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1 Introduction

The purpose of this document is to provide an overview of the COGENT (COntinuum
Gyrokinetic Edge New Technology) code [5,8–13]. COGENT is being developed as part of a
multidisciplinary collaboration called the Edge Simulation Laboratory (ESL) [20], involving
the DOE Office of Advanced Scientific Computing Applied Mathematics Research Program
and the Office of Fusion Energy Sciences Theory Program.

As described in the subsequent sections, COGENT solves a system of equations describing
the behavior of plasma in the edge region of a tokamak fusion reactor. The ability to model
computationally the behavior of such edge plasmas is a key element in the development of
a predictive simulation capability. Among the features that distinguish the edge from the
plasma core is the development of a region of steep gradients in the density and temperature
profiles called the pedestal, the height of which determines the quality of plasma confinement,
and hence fusion gain. A kinetic plasma model is needed in this region because the radial
width of the pedestal observed in experiments is comparable to the radial width of individual
particle orbits. These commensurate scales lead to large distortions of the local distribution
functions from a Maxwellian. In addition, the mean free path can be comparable to the scale
length for temperature variations along the magnetic field, which violates the assumptions
underlying a collisional fluid model.

A variety of computational challenges arise in the development of a continuum kinetic
edge model, including efficient discretization in a high-dimensional and complicated phase

1This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Applied Mathematics program under contract number
DE-AC52-07NA27344.
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space, long-time integration with low numerical dissipation, conservation, preservation of
distribution function positivity, strong anisotropy, and multiple spatial and temporal scales.
To address these challenges in a comprehensive fashion, several numerical methodologies
have been developed and deployed in COGENT. COGENT has therefore served as a testbed
for these new techniques, as well as a platform for the development of a new edge plasma
simulation tool.

2 Models

COGENT solves a model system defined by electrostatic, gyrokinetic Vlasov-Poisson equa-
tions in gyrocenter coordinates. These equations describe the coupled evolution of a gyro-
center distribution function f and an electrostatic potential function Φ under the influence
of a large, imposed magnetic field B. The use of gyrocenter coordinates provides two major
advantages: particle gyromotion, that is the gyration of particles about the magnetic field,
decouples from the remaining particle dynamics and the gyrocenter coordinate system is de-
rived as a symplectic mapping from laboratory coordinates. A consequence of the former is
that it reduces the dimension of the phase space domain on which the distribution function
is defined and eliminates unimportant high-frequency modes from the simulation. The latter
ensures that phase space volumes, and hence conservation properties, are preserved.

The electrostatic, gyrokinetic Vlasov-Poisson equations are a subset of more general
electromagnetic models suitable for applications such as tokamak edge plasmas. Applied
to complex geometric domains, the electrostatic model system exhibits many important
numerical difficulties common with more general models, so it serves as a sensible starting
point. An expectation is that this work will be extended to more complete physical models.

2.1 Gyrokinetic Vlasov equation

The gyrokinetic Vlasov equation describes the evolution of a scalar-valued positive-definite
distribution function f defined over a five-dimensional phase space. For a magnetic field
with magnitude B = |B|, the gyrocenter phase space coordinates are denoted by the tuple
(R, v‖, µ), where R ∈ R3 is the position coordinate, µ ≡ 1

2
mv2
⊥/B ≥ 0 is the magnetic

moment, v⊥ and v‖ are the velocity components perpendicular and parallel to the magnetic
field B, respectively, and m is the particle mass. The magnetic moment µ is preferred as a
coordinate over v⊥ because it is a constant of the motion, that is, µ̇ = 0. Assuming that the
gyrocenter distribution function for species α, fα(R, v‖, µ, t), is symmetric in the gyrophase
θ, the corresponding Vlasov equation is therefore

dfα
dt

=
∂fα
∂t

+ Ṙα ·∇Rfα + v̇‖α
∂fα
∂v‖

= 0, (1)
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where ∇R denotes the gradient with respect to R. In a perturbative ordering suitable for
large electric field gradients [16,19],

Ṙα ≡ Ṙα(R, v‖, µ, t) ≡
v‖
B‖
∗
α

B∗α +
1

ZαeB‖
∗
α

b×Gα, (2)

v̇‖α ≡ v̇‖α(R, v‖, µ, t) ≡ −
1

mαB‖
∗
α

B∗α ·Gα, (3)

where e is the fundamental charge, b ≡ b(R) ≡ B/B,

B∗α ≡ B∗α(R, v‖) ≡ B +
mα

Zαe
∇R ×

(
u + v‖b

)
, (4)

and u ≡ u(R) ≡ b × ∇RΦ0/B for the equilibrium potential Φ0 ≡ Φ0(R). The vector
function Gα depends on the magnetic and potential fields:

