
LLNL-PRES-765149
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction to the Capabilities and Use of the
SUNDIALS Suite of Nonlinear and
Differential/Algebraic Equation Solvers
ECP Annual Meeting, Houston, TX

Carol S. Woodward, Daniel R. Reynolds, David J. Gardner, Cody J. Balos
Jan. 15, 2019

2
LLNL-PRES-765149

 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline

3
LLNL-PRES-765149

ODEs and DAEs Arise in Numerous Application Areas

 Ordinary Differential Equations (ODEs)

— PDEs: Method of lines discretization f contains discrete spatial operations
— Chemical reactions: f includes terms for each reaction

 Differential Algebraic Equations (DAEs)

— PDEs: Method of lines discretization with algebraic constraints
— Power transmission models: F includes differential equations for power

generators and network-based algebraic system constraining power flow
— Electronic circuit models
— If is invertible, we can solve for to obtain an ODE, but this is not

always the best approach, else the system is a DAE.

Magnetic reconnection

US Transmission grid
(Wikimedia Commons)

4
LLNL-PRES-765149

 SUNDIALS is a software library consisting of ODE and DAE integrators and nonlinear solvers
— 6 packages: CVODE(S), IDA(S), ARKode, and KINSOL

 Written in C with interfaces to Fortran
 Designed to be incorporated into existing codes
 Data use is fully encapsulated into vectors which can be user-supplied
 Nonlinear and linear solvers are fully encapsulated from the integrators and can be user-supplied
 All parallelism is encapsulated in vectors modules, solver modules, and user-supplied functions
 Freely available; released under the BSD 3-Clause license (>25,000 downloads in 2018)
 Active user community supported by sundials-users email list
 Detailed user manuals are included with each package

SUite of Nonlinear and DIfferential-ALgebraic Solvers

https://computation.llnl.gov/casc/sundials

5
LLNL-PRES-765149

 CVODE solves ODEs (�̇�𝑦 = f(t, y))
 IDA solves 𝐹𝐹(𝑡𝑡,𝑦𝑦, �̇�𝑦) = 0

— Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs
— Optional routine solves for consistent values of y0 and ̇𝑦𝑦0 for some cases

 Variable order and variable step size Linear Multistep Methods

 Both packages include stiff BDF method up to 5th order (K1 = 1,…,5 and K2 = 0)
 CVODE includes nonstiff Adams-Moulton methods up to 12th order (K1 = 1, K2 = 1,…,12)
 Both packages include rootfinding for detecting sign change in solution-dependent functions
 CVODES and IDAS include both forward and adjoint (user supplies the adjoint operator)

sensitivity analysis

CVODE(S) and IDA(S) employ variable order and step BDF
methods for integration

6
LLNL-PRES-765149

ARKode is the newest package in SUNDIALS

 ARKode solves ODEs
— M may be the identity or any nonsingular mass matrix (e.g., FEM)

 Multistage embedded methods (as opposed to multistep):
— High order without solution history (enables spatial adaptivity)
— Sharp estimates of solution error even for stiff problems
— Implicit and additive multistage methods require multiple implicit solves per step

 Supplied with three steppers now (but easy to add others)
— ERKStep: explicit Runge-Kutta methods for

— ARKStep: explicit, implicit, or IMEX methods for
• Split system into stiff, fI, and nonstiff, fE, components

— MRIStep: two-rate explicit-explicit multirate methods for
• Split the system into fast and slow components
• More methods to come very soon

7
LLNL-PRES-765149

ARKode includes explicit, implicit, and additive Runge-Kutta
methods
 Variable step size additive Runge-Kutta (RK) Methods – combine explicit (ERK) and diagonally

implicit (DIRK) methods to enable IMEX solver
 Solve for each stage solution, zi, sequentially then compute the time-evolved solution, yn

 Choose time steps based on error estimates
 ARKode provides methods of the following orders:

— ARK:
— DIRK:
— ERK:
— Users can supply their own Butcher tables

𝑂𝑂 ∆𝑡𝑡2 − 𝑂𝑂(∆𝑡𝑡8)

𝑂𝑂 ∆𝑡𝑡2 − 𝑂𝑂(∆𝑡𝑡5)

𝑂𝑂 ∆𝑡𝑡3 − 𝑂𝑂(∆𝑡𝑡5)

8
LLNL-PRES-765149

Time steps are chosen to minimize local truncation error and
maximize efficiency

 Time step selection
— Based on the method, estimate the time step error
— Accept step if ||E(∆t)||WRMS < 1; Reject it otherwise

— Choose next step, ∆t’, so that ||E(∆t’)|| WRMS < 1
 CVODE and IDA also adapt order

— Choose next order resulting in largest step meeting error condition

 Relative tolerance (RTOL) controls local error relative to the size of the solution
— RTOL = 10-4 means that errors are controlled to 0.01%

 Absolute tolerances (ATOL) control error when a solution component may be small
— Ex: solution starting at a nonzero value but decaying to noise level, ATOL should be set to noise level

9
LLNL-PRES-765149

KINSOL solves systems of nonlinear algebraic equations, F(u) = 0

 Newton solvers: update iterate via

— Compute the update by solving:

— An inexact Newton method approximately solves this equation

 Dynamic linear tolerance selection for use with iterative linear solvers

 Can separately scale equations and unknowns

 Backtracking and line search options for robustness

 Fixed point and Picard iterations with optional Anderson acceleration are also available

10
LLNL-PRES-765149

Finite Element
Tools:

Function and
Jacobian evaluation

Time integrator and nonlinear solver
are agnostic of vector data layout

No

No

Converged?

Final Time?

Converged?

No

Linear solver step

Time integrator step

Nonlinear solver step

dy

y

f, J

Control passes from the integrator to
the solvers and application code as

the integration progresses

SUNDIALS uses Control Inversion to interoperate with other
solvers and applications

Numerical integrators and
nonlinear solvers may
invoke fairly complex step
size control logic

SUNDIALS

Linear solver

Application code

Nonlinear Solver

Use case:
 Implicit integration
 Iterative linear solver
 Finite element (FEM)

application

Updated residual f
and Jacobian J

Updated solution y

Preconditioner P

11
LLNL-PRES-765149

 SUNDIALS’ integrators do not directly modify solution data; this is
modified through vector operations e.g., vector adds, norms, etc.

