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A MULTIGRID METHOD FOR NONLINEAR UNSTRUCTURED
FINITE ELEMENT ELLIPTIC EQUATIONS∗

MIGUEL A. DUMETT, PANAYOT S. VASSILEVSKI, AND CAROL S. WOODWARD †

Abstract. This paper presents an application of the element agglomeration-based coarsen-
ing procedure (agglomeration AMGe) proposed in [10], to build the components of a multigrid
method for solving nonlinear finite element elliptic equations on general unstructured meshes. The
agglomeration-based AMGe offers the ability to define coarse elements and element matrices, pro-
vided access to elements and element matrices on the fine grid is available. We focus on the per-
formance of the classical full approximation scheme (FAS). In the present context the coarse nodes
are constructed algebraically based on the element agglomeration, and the interpolation rules are
based on the (linear) AMGe exploiting element matrices of Laplace operator and L2-mass element
matrices. The AMGe provides the coarse counterparts on all levels. The nonlinear coefficients are
averaged over the coarse elements, which leads to non-inherited forms and hence to non-inherited
multigrid methods. Numerical results show that the resulting nonlinear multigrid gives mesh inde-
pendent convergence on model problems. In addition, the nonlinear multigrid scheme appears to be
more efficient and robust for poor initial guesses than repeated applications of the nonlinear system
smoother (i.e., single level method). Finally, our numerical results indicate that handling nonlinear-
ities on coarse grids can provide an advantage over nonlinear solvers that handle nonlinearities only
on the original problem grid.

Key words. : nonlinear elliptic equations, unstructured meshes, finite elements, FAS, algebraic
multigrid, inexact Newton, Picard, AMGe.

AMS subject classifications. : 65N30, 65N55.

1. Introduction. This paper addresses nonlinear elliptic equations discretized
on generally unstructured meshes using finite elements. The unstructured finite ele-
ments are widely used in practice because of their better adaptation to geometrical
or coefficient irregularities of the elliptic operator. Therefore, unstructured meshes
are not generally obtained by successive steps of refinement; coarse meshes, if needed,
must be generated algebraically. We intend to investigate the performance of the clas-
sical full approximation scheme (FAS) [1] applied to the specified class of nonlinear
elliptic equations. We will compare FAS with some standard nonlinear schemes, like
inexact Newton and Picard. This paper should be viewed as a preliminary first study
on this subject to assess the potential of the developed nonlinear multigrid method.
More detailed and sophisticated comparison is yet to be performed. The approach
of generating coarse nonlinear problems taken in this paper can be viewed as an ex-
tension of the element agglomeration AMGe proposed in [10]. This extension of the
(linear) agglomeration-based AMGe provides all components for a nonlinear multi-
grid (coarse grids, interpolation rules, and coarse nonlinear operators). The resulting
FAS algorithm will be referred to herein as the FAS-AMGe method. A preliminary
version of the method was reported in [11]. Note that our methods of extending the
AMGe framework are also relevant for the nonlinear multigrid method (NMGM) of
Hackbusch [8]. Extending our work to this method is a possible topic of future work.

On structured grids, the coarsening strategy, the grid transfer operators and the
coarse grid operator (needed by any multigrid method) can be defined in a straightfor-
ward geometric way for both linear and nonlinear multigrid algorithms. The hierarchy

∗This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
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of grids, the grid transfer and the coarse grid operators can be constructed indepen-
dently of the (linear or nonlinear) problem considered. This hierarchy is actually
naturally (and uniquely) defined by the sequence of nested finite element spaces used.
However, in certain applications (like strongly anisotropic elliptic PDEs) it has been
found that in order to obtain a reasonable multigrid rate of convergence it is helpful
to introduce operator-dependent interpolation and to define the coarse operators al-
gebraically through Galerkin relations. This argument applies to nonlinear problems
as well. On unstructured grids the selection of the hierarchy of grids demands special
algorithms like nested-mesh subdivision, overset meshes, or agglomeration methods
[12]. An adequate definition of grid transfer operators and coarse grid operators is a
serious issue because it depends on the hierarchy of grids.

Other nonlinear multigrid methods have been introduced (for instance, [13], [14],
[16]) for solving nonlinear problems defined on unstructured meshes. Both Mavripilis
[13], [14] and Stals [16] use an FAS algorithm defined on generated grids obtained using
geometrical information. Furthermore, the particular definition of their grids triggers
the characterization of their intergrid transfer operators. The algorithm we present
in this paper can also be seen as an FAS algorithm defined on a particular hierarchy
of grids. These three nonlinear multigrid algorithms differ on what is assumed from
the discretization and the amount of geometric information taken from the grid.

For instance, Mavriplis [13] assumes an unstructured triangular mesh of control
volumes and uses, in the coarsening strategy, an agglomeration method introduced
in [12]. Agglomeration is based on fusing together neighboring fine grid control vol-
umes to form large coarse grid control volumes. Prolongation operators are taken
as piecewise constant, and restriction operators are taken as the transposes of inter-
polation operators. These grid transfer operators are used because the coarse cells
have complex shapes, and more sophisticated interpolation operators are not easily
constructed. These interpolation operators, as is well known, trigger lack of accuracy
and degradation of the multigrid performance [12]. To improve this less-accurate in-
terpolation strategy, an implicit prolongation operator is proposed in [12]. This new
approach for interpolation resembles a fine node iteration, as in classical algebraic
multigrid (AMG) [17], while fixing values at coarse nodes.

