

Advancing Machine Learning for Mission-Critical Applications

Rushil Anirudh, Harsh Bhatia, Peer-Timo Bremer, James Diffenderfer, Bhavya Kailkhura, Hyojin Kim, Irene Kim, Shusen Liu, Jayaraman Thiagarajan, and Jize Zhang

Our primary goal is to make fundamental advances in four critical machine learning (ML) research areas to tackle challenging mission-critical problems. We believe this can be best achieved through a synergistic partnership between ML, HPC, and the programs.

PHYSICS-INFORMED ML

Advancing data-driven methods for scientific impact requires the integration of domain knowledge with ML solutions.

INNOVATIONS:

- Domain-aware ML architectures
- Science-preserving generative models
- Smart, high dimensional sample design
- Customized loss functions

IMPACTS:

- Cognitive simulation efforts in ICF/Plasma physics Traumatic brain Injury studies Pilot2 cancer modeling

INVERSE PROBLEMS

Solving ill-posed inverse problems using ML through novel data-based and model-based priors.

INNOVATIONS:

- Breakthrough in limited angle CT imaging
- Accurate posterior estimation
- Generative priors for inverse problems
- Unsupervised source separation

IMPACTS:

- Accurate CT imaging in security/healthcare
- History matching with complex simulation codes
- Calibrating epidemiological codes for COVID-19 studies

COMPUTING

Lawrence Livermore National Laboratory

UQ & INTERPRETABILITY

Uncertainty quantification and interpretable ML are critical to creating trust and enabling users to gain insights into models and data.

INNOVATIONS:

- Pioneering UQ for scientific ML
- New explainability and counterfactual reasoning methods
- State-of-the-art in active learning

MACHINE LEARNING with a Mission:

Build ML solutions that cater to unique challenges in real-world scientific problems

SECURITY & PRIVACY

critical applications.

INNOVATIONS:

Developed automated tools for certified training and robustness verification.

IMPACTS:

- Reliable diagnosis in healthcare
- Causal attribution in • neuroscience problems
- Interpretable material design

4

Certifiably robust and privacy-preserving ML solutions for safety-

IMPACTS:

- Tools can fundamentally transform the state-of-practice in deep learning for cyberphysical security, power grid, and sciences.
- Critical in healthcare system design

med under the auspices of the U.S. Department of Energy by Lawrence Livermore National Labo