 Vector “class” includes content and ops structures

— content contains vector data and information on its layout,
stored as a (void *) pointer

— Ops includes all the operations SUNDIALS needs on a vector;
functions are pointers stored in the vector Ops structure

 The NVector API defines the needed vector operations

 Parallelism is reflected in the vector structure, not in SUNDIALS

 Vectors should match the problem and/or algebraic solvers

 It is straightforward to implement a problem-specific vector
interface tailored to the application

The SUNDIALS vector interface encapsulates interaction with
application data

SUNDIALS is released with numerous optional vectors

Vector Modules

Serial Parallel
(MPI)

PTHREADSOpenMP

CUDA RAJA

PARHYP
(hypre) PETSC

NVECTOR API

MPI+CUDA MPI+RAJA

OpenMP_DEV

12
LLNL-PRES-765149

Sensitivity Analysis: CVODES and IDAS

 Sensitivity Analysis (SA) is the study of how the variation in the output of a model (numerical or
otherwise) can be apportioned, qualitatively or quantitatively, to different sources of variation in
inputs.

 Applications:
— Model evaluation (most and/or least influential parameters)
— Model reduction
— Data assimilation
— Uncertainty quantification
— Optimization (parameter estimation, design optimization, optimal control, …)

 Approaches:
— Forward SA – augment state system with sensitivity equations
— Adjoint SA – solve a backward in time adjoint problem (user supplies the adjoint problem)

13
LLNL-PRES-765149

Forward sensitivity analysis results in additional sensitivity
equations to integrate with the original state equation
 For a parameter dependent ODE (left) or DAE (right) system:

Find si=dy/dpi by simultaneously solving the original system with the Np sensitivity systems
obtained by differentiating the original system with respect to each parameter in turn:

 CVODES and IDAS include two methods for defining the forward sensitivity systems:
— Simultaneous Corrector Method: On each time step, solve the nonlinear system

simultaneously for solution and sensitivity variables
— Staggered Corrector Method: On each time step, converge the nonlinear system for state

variables, then iterate to solve sensitivity system

14
LLNL-PRES-765149

SUNDIALS supports the backward in time integration needed for
adjoint sensitivity analysis
 Solution of the forward problem is required for the adjoint problem need predictable and

compact storage of solution values for the solution of the adjoint system

 Simulations are reproducible from each checkpoint
 Cubic Hermite or variable-degree polynomial interpolation
 Store solution and first derivative at each checkpoint
 Force Jacobian evaluation at checkpoints to avoid storing it
 Computational cost: 2 forward and 1 backward integrations

t0 tf

ck0 ck1 ck2 …

Checkpointing

15
LLNL-PRES-765149

 High-order multirate methods that can integrate different portions of the problem with different
time steps - current release includes a 3rd order two-rate explicit method

 New vector modules: MPI+CUDA, MPI+RAJA, and OpenMPDEV (OpenMP 4.5+)

 Encapsulated nonlinear solvers

 Fortran 2003 interface (modernized from original F77 interface) for CVODE and all linear
solvers (IDA, ARKode, and KINSOL interfaces coming soon)

 Fused vector operations increase data reuse, decrease the number of vector operation calls,
and reduce parallel communication

What’s new in SUNDIALS?

16
LLNL-PRES-765149

 Many-vector capability for SUNDIALS will make use of heterogeneous architectures and
development of methods for multiphysics systems easier

 Increased interoperability with other solver libraries

 More multirate methods, including implicit / explicit schemes

What are we working on now?

Left: Multiphysics many-vector, different
physics operate on different processes
and comms coupled with an MPI
intercommunicator

Right: Data partitioning many-vector,
each vector utilizes distinct processing
elements within the same node

PETScSuperLU_DIST

17
LLNL-PRES-765149

SUNDIALS: Used Worldwide in Applications from Research & Industry
 Computational Cosmology (Nyx)
 Combustion (PELE)
 Astrophysics (CASTRO)
 Atmospheric dynamics (DOE E3SM)
 Fluid Dynamics (NEK5000) (ANL)
 Dislocation dynamics (LLNL)
 3D parallel fusion (SMU, U. York, LLNL)
 Power grid modeling (RTE France, ISU, LLNL)
 Sensitivity analysis of chemically reacting flows (Sandia)
 Large-scale subsurface flows (CO Mines, LLNL)
 Micromagnetic simulations (U. Southampton)
 Chemical kinetics (Cantera)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL)
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Core collapse
supernova

Dislocation dynamics Subsurface flow

Cosmology

Atmospheric Dynamics

Used as a combustion
integrator through AMReX

18
LLNL-PRES-765149

SUNDIALS Team
Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Slaven Peles Dan Reynolds Carol Woodward

Radu Serban

Scott Cohen, Scott Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, Steven L. Lee,
Keith E. Grant, Aaron Collier, Lawrence E. Banks, Steve Smith, Cosmin Petra,
John Loffeld, Dan Shumaker, Ulrike Yang, James Almgren-Bell, Shelby Lockhart,
Hilari Tiedeman, Ting Yan, Jean Sexton, and Chris White

19
LLNL-PRES-765149

 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline

20
LLNL-PRES-765149

 Download the tarball from the SUNDIALS website
— https://computation.llnl.gov/projects/sundials/sundials-software
— Latest (v4.0.1) and archived versions, and individual packages (e.g., CVODE) available
— Most configurable

 Download the tarball from the SUNDIALS GitHub page
— https://github.com/LLNL/sundials/releases
— Latest and archived versions available
— Most configurable

 Install SUNDIALS using Spack
— “spack install sundials”
— Latest and recent versions available
— Highly configurable via spack variants. E.g., “spack install sundials+cuda”.

 Install SUNDIALS as part of the xSDK using Spack
— “spack install xsdk”
— Will install SUNDIALS v3.2.1

Acquiring SUNDIALS

https://computation.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials/releases

21
LLNL-PRES-765149

 Download a SUNDIALS tarball and extract it: tar -xzf package-x.y.z.tar.gz
— Where package is one of: sundials, cvode, cvodes, arkode, ida, idas, or kinsol
— Where x.y.z is the package version number
— The compressed files will be extracted to the directory package-x.y.z

 For the remainder of the tutorial the following conventions will be followed:
— packagedir will refer to the package-x.y.z directory
— builddir will refer to the temporary directory where SUNDIALS is built. This directory cannot be the

same as packagedir.
— instdir will refer to the directory where SUNDIALS exported header files and libraries will be installed.

This defaults to /usr/local on Unix systems or C:\Program Files on Windows. This directory cannot be the
same as packagedir.

 It is required that builddir exists before proceeding with the build process

 Building SUNDIALS minimally requires CMake 3.1.3 or greater and a working C compiler
— Depending on desired options more requirements are imposed

Preparing to Build and Install SUNDIALS from Source

22
LLNL-PRES-765149

 In the next few steps, we will use the CMake curses GUI (ccmake) to configure SUNDIALS,
however, the CMake command-line interface (cmake) or the more interactive CMake Qt GUI
can also be utilized to obtain the same result.