Gα ≡ Gα(R, µ, t) ≡ Zαe∇RΦ + µ∇RB +
µB

2Ωα

∇R (b ·∇R × u) +
mα

2
∇R

(
u2
)
, (5)

where Ωα is the gyrofrequency and

Φ ≡ Φ(R, t) ≡ Φ0 + δΦ, (6)

where δΦ ≡ δΦ(R, t). In these equations, we are assuming that all of the fields have been
evaluated at gyrocenter coordinates via gyroaveraging from their native lab frame coordi-
nates. Note that if we assume Φ0 ≡ 0, as we should in the initial implementation, then

B∗α ≡ B∗α(R, v‖) ≡ B +
mαv‖
Zαe

∇R × b, (7)

and
Gα ≡ Gα(R, µ, t) ≡ Zαe∇RΦ + µ∇RB. (8)

Due to the phase space divergence free condition

∇R ·
(
B‖
∗
α
Ṙα

)
+

∂

∂v‖

(
B‖
∗
α
v̇‖α
)

= 0, (9)

where B‖
∗
α
≡ B‖

∗
α
(R, v‖) ≡ B∗α · b, the gyrokinetic Vlasov equation (1) can be written in

conservation form as

∂(B‖
∗
α
fα)

∂t
+ ∇R ·

(
ṘαB‖

∗
α
fα

)
+

∂

∂v‖

(
v̇‖αB‖

∗
α
fα
)

= 0. (10)
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2.2 Gyrokinetic Poisson equation

The potential Φ in the factors Ṙ and v̇‖ in (2) and (3) is obtained by solving the Poisson
equation

ε0∇2Φ(x, t) = e

(
ne(x, t)−

∑
α

Zαnα(x, t)

)
(11)

in the laboratory coordinates x, then gyroaveraging to gyrocenter coordinates. The electron
and ion charge densities ne and nα in (11) are related to the velocity space integrals of the
respective particle distribution functions. At this stage of the development, let us assume
that ne is known. Due to the finite gyroradius effects, the zeroth moment of the ion gyrocenter
distribution function is fairly complicated [14]. In general, it has two contributions:

nα = n̄α + n̂α. (12)

The first term is the gyrocenter density

n̄α ≡ n̄α(x, t) ≡ 1

mα

∫
fα(R, v‖, µ, t)δ(R− x+ ρα(θ))B∗‖(R, v‖)dRdv‖dµdθ (13)

that is the density at point x from contributions of “rings of density” about gyrocenters R at
distances ρα = |ρα| from x (the θ integral distributes the particle density uniformly around
the ring ρα(θ)). In the long wavelength limit, k⊥ρα � 1, where k⊥ is the perpendicular
wavenumber of the magnetic field and ρα = v⊥/Ωα is the cyclotron radius, this simplifies to

n̄α(x, t) ≈ 2π

mα

∫ (
fα(x, v‖, µ, t) +

ρ2
α

2
∇2
⊥fα(x, v‖, µ, t)

)
B∗‖(x, v‖)dv‖dµ (14)

= nα,gc(x, t) +
1

Ω2
α(x)

∇2
⊥pα,⊥(x, t).

where

nα,gc(x, t) ≡
2π

mα

∫
fα(x, v‖, µ, t)B

∗
‖(x, v‖)dv‖dµ, (15)

pα,⊥(x, t) ≡ 2πB(x)

m2
α

∫
µfα(x, v‖, µ, t)B

∗
‖(x, v‖)dv‖dµ, (16)

Ωα(x) ≡ ZαeB(x)

mα

. (17)

The second term in (12) is the polarization density, which is the gyrophase-dependent con-
tribution. In the long wavelength limit, the gyrokinetic Poisson equation takes the form [19]
(adding a missing Zα factor)

ε0∇2Φ = e

(
ne −

∑
α

Zαn̄α

)
− e2

∑
α

Z2
α

mαΩ2
α

∇⊥ · (n̄α∇⊥Φ) , (18)
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where ∇⊥ ≡ ∇ − b(b ·∇) is the component of ∇ perpendicular to B. Expressed in flux
divergence form, we have

∇ ·
{[

ε0I + e2
∑
α

Z2
αn̄α

mαΩ2
α

(
I− bbT

)]
∇Φ

}
= e

(
ne −

∑
α

Zαn̄α

)
, (19)

where we have employed the long wavelength limit assumption to commute 1/Ω2
α with ∇⊥.

