ 0:15, more than
an order of magnitude less than the Q 1 � Q 0 method, which can be
clearly seen in the comparison plots of Fig. 15.

5. Conclusions

In this paper we presented an extension of our high-order cur-
vilinear finite element method for solving the equations of com-
pressible hydrodynamics in a Lagrangian frame to the case of
axisymmetric problems. This extension results in relatively simple
modifications to the semi-discrete formulation, consisting of a
rescaled momentum conservation equation and new radial terms
in the pressure gradient and artificial viscosity forces, and was
shown to exactly conserve total numerical energy. We also demon-
strated via numerical examples the benefits of the new high order
curvilinear axisymmetric discretization method, including: signifi-
cant improvements in symmetry preservation for symmetric flows
even when the underlying mesh is highly non-uniform; the ability
to more accurately capture geometrical features of a flow region
and maintain robustness with respect to mesh motion using curvi-
linear zones and high order bases; sharper resolution of the shock
front for a given mesh resolution; and a substantial reduction in
mesh imprinting for shock wave propagation not aligned with
the computational mesh.
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