1. To begin the build process, navigate to builddir and execute the command:

% ccmake packagedir

2. The CMake GUI will appear empty

3. Press ‘c’ to continue to the default SUNDIALS configuration screen

Building and Installing from Source using Defaults

23
LLNL-PRES-765149

24
LLNL-PRES-765149

1. To begin the build process, navigate to builddir and execute the command:

% ccmake packagedir

2. The CMake GUI will appear empty

3. Press ‘c’ to continue to the default SUNDIALS configuration screen

4. To build SUNDIALS with the default settings press ‘c’ again followed by ‘g’ to generate

5. The CMake GUI will now be closed and the build process can be completed using make:

% make

% make install

Building and Installing from Source using Defaults

25
LLNL-PRES-765149

 SUNDIALS has many configuration options to allow for highly customized builds

 Notably:
— CMAKE_INSTALL_PREFIX and CMAKE_INSTALL_LIBDIR options can be used to set the directory

where SUNDIALS will be installed
— SUNDIALS_INDEX_SIZE can be used to configure SUNDIALS for 32-bit or 64-bit indexing

• Sets the SUNDIALS type, sunindextype, to the configured size
— SUNDIALS_PRECISION can be used to configure SUNDIALS for single, double, or extended

precision
• Sets the SUNDIALS type, realtype, to the precision configured

Building and Installing from Source with Non-Defaults

26
LLNL-PRES-765149

27
LLNL-PRES-765149

Let’s enable the MPI SUNDIALS modules and SUNDIALS interfaces to hypre:
1. From the builddir open up the CMake curses GUI (ccmake)
2. Use the arrow keys to navigate to the option MPI_ENABLE
3. Press the ‘enter’ key to toggle the option to “ON”
4. Similarly toggle the option HYPRE_ENABLE to “ON”
5. Press ‘c’ to configure

Building and Installing from Source with Non-Defaults: Example

28
LLNL-PRES-765149

29
LLNL-PRES-765149

Let’s enable the MPI SUNDIALS modules and SUNDIALS interfaces to hypre:
1. From the builddir open up the Cmake curses GUI (ccmake)
2. Use the arrow keys to navigate to the option ENABLE
3. Press the ‘enter’ key to toggle the option to “ON”
4. Similarly toggle the option HYPRE_ENABLE to “ON”
5. Press ‘c’ to configure
6. Use the arrow keys to navigate to the option HYPRE_INCLUDE_DIR and press ‘enter’ to set the

path to the include directory of the desired HYPRE installation
7. Press ‘enter’ again to finish editing the HYPRE_INCLUDE_DIR option
8. Similarly, set the HYPRE_LIBRARY_DIR option
9. Press ‘c’ to configure followed by ‘g’ to generate
10. The CMake GUI will now be closed and the build process can be completed using make:

% make

% make install

Building and Installing from Source using Non-Defaults

30
LLNL-PRES-765149

 The CMake command line interface can be used to generate the same builds of SUNDIALS as the
CMake curses GUI

 The command line interface is convenient for scripting a SUNDIALS build

 To build SUNDIALS with the default options:
1. Navigate to builddir and run: % cmake packagedir
2. Complete the build process by running: % make && make install

 To build SUNDIALS with MPI and hypre enabled:
1. Navigate to builddir and run:

% cmake –DMPI_ENABLE=ON –DHYPRE_ENABLE=ON \
% –DHYPRE_INCLUDE_DIR=<hypre include directory> \
% -DHYPRE_LIBRARY_DIR=<hypre library directory> packagedir

2. Complete the build process by running: % make && make install

CMake CLI Equivalents

31
LLNL-PRES-765149

 After building SUNDIALS, it is a good practice to verify that the SUNDIALS build is functional

 From builddir, a user can execute the command make test to run the short SUNDIALS test suite
— Requires CTest and Python version 2.7 or greater

 Details about failed tests can be found in the directories builddir/Testing/output and
builddir/Testing/Temporary

Verifying a SUNDIALS Build

32
LLNL-PRES-765149

33
LLNL-PRES-765149

 Spack (see https://spack.io/) is another great way to install SUNDIALS

 The SUNDIALS team maintains a spack package that allows a user to easily install SUNDIALS
with one command: spack install sundials

 The default configuration installed with spack install sundials depends on the environment

 Use the command spack spec sundials to see what SUNDIALS options spack install sundials will
turn on

 The SUNDIALS spack installation is configured through spack “variants”

 Run spack info sundials to see the available “variants” of SUNDIALS

Installing SUNDIALS with Spack

https://spack.io/

34
LLNL-PRES-765149

35
LLNL-PRES-765149

 Spack (see https://spack.io/) is another great way to install SUNDIALS

 The SUNDIALS team maintains a spack package that allows a user to easily install SUNDIALS
with one command: spack install sundials

 The default configuration installed with spack install sundials depends on the environment

 Use the command spack spec sundials to see what SUNDIALS options spack install sundials will
turn on

 The SUNDIALS spack installation is configured through spack “variants”

 Run spack info sundials to see the available “variants” of SUNDIALS available

 SUNDIALS with MPI and hypre enabled can be installed with the command:

% spack install sundials+mpi+hypre

Installing SUNDIALS with Spack

https://spack.io/

36
LLNL-PRES-765149

 The Extreme-scale Scientific Software Development Kit (xSDK) provides a foundation for an
extensible scientific software ecosystem

 As a member of the xSDK, SUNDIALS is installed with the xSDK Spack package

% spack install xsdk

 SUNDIALS v3.2.1 (v4.0.1 is the newest) is included in the latest xSDK release - v0.4.0

 The variant of SUNDIALS included in v0.4.0 of the xSDK utilizes the SUNDIALS spack
package defaults with the following exceptions:
— the index size is changed to 32-bits instead of 64-bits
— hypre support is enabled

 See https://xsdk.info for more information about the xSDK and getting it installed

Installing SUNDIALS via the xSDK

https://xsdk.info/

37
LLNL-PRES-765149

 An in-depth guide on building and installing SUNDIALS is contained in the root of all
SUNDIALS tarballs as INSTALL_GUIDE.pdf

 The guide details how to configure SUNDIALS with CMake as well as every possible
SUNDIALS CMake option

 The guide can also be found in Appendix A of the user guide for any SUNDIALS package

 Users can also check the sundials-users email list archive at:
http://sundials.2283335.n4.nabble.com

 Users can post queries to the sundials-users email list. For more info see:
https://computation.llnl.gov/projects/sundials/support

More Help Building and Installing SUNDIALS

http://sundials.2283335.n4.nabble.com/
https://computation.llnl.gov/projects/sundials/support

38
LLNL-PRES-765149

 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline

39
LLNL-PRES-765149

 Basic usage of SUNDIALS integrators

 Supplying initial conditions – vectors

 Supplying the initial-value problem – RHS and residual functions

 Integrator initialization and optional inputs

 Advancing the solutions

 Retrieving optional outputs

 Advanced features

Time Integrators – Outline

40
LLNL-PRES-765149

 SUNDIALS’ integrators consider initial-value problems of three basic types:
— Explicit form [CVODE]:
— Linearly-implicit, split form [ARKODE]:
— Differential-algebraic form [IDA]:

 By “solve” we mean much more than merely following a recipe for updating the solution; we
adapt the time step sizes to meet user-specified error tolerances:

— is the estimated temporal error in a given time step
— is the current solution
— encodes the desired relative solution accuracy (number of significant digits)
— is the ‘noise’ level for any solution component (protects against)

“Solving” Initial-Value Problems with SUNDIALS

41
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create matrix, linear solver, nonlinear solver objects (if applicable); attach to integrator
— Defaults exist for some of these, but may be replaced with problem-specific versions
— Parallel scalability hinges on appropriate choices (discussed in last portion of tutorial)

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals , or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

42
LLNL-PRES-765149

 As discussed earlier, all SUNDIALS integrators operate on data through the NVector API.