In [16], Stals considers triangular finite element discretization and geometric re-
finement. More specifically, the construction of the hierarchy of grids is based on
the newest vertex bisection algorithm done adaptively; that is, the triangles are di-
vided into two by bisecting the edge opposite to the newest vertex. Since grids are
recursively refined, the prolongation operators are defined appropriately according to
geometric information. In particular, every time the value of a given node changes,
the local stiffness matrices have to be reevaluated (this involves a search through the
data structure to find the appropriate triangles, the formulation of the basis functions
and the evaluation of the integral).

In this paper, an AMGe-based FAS algorithm is presented where the intergrid
transfer operators are not defined using any geometrical information. Instead, the
intergrid transfer operators require access to the local element matrices. When the
finite element method (FEM) is used to discretize a linear elliptic partial differential
equation (PDE), not only is the relation between elements and nodes available, but
the local stiffness matrices are also available for each element. Several AMGe meth-
ods have been introduced in [2], [10] and [5]. We focus on the simplest one, which
provides a systematic generation of coarse element information, namely, the element
agglomeration AMGe proposed in [10]. This algorithm creates coarse grids from ver-
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tices of agglomerated elements, which is the minimal coarse grid one can use. Richer
coarse grids are possible but more expensive to construct (see [5]). The interpola-
tion is defined by energy minimization; that is, a quadratic functional is minimized
related to a local neighborhood matrix assembled from element matrices forming the
neighborhood of interest (for details, see [10]).

The main goal of this paper is to apply the AMGe based on element agglomer-
ation, developed for finite element discretizations on unstructured grids, in building
effective components for nonlinear multigrid methods. Our objective is to show how
to construct coarse versions of the nonlinear finite element problems and respective
intergrid transfer operators so that nonlinearities may be handled directly on coarse
grids (without visiting the fine grid). Our numerical tests indicate that the studied
FAS-AMGe method exhibits a mesh-independent convergence rate for model prob-
lems. The FAS-AMGe method offers a reasonable alternative to the more standard
inexact Newton multigrid or inexact Picard multigrid methods (in which coarse non-
linear problems are not required on coarser grids). Note that the inexact Newton
method applied to nonlinear elliptic PDEs requires solving generally non-symmetric
linear systems, and this requirement may cause difficulties for a linear solver. In ad-
dition, the initial nonlinear iterate may be too far away from the exact solution for
efficient convergence. In this respect, inexact Picard is more appealing since the linear
systems that need to be solved (even inexactly) are symmetric positive definite (for
the model class of nonlinear PDEs considered in this paper).

The remainder of this paper is structured as follows: Section 2 contains a detailed
description of the components of FAS and the FAS algorithm itself. In Section 3 we
specify the model nonlinear problem of interest and its finite element discretization.
Section 4 summarizes the agglomeration-based AMGe algorithm from [10] and its
extension to nonlinear finite element elliptic problems. Section 5 contains numerical
results illustrating the performance of the FAS-AMGe for several relaxation methods
and shows a comparison with some other nonlinear solvers. Finally, some conclusions
are drawn in Section 6.

2. The FAS Algorithm. The FAS algorithm has been developed to solve non-
linear discrete problems of the form

F (u) = f, on Ω,(2.1)

where Ω is a given mesh (in vector notation Ω is just a set of integer indices) [1]. In
our application, the above discrete problem will represent a set of nonlinear equations
coming from the finite element discretization of a nonlinear elliptic PDE on a general
unstructured mesh. The more standard notation, F(u) = 0, is sometimes used where
F(u) = f − F (u).

The following components are needed to define a nonlinear multigrid method for
solving (2.1). Because a hierarchy of grids may not be available (as in the unstructured
mesh case), the definition of this hierarchy must be included as a multigrid component.

These components are:
3



1. The coarsening strategy: Given the original mesh Ω, the coarsening strat-
egy constructs a hierarchy of grids

Ωl ⊂ Ωl−1 ⊂ · · · ⊂ Ω1 ⊂ Ω0 = Ω.(2.2)

2. The grid transfer operators (prolongation and restriction): Given the
hierarchy of grids (2.2), it is necessary to define three collections of operators

interpolation operators: P j
j+1 : Ωj+1 −→ Ωj , 0 ≤ j ≤ l − 1,

restriction operators: Rj+1
j : Ωj −→ Ωj+1, 0 ≤ j ≤ l − 1,

injection operators: R̃j+1
j : Ωj −→ Ωj+1, 0 ≤ j ≤ l − 1.

(2.3)

These operators transfer functions (vectors) defined on a particular grid Ωj

to a neighboring one. There are two restriction operators: the first one Rj+1
j

is used to transfer residuals, whereas R̃j+1
j is used to transfer iterates.

