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 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline
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ODEs and DAEs Arise in Numerous Application Areas

 Ordinary Differential Equations (ODEs)

— PDEs: Method of lines discretization f contains discrete spatial operations
— Chemical reactions: f includes terms for each reaction

 Differential Algebraic Equations (DAEs) 

— PDEs: Method of lines discretization with algebraic constraints
— Power transmission models: F includes differential equations for power 

generators and network-based algebraic system constraining power flow
— Electronic circuit models
— If              is invertible, we can solve for     to obtain an ODE, but this is not 

always the best approach, else the system is a DAE.

Magnetic reconnection

US Transmission grid
(Wikimedia Commons)
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 SUNDIALS is a software library consisting of ODE and DAE integrators and nonlinear solvers
— 6 packages: CVODE(S), IDA(S), ARKode, and KINSOL

 Written in C with interfaces to Fortran
 Designed to be incorporated into existing codes
 Data use is fully encapsulated into vectors which can be user-supplied
 Nonlinear and linear solvers are fully encapsulated from the integrators and can be user-supplied
 All parallelism is encapsulated in vectors modules, solver modules, and user-supplied functions
 Freely available; released under the BSD 3-Clause license ( >25,000 downloads in 2018)
 Active user community supported by sundials-users email list
 Detailed user manuals are included with each package

SUite of Nonlinear and DIfferential-ALgebraic Solvers

https://computation.llnl.gov/casc/sundials
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 CVODE solves ODEs  (�̇�𝑦 = f(t, y))
 IDA  solves 𝐹𝐹(𝑡𝑡,𝑦𝑦, �̇�𝑦) = 0

— Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs
— Optional routine solves for consistent values of y0 and ̇𝑦𝑦0 for some cases

 Variable order and variable step size Linear Multistep Methods

 Both packages include stiff BDF method up to 5th order (K1 = 1,…,5 and K2 = 0)
 CVODE includes nonstiff Adams-Moulton methods up to 12th order (K1 = 1, K2 = 1,…,12)
 Both packages include rootfinding for detecting sign change in solution-dependent functions
 CVODES and IDAS include both forward and adjoint (user supplies the adjoint operator) 

sensitivity analysis

CVODE(S) and IDA(S) employ variable order and step BDF 
methods for integration 
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ARKode is the newest package in SUNDIALS

 ARKode solves ODEs
— M may be the identity or any nonsingular mass matrix (e.g., FEM)

 Multistage embedded methods (as opposed to multistep):
— High order without solution history (enables spatial adaptivity)
— Sharp estimates of solution error even for stiff problems
— Implicit and additive multistage methods require multiple implicit solves per step

 Supplied with three steppers now (but easy to add others)
— ERKStep: explicit Runge-Kutta methods for 

— ARKStep: explicit, implicit, or IMEX methods for 
• Split system into stiff, fI, and nonstiff, fE, components

— MRIStep: two-rate explicit-explicit multirate methods for   
• Split the system into fast and slow components
• More methods to come very soon
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ARKode includes explicit, implicit, and additive Runge-Kutta
methods 
 Variable step size additive Runge-Kutta (RK) Methods – combine explicit (ERK) and diagonally 

implicit (DIRK) methods to enable IMEX solver
 Solve for each stage solution, zi, sequentially then compute the time-evolved solution, yn

 Choose time steps based on error estimates 
 ARKode provides methods of the following orders:

— ARK:
— DIRK:
— ERK:
— Users can supply their own Butcher tables

𝑂𝑂 ∆𝑡𝑡2 − 𝑂𝑂(∆𝑡𝑡8)

𝑂𝑂 ∆𝑡𝑡2 − 𝑂𝑂(∆𝑡𝑡5)

𝑂𝑂 ∆𝑡𝑡3 − 𝑂𝑂(∆𝑡𝑡5)
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Time steps are chosen to minimize local truncation error and 
maximize efficiency

 Time step selection
— Based on the method, estimate the time step error
— Accept step if ||E(∆t)||WRMS < 1; Reject it otherwise

— Choose next step, ∆t’, so that ||E(∆t’)|| WRMS < 1
 CVODE and IDA also adapt order

— Choose next order resulting in largest step meeting error condition

 Relative tolerance (RTOL) controls local error relative to the size of the solution
— RTOL = 10-4 means that errors are controlled to 0.01%

 Absolute tolerances (ATOL) control error when a solution component may be small 
— Ex: solution starting at a nonzero value but decaying to noise level, ATOL should be set to noise level



9
LLNL-PRES-765149

KINSOL solves systems of nonlinear algebraic equations, F(u) = 0

 Newton solvers: update iterate via 

— Compute the update by solving:

— An inexact Newton method approximately solves this equation

 Dynamic linear tolerance selection for use with iterative linear solvers

 Can separately scale equations and unknowns

 Backtracking and line search options for robustness

 Fixed point and Picard iterations with optional Anderson acceleration are also available
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Finite Element 
Tools:

Function and 
Jacobian evaluation

Time integrator and nonlinear solver 
are agnostic of vector data layout

No

No

Converged?

Final Time?

Converged?

No

Linear solver step

Time integrator step

Nonlinear solver step

dy

y

f, J

Control passes from the integrator to 
the solvers and application code as 

the integration progresses

SUNDIALS uses Control Inversion to interoperate with other 
solvers and applications

Numerical integrators and 
nonlinear solvers may 
invoke fairly complex step 
size control logic

SUNDIALS

Linear solver

Application code

Nonlinear Solver

Use case: 
 Implicit integration 
 Iterative linear solver
 Finite element (FEM) 

application

Updated residual f  
and Jacobian J 

Updated solution y

Preconditioner P
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 SUNDIALS’ integrators do not directly modify solution data; this is 
modified through vector operations e.g., vector adds, norms, etc.