 Each provided vector module has a unique set of “constructors”, e.g.

N_Vector N_VNew_Serial(sunindextype length);

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype loc_len, sunindextype glob_len);

N_Vector N_VMake_Cuda(MPI_Comm comm, sunindextype loc_len, sunindextype glob_len,
realtype *hdata, realtype *ddata);

N_Vector N_VMake_OpenMPDEV(sunindextype len, realtype *hdata, realtype *ddata);

N_Vector N_VMake_Petsc(Vec v);

N_Vector N_VMake_ParHyp(HYPRE_ParVector x);

 Once an application creates a vector for their data, they fill it with the initial conditions for the
problem and supply it to the integrator, who “clones” it to create its workspace.

Supplying the Initial Condition Vector(s)

43
LLNL-PRES-765149

 Fortran interfaces exist for most SUNDIALS vectors, with similar arguments as in C/C++. The
serial, MPI-parallel and hypre NVector constructors are:

CALL FNVINITS(code, len, ier)

CALL FNVINITP(comm, code, loc_len, glob_len, ier)

CALL FNVINITPH(comm, code, loc_len, glob_len, ier)

 The code argument is an INTEGER*4 flag indicating which integrator will use the vector (1 is
CVODE, 2 is IDA, 3 is KINSOL, 4 is ARKODE).

 ier is an INTEGER*4 return flag indicating success (0) or failure (1) of the constructor.

 The local/global length arguments are INTEGER*8.

 In our existing F77 interfaces we must use global memory to store the actual vector pointers;
however, upcoming F2003 interfaces will streamline these interfaces (already in place for
CVODE).

Supplying the Initial Condition Vector(s) – Fortran

44
LLNL-PRES-765149

Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is
specification of the IVP itself:

 CVODE and ARKODE specify the IVP through right-hand side function(s):
int (*RhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data)

SUBROUTINE FCVFUN(T, Y, YDOT, IPAR, RPAR, IER)

 IDA specifies the IVP through a residual function:
int (*ResFn)(realtype t, N_Vector y, N_Vector ydot, N_Vector r,

void *user_data)
SUBROUTINE FIDARESFUN(T, Y, YDOT, R, IPAR, RPAR, IER)

 In C/C++, *user_data enables problem-specific data to be passed through the SUNDIALS
integrator and back to the RHS/residual routine (i.e., no global memory).

 In Fortran, this is handled through user-created ipar and rpar work arrays; many F90 codes
instead use modules to handle user data.

Supplying the IVP to the Integrator – RHS/Residual Functions

45
LLNL-PRES-765149

CVODE/ARKODE RHS Functions – C (left) and F90 (right)

Left: cvDisc_dns.c; Right: ark_bruss.f90

46
LLNL-PRES-765149

IDA Residual Function – C (left) and F77 (right)

fidaRoberts_dns.fidaFoodWeb_kry_p.c

47
LLNL-PRES-765149

When solving an IVP with non-identity mass matrix, users must supply either a routine to
construct a mass matrix :

int (*ARKLsMassFn)(realtype t, SUNMatrix M, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

SUBROUTINE FARKDMASS(N, T, M, IPAR, RPAR, TMP1, TMP2, TMP3, IER)

or to perform the mass-matrix-vector product, :

int (*ARKLsMassTimesSetupFn)(realtype t, void *mtimes_data);

int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t,
void *mtimes_data);

SUBROUTINE FARKMTSETUP(T, IPAR, RPAR, IER)

SUBROUTINE FARKMTIMES(V, MV, T, IPAR, RPAR, IER)

Supplying the IVP to ARKODE – Mass Matrix Functions

48
LLNL-PRES-765149

The IVP inputs are supplied when constructing the integrator.

Initializing the Integrators from C/C++

CVODE (top) and IDA (bottom) ARKODE IMEX (top), implicit (middle),
explicit (bottom)

49
LLNL-PRES-765149

 Fortran users must provide problem-defining
functions with specific names (FCVFUN,
FIDARESFUN, FARKEFUN, FARKIFUN).

 Integrator options are specified with integer
flags to the integrator’s F*MALLOC routine.

 This is where the IPAR and RPAR user
parameter arrays are supplied to the
integrators, as well as initial time and initial
condition(s).

 Additional IOUT and ROUT arrays are supplied
to store solver statistics (returned from the
integrators).

Initializing the Integrators from Fortran

50
LLNL-PRES-765149

A variety of optional inputs enable enhanced control over the integration process. Here we
discuss the most often-utilized options (see documentation for the full set).

 Tolerance specification – rtol with scalar or vector-valued atol, or user-specified routine to
compute the error weight vector

 SetNonlinearSolver, SetLinearSolver – attaches desired nonlinear solver, linear solver and
(optionally) matrix modules to the integrator.

 SetUserData – specifies the (void *user_data) pointer that is supplied to user routines.

 SetMaxNumSteps, SetMaxStep, SetMinStep, SetInitStep – provides guidance to time step adaptivity
algorithms.

 SetStopTime – specifies the value of tstop to use when advancing solution (this is retained until
this stop time is reached or modified through a subsequent call).

Optional Inputs (all Integrators)

51
LLNL-PRES-765149

 SetConstraints – allows for setting positivity/negativity constraints on solution components.

 SetMaxOrd – specifies the maximum order of accuracy for the method (the order is adapted
internally, along with the step size).

 CalcIC (IDA-specific) – in certain cases will help find a consistent .

— A variety of additional routines may be used for additional control over this algorithm.

 SetId (IDA-specific) – specifies which variables are differential vs algebraic (useful when calling
CalcIC above).

Package-Specific Options (CVODE and IDA)

52
LLNL-PRES-765149

 SetFixedStep – disables time step adaptivity (and temporal error estimation/control).

 SetLinear – f1(t,y(t)) depends linearly on y (disables nonlinear iteration).

 SetOrder – specifies the order of accuracy for the method.