3. The cycle form: The spirit of multigrid is to solve the nonlinear problem
F (u) = F 0(u0) = f0 = f in Ω0 using a sequence of approximate solutions of
nonlinear problems

F j(uj) = f j , 1 ≤ j ≤ l,(2.4)

on consecutive grids of (2.2). Once the hierarchy of grids in (2.2) is con-
structed, it is necessary to indicate the order in which the sequence of grids is
visited and how many times a grid is visited. Also, once reaching a given grid
it should be determined whether or not the current level nonlinear problems
will be relaxed (by few steps of simple iterations).

4. The sequence of nonlinear problems: Given the nonlinear operator F (u)
and the right hand side f , coarse nonlinear operators and the respective
right-hand sides in (2.4) are needed. Very often (for linear problems this
is standard) one defines the coarse operators variationally via the Galerkin
relation,

Rj−1
j . . . R1

0F
0(P 0

1 . . . P j−1
j uj).

In the nonlinear case, though, such a definition implies computing coarse
residuals by visiting the finest grid Ω0, and this definition will not lead to
an optimal complexity method. If geometric information is available one can
construct nonlinear operators directly by rediscretizing the PDE on the coarse
grid. Such a procedure, however, does not generally lead to coarse nonlinear
operators that are variationally obtained from the fine grid operators.

5. The smoothing procedure: Given the nonlinear equations (2.4), a rela-
tively simple nonlinear iterative method needs to be applied to relax them. In
practice, one may use any adequate iterative method applied to the nonlinear
problem.
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Having the multigrid components in place, a standard FAS V-cycle algorithm
reads:

Algorithm 2.1 (FAS V-cycle). Given an initial 0th level iterate v0
0 for the exact

solution u0 of F 0(u0) = f0 on Ω0.
• Apply a relaxation method to F 0(u0) = f0 (with initial iterate v0

0), ν1 times
on Ω0 to get the new 0th level iterate v0 = v0

ν1
.

• Given v0, compute the residual r0 = f0 − F 0(v0).
• Restrict the residual r1 = R1

0r
0.

• Restrict (inject) the iterate v0 to get v1 = R̃1
0v

0.
• Compute f1 = F 1(v1) + r1.
• Relax on F 1(u1) = f1 (with initial iterate v1), ν1 times to get v1 = v1

ν1
.

• Given v1, compute the residual r1 = f1 − F 1(v1).
• .

.

.
• Solve the coarsest nonlinear equation F l(ul) = f l = rl + F l(vl)

for ul (with initial iterate vl = R̃l
l−1v

l−1).
• Compute the l-correction el = ul − vl.

• Correct iterate vl−1 by vl−1 = vl−1 + P l−1
l el.

• Relax on F l−1(ul−1) = f l−1 (with initial iterate vl−1), ν2 times to
get vl−1

ν2
.

• Compute the correction el−1 = vl−1
ν2

− vl−1.
• .

.

.

• Correct iterate v0 by v0 = v0 + P 0
1 e1.

• Relax on F 0(u0) = f0 (with initial iterate v0), ν2 times to get v0
ν2

.

A specific FAS construction of the f j , 1 ≤ j ≤ l is given in the above steps of
the FAS algorithm. The definition of the multigrid components is open to the user
according to the nonlinear problem at hand. For clarity in the following we assume
a particular family of nonlinear problems often arising in practice. Next, we specify
a particular AMGe choice of the multigrid components that lead to our FAS-AMGe
method, and we present results of numerical tests illustrating the performance of the
resulting FAS-AMGe algorithm on this family of nonlinear equations.

3. A family of model nonlinear problems. To show a particular choice of
multigrid components, we introduce a family of nonlinear problems that appear fre-
quently in applications.

Suppose the nonlinear equation

L(u) = −∇ · a(u)∇u + g(u)u = f(x)(3.1)

has been posed on a 2D or 3D domain with u = 0 on ∂Ω. The coefficient functions
a(u) and g(u) are nonlinear and a(u), g(u) ≥ 0. In addition, f(x) is given. Assume
that u0 ≈ u. Then the following second order self-adjoint elliptic (linear) problem
−∇ · a(u0)∇u + g(u0)u = f(x) approximates the nonlinear problem (3.1). This class
of linear elliptic problems is well handled by multigrid or various algebraic multigrid
(AMG). Our hope is to see similar behavior of FAS applied to this model class of
nonlinear PDEs.
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We assume that a and g can be analytically evaluated for any value of their ar-
guments. Otherwise, interpolated values should be used. Our method does not take
special advantage of the homogeneous Dirichlet boundary conditions; those are as-
sumed for simplicity. The above model class of nonlinear diffusion problems arises in
a number of applications, including flow-through porous media, radiation transport,
phase transition and biochemistry, and dynamics of biological groups. One could treat
more general nonlinearities such as a(u,∇u), but this would require a more sophisti-
cated choice of the coarse nonlinear problems to be constructed in what follows, which
is generally possible provided that additional fine grid information is assumed. The
more general case, though, is not considered in this paper.

For any two admissible functions u and v of some Hilbert space V , the variational
formulation of this problem is given by: Find u ∈ V such that

(L(u), v) = (f, v), for all v ∈ V,(3.2)

where

(L(u), v) ≡
∫

Ω

a(u)∇u · ∇v dx +
∫

Ω

g(u)uv dx,

and

(f, v) ≡
∫

Ω

fv dx.

