
Accelerating the BLAST code with hybrid MPI+OpenMP+CUDA
programming on CPU-GPU clusters

TINGXING DONG1,3
WITH TZANIO KOLEV1

AND ROBERT RIEBEN2
ANDVESELIN DOBREV1

1Center for Applied Scientific Computing, LLNL; 2Weapons and Complex Integration, LLNL
3Innovative Computing Laboratory, University of Tennessee, Knoxville

Abstract: The BLAST[1] code implements a high-order numerical algorithm
that solves the equations of compressible hydrodynamics using the Finite El-
ement Method in a moving Lagrangian frame. We accelerate the most com-
putational intensive parts (80%–95%) of BLAST with hybrid MPI + OpenMP +
CUDA programming on CPU-GPU clusters. Our test shows that 12 CPU cores
and 2 GPUs delivered 21x speedup compared to a single Intel Xeon core a 2x
speedup over 12 MPI tasks.

BLAST

• Supports unstructured curvilinear meshes.

• High order field representations.

• Exact discrete energy conservation by construction.

• Multiple options for basis functions and quadrature orders.

• Reduces to classical staggered-grid hydro algorithms under simplifying
assumptions.

Lagrangian Hydrodynamics

On semi-discrete level our method can be written as

Momentum Conservation:
dv

dt
= −M

−1

v
F · 1

Energy Conservation:
de

dt
= M

−1

e
F

T · v

Equation of Motion:
dx

dt
= v

where v, e, and x are the unknown velocity, specific internal energy, and grid
position, respectively; Mv and Me are independent of time velocity and en-
ergy mass matrices; and F is the generalized corner force matrix depending on
(v, e,x) that needs to be evaluated at every time step. The right side of the
first two equations take more than 80% of the total time and therefore are the
computational hot spots of the algorithm.

velocity,position

density,energy,pressure

reference

random

Types of Zones: (left to right) bilinear (Q1-Q0), biquadratic (Q2-Q1), and
bicubic (Q3-Q2) zones and corresponding degrees of freedom.

Reference:[1]V.A.Dobrev, Tz.V.Kolev, R.N.Rieben. High order curvilinear finite
element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.12.

Corner Force Matrix F

The computational kernel of our method is the evaluation of the Generalized
Corner Forcematrix, which is constructed by three loops:

− Loop over all domains

− Loop over zones in the domain

− Loop over quadrature points in this zone

Each quadrature point computes hydro forces asscociated with it absoutely in-
dependently. F varies with basis functions, dimension, etc, and can be arbitrar-
ily expensive.

(Fz)ij =

∫
Ωz(t)

(σ : ∇~wi)φj ≈
∑

k

αkσ̂(~̂qk) : J−1
z (~̂qk)∇̂ ~̂wi(~̂qk) φ̂j(~̂qk)|Jz(~̂qk)|

• The quantities αk, ∇̂ ~̂wi, φ̂j(~̂qk) do not change in time and can be put into
constant memory.

• The evaluation of the stress values σ̂(~̂qk) requires significant amount of
computations (SVD, eigenvectors, EOS, etc.).

CUDA Implementation of Corner Force

1. Loop over qudrature points and ompute part of F based on v, e, x (trans-
ferred from CPU) and work space allocated on GPU.

2. Loop over zones. Each zone does a matrix-matrix transpose multiplica-
tion and assemble the matrix Fwhich stays on the GPU.

3. Compute F · 1 and either return result to the CPU or keep on the GPU
depending on our CUDA-CG solver turning off/on.

4. Compute F
T · v with results staying on GPU.

5. A custom Conjugate Gradient (CG) solver for M
−1

v
(F · 1) based on

cuBLAS/cuSPARSE with a diagonal preconditioner.

6. Sparse (CSR) matrix vector multiplication to compute M
−1

e
(FT · v) by

calling a cuSPARSE routine.

CUDA + OpenMP Implementation of Corner Force

• CPU host thread launchs CUDA kernels and returns immediately.

• Host thread spawns OpenMP threads and distributes the loop over zones
between threads.

• Each thread allocates working space and executes like normal serial code.

• OpenMP is used to harness 6 CPU cores.

• Synchronization between CPU and GPU to complete F

MPI + CUDA + OpenMP

• Two layers of parallelism

• MPI-based parallel domain-decomposition and communication between
CPUs

• CUDA and OpenMP based parallel corner forces in BLAST

• One GPU is attached to one MPI task.

• Auto tuning: a scheduler to find the optimal ratio of workload between 1
GPU and 6 CPU cores.

MPI + CUDA + OpenMP hierarchy

Performance

Test Results

12 MPI tasks 2MPI tasks, each with 1M2050+6Xeon Cores

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-571572