 SetTables – allows user-specified ERK, DIRK or ARK Butcher tables.

 SetAdaptivityFn – allows user-provided routine for time step selection.

 New multi-rate time-stepping module, MRIStep – f1(t,y(t)) and f2(t,y(t)) are evolved with different
user-specified time step sizes.

Package-Specific Options (ARKODE)

53
LLNL-PRES-765149

After constructing the integrator, additional options may be supplied through various “Set”
routines (example from ark_heat1D_adapt.c):

Supplying Options to the Integrators (C/C++)

54
LLNL-PRES-765149

C/C++ users may construct custom Butcher tables and supply these to the integrator:

ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p,
realtype *c, realtype *A, realtype *b, realtype *b2);

int ARKStepSetTables(void *arkode_mem, int q, int p,
ARKodeButcherTable Bi, ARKodeButcherTable Be);

Fortran users instead provide the arrays directly:

CALL FARKSETERKTABLE(s, q, p, c, A, b, b2, ier)

CALL FARKSETIRKTABLE(s, q, p, c, A, b, b2, ier)

CALL FARKSETARKTABLES(s, q, p, ci, ce, Ai, Ae, bi, be, b2i, b2e,ier)

In each, “A” is assumed to be an array of length s2, stored in row-major order.

Supplying Custom Butcher tables to ARKODE

55
LLNL-PRES-765149

 After calling F*MALLOC, Fortran users supply
most optional inputs through calling F*SETIIN and
F*SETRIN routines with a set of pre-defined flags
(MAX_NSTEPS, MAX_ERRFAIL, etc.).

 Integer inputs are required to correspond to the
C type “long int” (typically, INTEGER*8)

 Real inputs are required to correspond to the C
type “double” (typically, REAL*8)

 IER is always an INTEGER*4 flag indicating
success (0) or failure (1) of the “Set” routine.

Supplying Options to the Integrators (Fortran)

56
LLNL-PRES-765149

While is supplied at initialization, the direction of integration is specified on the first call to
advance the solution toward the output time . This may occur in one of four “usage modes”:

 Normal – take internal steps until is reached or overtaken in the direction of integration,
e.g. for forward integration ; the returned solution is then computed by
interpolation.

 One-step – take a single internal step and then return control back to the calling
program. If this step will overtake then is interpolated; otherwise is returned.

 Normal + TStop – take internal steps until the next step will overtake ; limit the next
internal step so that . No interpolation is performed.

 One-step + TStop – performs a combination of both “One-step” and “TStop” modes above.

Usage Modes for SUNDIALS Integrators

57
LLNL-PRES-765149

Once all options have been set, the integrator is called to advance the solution toward tout.

Advancing the Solution

C/C++ on left; Fortran on right
CVODE top, IDA middle, ARKODE bottom
Fortran’s ITASK provides the *_NORMAL or
*_ONE_STEP argument.

58
LLNL-PRES-765149

Either between calls to advance the solution, or at the end of a simulation, users may retrieve a
variety of optional outputs from SUNDIALS integrators.

 GetDky (Dense solution output) – using the same infrastructure that performs interpolation in

“normal” use mode, users may request values for , where .

 Time integration statistics:
— GetNumSteps – the total number of internal time steps since initialization
— GetCurrentStep – the current internal time step size
— GetCurrentTime – the current internal time (since this may have passed)
— GetCurrentOrder (IDA/CVODE) – the current method order of accuracy
— GetActualInitStep – the size of the very first internal time step
— GetNumErrTestFails – the number of steps that failed the temporal error test
— GetEstLocalErrors – returns the current temporal error vector,

Optional Outputs

59
LLNL-PRES-765149

 GetNumNonlinSolvIters – number of nonlinear solver iterations since initialization.

 GetNumNonlinSolvConvFails – number of nonlinear solver convergence failures.

 GetNumLinSolvSetups – number of calls to setup the linear solver or preconditioner.

 GetNumLinIters – number of linear solver iterations since initialization.

 GetNumLinConvFails – number of linear solver convergence failures.

 GetNumJacEvals, GetNumJtimesEvals, GetNumPrecEvals, GetNumPrecSolves – the number of calls to
user-supplied Jacobian/preconditioner routines.

Optional Outputs – Algebraic Solver Statistics

60
LLNL-PRES-765149

 GetTolScaleFactor – returns a suggested factor for scaling the user’s rtol, atol values.

 GetErrWeights – returns the current error weight vector, .

 GetWorkspace – returns the memory requirements for the integrator.

 GetLinWorkspace – returns the memory requirements for the linear solver.

 GetNumRhsEvals, GetNumResEvals – returns the number of calls to the IVP RHS/residual
function(s) by the integrator (nonlinear solve and time integration).

 GetNumLinRhsEvals, GetNumLinResEvals – returns the number of calls to the IVP RHS/residual
function(s) by the linear solver (Jacobian or Jacobian-vector product approximation).

Optional Outputs – Miscellaneous Feedback

61
LLNL-PRES-765149

Retrieving Output from the Integrators (C/C++)

Left: scalar-valued solver statistics from
cvAdvDiffReac_kry.c

Right: dense solution output from
cvDisc_dns.c

62
LLNL-PRES-765149

Retrieving Output from the Integrators (Fortran)

Example from fidaRoberts_dns.f:

• The iout and rout arrays, passed to the
F*MALLOC routines, are filled with
solver statistics at the end of each call
to advance the solution.

• The required lengths of these
INTEGER*8 and REAL*8 arrays are
specified in each package’s
documentation

63
LLNL-PRES-765149

This tutorial is only the beginning; SUNDIALS also supports a number of ‘advanced’ features to
examine auxiliary conditions, change the IVP, and improve solver efficiency.

 Root-finding – while integrating the IVP, SUNDIALS integrators can find roots of a set of
auxiliary user-defined functions ; sign changes are monitored between
time steps, and a modified secant iteration is used (along with GetDky) to home in on the roots.

 Reinitialization – allows reuse of existing integrator memory for a “new” problem (e.g., when
integrating across a discontinuity, or integrating many independent problems of the same size).
All solution history and solver statistics are erased, but no memory is (de)allocated.

 Resizing (ARKODE) – allows resizing the problem and all internal vector memory, without
destruction of temporal adaptivity heuristic information or solver statistics. This is primarily
useful when integrating problems with spatial adaptivity.

 Sensitivity Analysis (CVODE/IDA) – allows computation of solution sensitivities with respect to
problem parameters (see overview portion of Tutorial for additional information).

Advanced Features

64
LLNL-PRES-765149

 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline

65
LLNL-PRES-765149

 SUNDIALS’ implicit integrators solve one or more nonlinear systems each time step using
generic nonlinear and linear solver operations.