Existence and uniqueness of a solution for nonlinear elliptic PDEs are found in [7],
[4], and also [15]. Typically, strong monotonicity of the elliptic operator is assumed,
which imposes some additional restrictions on the nonlinear coefficients a and g. For
our purposes it is sufficient to assume that a unique solution u exists and has some
smoothness. Then, a finite element discretization will have similar behavior, and the
discrete solution will approach the exact solution when the mesh size tends to zero.
Details about finite element error estimates for nonlinear elliptic PDEs are found,
e.g., in [20].

We now specify a finite element discretization to (3.2). Let τ be a partition of
Ω into quasi-uniform triangular elements T . Let Vh be the finite element space of
piecewise linear functions associated with τ and vanishing on ∂Ω. Then the Galerkin
method for approximating the solution of (3.2) consists of finding uh ∈ V h such that

(L(uh), vh) = (f, vh),

where the left- and right-hand side of this variational equation are defined by

(L(uh), vh) ≡
∑

T∈τ

∫

T

a(uh)∇uh · ∇vh dx +
∑

T∈τ

∫

T

g(uh)uhvh dx,(3.3)

and

(f, vh) ≡
∑

T∈τ

∫

T

fvh dx.(3.4)

If in any triangle T ∈ τ with vertices i, j, k, we approximate the nonlinear coeffi-
cients a(u) and g(u) inside the integrals by their averaged values aT (u) ≡ a(ūT ) and
gT (u) ≡ g(ūT ) (the lower index T indicates averaging over the triangle T ) where

ūT =
1
3
(u(i) + u(j) + u(k)),
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then (3.3) can be approximated by

(Lh(uh), vh) ≡
∑

T∈τ

aT (uh)
∫

T

∇uh · ∇vh dx +
∑

T∈τ

gT (uh)
∫

T

uhvh dx.(3.5)

The latter expression can be seen as a form obtained from (3.3) where the exact
integrals are replaced by a simple quadrature rule.

If we define u = (u1, · · · , uN ), and v = (v1, · · · , vN ), where N is the total number
of degrees of freedom (dofs) or vertices, we can introduce the Laplace element matrix
AT and the L2-mass matrices GT . Then, (3.5) can be rewritten in matrix vector form
as

vtLh(u) =
∑

T∈τ

vt
T (aT (u)AT + gT (u)GT )uT ,(3.6)

where for any vector q, qT indicates the restriction of q to the element T and qt

stands for the transpose of q. That is, if one assembles the matrix M(u0) for any
given u0 from the element matrices

aT (u0) AT + gT (u0) GT ,(3.7)

then the actions of the nonlinear operator defined in (3.6) are computed via the matrix-
vector product F (u0) = M(u0)u0. Alternatively, the nonlinear operator actions can
be computed element-wise. Assuming that the coefficients a = a(u) and g = g(u)
are differentiable, that is, the derivatives a

′
(u) and g

′
(u) exist, it is straightforward

to show that the Fréchet derivative J(u) ≡ F
′
(u) for F (u) is given variationally as

follows. Note that for any direction h, using Taylor expansion aT (u + h) = aT (u) +
a
′
T (u)hT + . . . and similarly for gT , one gets for any v and any direction h, the

representation

vT J(u) h =
∑

T

(
aT (u) vt

T AT hT + gT (u) vt
T GT hT

)

+
∑

T

(
a
′
T (u)hT vt

T AT uT + g
′
T (u)hT vt

T GT uT

)
.(3.8)

We recall that hT stands for the averaged value of h over a given element T . It is
clear that the above expression (for a fixed u) leads to a nonsymmetric matrix (linear
operator) J(u) (the expression (3.8) is not symmetric with respect to v and h).

4. The multigrid components of the FAS-AMGe method. In this section
we specify the multigrid components for the FAS method described in Section 2 in
the case when (linear) element agglomeration AMGe makes sense. This is the case
of finite element second-order elliptic equations discretized on general unstructured
meshes. In the following we summarize the agglomeration-based AMGe coarsening,
paying particular attention to the selection of coarse nodes (degrees of freedom), the
construction of the AMGe-based intergrid transfer operators, and the construction of
coarse non-linear problems. Finally, a general smoothing iteration is outlined.

4.1. The coarsening strategy. The coarsening strategy is the same as in the
linear agglomeration AMGe method (for details see [10] or [19]). We briefly outline
the principal steps. Having the original grid Ω0 = Ω, which by definition is a set
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of fine grid elements, the AMGe method assumes that the elements are represented
as certain relation tables (lists). A minimal assumption is that one has access to
the fine grid relation table “element node”, which specifies for every element a list
of nodes (degrees of freedom) that belong to that element. A proper storage of this
relation table is a boolean sparse matrix (rows being the element number and columns
being the node numbers). For the coarsening to proceed, one needs some additional
topological information such as the relation tables “element face” and “face face”.
The “element face” table specifies for each element a list of faces (which are obtained
as a maximal intersection set of the collection of elements). The “face face” table
specifies the connectivity of the faces. All this is assumed only on the fine grid
(available to the user).