 Vector “class” includes content and ops structures

— content contains vector data and information on its layout, 
stored as a (void *) pointer

— Ops includes all the operations SUNDIALS needs on a vector; 
functions are pointers stored in the vector Ops structure

 The NVector API defines the needed vector operations

 Parallelism is reflected in the vector structure, not in SUNDIALS

 Vectors should match the problem and/or algebraic solvers 

 It is straightforward to implement a problem-specific vector 
interface tailored to the application

The SUNDIALS vector interface encapsulates interaction with 
application data 

SUNDIALS is released with numerous optional vectors

Vector Modules

Serial Parallel 
(MPI)

PTHREADSOpenMP

CUDA RAJA

PARHYP 
(hypre) PETSC

NVECTOR API

MPI+CUDA MPI+RAJA

OpenMP_DEV
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Sensitivity Analysis: CVODES and IDAS

 Sensitivity Analysis (SA) is the study of how the variation in the output of a model (numerical or 
otherwise) can be apportioned, qualitatively or quantitatively, to different sources of variation in 
inputs.

 Applications:
— Model evaluation (most and/or least influential parameters)
— Model reduction
— Data assimilation
— Uncertainty quantification
— Optimization (parameter estimation, design optimization, optimal control, …)

 Approaches:
— Forward SA – augment state system with sensitivity equations
— Adjoint SA – solve a backward in time adjoint problem (user supplies the adjoint problem)
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Forward sensitivity analysis results in additional sensitivity 
equations to integrate with the original state equation
 For a parameter dependent ODE (left) or DAE (right) system:

Find si=dy/dpi by simultaneously solving the original system with the Np sensitivity systems 
obtained by differentiating the original system with respect to each parameter in turn:

 CVODES and IDAS include two methods for defining the forward sensitivity systems:
— Simultaneous Corrector Method: On each time step, solve the nonlinear system 

simultaneously for solution and sensitivity variables
— Staggered Corrector Method: On each time step, converge the nonlinear system for state 

variables, then iterate to solve sensitivity system
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SUNDIALS supports the backward in time integration needed for 
adjoint sensitivity analysis
 Solution of the forward problem is required for the adjoint problem  need predictable and 

compact storage of solution values for the solution of the adjoint system

 Simulations are reproducible from each checkpoint
 Cubic Hermite or variable-degree polynomial interpolation
 Store solution and first derivative at each checkpoint
 Force Jacobian evaluation at checkpoints to avoid storing it
 Computational cost: 2 forward and 1 backward integrations

t0 tf

ck0 ck1 ck2 …

Checkpointing
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 High-order multirate methods that can integrate different portions of the problem with different 
time steps - current release includes a 3rd order two-rate explicit method

 New vector modules: MPI+CUDA, MPI+RAJA, and OpenMPDEV (OpenMP 4.5+)

 Encapsulated nonlinear solvers

 Fortran 2003 interface (modernized from original F77 interface) for CVODE and all linear 
solvers (IDA, ARKode, and KINSOL interfaces coming soon)

 Fused vector operations increase data reuse, decrease the number of vector operation calls, 
and reduce parallel communication

What’s new in SUNDIALS?
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 Many-vector capability for SUNDIALS will make use of heterogeneous architectures and 
development of methods for multiphysics systems easier

 Increased interoperability with other solver libraries 

 More multirate methods, including implicit / explicit schemes

What are we working on now?

Left: Multiphysics many-vector, different 
physics operate on different processes 
and comms coupled with an MPI 
intercommunicator

Right: Data partitioning many-vector, 
each vector utilizes distinct processing 
elements within the same node

PETScSuperLU_DIST
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SUNDIALS: Used Worldwide in Applications from Research & Industry
 Computational Cosmology (Nyx)
 Combustion (PELE)
 Astrophysics (CASTRO)
 Atmospheric dynamics (DOE E3SM)
 Fluid Dynamics (NEK5000) (ANL)
 Dislocation dynamics (LLNL)
 3D parallel fusion (SMU, U. York, LLNL)
 Power grid modeling (RTE France, ISU, LLNL)
 Sensitivity analysis of chemically reacting flows (Sandia)
 Large-scale subsurface flows (CO Mines, LLNL)
 Micromagnetic simulations (U. Southampton)
 Chemical kinetics (Cantera)
 Released in third party packages:
 Red Hat Extra Packages for Enterprise Linux (EPEL)
 SciPy – python wrap of SUNDIALS
 Cray Third Party Software Library (TPSL)

Core collapse 
supernova

Dislocation dynamics Subsurface flow

Cosmology

Atmospheric Dynamics

Used as a combustion 
integrator through AMReX
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SUNDIALS Team
Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Slaven Peles Dan Reynolds Carol Woodward

Radu Serban

Scott Cohen, Scott Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, Steven L. Lee, 
Keith E. Grant, Aaron Collier, Lawrence E. Banks, Steve Smith, Cosmin Petra, 
John Loffeld, Dan Shumaker, Ulrike Yang, James Almgren-Bell, Shelby Lockhart, 
Hilari Tiedeman, Ting Yan, Jean Sexton, and Chris White
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 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline
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 Download the tarball from the SUNDIALS website
— https://computation.llnl.gov/projects/sundials/sundials-software
— Latest (v4.0.1) and archived versions, and individual packages (e.g., CVODE) available
— Most configurable

 Download the tarball from the SUNDIALS GitHub page
— https://github.com/LLNL/sundials/releases
— Latest and archived versions available
— Most configurable

 Install SUNDIALS using Spack 
— “spack install sundials”
— Latest and recent versions available
— Highly configurable via spack variants. E.g., “spack install sundials+cuda”.

 Install SUNDIALS as part of the xSDK using Spack
— “spack install xsdk”
— Will install SUNDIALS v3.2.1

Acquiring SUNDIALS

https://computation.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials/releases
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 Download a SUNDIALS tarball and extract it: tar -xzf package-x.y.z.tar.gz
— Where package is one of: sundials, cvode, cvodes, arkode, ida, idas, or kinsol
— Where x.y.z is the package version number
— The compressed files will be extracted to the directory package-x.y.z

 For the remainder of the tutorial the following conventions will be followed:
— packagedir will refer to the package-x.y.z directory
— builddir will refer to the temporary directory where SUNDIALS is built. This directory cannot be the 

same as packagedir.
— instdir will refer to the directory where SUNDIALS exported header files and libraries will be installed. 