2.3 Adiabatic electron model

In our discretization of the Vlasov-Poisson model, we are assuming a smooth mapping X
from the unit cube computational domain onto the physical spatial domain Ω

X = X(ξ), X : [0, 1]3 → Ω. (20)

Let us further assume that the first coordinate ξ1 labels flux surfaces. For our initial imple-
mentation, we will assume an adiabatic model for the electrons.

ne(x) = n0(ξ1(x)) exp

(
eΦ(x)

Te(ξ1(x))

)
, (21)

where, as indicated, the prefactor n0 and temperature Te are functions of the flux surface
label. To maintain charge neutrality within a flux surface, the prefactor n0 will equated to
the ion flux-surface averaged density (summed over species with the appropriate ionization
state weights). The electron temperature can be set arbitrarily. This procedure accomplishes
the desired result if the flux surface average of the Boltzmann (exponential) factor is unity.

Another variation of the adiabatic electron model divides by the flux surface average of
the Boltzmann exponent as part of the prefactor:

ne(x) = n0(ξ1(x))
exp

(
eΦ(x)

Te(ξ1(x))

)
〈

exp
(

eΦ(x)
Te(ξ1(x))

)〉 , (22)

If now n0 is equated to the ion flux-surface averaged density, then charge neutrality within a
flux surface is maintained for an arbitrary average of the Boltzmann factor. There are other
possible variations; for example the averages can be taken over the entire simulation volume
to describe global charge conservation with rapid electron transport in all directions.

2.4 Collisions

Since collisions become increasingly important in the outer edge of a tokamak plasma, we
must include their effect in our numerical model and discretization strategy. The Vlasov
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equation (10) can be further generalized to a Boltzmann equation by the inclusion of a
collision term in the right hand side

∂(B∗‖fi)

∂t
+ ∇̄ ·

(
dR̄

dt
B∗‖fi

)
+

∂

∂v̄‖

(
dv̄‖
dt
B∗‖fi

)
= C(fi, fi). (23)

A general category of collision model is described by Fokker-Planck operators, which in
laboratory coordinates have the form [4]

C(fi, fi) ≡ −Γ
∂

∂v
·
[
fi
∂H

∂v
− 1

2

∂

∂v
·
(
∂2G

∂v∂v
fi

)]
, (24)

where v = (v‖, v⊥). The quantity Γ ≡ 4πZ4
i λ/m

2
i where λ is the Coulomb logarithm and

Zi is the charge state. In the case of a linear collision operator, the friction and diffusion
coefficients H and G are prescribed functions independent of fi. In the nonlinear case,
these functions are the Rosenbluth potentials, which are the solutions of a pair of potential
equations in velocity space involving fi.

As described in [4], numerical discretizations of Fokker-Planck operators (24) can be
constructed so as to obtain conservation of mass, momentum and energy. The fact that (24)
is posed as the divergence of a flux plays an important role in establishing these properties,
although in the case of energy conservation this fact in itself is not sufficient (as it is for mass
conservation). Since (23) is posed in gyrocenter, not laboratory, coordinates, the question
therefore arises as to what happens when a Fokker-Planck collision operator is transformed
to these coordinates. This question is addressed in [3] in which a Poisson bracket formalism
is used to obtain a transformed Fokker-Planck collision operator in gyrocenter coordinates

C(fi, fi) = − 1

J
∂

∂Z

[
J
(
KFi −D

∂Fi
∂Z

)]
(25)

where J denotes the Jacobian of the mapping T of laboratory phase space coordinates z to
gyrocenter coordinates Z = T z, and Fi ≡ T −1fi denotes the push-forward of fi generated by
T . The operator (25) has a similar form as (24) in the sense that it is the sum of a drag term
(with coefficient K) and a diffusion term (with coefficient D). Unlike (24), in which the drag
and diffusion operators act solely in velocity space, the analogous operators of (25) involve
spatial derivatives. This is simply due to the mixing of spatial and velocity phase space
components resulting from gyroaveraging. Therefore, while the divergence form of (25)
provides the apparent opportunity for enforcing conservation in a numerical formulation,
it does not automatically follow from the prior work of [4]. In this project, we must re-
investigate these conservation questions in the overall numerical discretization of (23).