The goal is to construct similar relation tables on coarse levels by recursion.
A main step of the coarsening procedure is the agglomeration of fine grid elements.
Based on the assumed fine grid topological relations, one forms agglomerated elements
(unions of connected fine grid elements) such that the resulting set of agglomerated
elements provides a partition of the original set of fine grid elements. Having the
agglomerated elements (which serve as coarse elements) constructed, one then appro-
priately defines their faces. Finally, the connectivity relation “face face” of the new
faces is created. Detailed constructions are found in [19]. Since the original infor-
mation is created on a coarse level, a recursion is feasible, and a sequence of coarse
elements can be created. The algorithm at this stage does not make use of nodal
information and in particular of the fine grid relation table “element node”. The next
step is to actually form the list of coarse elements in terms of coarse nodes. To form
this list one has to identify coarse nodes at every level. The procedure to construct
the first coarse grid Ω1 from Ω0 focuses on finding a subset Ω1 of nodes of the fine
grid. The simplest choice (which we use in this paper) is to label a node as coarse
if it belongs to more than two agglomerated elements (hence if it belongs to at least
two coarse faces). Then one can form the lists (coarse elements) (coarse nodes) (the
coarse nodes which are contained in the fine elements forming an agglomerated ele-
ment). In other words, the coarse nodes are the vertices of the agglomerated elements.
This is the minimal coarse grid one can use. One may label more nodes as coarse
giving richer coarse grids, or one can even choose coarse “nodes” (or rather degrees
of freedom) that do not have a nodal meaning (such as certain eigenvectors of small
matrices). But this more sophisticated choice is not considered in this paper.

For our purpose, it is enough that we have a recursive procedure which provides
nested sets of coarse grids (in terms of nodes) {Ωk}l

k=0 such that Ωk+1 ⊂ Ωk.

4.2. The grid transfer operators. The next step of the FAS-AMGe algorithm
is to construct the grid transfer operators between two consecutive grids Ωf = Ωk, a
fine grid, and Ωc = Ωk+1, a coarse grid, of the hierarchy of grids already constructed.
Restriction operators R from Ωf to Ωc are the transpose of interpolation operators P
from Ωc to Ωf . The injection operator for any fine grid vector v is R̃v = v|Ωc (this
definition makes sense if Ωc ⊂ Ωf ).

In AMGe the place where the element matrices are used is when the interpola-
tion operators P are constructed. The procedure (originating in [2]) requires creation
for each fine node df ∈ Ωf an element neighborhood Ω(df ) (consisting of fine grid
elements that share df ) and a set N c of coarse nodes N c = {dc} which belong to the
elements from Ω(df ). The numerical solution at each fine node df will be interpolated
(or ‘averaged’) from its associated neighborhood of coarse nodes N c. The interpola-
tion is the identity operator for every fine node which is labeled as coarse. For the
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remaining fine nodes one uses a energy minimization principle leading to solving a
small system of equations, which determines the respective row of the interpolation
matrix corresponding to the fine node df . The procedure is summarized as follows.
From the given fine grid element matrices one assembles the local matrix AΩ(df ). Then
one partitions this matrix into a two-by-two block form; the second block corresponds
to the set of nodes N c, i.e.,

AΩ(df ) =
[

Aff Afc

Acf Acc

] } Ω(df ) \N c

} N c .

The row of − (Aff )−1
Afc corresponding to df ∈ Ω(df ) \ N c gives the interpolation

weights wdf , dc , dc ∈ N c, which form the non-zero entries of the df th row of the
interpolation matrix P = P k

k+1.
The agglomeration AMGe selects the sets N c such that the resulting P has the

property to create coarse element matrices without conflicts (note that shared dofs by
two agglomerated elements should be uniquely interpolated only by coarse dofs that
are shared by the same agglomerated elements). Details are found in [10]. Having
constructed coarse element matrices one can proceed by recursion. Other interpolation
procedures are possible (without access to the element matrices, see [9]), but in our
model case of nonlinear elliptic problems the element matrices are naturally available.
More specifically, in the interpolation procedure one can use the matrices from (3.7)
for a given approximation u0.

4.3. Nonlinearities and coarse equations. The nonlinear operator F 0 in the
fine grid is defined by the right-hand side of (3.6). The coarse nonlinear operator F j

is defined by (3.6) where the sum runs over the macroelements given at the grid Ωj .
This choice, F j , of coarse nonlinearity is simple. It just requires the coarse stiffness

matrices (for the Laplacian) and the coarse mass matrices (weighted by averaged
nonlinearities) for each macroelement. As already mentioned, the agglomeration-
based AMGe has the ability to provide coarse element matrices.

A second choice of computing the nonlinear operator is the nonlinear Galerkin
operator F j

G given by

F j
G(uj) = Qjt

F 0(Qjuj),(4.1)

where Qj = P 0
1 P 1

2 · · ·P j−1
j . Galerkin coarse nonlinearities (4.1) are more expensive

to compute than nonlinear operators F j because they are implicit and (as already
mentioned in the introduction) their actions are computed via the fine grid nonlinear
operator. This will not lead to a method of optimal complexity per iteration. However,
according to variational theory, Galerkin nonlinearities in the coarse equations are
expected to generate a better correction for the actual iterate in the finest grid than
non-Galerkin ones. Moreover, variational theory could be used to study convergence of
some nonlinear multigrid algorithms when using Galerkin coarse nonlinear operators.