This defaults to /usr/local on Unix systems or C:\Program Files on Windows. This directory cannot be the 
same as packagedir.

 It is required that builddir exists before proceeding with the build process

 Building SUNDIALS minimally requires CMake 3.1.3 or greater and a working C compiler
— Depending on desired options more requirements are imposed

Preparing to Build and Install SUNDIALS from Source
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 In the next few steps, we will use the CMake curses GUI (ccmake) to configure SUNDIALS, 
however, the CMake command-line interface (cmake) or the more interactive CMake Qt GUI 
can also be utilized to obtain the same result.

1. To begin the build process, navigate to builddir and execute the command:  

% ccmake packagedir

2. The CMake GUI will appear empty

3. Press ‘c’ to continue to the default SUNDIALS configuration screen

Building and Installing from Source using Defaults
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1. To begin the build process, navigate to builddir and execute the command:  

% ccmake packagedir

2. The CMake GUI will appear empty

3. Press ‘c’ to continue to the default SUNDIALS configuration screen

4. To build SUNDIALS with the default settings press ‘c’ again followed by ‘g’ to generate

5. The CMake GUI will now be closed and the build process can be completed using make:

% make

% make install

Building and Installing from Source using Defaults
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 SUNDIALS has many configuration options to allow for highly customized builds

 Notably:
— CMAKE_INSTALL_PREFIX and CMAKE_INSTALL_LIBDIR options can be used to set the directory 

where SUNDIALS will be installed
— SUNDIALS_INDEX_SIZE can be used to configure SUNDIALS for 32-bit or 64-bit indexing

• Sets the SUNDIALS type, sunindextype, to the configured size
— SUNDIALS_PRECISION can be used to configure SUNDIALS for single, double, or extended 

precision
• Sets the SUNDIALS type, realtype, to the precision configured

Building and Installing from Source with Non-Defaults
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Let’s enable the MPI SUNDIALS modules and SUNDIALS interfaces to hypre:
1. From the builddir open up the CMake curses GUI (ccmake)
2. Use the arrow keys to navigate to the option MPI_ENABLE
3. Press the ‘enter’ key to toggle the option to “ON”
4. Similarly toggle the option HYPRE_ENABLE to “ON”
5. Press ‘c’ to configure

Building and Installing from Source with Non-Defaults: Example
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Let’s enable the MPI SUNDIALS modules and SUNDIALS interfaces to hypre:
1. From the builddir open up the Cmake curses GUI (ccmake)
2. Use the arrow keys to navigate to the option ENABLE
3. Press the ‘enter’ key to toggle the option to “ON”
4. Similarly toggle the option HYPRE_ENABLE to “ON”
5. Press ‘c’ to configure
6. Use the arrow keys to navigate to the option HYPRE_INCLUDE_DIR and press ‘enter’ to set the 

path to the include directory of the desired HYPRE installation
7. Press ‘enter’ again to finish editing the HYPRE_INCLUDE_DIR option
8. Similarly, set the HYPRE_LIBRARY_DIR option
9. Press ‘c’ to configure followed by ‘g’ to generate
10. The CMake GUI will now be closed and the build process can be completed using make:

% make

% make install

Building and Installing from Source using Non-Defaults
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 The CMake command line interface can be used to generate the same builds of SUNDIALS as the 
CMake curses GUI

 The command line interface is convenient for scripting a SUNDIALS build

 To build SUNDIALS with the default options:
1. Navigate to builddir and run: % cmake packagedir
2. Complete the build process by running: % make && make install

 To build SUNDIALS with MPI and hypre enabled:
1. Navigate to builddir and run: 

% cmake –DMPI_ENABLE=ON –DHYPRE_ENABLE=ON \
% –DHYPRE_INCLUDE_DIR=<hypre include directory> \
% -DHYPRE_LIBRARY_DIR=<hypre library directory> packagedir

2.    Complete the build process by running: % make && make install

CMake CLI Equivalents
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 After building SUNDIALS, it is a good practice to verify that the SUNDIALS build is functional

 From builddir, a user can execute the command make test to run the short SUNDIALS test suite
— Requires CTest and Python version 2.7 or greater

 Details about failed tests can be found in the directories builddir/Testing/output and 
builddir/Testing/Temporary

Verifying a SUNDIALS Build
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 Spack (see https://spack.io/) is another great way to install SUNDIALS

 The SUNDIALS team maintains a spack package that allows a user to easily install SUNDIALS 
with one command: spack install sundials

 The default configuration installed with spack install sundials depends on the environment

 Use the command spack spec sundials to see what SUNDIALS options spack install sundials will 
turn on

 The SUNDIALS spack installation is configured through spack “variants”

 Run spack info sundials to see the available “variants” of SUNDIALS

Installing SUNDIALS with Spack

https://spack.io/
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 Spack (see https://spack.io/) is another great way to install SUNDIALS

 The SUNDIALS team maintains a spack package that allows a user to easily install SUNDIALS 
with one command: spack install sundials

 The default configuration installed with spack install sundials depends on the environment

 Use the command spack spec sundials to see what SUNDIALS options spack install sundials will 
turn on

 The SUNDIALS spack installation is configured through spack “variants”

 Run spack info sundials to see the available “variants” of SUNDIALS available

 SUNDIALS with MPI and hypre enabled can be installed with the command:

% spack install sundials+mpi+hypre

Installing SUNDIALS with Spack

https://spack.io/
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 The Extreme-scale Scientific Software Development Kit (xSDK) provides a foundation for an 
extensible scientific software ecosystem