2.5 Normalizations

Our implementation of the gyrokinetic Vlasov-Poisson system will employ normalizations
relative to a reference material and fields described by the parameters specified in Table 1.
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ñ number density

T̃ temperature

L̃ length
m̃ mass

B̃ magnetic field

Table 1: Primitive reference parameters.

ṽ ≡
(
T̃ /m̃

)1/2

thermal speed

τ̃ ≡ L̃/ṽ transit time

µ̃ ≡ T̃ /(2B̃) magnetic moment

f̃ ≡ ñ/(πṽ3) distribution function

Φ̃ ≡ T̃ /e potential

Ω̃ ≡ eB̃/m̃ gyrofrequency

λ̃D ≡
(
ε0T̃ /(ñe

2)
)1/2

Debye length

Table 2: Derived reference parameters.

These choices then determine the set of derived reference quantities shown in Table 2. In
terms of these parameters, the normalized variables to be used in the gyrokinetic Vlasov-
Poisson model are displayed in Table 3. From the reference scales, two dimensionless numbers
can be constructed that appear in the gyrokinetic Vlasov-Poisson system; these are defined
in Table 4.

2.6 Normalized gyrokinetic Vlasov equations

We now apply the above normalizations to gyrokinetic Vlasov equations in Section 2.1. For
simplicity, we will deglect the drift due to the equilibrium potential (i.e., we assume u = 0).
We obtain

∂(B̂‖
∗
α
f̂α)

∂t̂
+ ∇R̂ ·

(
˙̂
RαB̂‖

∗
α
f̂α

)
+

∂

∂v̂‖

(
˙̂v‖αB̂‖

∗
α
f̂α

)
= 0, (26)

where

˙̂
Rα ≡

˙̂
Rα(R̂, v̂‖, µ̂, t̂) ≡

v̂‖

B̂‖
∗
α

B̂∗α +
La

ZαB̂‖
∗
α

b× Ĝα, (27)

˙̂v‖α ≡ ˙̂v‖α(R̂, v̂‖, µ̂, t̂) ≡ −
1

m̂αB̂‖
∗
α

B̂∗α · Ĝα, (28)
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t̂ ≡ t/τ̃ time
v̂‖ ≡ v‖/ṽ parallel velocity
n̂α ≡ nα/ñ number density
m̂α ≡ mα/m̃ mass

f̂α ≡ fα/f̃ distribution function

T̂α ≡ Tα/T̃ temperature

B̂ ≡ B/B̃ magnetic field

Φ̂ ≡ Φ/Φ̃ potential
µ̂ ≡ µ/µ̃ magnetic moment

Table 3: Normalized gyrokinetic Vlasov-Poisson variables.

La ≡ ṽ/(Ω̃L̃) Larmor number: ratio of gyroradius to scale length

De ≡ λ̃D/L̃ Debye number: ratio of Debye length to scale length

Table 4: Dimensionless gyrokinetic Vlasov-Poisson parameters.

and

B̂∗α ≡ B̂∗α(R̂, v̂‖) ≡ B̂ + La
m̂αv̂‖
Zα

∇R̂ × b, (29)

B̂‖
∗
α
≡ B̂‖

∗
α
(R̂, v̂‖) ≡ b · B̂∗α, (30)

Ĝα ≡ Ĝα(R̂, µ̂, t̂) ≡ Zα∇R̂Φ̂ +
µ̂

2
∇R̂B̂. (31)

2.7 Normalized gyrokinetic Poisson equation

Applying the above normalizations, we obtain from (19)

∇X̂ ·

{[
(De)2I + (La)2

∑
α

Z2
α
̂̄nα

m̂αΩ̂2
α

(
I− bbT

)]
∇X̂Φ̂

}
= n̂e −

∑
α

Zα̂̄nα, (32)

where ∇X̂ denotes the gradient with respect to the normalized spatial coordinate X̂ ≡ X/L̃.