4.4. The nonlinear relaxation methods. By accumulating elements in (3.6)
it is not difficult to see that nonlinearity F (u) has the form

F (u) = M(u)u.(4.2)

This special form of the nonlinearity suggests that besides a Newton solver to iterate
according to

F j
′
(uj

m)(uj
m+1 − uj

m) = −Fj(uj
m),(4.3)
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where F j(u) = f j − F j(u) and F j
′

is its Jacobian, a fixed-point (Picard) iterative
method could be used instead for relaxing the nonlinear problems F j(uj) = f j , 0 ≤
j ≤ l by iterating on

uj
m+1 =

(
M j(uj

m)
)−1

f j , m ≥ 0.(4.4)

In practice all inverses involved (the Jacobian inverse and the Picard matrix inverse)
are computed inexactly, for example, by a few (linear) multigrid cycles, generally as
preconditioners in GMRES or CG.

5. Numerical results. Our main goal in this section is to verify that the speed
of convergence of the FAS-AMGe algorithm is independent of the mesh size of the
nonlinear problem. A second goal is to make a fair comparison between the FAS-
AMGe algorithm using some relaxation method and the respective relaxation method
used as a nonlinear iterative method on the finest grid.

Two smoothers have been chosen to relax the nonlinear equations: the Newton
nonlinear solver and the Picard fixed-point iterative method. The Picard nonlinear
smoother iterates on (4.4) and uses a V -cycle with minimal overlapping multiplica-
tive Schwarz smoother to solve linear problems [3]. On the other hand, the Newton
nonlinear method iterates on (4.3). The linear system in (4.3) is solved using a GM-
RES algorithm preconditioned by the same V -cycle as in the Picard smoother. The
V -cycle is an agglomeration AMGe constructed based on (the symmetric positive def-
inite matrix) M(u) in (4.2). This Newton implementation does not include any kind
of line search strategy (see [6]).

In the numerical results given below, we have constructed three variants of this
FAS-AMGe algorithm. The first, FAS-Picard, uses the Picard smoother in all grids.
The second, FAS-Newton, uses the Newton smoother in all grids. Our numerical
experiments have suggested the implementation of a third variant of the FAS-AMGe
algorithm, which we call FAS-Hybrid. This method uses the Picard smoother in the
finest grid and the Newton smoother in all the others.

We have used a set of four grids obtained by successive factor-of-two mesh refine-
ment. These grids have been constructed from a Cartesian mesh on a unit square.
The smallest of these grids is shown in the top left panel in Figure 5.1. The other
five panels show the coarse macroelements obtained by successive application of the
agglomeration of elements algorithm.

Interpolation operators are constructed once per V-cycle. We have selected a
collection of nonlinear scalar functions, a(u) and g(u) in (3.3), which are given in Table
5.1. Homogeneous Dirichlet boundary conditions are imposed on the rectangular
domain. The exact solution to all these problems is the function u(x, y) = x(1 −
x)y(1− y) unless otherwise stated. The initial iterate on the interior of the rectangle
is either a constant or a multiple of the exact solution as specified.

5.1. Scalability of the FAS-AMGe algorithm. In this subsection we present
two studies that show scalability of the FAS-AMGe algorithm for nonlinear problems.

The first study is shown in Tables 5.2 and 5.3. These tables show results for dif-
ferent initial guesses. The linear solver tolerances of this study have been set to 10−2,
and the maximum number of linear iterations set to 1000 (to allow convergence). Each
of the four columns has two numbers. In the first column, the number outside paren-
thesis indicates the number of original dofs and the number inside parenthesis shows
the number of coarse grids corresponding to each fine mesh. In the other columns, the
number outside parenthesis indicates the number of FAS-Picard V (1, 1) cycles (Table

10



Fig. 5.1. The left top panel shows the smallest finite element triangularization of the square
used for the convergence speed scalability studies. The vertices of this triangles are the fine dofs. The
other panels show part of the agglomeration of elements procedure used in the coarsening strategy.
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Table 5.1
Set of nonlinearities in numerical simulations.

Nonlinearity a(u) g(u)
case

1 1√
u2+10−3

1

2
√

u2 + u + 1 0

3 u2 + 10−3 u

4 1√
u2+10−3

u2 + 10−3

Table 5.2
The number of FAS-Picard V (1, 1) cycles and linear iterations on the finest grid for different

initial constant guesses and nonlinearity case 1. Linear tolerances have been set to 10−2 and the
maximum number of linear iterations is 1000.

Number of V-cycles
Degrees of (Number of linear iterations)
freedom Initial constant guess
(levels) 10 100 1000

1,089 ( 7) 14 (40) 14 (39) 14 (38)
4,225 ( 8) 8 (22) 9 (24) 9 (24)

16,641 ( 9) 5 (13) 6 (13) 8 (17)
66,049 (11) 7 (20) 9 (21) 9 (21)

Table 5.3
The number of Picard iterations and linear iterations on the finest grid for different initial

constant guesses and nonlinearity case 1. Linear tolerances have been set to 10−2 and the maximum
number of linear iterations is 1000.