 As a member of the xSDK, SUNDIALS is installed with the xSDK Spack package

% spack install xsdk

 SUNDIALS v3.2.1 (v4.0.1 is the newest) is included in the latest xSDK release - v0.4.0

 The variant of SUNDIALS included in v0.4.0 of the xSDK utilizes the SUNDIALS spack
package defaults with the following exceptions:
— the index size is changed to 32-bits instead of 64-bits
— hypre support is enabled

 See https://xsdk.info for more information about the xSDK and getting it installed

Installing SUNDIALS via the xSDK

https://xsdk.info/
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 An in-depth guide on building and installing SUNDIALS is contained in the root of all 
SUNDIALS tarballs as INSTALL_GUIDE.pdf

 The guide details how to configure SUNDIALS with CMake as well as every possible 
SUNDIALS CMake option

 The guide can also be found in Appendix A of the user guide for any SUNDIALS package

 Users can also check the sundials-users email list archive at: 
http://sundials.2283335.n4.nabble.com

 Users can post queries to the sundials-users email list.  For more info see: 
https://computation.llnl.gov/projects/sundials/support

More Help Building and Installing SUNDIALS

http://sundials.2283335.n4.nabble.com/
https://computation.llnl.gov/projects/sundials/support
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 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline
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 Basic usage of SUNDIALS integrators

 Supplying initial conditions – vectors

 Supplying the initial-value problem – RHS and residual functions

 Integrator initialization and optional inputs

 Advancing the solutions

 Retrieving optional outputs

 Advanced features

Time Integrators – Outline
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 SUNDIALS’ integrators consider initial-value problems of three basic types:
— Explicit form [CVODE]: 
— Linearly-implicit, split form [ARKODE]:
— Differential-algebraic form [IDA]: 

 By “solve” we mean much more than merely following a recipe for updating the solution; we 
adapt the time step sizes to meet user-specified error tolerances:

— is the estimated temporal error in a given time step
— is the current solution
— encodes the desired relative solution accuracy (number of significant digits)
— is the ‘noise’ level for any solution component (protects against            )

“Solving” Initial-Value Problems with SUNDIALS
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create matrix, linear solver, nonlinear solver objects (if applicable); attach to integrator
— Defaults exist for some of these, but may be replaced with problem-specific versions
— Parallel scalability hinges on appropriate choices (discussed in last portion of tutorial)

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals        , or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 As discussed earlier, all SUNDIALS integrators operate on data through the NVector API.

 Each provided vector module has a unique set of “constructors”, e.g.

N_Vector N_VNew_Serial(sunindextype length);    

N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype loc_len, sunindextype glob_len);

N_Vector N_VMake_Cuda(MPI_Comm comm, sunindextype loc_len, sunindextype glob_len, 
realtype *hdata, realtype *ddata);

N_Vector N_VMake_OpenMPDEV(sunindextype len, realtype *hdata, realtype *ddata);

N_Vector N_VMake_Petsc(Vec v);

N_Vector N_VMake_ParHyp(HYPRE_ParVector x);

 Once an application creates a vector for their data, they fill it with the initial conditions for the 
problem and supply it to the integrator, who “clones” it to create its workspace.

Supplying the Initial Condition Vector(s)
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 Fortran interfaces exist for most SUNDIALS vectors, with similar arguments as in C/C++.  The 
serial, MPI-parallel and hypre NVector constructors are:

CALL FNVINITS(code, len, ier)

CALL FNVINITP(comm, code, loc_len, glob_len, ier)

CALL FNVINITPH(comm, code, loc_len, glob_len, ier)

 The code argument is an INTEGER*4 flag indicating which integrator will use the vector (1 is 
CVODE, 2 is IDA, 3 is KINSOL, 4 is ARKODE).

 ier is an INTEGER*4 return flag indicating success (0) or failure (1) of the constructor.

 The local/global length arguments are INTEGER*8.

 In our existing F77 interfaces we must use global memory to store the actual vector pointers; 
however, upcoming F2003 interfaces will streamline these interfaces (already in place for 
CVODE).

Supplying the Initial Condition Vector(s) – Fortran
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Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is 
specification of the IVP itself:

 CVODE and ARKODE specify the IVP through right-hand side function(s):
int (*RhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data)

SUBROUTINE FCVFUN(T, Y, YDOT, IPAR, RPAR, IER)

 IDA specifies the IVP through a residual function:
int (*ResFn)(realtype t, N_Vector y, N_Vector ydot, N_Vector r, 

void *user_data)
SUBROUTINE FIDARESFUN(T, Y, YDOT, R, IPAR, RPAR, IER)

 In C/C++, *user_data enables problem-specific data to be passed through the SUNDIALS 
integrator and back to the RHS/residual routine (i.e., no global memory).

 In Fortran, this is handled through user-created ipar and rpar work arrays; many F90 codes 
instead use modules to handle user data.

Supplying the IVP to the Integrator – RHS/Residual Functions
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CVODE/ARKODE RHS Functions – C (left) and F90 (right)

Left: cvDisc_dns.c;   Right: ark_bruss.f90
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IDA Residual Function – C (left) and F77 (right)

fidaRoberts_dns.fidaFoodWeb_kry_p.c
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When solving an IVP with non-identity mass matrix, users must supply either a routine to 
construct a mass matrix                    : 

int (*ARKLsMassFn)(realtype t, SUNMatrix M, void *user_data, 
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

SUBROUTINE FARKDMASS(N, T, M, IPAR, RPAR, TMP1, TMP2, TMP3, IER)

or to perform the mass-matrix-vector product,                          :

int (*ARKLsMassTimesSetupFn)(realtype t, void *mtimes_data);

int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, 
void *mtimes_data);

SUBROUTINE FARKMTSETUP(T, IPAR, RPAR, IER)

SUBROUTINE FARKMTIMES(V, MV, T, IPAR, RPAR, IER)

Supplying the IVP to ARKODE – Mass Matrix Functions
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The IVP inputs are supplied when constructing the integrator.

