IPDPS 2013, 5/21/2013

Efficient and Scalable Retrieval Techniques
for Global File Properties

Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Michael J. Brim and
Gregory L. Lee, Matthew P. LeGendre, B_artqn P. I_VIiIIe_r
Adam Moody, and Martin Schulz University ol S

Lawrence Livermore National Laboratory

ug Lawrence Livermore
National Laboratory

i WISCONSIN

\\\T’// UNIVERSITY OF WISCONSIN-MADISON

-

-
. BT BB L

— k:';"'.',
o

q P e
'---‘ 15 3
AT e

LLNL-PRES-636652

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. It
was supported in part by Department of Energy grants DE-
SC0004061, 07ER25800, DE-SC0003922, DESC0002153, DE-
SC0002154, and DE-SC0002155.

Efficient file accesses are becoming
Increasingly important and challenging

Large-scale system sizes continue to grow

This exponential growth in concurrency makes efficient file
accesses increasingly important

But optimizing file accesses require detailed run-time knowledge of
file systems and location(s) of files on them

HPC does not have a common, scalable way to retrieve such
global file information

Program start-up manifested as a denial-of-
service attack: A lesson learned

KULL: a large, mission-critical multi-physics simulation code

When this application was first run on DAWN, program start-up
appeared to scale very poorly

Start-up significantly disrupted the entire computing facility

16,384 instances of the dynamic loader (Id.so) were making
combined 300 million open calls to an NFS server

« 16K X 20 (lib search paths) X ~1000 (dependent shared libs) = 300M !

LLLLLLLLLLLLLLLL

All software elements on extreme-scale
machines must efficiently use file systems

= Challenges go beyond large dataset access patterns: dynamic
loader, run-time tools, input-deck readers, scripting languages etc

= Must optimize their file access schemes and consider a trade-off
between communication and file accesses

= Optimization requires detailed run-time information of file systems
and location(s) of files on them

= Non-trivial: today’s machines mount many file systems with different
performance characteristics

Need scalable, general-purpose mechanisms and
abstractions to retrieve global file properties:

Fast Global File Status (FGFS)

The trade-off space: HPC file distribution
models introduce many different issues

Uniquely Served Fully Distributed

* Scalability » Consistency

* Latency Emerging Issues » * Space
* Per-node info * Info sharing

FGFES Is a query layer that assists HPC
software in making |/O trade-off decisions

Loader, runtime tools, scripting languages, applications ICS
| —

- Global File 1/O Coordinator
Communication IPDPS

Fabrics Fast Global File Status

File Systems

= Responsible for scalably classifying files and file systems
= Supports I/O trade-off decisions for a wide range of HPC software

= Directly with the software itself or through a global file I/O coordinator

Key idea for scalability: extracting global
properties through name comparisons

Node 1 Node N
[foo/bar i [foo/bar
nfs://s1-nfs.linl.gov:/a/foo/bar ‘ |nfs://sZ-nfs.IInI.gov:/b/foo/bar
E. ~- J

Is this file uniquely served?
Is this file fully distributed?
Will N simultaneous accesses thrash file systems or not?

- y

MountPointAttributes resolves a local file path
Into URI with no file-system access

string & resolvePath(const char *pth) {
string uriStr; nodel

FileUrilnfo urilnfo; _ .
void manageConfigs() {

char *lid1="/etc/tool/conf";

char *lid2="/usr/etc/tool/conf";
char *lid3="/home/joe/.tool/conf";
char *lid4="/Iscracta/|_cwd/conf";

MountPointinfo mpinfo(true);
mplinfo.getFileUrilnfo(pth, urilinfo);
urilnfo.getUri(uriStr);

return uriStr;
} I file://nodel/etc/tool/conf I

L—~—sting gidl = resolvePath(lid1);

/smg-ggidz = resolvePath(lid2);

I nfs://s1-nfs.linl.gov:/e/usr/etc/tool/conf I St 9?d3 = reSO|VePath(|?d3)i
string, gid4 = resolvePath(lid4);
I nfs://dip-nfs.linl.gov:/vijoel.tool/conf I/
I lustre://172.16.60.200:/tmp/]_cwd/conf I J

8
'& @ LLNL-PRES-636652

Global File Status queries capture our HPC file
distribution models and pertaining issues

= The global namespace forms a reference space where parallel
name comparisons extract global properties

- the number of different sources
 the process count and the representative process of each source

= FgfsParDesc is a primitive that returns this info

= GlobalFileStatusAPI exposes the HPC file distribution models
« isUnique(), isFullyDistributed()
« isWellDistributed(), isPoorlyDistributed|()
 isConsistent()

= Support for both synchronous and asynchronous 1/O patterns
- SyncGlobalFileStatus
« AsyncGlobalFileStatus

A highly scalable reduction algorithm extracts
the degree of file distribution or replication

file o==2 {(URI(file)o, URI(file)y, ..., URI(file),_1}

Rme {UniqueURI(file)y, ..., UniqueURI(file),,}

Cardinality/Group-info of the reduced list conveys a global structure

A representative of each unique source helps minimize file accesses

A tree-based parallel reduce for the general case
« But scales like concatenation with too many unique names

