Accelerating the BLAST code with hybrid MPI+OpenMP+CUDA
programming on CPU-GPU clusters

TINGXING DONG!3 witt TZANIO KOLEV! anp ROBERT RIEBEN? anp VESELIN DOBREV!

!Center for Applied Scientific Computing, LLNL; *Weapons and Complex Integration, LLNL
$Innovative Computing Laboratory, University of Tennessee, Knoxville

Abstract: The BLAST!! code implements a high-order numerical algorithm
that solves the equations of compressible hydrodynamics using the Finite El-
ement Method in a moving Lagrangian frame. We accelerate the most com-
putational intensive parts (80%-95%) of BLAST with hybrid MPI + OpenMP +
CUDA programming on CPU-GPU clusters. Our test shows that 12 CPU cores
and 2 GPUs delivered 21x speedup compared to a single Intel Xeon core a 2x
speedup over 12 MPI tasks.

BLAST

Supports unstructured curvilinear meshes.

High order field representations.

Exact discrete energy conservation by construction.

Multiple options for basis functions and quadrature orders.

Reduces to classical staggered-grid hydro algorithms under simplifying
assumptions.

Lagrangian Hydrodynamics

On semi-discrete level our method can be written as

d
Momentum Conservation: d_‘t’ =-M;'F-1
. de T
Energy Conservation: T M_'F* v
d
Equation of Motion: d_>t( =V

where v, e, and x are the unknown velocity, specific internal energy, and grid
position, respectively; M, and M, are independent of time velocity and en-
ergy mass matrices; and F is the generalized corner force matrix depending on
(v,e,x) that needs to be evaluated at every time step. The right side of the
first two equations take more than 80% of the total time and therefore are the
computational hot spots of the algorithm.

s m
——1 FT i~ __
- baczzgenoet LI R
(o AT .
PR w1 —density,energy,pressure]
l " - wmW

Types of Zones: (left to right) bilinear (Q1-Q0), biquadratic (Q2-Q1), and
bicubic (Q3-Q2) zones and corresponding degrees of freedom.

Reference:[1] V.A.Dobrev, Tz.V.Kolev, R.N.Rieben. High order curvilinear finite
element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.12.

Corner Force Matrix F
The computational kernel of our method is the evaluation of the Generalized
Corner Force matrix, which is constructed by three loops:
— Loop over all domains
— Loop over zones in the domain
— Loop over quadrature points in this zone

Each quadrature point computes hydro forces asscociated with it absoutely in-
dependently. F varies with basis functions, dimension, etc, and can be arbitrar-
ily expensive.

(F.); = / (0 Vi) 65~ 3 axb(d) - 371G Vi) 65 (G- G
Q:(t) k

o The quantities oy, @1171-, i)j (z?k) do not change in time and can be put into
constant memory.

e The evaluation of the stress values &(;) requires significant amount of
computations (SVD, eigenvectors, EOS, etc.).

MPI1 + CUDA + OpenMP

e Two layers of parallelism

e MPI-based parallel domain-decomposition and communication between
CPUs

CUDA and OpenMP based parallel corner forces in BLAST

One GPU is attached to one MPI task.

Auto tuning: a scheduler to find the optimal ratio of workload between 1
GPU and 6 CPU cores.

CUDA Implementation of Corner Force
1. Loop over qudrature points and ompute part of F based on v, e, x (trans-
ferred from CPU) and work space allocated on GPU.

2. Loop over zones. Each zone does a matrix-matrix transpose multiplica-
tion and assemble the matrix F which stays on the GPU.

3. Compute F - 1 and either return result to the CPU or keep on the GPU
depending on our CUDA-CG solver turning off/on.

4. Compute FT - v with results staying on GPU.

5. A custom Conjugate Gradient (CG) solver for M *(F -
cuBLAS/cuSPARSE with a diagonal preconditioner.

6. Sparse (CSR) matrix vector multiplication to compute M (F
calling a cuSPARSE routine.

1) based on

T.v) by

CUDA + OpenMP Implementation of Corner Force
o CPU host thread launchs CUDA kernels and returns immediately.

o Host thread spawns OpenMP threads and distributes the loop over zones
between threads.

o Each thread allocates working space and executes like normal serial code.
e OpenMP is used to harness 6 CPU cores.
e Synchronization between CPU and GPU to complete F

S I ey |

Triple-pt 03 73 | ‘
Sedov 3D e 64 ‘
Sedov 20 Qal 55 O 1 O O O Y

MPI + CUDA + OpenMP hierarchy

Optimal workload ratio of 1 M2050 to 6 Xeon cores

Performance

Corner Force Runtime Corner Force Speedup

z
H
2
o
E
£

150

5
50
0 - — - — — - . . I

CUDAYOpenMP  CUDAOpenMP/2MPL | |~ seial  Openmp cupa CUDASOpenMP  CUDA+OpenMP/2MPI

Serial OpenMP. CUDA

Test Results

12 MPI tasks 2MPI tasks, each with 1M2050+6Xeon Cores