Initializing the Integrators from C/C++

CVODE (top) and IDA (bottom) ARKODE IMEX (top), implicit (middle), 
explicit (bottom)
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 Fortran users must provide problem-defining 
functions with specific names (FCVFUN, 
FIDARESFUN, FARKEFUN, FARKIFUN).

 Integrator options are specified with integer 
flags to the integrator’s F*MALLOC routine.

 This is where the IPAR and RPAR user 
parameter arrays are supplied to the 
integrators, as well as initial time and initial 
condition(s).

 Additional IOUT and ROUT arrays are supplied 
to store solver statistics (returned from the 
integrators).

Initializing the Integrators from Fortran
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A variety of optional inputs enable enhanced control over the integration process.  Here we 
discuss the most often-utilized options (see documentation for the full set).

 Tolerance specification – rtol with scalar or vector-valued atol, or user-specified routine to 
compute the error weight vector

 SetNonlinearSolver, SetLinearSolver – attaches desired nonlinear solver, linear solver and 
(optionally) matrix modules to the integrator.

 SetUserData – specifies the (void *user_data) pointer that is supplied to user routines.

 SetMaxNumSteps, SetMaxStep, SetMinStep, SetInitStep – provides guidance to time step adaptivity 
algorithms.

 SetStopTime – specifies the value of tstop to use when advancing solution (this is retained until 
this stop time is reached or modified through a subsequent call).

Optional Inputs (all Integrators)
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 SetConstraints – allows for setting positivity/negativity constraints on solution components.

 SetMaxOrd – specifies the maximum order of accuracy for the method (the order is adapted 
internally, along with the step size).

 CalcIC (IDA-specific) – in certain cases will help find a consistent     .

— A variety of additional routines may be used for additional control over this algorithm.

 SetId (IDA-specific) – specifies which variables are differential vs algebraic (useful when calling 
CalcIC above).

Package-Specific Options (CVODE and IDA)
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 SetFixedStep – disables time step adaptivity (and temporal error estimation/control).

 SetLinear – f1(t,y(t)) depends linearly on y (disables nonlinear iteration).

 SetOrder – specifies the order of accuracy for the method.

 SetTables – allows user-specified ERK, DIRK or ARK Butcher tables.

 SetAdaptivityFn – allows user-provided routine for time step selection.

 New multi-rate time-stepping module, MRIStep – f1(t,y(t)) and f2(t,y(t)) are evolved with different 
user-specified time step sizes.

Package-Specific Options (ARKODE)
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After constructing the integrator, additional options may be supplied through various “Set” 
routines (example from ark_heat1D_adapt.c):

Supplying Options to the Integrators (C/C++)
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C/C++ users may construct custom Butcher tables and supply these to the integrator:

ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p,
realtype *c, realtype *A, realtype *b, realtype *b2);

int ARKStepSetTables(void *arkode_mem, int q, int p,
ARKodeButcherTable Bi, ARKodeButcherTable Be);

Fortran users instead provide the arrays directly:

CALL FARKSETERKTABLE(s, q, p, c, A, b, b2, ier)

CALL FARKSETIRKTABLE(s, q, p, c, A, b, b2, ier)

CALL FARKSETARKTABLES(s, q, p, ci, ce, Ai, Ae, bi, be, b2i, b2e,ier)

In each, “A” is assumed to be an array of length s2, stored in row-major order.

Supplying Custom Butcher tables to ARKODE
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 After calling F*MALLOC, Fortran users supply 
most optional inputs through calling F*SETIIN and 
F*SETRIN routines with a set of pre-defined flags 
(MAX_NSTEPS, MAX_ERRFAIL, etc.).

 Integer inputs are required to correspond to the 
C type “long int” (typically, INTEGER*8)

 Real inputs are required to correspond to the C 
type “double” (typically, REAL*8)

 IER is always an INTEGER*4 flag indicating 
success (0) or failure (1) of the “Set” routine.

Supplying Options to the Integrators (Fortran)
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While     is supplied at initialization, the direction of integration is specified on the first call to 
advance the solution toward the output time       .  This may occur in one of four “usage modes”:

 Normal – take internal steps until        is reached or overtaken in the direction of integration, 
e.g. for forward integration                           ;  the returned solution            is then computed by 
interpolation.

 One-step – take a single internal step                    and then return control back to the calling 
program. If this step will overtake        then             is interpolated; otherwise      is returned.

 Normal + TStop – take internal steps until the next step will overtake         ; limit the next 
internal step so that                .  No interpolation is performed.

 One-step + TStop – performs a combination of both “One-step” and “TStop” modes above.

Usage Modes for SUNDIALS Integrators
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Once all options have been set, the integrator is called to advance the solution toward tout.

Advancing the Solution

C/C++ on left;  Fortran on right
CVODE top, IDA middle, ARKODE bottom
Fortran’s ITASK provides the *_NORMAL or 
*_ONE_STEP argument.
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Either between calls to advance the solution, or at the end of a simulation, users may retrieve a 
variety of optional outputs from SUNDIALS integrators.

 GetDky (Dense solution output) – using the same infrastructure that performs interpolation in

“normal” use mode, users may request values              for                       , where                      .

 Time integration statistics:
— GetNumSteps – the total number of internal time steps since initialization
— GetCurrentStep – the current internal time step size
— GetCurrentTime – the current internal time (since this may have passed       )
— GetCurrentOrder (IDA/CVODE) – the current method order of accuracy
— GetActualInitStep – the size of the very first internal time step
— GetNumErrTestFails – the number of steps that failed the temporal error test
— GetEstLocalErrors – returns the current temporal error vector,

Optional Outputs
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 GetNumNonlinSolvIters – number of nonlinear solver iterations since initialization.

 GetNumNonlinSolvConvFails – number of nonlinear solver convergence failures.

 GetNumLinSolvSetups – number of calls to setup the linear solver or preconditioner.