A multilevel triaging scheme imposes a scalability bound
« First level: a fix-sized boolean reduce to determine isFullyDistributed()

Next refinement: Bloom-filter-based cardinality
estimation

Node 1 Node N

‘nfs://sl-nfs.llnl.gov:/a/foo/bar ‘ | nfs://s2-nfs.linl.gov:/b/foo/bar |

B\

1'0,0/0 1/0/0!0 I 0/1,0/0, 0 0 10

Local BF Local BF

11,0 1/0/0/1 1

t
In(1-)
k An(1——)
« m num of bits, t is the num of true bits, and k is the num of hash functions

= Set the Bloom-filter density to be 50% with respect to the worse case
« The worst case for billion-core machine needs ~150KB

= Maximum likelihood cardinality estimation:

11
LLNL-PRES-636652

Global file systems status queries retrieve file
systems that meet global properties requirements

= |nverse function of global file status queries

« Given a set of required global properties of a file system, what are the best
matching locations?

GlobalFileSystemsStatus

 Is passed a FileSystemCriteria object

- Mandatory space requirement, and optional speed, distribution, and
scalability requirements

= A scoring function estimates performance and orders qualified file systems
Scalability(file system)

Max(Scalability(file system), Distribution(file system)) * Speed(filesyRiel

{ 12
\ LLNL-PRES-636652

Our experiments are to evaluate FGFS’
capability of assisting file access optimization

= Primary evaluation goals
« The performance and scalability of various FGFS queries
« The effectiveness and utility of FGFS on a variety of HPC software

= Controlled experiments and three case studies
« Benchmark FGFS performance on three multi-physics applications
« Integrate FGFS to HPC elements with vastly different characteristics

= Ran on Linux clusters installed at LLNL
« 2-socket x 8-core Intel Sandy Bridge (2.6GHz) with 32 GB of RAM
« The largest cluster (Zin) with up to 2,916 compute nodes = 46,656 cores
« Qlogic Infiniband QDR interconnect

[14
\ LLNL-PRES-636652

t file status queries on KULL (w/ 848 sh:
ries) complete in 272 msecs at 32K pro¢

AsyncGlobalFileStatus(MPI)

SyncGlobalFileStatus(MPI)

40000

0.04 0.3
0.035 A "
/ 0.25
0.03 . /
. 0.025 .02 /
E 2
g 0.02 g 0.15 —
3 0.015 ——isUnique 3
' 0.1 o
0.01 -m-isPoorlyDistributed { —+isUnique
' : o 1 -#-isPoorlyDistributed
- —+—isWellDistributed 0.05 —iic\WallNistrihited
SyncGlobalFileStat's isConsistent Query - Serial vs. FGFS consistency ed
1000 800
8
700
7 o —
6 / 600 r
3 5 A~ 500 *
'c (%)
5 / 2
o4 : : S 400
$ 3 / —+isConsistent g 200 =4=isConsistent(Serial)
2 // 200 l - ~isConsistent(FGFS)
1
/ 100
0 [[[| 0
T » m o omomomm aa
0 10000 20000 30000 40000 1 35 1024 32768
Number Of Processes Number of Processes

LLNL-PRES-636652

FGFS addressed a scalability challenge In
STAT’s accessing of file systems

Log scaling with R? = .958 3200

Attach +Sample Time

B Direct Access

80
70
60

W/ File Broadcasting

W File Broadcast

H attach
m sample

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

Num of MPI processes

32 64 128 256512 1K 2K 4K 8K 16K 32K
Num of MPI processes

CULL (with big executable mode)

FGFS serves as a key component of a novel
massive parallel loading service

SPINDLE (Scalable Parallel Input Network for Dynamic Loading
Environment)

SPINDLE file-cache servers form a tree-based network and
coordinate file-system accesses of the dynamic loader.

SPINDLE servers use AsyncGlobalFileStatus to choose between
a direct file-system access and file broadcasting.

The Pynamic benchmark was shown to scale well up to 15,360 MPI
processes with no disruption to shared file systems

We will present details of SPINDLE at ICS
(6/10/13 - 6/14/13, Eugene, Oregon).

LLLLLLLLLLLLLLLL

FGFES facilitates efficient, non-disruptive use of file
systems for a wide range of HPC software

= Efficient files accesses are increasingly important and challenging

= Developed Fast Global File Status as a scalable, portable
mechanism to retrieve global information on files or file systems

= FGFS queries are highly scalable and provide orders-of-magnitude
Improvements over traditional approaches

= Various case studies suggest that FGFS can be effective for a wide
range of HPC software elements

= FGFS will deeply be integrated into various HPC software systems,
extending its benefits to many essential elements of HPC
« MountPointAttributes has been released:
http://dongahn.github.io/MountPointAttributes
« Other components coming soon.

- .

{ 19
\ LLNL-PRES-636652

http://dongahn.github.io/MountPointAttributes
http://dongahn.github.io/MountPointAttributes

B Lawrence Livermore
National Laboratory