2.8 Normalized adiabatic electron model

Applying the above normalizations, we obtain from (21)

n̂e(x) = n̂0(ξ1(x)) exp

(
Φ̂(x)

T̂e(ξ1(x))

)
. (33)
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Figure 1: Edge plasma geometry (left) and multiblock, locally rectangular computational
domain (right). Arrows indicate the inter-block connectivity.

and from (22) the alternate model

n̂e(x) = n̂0(ξ1(x))

exp

(
Φ̂(x)

T̂e(ξ1(x))

)
〈

exp

(
Φ̂(x)

T̂e(ξ1(x))

)〉 . (34)

3 Geometry

The gyrokinetic Vlasov-Poisson system described in the preceding sections is posed in a
domain defined by the tokamak magnetic geometry, which is comprised of field lines lying
on concentric flux surfaces. Due to large variations of plasma parameters along and across
field lines, there is strong motivation to discretize in coordinates where one of the coordinate
directions is defined by the flux surfaces. As depicted in Figure 1, a natural choice is a
mapped multiblock coordinate system, where the blocks correspond to the logically distinct
core, scrape-off layer and private flux regions. Within each block, a rectangular coordinate
system can be employed, which facilitates efficient and accurate discretizations and domain
decompositions over processors.

COGENT also provides the option to use a simpler single-block geometry, such as that
shown in Figure 2, based on the well-known Miller equilibrium model [18]. COGENT results
obtained using this geometry in the prediction of geodesic acoustic modes are contained
in [11] and [9].
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Figure 2: COGENT computed potential in Miller equilibrium geometry.

4 Boundary conditions

In this section, we describe the imposition of phase space boundary conditions in terms of
the configuration space computational coordinates ξ = (ξ1, ξ2) ∈ [0, 1]2 and a velocity space
domain defined by

Ωv ≡
{

(v‖, µ) : v‖,min ≤ v‖ ≤ v‖,max, µmin ≤ µ ≤ µmax

}
. (35)

4.1 Vlasov

4.1.1 Phase space inflow

Given the advection fluxes in (26), a natural way to specify boundary conditions is based on

the directions of the phase space velocities
˙̂
R and ˙̂v‖ at boundaries. For the configuration

space flux at radial boundaries, we specify

˙̂
RB̂∗‖ f̂(ξ1, ξ2, v‖, µ) =

{
ΓR if

˙̂
R · nR̂ < 0,

0 if
˙̂
R · nR̂ ≥ 0,

ξ1 = 0 or 1, 0 ≤ ξ2 ≤ 1,
(v‖, µ) ∈ Ωv,

(36)

where nR̂ is the outward pointing unit normal. Similarly, at the lower v‖ boundary

˙̂v‖B̂
∗
‖ f̂(ξ1, ξ2, v‖, µ) =

{
Γlowerv‖

if ˙̂v‖ > 0,

0 if ˙̂v‖ ≤ 0,

0 ≤ ξ1, ξ2 ≤ 1,
v‖ = v‖,min, µmin ≤ µ ≤ µmax,

(37)
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and at the upper v‖ boundary

˙̂v‖B̂
∗
‖ f̂(ξ1, ξ2, v‖, µ) =

{
Γupperv‖

if ˙̂v‖ < 0,

0 if ˙̂v‖ ≥ 0,

0 ≤ ξ1, ξ2 ≤ 1,
v‖ = v‖,max, µmin ≤ µ ≤ µmax.

(38)

4.1.2 Periodic

A periodic boundary may be imposed on radial boundaries radial coordinate

f̂(0, ξ2, v‖, µ) = f̂(1, ξ2, v‖, µ), 0 ≤ ξ2 ≤ 1, (v‖, µ) ∈ Ωv, (39)

or the poloidal boundary

f̂(ξ1, 0, v‖, µ) = f̂(ξ1, 1, v‖, µ), 0 ≤ ξ1 ≤ 1, (v‖, µ) ∈ Ωv. (40)

4.2 Poisson

For the gyrokinetic Poisson equation (32), we impose Dirichlet, Neumann or periodic bound-
ary conditions.

4.2.1 Dirichlet

A Dirichlet boundary condition may be imposed on mapped boundaries, e.g.,

Φ̂(0, ξ2) = Φ̂∗, 0 ≤ ξ2 ≤ 1, (41)

or
Φ̂(1, ξ2) = Φ̂∗, 0 ≤ ξ2 ≤ 1, (42)

for a prescribed boundary value Φ̂∗.