 GetNumLinIters – number of linear solver iterations since initialization.

 GetNumLinConvFails – number of linear solver convergence failures.

 GetNumJacEvals, GetNumJtimesEvals, GetNumPrecEvals, GetNumPrecSolves – the number of calls to 
user-supplied Jacobian/preconditioner routines.

Optional Outputs – Algebraic Solver Statistics
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 GetTolScaleFactor – returns a suggested factor for scaling the user’s rtol, atol values.

 GetErrWeights – returns the current error weight vector,            .

 GetWorkspace – returns the memory requirements for the integrator.

 GetLinWorkspace – returns the memory requirements for the linear solver.

 GetNumRhsEvals, GetNumResEvals – returns the number of calls to the IVP RHS/residual 
function(s) by the integrator (nonlinear solve and time integration).

 GetNumLinRhsEvals, GetNumLinResEvals – returns the number of calls to the IVP RHS/residual 
function(s) by the linear solver (Jacobian or Jacobian-vector product approximation).

Optional Outputs – Miscellaneous Feedback
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Retrieving Output from the Integrators (C/C++)

Left: scalar-valued solver statistics from 
cvAdvDiffReac_kry.c

Right: dense solution output from 
cvDisc_dns.c
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Retrieving Output from the Integrators (Fortran)

Example from fidaRoberts_dns.f:

• The iout and rout arrays, passed to the 
F*MALLOC routines, are filled with 
solver statistics at the end of each call 
to advance the solution.

• The required lengths of these 
INTEGER*8 and REAL*8 arrays are 
specified in each package’s 
documentation
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This tutorial is only the beginning; SUNDIALS also supports a number of ‘advanced’ features to 
examine auxiliary conditions, change the IVP, and improve solver efficiency.

 Root-finding – while integrating the IVP, SUNDIALS integrators can find roots of a set of 
auxiliary user-defined functions                                       ; sign changes are monitored between 
time steps, and a modified secant iteration is used (along with GetDky) to home in on the roots.

 Reinitialization – allows reuse of existing integrator memory for a “new” problem (e.g., when 
integrating across a discontinuity, or integrating many independent problems of the same size).  
All solution history and solver statistics are erased, but no memory is (de)allocated.

 Resizing (ARKODE) – allows resizing the problem and all internal vector memory, without 
destruction of temporal adaptivity heuristic information or solver statistics.  This is primarily 
useful when integrating problems with spatial adaptivity.

 Sensitivity Analysis (CVODE/IDA) – allows computation of solution sensitivities with respect to 
problem parameters (see overview portion of Tutorial for additional information).

Advanced Features
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 Overview of SUNDIALS (Carol Woodward)

 How to download and install SUNDIALS (Cody Balos)

 How to use the time integrators (Daniel Reynolds)

 Which nonlinear and linear solvers are available and how to use them (David Gardner)

Tutorial Outline
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 SUNDIALS’ implicit integrators solve one or more nonlinear systems each time step using 
generic nonlinear and linear solver operations.

 SUNDIALS provides two nonlinear solver modules and several linear solver modules:
— Nonlinear: Newton (default) and Fixed Point with optional Anderson acceleration
— Linear (direct): Dense, Band, LAPACK Dense/Band, KLU, and SuperLU_MT
— Linear (iterative, scaled): GMRES, FGMRES, TFQMR, BiCGStab, Conjugate Gradient

 It is also straightforward to provide problem-specific nonlinear and linear solver modules:
— The solver content data structure is stored as a “black-box” pointer (void *)
— Solver operations are implemented at the user level, with corresponding function pointers 

stored in the solver ops structure
— Not all operations are required and unneeded operations may be set to NULL; required 

routines are clearly documented in the user guide

Nonlinear and Linear Solvers in SUNDIALS – Overview
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 SUNDIALS’ implicit integrators require solving the nonlinear systems:

— CVODE: 

— ARKODE:

— IDA:

 By default the integrators solve                with a Newton iteration:

 A general linear solver is also needed when using ARKODE with a non-identity mass matrix.

Newton Solver

These can all be posed as a 
generic root-finding problem

Requires solving a general 
linear system each iteration
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 When using the default nonlinear solver (Newton), users only need to create and attach the 
desired linear solver object.

 The variant of Newton’s method employed depends on the linear solver type:

— Direct: a matrix object is required and the solver computes the “exact” solution to the linear 
system defined by the matrix. 

— Iterative (matrix-free): a matrix object is not required and the solver computes an inexact 
solution to the linear system defined by the Jacobian-vector product routine.

— Matrix-Iterative (matrix-based): a matrix object is required and the solver computes an 
inexact solution to the linear system defined by the matrix.

 SUNDIALS provides several direct and iterative linear solver modules. 

 Users may supply problem-specific direct, iterative, or matrix-iterative modules.

Linear Solver Types



68
LLNL-PRES-765149

 Direct linear solvers require the use of a compatible matrix module.

 When used with a direct linear solver the Newton iteration is a modified Newton iteration. 

— The Jacobian is updated infrequently to amortize the cost of matrix construction.

— Optional integrator inputs are provided to adjust the Jacobian update frequency.

Direct Linear Solvers

SUNDIALS Matrix Modules

DENSE BAND SPARSE

SUNDIALS Direct Linear Solver Modules

DENSE SUPERLU_MTBAND KLULAPACK 
DENSE

LAPACK 
BAND
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton,” step 4 would consist of:

a) Create an NxN SUNMatrix object
— SUNMatrix A = SUNDenseMatrix(N, N)
— SUNMatrix A = SUNBandMatrix(N, upperwidth, lowerwidth)
— SUNMatrix A = SUNSparseMatrix(N, N, NNZ, type)

b) Create the SUNLinearSolver object (* is the solver name)
— SUNLinearSolver LS = SUNLinSol_*(y, A,…)

c) Attach the linear solver to the integrator (* is the integrator prefix)
— ier = *SetLinearSolver(mem, LS, A)

Creating & Attaching a Direct Linear Solver
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton” step 5 could include the following optional inputs:

— SetJacFn – specifies a user-supplied function for evaluating the Jacobian.