 SUNDIALS provides two nonlinear solver modules and several linear solver modules:
— Nonlinear: Newton (default) and Fixed Point with optional Anderson acceleration
— Linear (direct): Dense, Band, LAPACK Dense/Band, KLU, and SuperLU_MT
— Linear (iterative, scaled): GMRES, FGMRES, TFQMR, BiCGStab, Conjugate Gradient

 It is also straightforward to provide problem-specific nonlinear and linear solver modules:
— The solver content data structure is stored as a “black-box” pointer (void *)
— Solver operations are implemented at the user level, with corresponding function pointers

stored in the solver ops structure
— Not all operations are required and unneeded operations may be set to NULL; required

routines are clearly documented in the user guide

Nonlinear and Linear Solvers in SUNDIALS – Overview

66
LLNL-PRES-765149

 SUNDIALS’ implicit integrators require solving the nonlinear systems:

— CVODE:

— ARKODE:

— IDA:

 By default the integrators solve with a Newton iteration:

 A general linear solver is also needed when using ARKODE with a non-identity mass matrix.

Newton Solver

These can all be posed as a
generic root-finding problem

Requires solving a general
linear system each iteration

67
LLNL-PRES-765149

 When using the default nonlinear solver (Newton), users only need to create and attach the
desired linear solver object.

 The variant of Newton’s method employed depends on the linear solver type:

— Direct: a matrix object is required and the solver computes the “exact” solution to the linear
system defined by the matrix.

— Iterative (matrix-free): a matrix object is not required and the solver computes an inexact
solution to the linear system defined by the Jacobian-vector product routine.

— Matrix-Iterative (matrix-based): a matrix object is required and the solver computes an
inexact solution to the linear system defined by the matrix.

 SUNDIALS provides several direct and iterative linear solver modules.

 Users may supply problem-specific direct, iterative, or matrix-iterative modules.

Linear Solver Types

68
LLNL-PRES-765149

 Direct linear solvers require the use of a compatible matrix module.

 When used with a direct linear solver the Newton iteration is a modified Newton iteration.

— The Jacobian is updated infrequently to amortize the cost of matrix construction.

— Optional integrator inputs are provided to adjust the Jacobian update frequency.

Direct Linear Solvers

SUNDIALS Matrix Modules

DENSE BAND SPARSE

SUNDIALS Direct Linear Solver Modules

DENSE SUPERLU_MTBAND KLULAPACK
DENSE

LAPACK
BAND

69
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

70
LLNL-PRES-765149

 In the “Usage Skeleton,” step 4 would consist of:

a) Create an NxN SUNMatrix object
— SUNMatrix A = SUNDenseMatrix(N, N)
— SUNMatrix A = SUNBandMatrix(N, upperwidth, lowerwidth)
— SUNMatrix A = SUNSparseMatrix(N, N, NNZ, type)

b) Create the SUNLinearSolver object (* is the solver name)
— SUNLinearSolver LS = SUNLinSol_*(y, A,…)

c) Attach the linear solver to the integrator (* is the integrator prefix)
— ier = *SetLinearSolver(mem, LS, A)

Creating & Attaching a Direct Linear Solver

71
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

72
LLNL-PRES-765149

 In the “Usage Skeleton” step 5 could include the following optional inputs:

— SetJacFn – specifies a user-supplied function for evaluating the Jacobian.

• With dense and banded matrices the Jacobian of the IVP function may be computed
internally with finite differences (default) or by a user-supplied function.

• Sparse and user-supplied matrices require a user-supplied function to compute the
Jacobian of the IVP function.

— SetMaxStepsBetweenJac – (CVODE and ARKODE) – specifies the number of steps to wait
before recomputing the Jacobian in a call to the linear solver setup routine.

— SetMaxStepsBetweenLSet – (ARKODE) – specifies the number of steps between calls to the
linear solver setup routine to potentially recompute the Jacobian of the IVP function.

Direct Linear Solver Options

73
LLNL-PRES-765149

 Example using a dense matrix, dense linear solver, and user supplied Jacobian routine.

examples/cvode/serial/cvRoberts_dns.c

74
LLNL-PRES-765149

 SUNDIALS iterative linear solvers support scaling and preconditioning, as applicable, to
balance the error between solution components and to accelerate convergence.
— For linear solvers that do not support scaling, the linear solver tolerance supplied is adjusted

to compensate, but may be non-optimal when components vary dramatically.

 When used with an iterative linear solver the Newton iteration is an inexact Newton iteration.
— The linear system is solved to a specified tolerance and the preconditioner is updated

infrequently to amortize cost.
— Optional integrator inputs are provided to adjust the linear tolerance and the frequency with

which the preconditioner is updated.

Iterative Linear Solvers

SUNDIALS Iterative Linear Solvers

SPTFQMR SPBCGSPFGMR PCGSPGMR

75
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create linear solver object; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

76
LLNL-PRES-765149

 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNLinearSolver object (* is the solver name)
— SUNLinearSolver LS = SUNLinSol_*(y, pretype, maxl)

b) Set linear solver optional inputs (* is the solver name and ** is the option name)
— Call SUNLinSol_*Set** functions to change solver specific optional inputs

c) Attach the linear solver (* is the integrator prefix; note that a NULL matrix is supplied)
— ier = *SetLinearSolver(mem, LS, NULL)

Creating & Attaching an Iterative Linear Solver

77
LLNL-PRES-765149

 Solver specific options include:

— SetGSType – (GMR and FGMR) – sets the Gram-Schmidt orthogonalization type (CLASSICAL
or MODIFIED); the default is modified Gram-Schmidt.

— SetMaxRestarts – (GMR and FGMR) – sets the max number of GMRES restarts; the default
is 0.

— SetMaxl – (BCGS, TFQMR, and PCG) – updates the number of linear solver iterations; the
default is 5.

Iterative Linear Solver Options

78
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create linear solver object; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

79
LLNL-PRES-765149

 In the “Usage Skeleton” step 5 could include the following optional inputs:

— SetJacTimes – set user-supplied Jacobian-vector product setup and times functions.
• By default Jacobian-vector products are computed internally using a finite difference

— SetEpsLin – specifies the scaling factor used to set the linear solver tolerance.

— SetPreconditioner – set the preconditioner setup and solve functions. See the next slide for
more details.

— SetMaxStepsBetweenJac – (CVODE and ARKODE) – specifies the number of steps to wait
before recommending to update the preconditioner.

— SetMaxStepsBetweenLSet – (ARKODE) – specifies the number of steps between calls to the
linear solver setup routine to potentially update the preconditioner.