Number of nonlinear iterations
Degrees of (Number of linear iterations)
freedom Initial constant guess
(levels) 10 100 1000

1,089 ( 7) 13 (106) 29 (110) 31 (112)
4,225 ( 8) 18 (126) 19 ( 86) 21 (131)

16,641 ( 9) 16 (154) 17 (201) 18 (199)
66,049 (11) 15 (724) 16 (718) 16 ( 80)
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Table 5.4
The number of FAS-Newton V (1, 1) cycles and linear iterations on the finest grid for different

initial guesses and nonlinearity case 2. These guesses are multiples of the exact solution. Linear
tolerances have been set to 10−1 and the maximum number of linear iterations is 1000.

Number of V-cycles
Degrees of (Number of linear iterations)
freedom Initial multiple guess
(levels) 13 26 39

1,089 ( 7) 2 ( 1) 4 ( 6) 4 ( 4)
4,225 ( 8) 2 ( 1) 2 ( 2) 3 ( 1)

16,641 ( 9) 2 ( 2) 2 ( 2) 3 ( 4)
66,049 (11) 2 ( 3) 2 ( 2) 3 ( 4)

Table 5.5
The number of Newton iterations and linear iterations on the finest grid for different initial

guesses and nonlinearity case 2 (multiples of the exact solution). Linear tolerances have been set to
10−1 and the maximum number of linear iterations is 1000.

Number of nonlinear iterations
Degrees of (Number of linear iterations)
freedom Initial multiple guess
(levels) 13 26 39

1,089 ( 7) 8 ( 7) 10 ( 4) 11 ( 8)
4,225 ( 8) 8 ( 13) 10 ( 13) 11 ( 15)

16,641 ( 9) 8 ( 22) 9 ( 14) 11 ( 25)
66,049 (11) 7 ( 31) 9 ( 30) 10 ( 34)

5.2) or the number of Picard nonlinear iterations (Table 5.3). Or shortly, this is the
number of outer nonlinear iterations. The number inside parenthesis shows the total
number of linear (or inner) iterations in the finest grid for both the FAS-Picard (Table
5.2) and the Picard fixed-point iterative method (Table 5.3). The nonlinear tolerance
is 10−6, and the initial guess is constant on interior nodes. Nonlinearity case 1 (see
Table 5.1) is used.

It is clear that the convergence rate in terms of not only V(1, 1)-cycles but also
in terms of linear iterations for the FAS-Picard algorithm is fairly insensitive with
respect to the fine-grid mesh size. Furthermore, both numbers of V-cycles and linear
iterations on a given fine grid required by FAS-Picard are also independent of the
initial constant guess. The same is not always true for Picard iteration. In addition,
the total number of linear iterations on the finest grid performed by FAS-Picard is
much less than the number of linear iterations performed by Picard in this particular
example.

A similar study that compares FAS-Newton and Newton with analogous conclu-
sions is shown in Tables 5.4 and 5.5. The parameters used are the same although the
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tolerances for the linear iterations have been set to 10−1 and the initial interior node
guesses have been set as a multiple of the exact solution. The number of Schwarz
V (1, 1)-cycles for the preconditioner used in GMRES is 1. Nonlinearity case 2 (see
Table 5.1) is used.

Note that for this nonlinear problem the total number of linear iterations on
the finest grid for FAS-Newton is small when compared to the number of V (1, 1)
cycles. Therefore, using methods based on the hierarchy of meshes leads to better
performance than just a single-level method (Picard or Newton) in which a linear
multigrid preconditioner is incorporated to inexactly solve the corresponding linear
problem.

5.2. A comparison between nonlinear solvers and FAS-AMGe. We next
study the performance of each method with respect to a spectrum of constant interior
initial guesses for a couple of nonlinear problems. In these studies all tolerances (linear
and nonlinear) have been set to 10−6. A maximum number of 3 linear iterations per
nonlinear iteration has been imposed for Picard and Newton methods. Only 3 Schwarz
V(1, 1) cycles for FAS-Picard and FAS-Hybrid (finest grid) per smoother step were
applied. Similarly, only 3 GMRES iterations (without restarting) for FAS-Newton
and FAS-Hybrid per smoother step were applied.

Tables 5.6 and 5.7 show the performance of Picard and Inexact Newton nonlinear
solvers and the three versions of the FAS-AMGe algorithm for nonlinearities 3 and
4 (see Table 5.1). These two nonlinearities exhibit different behaviors for the non-
linear diffusion a(u). While in nonlinearity case 3 the diffusion coefficient is growing
quadratically with respect to the numerical solution, in nonlinearity 4 it is decreasing
monotonically. Both nonlinear problems have been computed on a structured mesh
with 66, 049 dofs and 11 levels. Constant initial guesses are displayed in the first
column of these tables. In the second and third columns, two numbers are shown.
The number outside parenthesis indicates the number of nonlinear iterations required
to converge for Picard and Newton solvers, respectively. The number inside paren-
thesis shows the total number of linear iterations. Columns four to six display the
number of FAS-AMGe V (1, 1) cycles for FAS-Picard, FAS-Newton, and FAS-Hybrid,
respectively, outside the parentheses, and inside parenthesis the total number of linear
iterations on the finest grid is shown.