• With dense and banded matrices the Jacobian of the IVP function may be computed 
internally with finite differences (default) or by a user-supplied function.

• Sparse and user-supplied matrices require a user-supplied function to compute the 
Jacobian of the IVP function.

— SetMaxStepsBetweenJac – (CVODE and ARKODE) – specifies the number of steps to wait 
before recomputing the Jacobian in a call to the linear solver setup routine.

— SetMaxStepsBetweenLSet – (ARKODE) – specifies the number of steps between calls to the 
linear solver setup routine to potentially recompute the Jacobian of the IVP function. 

Direct Linear Solver Options
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 Example using a dense matrix, dense linear solver, and user supplied Jacobian routine.

examples/cvode/serial/cvRoberts_dns.c
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 SUNDIALS iterative linear solvers support scaling and preconditioning, as applicable, to 
balance the error between solution components and to accelerate convergence. 
— For linear solvers that do not support scaling, the linear solver tolerance supplied is adjusted 

to compensate, but may be non-optimal when components vary dramatically.

 When used with an iterative linear solver the Newton iteration is an inexact Newton iteration.
— The linear system is solved to a specified tolerance and the preconditioner is updated 

infrequently to amortize cost.
— Optional integrator inputs are provided to adjust the linear tolerance and the frequency with 

which the preconditioner is updated.

Iterative Linear Solvers

SUNDIALS Iterative Linear Solvers

SPTFQMR SPBCGSPFGMR PCGSPGMR
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create linear solver object; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNLinearSolver object (* is the solver name)
— SUNLinearSolver LS = SUNLinSol_*(y, pretype, maxl)

b) Set linear solver optional inputs (* is the solver name and ** is the option name)
— Call SUNLinSol_*Set** functions to change solver specific optional inputs

c) Attach the linear solver (* is the integrator prefix; note that a NULL matrix is supplied)
— ier = *SetLinearSolver(mem, LS, NULL)

Creating & Attaching an Iterative Linear Solver
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 Solver specific options include:

— SetGSType – (GMR and FGMR) – sets the Gram-Schmidt orthogonalization type (CLASSICAL
or MODIFIED); the default is modified Gram-Schmidt.

— SetMaxRestarts – (GMR and FGMR) – sets the max number of GMRES restarts; the default 
is 0.

— SetMaxl – (BCGS, TFQMR, and PCG) – updates the number of linear solver iterations; the 
default is 5.

Iterative Linear Solver Options
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create linear solver object; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton” step 5 could include the following optional inputs:

— SetJacTimes – set user-supplied Jacobian-vector product setup and times functions.
• By default Jacobian-vector products are computed internally using a finite difference

— SetEpsLin – specifies the scaling factor used to set the linear solver tolerance.

— SetPreconditioner – set the preconditioner setup and solve functions. See the next slide for 
more details.

— SetMaxStepsBetweenJac – (CVODE and ARKODE) – specifies the number of steps to wait 
before recommending to update the preconditioner. 

— SetMaxStepsBetweenLSet – (ARKODE) – specifies the number of steps between calls to the 
linear solver setup routine to potentially update the preconditioner. 

Iterative Linear Solver Options
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 The SetPreconditioner function sets the preconditioner setup and solve functions:

— The preconditioner setup function preprocesses and/or evaluates Jacobian-related data 
needed by the preconditioner. CVODE/ARKode example: 

LsPrecSetupFn(realtype t, N_Vector y, N_Vector fy, booleantype jok, 
booleantype* jcurPtr, realtype gamma, void* user_data)

— The preconditioner solve function solves the preconditioner system Pz = r. CVODE/ARKode 
example: 

LsPrecSolvFn(realtype t, N_Vector y, N_Vector fy, N_Vector r, 
N_Vector z, realtype gamma, realtype delta, int lr, 
void* user_data)

Iterative Linear Solvers – Supplying a Preconditioner
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 Example using GMRES with restarts and a user supplied block diagonal preconditioner.

examples/ida/parallel/idaFoodWeb_kry_p.c
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 Block diagonal 
preconditioner 
functions.

 Setup: Precondbd
— Update 

Jacobian
— Factor diagonal 

blocks

 Solve: Psolvebd
— Solve the 

preconditioning 
system Pz=r

examples/ida/parallel/idaFoodWeb_kry_p.c
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 The ark_heat2D_hypre.cpp example demonstrates how to interface a problem-specific linear solver with 
a SUNDIALS integrator using the matrix-iterative linear solver type:
— Matrix is supplied
— Solve uses an iterative method

 This ARKODE example uses the default Newton iteration with hypre matrices, linear solvers, and 
preconditioners:
— Creates a SUNMatrix wrapper for a hypre structured grid matrix
— Creates a SUNLinearSolver wrapper for the hypre PCG solver with PFMG preconditioner

 When used with a matrix-iterative linear solver the Newton iteration is a modified Newton iteration and the 
Jacobian is updated infrequently to amortize the cost of matrix construction.

 The matrix-iterative type combines aspects of the dense and iterative types. As such, optional integrator 
inputs for both dense and iterative solvers apply to matrix-iterative solvers.

User-supplied Matrix-Iterative Linear Solver



84
LLNL-PRES-765149

 Constructor – creates a new matrix.

 GetID(A) – returns the matrix type.

 Clone(A) – returns a new matrix of the same type as A.

 Destroy(A) – frees memory allocated when creating A.

 Space(A, liw, lrw) – returns the storage requirements of A.

 Zero(A) – sets all entries of A to zero.

 Copy(A, B) – copies all entries from A to B.

 ScaleAdd(c, A, B) – performs the operation A=cA+B.

 ScaleAddI(c, A) – performs the operation A=cA+I.