Iterative Linear Solver Options

80
LLNL-PRES-765149

 The SetPreconditioner function sets the preconditioner setup and solve functions:

— The preconditioner setup function preprocesses and/or evaluates Jacobian-related data
needed by the preconditioner. CVODE/ARKode example:

LsPrecSetupFn(realtype t, N_Vector y, N_Vector fy, booleantype jok,
booleantype* jcurPtr, realtype gamma, void* user_data)

— The preconditioner solve function solves the preconditioner system Pz = r. CVODE/ARKode
example:

LsPrecSolvFn(realtype t, N_Vector y, N_Vector fy, N_Vector r,
N_Vector z, realtype gamma, realtype delta, int lr,
void* user_data)

Iterative Linear Solvers – Supplying a Preconditioner

81
LLNL-PRES-765149

 Example using GMRES with restarts and a user supplied block diagonal preconditioner.

examples/ida/parallel/idaFoodWeb_kry_p.c

82
LLNL-PRES-765149

 Block diagonal
preconditioner
functions.

 Setup: Precondbd
— Update

Jacobian
— Factor diagonal

blocks

 Solve: Psolvebd
— Solve the

preconditioning
system Pz=r

examples/ida/parallel/idaFoodWeb_kry_p.c

83
LLNL-PRES-765149

 The ark_heat2D_hypre.cpp example demonstrates how to interface a problem-specific linear solver with
a SUNDIALS integrator using the matrix-iterative linear solver type:
— Matrix is supplied
— Solve uses an iterative method

 This ARKODE example uses the default Newton iteration with hypre matrices, linear solvers, and
preconditioners:
— Creates a SUNMatrix wrapper for a hypre structured grid matrix
— Creates a SUNLinearSolver wrapper for the hypre PCG solver with PFMG preconditioner

 When used with a matrix-iterative linear solver the Newton iteration is a modified Newton iteration and the
Jacobian is updated infrequently to amortize the cost of matrix construction.

 The matrix-iterative type combines aspects of the dense and iterative types. As such, optional integrator
inputs for both dense and iterative solvers apply to matrix-iterative solvers.

User-supplied Matrix-Iterative Linear Solver

84
LLNL-PRES-765149

 Constructor – creates a new matrix.

 GetID(A) – returns the matrix type.

 Clone(A) – returns a new matrix of the same type as A.

 Destroy(A) – frees memory allocated when creating A.

 Space(A, liw, lrw) – returns the storage requirements of A.

 Zero(A) – sets all entries of A to zero.

 Copy(A, B) – copies all entries from A to B.

 ScaleAdd(c, A, B) – performs the operation A=cA+B.

 ScaleAddI(c, A) – performs the operation A=cA+I.

 Matvec(A, x, y) – performs the operation y=Ax.

Creating a SUNMatrix Wrapper

Key:
Always required
Sometimes required
Optional

85
LLNL-PRES-765149

 Constructor continued Header defining a generic SUNMatrix

 Matrix specific content structure

 Constructor to create a new matrix

// Fill content

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

86
LLNL-PRES-765149

 Examples of some matrix operation implementations

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

87
LLNL-PRES-765149

 Constructor – creates a linear solver object and performs memory allocation as needed.

 GetType – returns the linear solver type.

 Initialize – initializes the linear solver and performs additional allocation as needed.

 Setup – called infrequently to update the Jacobian or preconditioner information.

 Solve – solves the linear system Ax=b.

 Free – frees any memory allocated by the linear solver.

Creating a SUNLinearSolver Wrapper – Core Functions

Key:
Always required
Sometimes required
Optional

88
LLNL-PRES-765149

 Constructor continued Header defining a generic SUNLinearSolver

 Linear solver specific content structure

 Constructor to create a new linear solver

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

// Fill content

89
LLNL-PRES-765149

 Examples of linear solver operation implementations (some details omitted; see code for complete functions)

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

90
LLNL-PRES-765149

 SetATimes – sets the function for computing Jacobian-vector products in iterative solvers.

int (*ATimesFn)(void *A_data, N_Vector v, N_Vector z)

 SetPreconditioner – sets the preconditioner setup and solve functions called by iterative or
matrix-iterative solvers.

int (*PSetupFn)(void *P_data)

int (*PSolveFn)(void *P_data, N_Vector r, N_Vector z,
realtype tol, int lr)

 SetScalingVectors – sets the scaling vectors used in iterative or matrix-iterative solvers.

— SUNDIALS provided iterative linear solvers solve a transformed system:

Creating a SUNLinearSolver Wrapper – Set Functions

Key:
Always required
Sometimes required
Optional

91
LLNL-PRES-765149

 NumIters – returns the number of iterations in the last solve call.

 ResNorm – returns final residual norm from the last solve call.

 Resid – returns preconditioned initial residual vector.

 LastFlag – returns the last error flag encountered within the linear solver.

 Space – returns the storage requirements of the linear solver.

Creating a SUNLinearSolver Wrapper – Get Functions

Key:
Always required
Sometimes required
Optional

92
LLNL-PRES-765149

 Examples of linear solver get operation implementations

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

93
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

94
LLNL-PRES-765149

 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNMatrix object
— SUNMatrix A = MyNewMatrix(…)

b) Create the SUNLinearSolver object
— SUNLinearSolver LS = MyNewLinearSolver(…)

c) Attach the linear solver
— ier = *StepSetLinearSolver(mem, LS, A)

d) Set the function to compute the Jacobian
— ier = *StepSetJacFn(mem, J)

Creating & Attaching the User-supplied Linear Solver

95
LLNL-PRES-765149

 Example using hypre structured matrix, linear solver (PCG), and preconditioner (PFMG).

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

96
LLNL-PRES-765149

 With CVODE and ARKODE (when M = I) the nonlinear systems can also be written as:

— CVODE:

— ARKODE:

 Users can elect to use a fixed point method to solve .
— Jacobian information and a linear solver are not required in this case
— Convergence can be accelerated using Anderson’s method

Fixed Point Solver

These can both be posed as a
generic fixed-point problem

97
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create nonlinear solver object; attach to integrator
— Using the Anderson accelerated fixed point solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

98
LLNL-PRES-765149

 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNNonlinearSolver object
— SUNNonlinearSolver NLS = SUNNonlinSol_FixedPoint(y, m)

b) Attach the nonlinear solver (* is the integrator prefix)
— flag = *SetNonlinearSolver(mem, NLS)

Fixed Point Solver

99
LLNL-PRES-765149

1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, ; if using IDA, also create

3. Create and initialize integrator object (attaches , RHS/residual function(s))

4. Create nonlinear solver object; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

100
LLNL-PRES-765149

 SetMaxNonlinIters – sets the maximum number of nonlinear iterations.

 SetNonlinConvCoef – specifies the scaling factor used to set the nonlinear solver tolerance.

 Additional ARKODE options:

— SetNonlinear – specifies if the implicit system nonlinear/linear.

— SetNonlinCRDown – sets the nonlinear convergence rate constant.

— SetNonlinRDiv – sets the nonlinear divergence ratio.