Table 5.6 shows that the number of iterations of Newton and the number of FAS-
Newton V(1, 1) cycles depends on the initial guess. FAS-Picard and FAS-Hybrid are
robust with respect to the constant initial guess requiring roughly the same number
of V(1, 1) cycles. Picard is also robust with respect to the constant initial guess, but
it requires much more computational work than FAS-Picard and FAS-Hybrid.

Table 5.7 shows that the convergence region for Newton’s method and FAS-
Newton is much smaller for this problem than for the previous example. The number
of Newton iterations and FAS-Newton V(1, 1) cycles increases exponentially as soon
as the constant initial guess reaches the boundary of the basin of convergence of these
methods. The other three methods again show robustness with respect to the initial
guess even though Picard requires more computational work than FAS-Picard and
FAS-Hybrid.

The results shown in Tables 5.6 and 5.7 bear out theory that indicates that Picard
should have a wider basin of convergence than Newton. This suggested why the FAS-
Hybrid method was developed the way it was.

6. Conclusions. We have developed a nonlinear algebraic algorithm that ex-
tends an AMGe linear method to nonlinear elliptic problems. The current work is
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Table 5.6
The number of Picard and Newton nonlinear iterations and FAS-AMGe V (1, 1) cycles for

nonlinearity case 3. FAS-AMGe algorithms are used in a mesh with 66, 049 dofs and 11 levels.
Linear tolerances have been set to 10−6 and the maximum number of linear iterations per nonlinear
iteration is 3.

Nonlinear iterations Number of V-cycles
Initial (linear iterations) (Number of finest grid linear iterations)
guess Picard Newton FAS-Picard FAS-Newton FAS-Hybrid

1.0 15 ( 45) 10 ( 30) 1 ( 6) 5 ( 30) 2 ( 12)
5.0 15 ( 45) 14 ( 42) 1 ( 6) 7 ( 42) 2 ( 12)
10.0 15 ( 45) 16 ( 48) 1 ( 6) 4 ( 24) 3 ( 18)
20.0 13 ( 39) 18 ( 54) 1 ( 6) 17 (102) 3 ( 18)
50.0 9 ( 27) 20 ( 60) 1 ( 6) 10 ( 60) 2 ( 12)
100.0 10 ( 30) 22 ( 66) 2 ( 12) 12 ( 72) 2 ( 12)
1000.0 16 ( 48) 27 ( 81) 2 ( 12) 15 ( 90) 2 ( 12)
10000.0 8 ( 24) 33 ( 99) 4 ( 24) diverges 3 ( 18)

100000.0 17 ( 51) 39 (117) diverges 22 (132) 2 ( 12)

Table 5.7
The number of Picard and Newton nonlinear iterations and FAS-AMGe V (1, 1) cycles for

nonlinearity case 4. FAS-AMGe algorithms are used in a mesh with 66, 049 dofs and 11 levels.
Linear tolerances have been set to 10−6 and the maximum number of linear iterations per nonlinear
iteration is 3.

Nonlinear iterations Number of V-cycles
Initial (linear iterations) (Number of finest grid linear iterations)
guess Picard Newton FAS-Picard FAS-Newton FAS-Hybrid

0.01 6 ( 18) 4 ( 12) 2 ( 12) 2 ( 12) 2 ( 12)
0.03 7 ( 21) 4 ( 12) 2 ( 12) 2 ( 12) 2 ( 12)
0.05 8 ( 24) 4 ( 12) 2 ( 12) 2 ( 12) 2 ( 12)
0.06 8 ( 24) 5 ( 15) 2 ( 12) 2 ( 12) 2 ( 12)
0.07 8 ( 24) 7 ( 21) 2 ( 12) > 25 (150) 2 ( 12)
0.08 8 ( 24) > 50 (150) 2 ( 12) > 25 (150) 2 ( 12)
1.0 10 ( 30) > 50 (150) 2 ( 12) > 25 (150) 4 ( 24)
15.0 9 ( 27) > 50 (150) 2 ( 12) > 25 (150) 4 ( 24)
50.0 7 ( 21) > 50 (150) 2 ( 12) > 25 (150) 2 ( 12)
100.0 8 ( 24) > 50 (150) 2 ( 12) > 25 (150) 2 ( 12)

a much wider study (involving in particular Newton method) than the preliminary
results reported in [11]. The proposed nonlinear algebraic algorithm can be seen as an
FAS algorithm defined on an unstructured mesh, provided the usual multigrid compo-
nents (grid hierarchy, cycle form, coarsening algorithm, intergrid transfer operators,
coarse nonlinearities and relaxation methods) have been identified. This algorithm
has been implemented to solve discretizations of nonlinear operators coming from
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variational formulations of reaction-diffusion equations with nonlinear diffusion and
reaction terms.

Numerical simulations show scalability of the computational work of this al-
gorithm. When used to compute a numerical solution of some nonlinear elliptic
PDEs, the FAS-AMGe approach requires much less computational work than non-
linear solvers applied to the fine grid.

An additional study comparing several smoothers in FAS-AMGe is performed. A
hybrid method that uses a global nonlinear iterative relaxation method on the finest
grid with a local nonlinear iterative relaxation method on coarse grids is introduced,
and initial studies show that this hybrid method can perform better than a method
with either smoother on all grids.
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