 Matvec(A, x, y) – performs the operation y=Ax.

Creating a SUNMatrix Wrapper

Key:
Always required
Sometimes required
Optional
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 Constructor continued Header defining a generic SUNMatrix

 Matrix specific content structure

 Constructor to create a new matrix

// Fill content

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
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 Examples of some matrix operation implementations

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
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 Constructor – creates a linear solver object and performs memory allocation as needed.

 GetType – returns the linear solver type.

 Initialize – initializes the linear solver and performs additional allocation as needed.

 Setup – called infrequently to update the Jacobian or preconditioner information.

 Solve – solves the linear system Ax=b.

 Free – frees any memory allocated by the linear solver.

Creating a SUNLinearSolver Wrapper – Core Functions

Key:
Always required
Sometimes required
Optional
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 Constructor continued Header defining a generic SUNLinearSolver

 Linear solver specific content structure

 Constructor to create a new linear solver

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

// Fill content
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 Examples of linear solver operation implementations (some details omitted; see code for complete functions) 

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
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 SetATimes – sets the function for computing Jacobian-vector products in iterative solvers.

int (*ATimesFn)(void *A_data, N_Vector v, N_Vector z)

 SetPreconditioner – sets the preconditioner setup and solve functions called by iterative or 
matrix-iterative solvers.

int (*PSetupFn)(void *P_data)

int (*PSolveFn)(void *P_data, N_Vector r, N_Vector z,
realtype tol, int lr)

 SetScalingVectors – sets the scaling vectors used in iterative or matrix-iterative solvers.

— SUNDIALS provided iterative linear solvers solve a transformed system:

Creating a SUNLinearSolver Wrapper – Set Functions

Key:
Always required
Sometimes required
Optional
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 NumIters – returns the number of iterations in the last solve call.

 ResNorm – returns final residual norm from the last solve call.

 Resid – returns preconditioned initial residual vector.

 LastFlag – returns the last error flag encountered within the linear solver.

 Space – returns the storage requirements of the linear solver.

Creating a SUNLinearSolver Wrapper – Get Functions

Key:
Always required
Sometimes required
Optional
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 Examples of linear solver get operation implementations

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create matrix and linear solver objects; attach to integrator
— Using the default Newton nonlinear solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNMatrix object
— SUNMatrix A = MyNewMatrix(…)

b) Create the SUNLinearSolver object
— SUNLinearSolver LS = MyNewLinearSolver(…)

c) Attach the linear solver
— ier = *StepSetLinearSolver(mem, LS, A)

d) Set the function to compute the Jacobian
— ier = *StepSetJacFn(mem, J)

Creating & Attaching the User-supplied Linear Solver
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 Example using hypre structured matrix, linear solver (PCG), and preconditioner (PFMG).

examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp
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 With CVODE and ARKODE (when M = I) the nonlinear systems can also be written as:

— CVODE:

— ARKODE:

 Users can elect to use a fixed point method to solve               .
— Jacobian information and a linear solver are not required in this case
— Convergence can be accelerated using Anderson’s method

Fixed Point Solver

These can both be posed as a 
generic fixed-point problem
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create nonlinear solver object; attach to integrator
— Using the Anderson accelerated fixed point solver

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 In the “Usage Skeleton,” step 4 would consist of:

a) Create the SUNNonlinearSolver object
— SUNNonlinearSolver NLS = SUNNonlinSol_FixedPoint(y, m)

b) Attach the nonlinear solver (* is the integrator prefix)
— flag = *SetNonlinearSolver(mem, NLS)

Fixed Point Solver
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create nonlinear solver object; attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [a,b], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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 SetMaxNonlinIters – sets the maximum number of nonlinear iterations.

 SetNonlinConvCoef – specifies the scaling factor used to set the nonlinear solver tolerance.

 Additional ARKODE options:

— SetNonlinear – specifies if the implicit system nonlinear/linear.

— SetNonlinCRDown – sets the nonlinear convergence rate constant.

— SetNonlinRDiv – sets the nonlinear divergence ratio.

Nonlinear Solver Options



101
LLNL-PRES-765149

 Example using Anderson accelerated fixed point solver with non-default max iterations.

examples/arkode/C_serial/ark_brusselator_fp.c
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 Constructor – creates a nonlinear solver object and performs memory allocation as needed.

 GetType – return the solver type, ROOTFIND, for F(y) = 0 and FIXEDPOINT for G(y) = y. 

 Initialize – initializes the nonlinear solver and performs additional allocation as needed.

 Setup – called before each step attempt to perform any nonlinear solver setup.

 Solve – solve the nonlinear system F(y) = 0 or G(y) = y.

 Free – frees any memory allocated by the nonlinear solver.

Creating a SUNNonlinearSolver Wrapper – Core Functions

Key:
Always required
Sometimes required
Optional
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 SetSysFn – allows the integrator to provide the nonlinear system function F(y) or G(y). 

 SetConvTestFn – sets the nonlinear iteration convergence test function.

 SetMaxIters – sets the maximum number of iterations. 

 GetNumIters – returns the total number of nonlinear iterations. 

 GetCurIter – returns the current iteration number. 

 GetNumConvFails – returns the number of convergence failures.

Creating a SUNNonlinearSolver Wrapper – Set and Get Functions

Key:
Always required
Sometimes required
Optional
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 If the nonlinear solver uses a SUNDIALS linear solver, then following functions are required.

 SetLSetupFn – allows the integrator to attach the linear solver setup function to the nonlinear 
solver

int (*LSetupFn)(N_Vector y, N_Vector F, booleantype jbad,
booleantype* jcur, void* mem)

 SetLSolveFn – allows the integrator to attach the linear solver solve function to the nonlinear 
solver

int (*LSolveFn)(N_Vector y, N_Vector b, void* mem)

Creating a SUNNonlinearSolver Wrapper – Linear Solver Interface

Key:
Always required
Sometimes required
Optional
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