Nonlinear Solver Options

101
LLNL-PRES-765149

 Example using Anderson accelerated fixed point solver with non-default max iterations.

examples/arkode/C_serial/ark_brusselator_fp.c

102
LLNL-PRES-765149

 Constructor – creates a nonlinear solver object and performs memory allocation as needed.

 GetType – return the solver type, ROOTFIND, for F(y) = 0 and FIXEDPOINT for G(y) = y.

 Initialize – initializes the nonlinear solver and performs additional allocation as needed.

 Setup – called before each step attempt to perform any nonlinear solver setup.

 Solve – solve the nonlinear system F(y) = 0 or G(y) = y.

 Free – frees any memory allocated by the nonlinear solver.

Creating a SUNNonlinearSolver Wrapper – Core Functions

Key:
Always required
Sometimes required
Optional

103
LLNL-PRES-765149

 SetSysFn – allows the integrator to provide the nonlinear system function F(y) or G(y).

 SetConvTestFn – sets the nonlinear iteration convergence test function.

 SetMaxIters – sets the maximum number of iterations.

 GetNumIters – returns the total number of nonlinear iterations.

 GetCurIter – returns the current iteration number.

 GetNumConvFails – returns the number of convergence failures.

Creating a SUNNonlinearSolver Wrapper – Set and Get Functions

Key:
Always required
Sometimes required
Optional

104
LLNL-PRES-765149

 If the nonlinear solver uses a SUNDIALS linear solver, then following functions are required.

 SetLSetupFn – allows the integrator to attach the linear solver setup function to the nonlinear
solver

int (*LSetupFn)(N_Vector y, N_Vector F, booleantype jbad,
booleantype* jcur, void* mem)

 SetLSolveFn – allows the integrator to attach the linear solver solve function to the nonlinear
solver

int (*LSolveFn)(N_Vector y, N_Vector b, void* mem)

Creating a SUNNonlinearSolver Wrapper – Linear Solver Interface

Key:
Always required
Sometimes required
Optional

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Introduction to the Capabilities and Use of the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers
	Tutorial Outline
	ODEs and DAEs Arise in Numerous Application Areas
	SUite of Nonlinear and DIfferential-ALgebraic Solvers
	CVODE(S) and IDA(S) employ variable order and step BDF methods for integration
	ARKode is the newest package in SUNDIALS
	ARKode includes explicit, implicit, and additive Runge-Kutta methods
	Time steps are chosen to minimize local truncation error and maximize efficiency
	KINSOL solves systems of nonlinear algebraic equations, F(u) = 0
	SUNDIALS uses Control Inversion to interoperate with other solvers and applications
	The SUNDIALS vector interface encapsulates interaction with application data
	Sensitivity Analysis: CVODES and IDAS
	Forward sensitivity analysis results in additional sensitivity equations to integrate with the original state equation
	SUNDIALS supports the backward in time integration needed for adjoint sensitivity analysis
	What’s new in SUNDIALS?
	What are we working on now?
	SUNDIALS: Used Worldwide in Applications from Research & Industry
	SUNDIALS Team
	Tutorial Outline
	Acquiring SUNDIALS
	Preparing to Build and Install SUNDIALS from Source
	Building and Installing from Source using Defaults
	Slide Number 23
	Building and Installing from Source using Defaults
	Building and Installing from Source with Non-Defaults
	Slide Number 26
	Building and Installing from Source with Non-Defaults: Example
	Slide Number 28
	Building and Installing from Source using Non-Defaults
	CMake CLI Equivalents
	Verifying a SUNDIALS Build
	Slide Number 32
	Installing SUNDIALS with Spack
	Slide Number 34
	Installing SUNDIALS with Spack
	Installing SUNDIALS via the xSDK
	More Help Building and Installing SUNDIALS
	Tutorial Outline
	Time Integrators – Outline
	“Solving” Initial-Value Problems with SUNDIALS
	The “Skeleton” for Using SUNDIALS Integrators
	Supplying the Initial Condition Vector(s)
	Supplying the Initial Condition Vector(s) – Fortran
	Supplying the IVP to the Integrator – RHS/Residual Functions
	CVODE/ARKODE RHS Functions – C (left) and F90 (right)
	IDA Residual Function – C (left) and F77 (right)
	Supplying the IVP to ARKODE – Mass Matrix Functions
	Initializing the Integrators from C/C++
	Initializing the Integrators from Fortran
	Optional Inputs (all Integrators)
	Package-Specific Options (CVODE and IDA)
	Package-Specific Options (ARKODE)
	Supplying Options to the Integrators (C/C++)
	Supplying Custom Butcher tables to ARKODE
	Supplying Options to the Integrators (Fortran)
	Usage Modes for SUNDIALS Integrators
	Advancing the Solution
	Optional Outputs
	Optional Outputs – Algebraic Solver Statistics
	Optional Outputs – Miscellaneous Feedback
	Retrieving Output from the Integrators (C/C++)
	Retrieving Output from the Integrators (Fortran)
	Advanced Features
	Tutorial Outline
	Nonlinear and Linear Solvers in SUNDIALS – Overview
	Newton Solver
	Linear Solver Types
	Direct Linear Solvers
	The “Skeleton” for Using SUNDIALS Integrators
	Creating & Attaching a Direct Linear Solver
	The “Skeleton” for Using SUNDIALS Integrators
	Direct Linear Solver Options
	examples/cvode/serial/cvRoberts_dns.c
	Iterative Linear Solvers
	The “Skeleton” for Using SUNDIALS Integrators
	Creating & Attaching an Iterative Linear Solver
	Iterative Linear Solver Options
	The “Skeleton” for Using SUNDIALS Integrators
	Iterative Linear Solver Options
	Iterative Linear Solvers – Supplying a Preconditioner
	examples/ida/parallel/idaFoodWeb_kry_p.c
	examples/ida/parallel/idaFoodWeb_kry_p.c
	User-supplied Matrix-Iterative Linear Solver
	Creating a SUNMatrix Wrapper
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	Creating a SUNLinearSolver Wrapper – Core Functions
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	Creating a SUNLinearSolver Wrapper – Set Functions
	Creating a SUNLinearSolver Wrapper – Get Functions
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	The “Skeleton” for Using SUNDIALS Integrators
	Creating & Attaching the User-supplied Linear Solver
	examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
	Fixed Point Solver
	The “Skeleton” for Using SUNDIALS Integrators
	Fixed Point Solver
	The “Skeleton” for Using SUNDIALS Integrators
	Nonlinear Solver Options
	examples/arkode/C_serial/ark_brusselator_fp.c
	Creating a SUNNonlinearSolver Wrapper – Core Functions
	Creating a SUNNonlinearSolver Wrapper – Set and Get Functions
	Creating a SUNNonlinearSolver Wrapper – Linear Solver Interface
	Slide Number 105