4.2.2 Neumann

A Neumann boundary condition may be imposed on mapped boundaries, e.g.,

−∂Φ̂(0, ξ2)

∂ξ1

= Φ̂∗(ξ2), 0 ≤ ξ2 ≤ 1, (43)

or
∂Φ̂(1, ξ2)

∂ξ1

= Φ̂∗(ξ2), 0 ≤ ξ2 ≤ 1, (44)

for a prescribed boundary value Φ̂∗. Note that we follow the usual convention of specifying
“outward normal” derivatives.
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4.2.3 Periodic

A periodic boundary may be imposed on mapped boundaries, e.g.,

Φ̂(0, ξ2) = Φ̂(1, ξ2), 0 ≤ ξ2 ≤ 1. (45)

5 Discretization and numerical methods

Fundamental to COGENT has been the development of a formalism for generating high-
order, finite-volume discretizations in mapped coordinate systems [6]. Given a smooth map-
ping X = X(ξ), X : [0, 1]D → Ω from the unit cube (which ultimately serves as the
computational domain) onto the spatial domain Ω ⊂ RD, the integral of the divergence of a
flux F over a mapped control volume Vi ⊂ [0, 1]D is computed to fourth-order accuracy as∫

X(Vi)

∇x · F dx = h2

D∑
d=1

∑
±=+,−

±F d
i± 1

2
ed

+O(h4), (46)

where

F d
i± 1

2
ed
≡

D∑
s=1

〈N s
d〉i+ 1

2
ed 〈F

s〉i+ 1
2
ed +

h2

12

D∑
s=1

(
G⊥,d0 〈N s

d〉i+ 1
2
ed)
)
·
(
G⊥,d0 (〈F s〉i+ 1

2
ed)
)
. (47)

Here, 〈·〉i+ 1
2
ed denotes a fourth-order accurate cell face average and G⊥,d0 is the second-

order accurate central difference approximation to the component of the gradient operator
orthogonal to the d-th direction. The quantities N s

d are metric factors associated with the
mapping X. An important element is the calculation of the metric factor face averages
〈N s

d〉i+ 1
2
ed in such a way as to preserve free streaming (i.e., (46) vanishes when F is uniform)

to machine roundoff. This improves stability by preventing roundoff error accumulation
due to the discretization of the coordinate mapping. Complete details and applications to
hyperbolic and elliptic operators are contained in [6].

To accommodate geometries such as that in Figure 1, we extend our approach by con-
sidering an arbitrary collection of mapped blocks. In our conservative formulation, the
primary concern is the calculation of fluxes at interblock interfaces. Assuming that the
smooth mappings on each block possess smooth extensions beyond their respective bound-
aries, “extrablock” ghost cells can be generated by applying the mapping to an extended
computational grid (e.g., Figure 3). Using a sufficiently accurate interpolation of valid data
from neighboring blocks to fill the extrablock ghost cells, the flux at block boundaries can
then be computed in the same manner as fluxes at cell faces in the block interior. The
only special aspect of the interblock boundary flux calculation is a final averaging step that
restores strict conservation. The key element is therefore the interpolation of valid neighbor
block data to extrablock ghost cells, which is described in full detail in [17]. A polynomial
interpolant is constructed in a neighborhood of the extrablock ghost cell whose coefficients
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Figure 3: Extrablock ghost cell interpolation.

are constrained so as to ensure that cell averages of the interpolant agree with those in a
neighboring set of cells (which may belong to one or more neighboring blocks). The coef-
ficients are then obtained by solving a least-squares problem. The number of neighboring
cells must be sufficiently large to obtain a system with maximal rank (determined by the
desired interpolation order).

6 Software infrastructure

COGENT is implemented using the Chombo adaptive mesh refinement framework [7]. In
addition to the support provided by Chombo for the fourth-order, mapped-multiblock, finite-
volume discretization described in Section 5, COGENT utilizes Chombo’s data containers
for all mesh-dependent quantities distributed over processors. Communication (e.g., the
exchanging of ghost cell data) are effected by container members using MPI or via direct
MPI calls (e.g., to perform a global reduction). Distributed quantities are functions of
configuration space (e.g., potential) or phase space (e.g., distribution functions), each of
which can be domain-decomposed independently. Injection and projection operators between
configuration/velocity and phase space have also been developed in COGENT. Although
COGENT does not currently utilize Chombo’s AMR capabilities, a future development path
for this capability is nevertheless provided.

COGENT utilizes either hypre [15] or PETSc [21] to solve linear systems. In addition to
Chombo, it is therefore necessary to download and build one of these libraries. The open-
source VisIt visualization tool [2] is used to view a variety of plots created by COGENT in
HDF5 format [1]. COGENT also used HDF5-formatted files for restarts (via Chombo), so
it is necessary to have HDF5 installed in order to utilize either capability.
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