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Large-Scale, Highly Heterogeneous, Variably

Saturated Flow Problems ?
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Abstract

In this paper, we present a class of solvers developed for the parallel solution of

Richards' equation, a model used in variably saturated ow simulations. These

solvers take advantage of the fast, robust convergence of globalized Newton meth-

ods as well as the parallel scalability of multigrid preconditioners. We compare two

multigrid methods. The methods di�er primarily in their handling of discontinuous

and anisotropic permeability �elds, with one method invoking a simple pointwise

smoothing technique and the other a more expensive plane smoother. Computa-

tional results are presented to show the e�ectiveness of the entire nonlinear solution

procedure, to demonstrate the e�ect of discontinuities and anisotropies, and to ex-

plore parallel eÆciencies.

Key words: Variably saturated ow, Richards' equation, preconditioning,

Newton{Krylov, multigrid, anisotropy

1 Introduction

In recent years we have observed an increase in attention to modeling the ow

of water through variably saturated porous media. This increase arises from

heightened interest in managing limited water resources, in �nding appropriate

sites for waste facilities and in evaluating the impact of current sites on local
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groundwater systems. One way to gain an understanding of the groundwater

systems at these sites is through computer simulations of subsurface ow.

However, understanding water movement in these sites usually requires full

regional models. These models are challenging to solve numerically, as they

have extremely large numbers of spatial zones (usually in the millions), and

they exhibit nonlinearities and large variations in equation coeÆcients.

The nonlinearities generally necessitate some sort of iteration for solution of

the discrete equations at each time step. These iterations require the solution

of large, nonsymmetric linear systems. In addition, the variation in equation

coeÆcients makes these linear systems diÆcult for many traditional methods

to solve. Typically, the large variation in coeÆcients is due to the use of a geo-

statistical model for permeability, allowing many orders of magnitude change

in the permeability from one cell to the next (heterogeneity) as well as corre-

lations of values in each direction (statistical anisotropy). High heterogeneity

and anisotropy in the problem coeÆcients make the problem diÆcult to solve

numerically.

In addition, the timely solution of high-resolution discretizations of these

region-scale problems requires scalable algorithms. An algorithm is scalable

if the computational complexity is on the order of the number of unknowns,

O(N), and not some power of this number. For example, Gaussian elimina-

tion requires O(N3) operations, so doubling the number of unknowns multi-

plies the computational work by 8. This algorithm is not scalable because the

computational work increases exponentially with problem size. Some multigrid

methods, however, have computational complexities of O(N). So, doubling the

number of unknowns only doubles the computational work. If this algorithm

is implemented well on a parallel computer, we might expect that doubling

the number of unknowns and the number of processors leaves us with a fairly

constant computation time. Thus, we pursue scalable algorithms with the goal

of e�ectively using parallel computation to solve large-scale variably saturated

ow problems.

Many authors have considered solution methods for models of variably sat-

urated ow [8,15,18,25,19,21,28]. In particular, Celia, Bouloutas and Zarba

developed the modi�ed Picard method which solves the nonlinearities in the

problem while maintaining global conservation of mass using a �nite element

method [8]. However, this method does not exhibit local mass conservation.

Tocci, Kelley and Miller proposed solution of the Richards' equation model

using the method of lines approach for time discretization, �nite-di�erences for

the spatial discretization and Newton's method for solving the nonlinearities

at each time step [25]. They, together with Williams, addressed some subtleties

of using the Newton's method approach with interpolated approximations to

saturation and relative permeabilities in [19]. They did not, however, address

the issues of highly resolved, large-scale domains. Ross and Bristow [21] con-
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sidered using the Kirchho� transformation in order to better approximate the

solution in cases where the absolute permeability is a discontinuous function

of space. In [28] Williams, Miller and Kelley extended this work to a family

of transformation methods.

With either a �nite di�erence or �nite element discretization method, a dis-

crete system of coupled, nonlinear equations must be solved at each time step.

The solvers to be used must handle highly heterogeneous and anisotropic me-

dia, as well as problems with large numbers of unknowns. In this paper, we

describe a family of solution methods for the discrete equations arising at

each time step in variably saturated ow problems. These solvers use New-

ton's method for the solution of the implicit, nonlinear equations and a Krylov

iterative solver to solve the Jacobian systems. The iterative, linear solver is

preconditioned with a semicoarsening multigrid algorithm. By combining the

nonlinear Newton iteration with a multigrid preconditioner, we hope to take

advantage of the fast, robust nonlinear convergence of Newton's method and

the scalability of the linear multigrid method.

Multigrid methods have been shown to be e�ective solvers for the discrete

equations arising from discretized elliptic partial di�erential equations. Multi-

grid solvers are iterative solvers, and their chief advantage is that they are

algorithmically scalable, i.e. the convergence rate is independent of the size of

the discretized system. In groundwater applications, the multigrid solver must

be able to deal with jumps in the permeability coeÆcient and anisotropies in-

duced either by the problem's coeÆcients or by the grid. Early work by Dendy

and colleagues [1,9] showed e�ective multigrid solvers for such problems re-

quired modifying the interpolation to respect jumps in the di�usion coeÆcient.

This work also demonstrated the ability of alternating line relaxation to deal

with fairly general anisotropies. Later work [11] showed the e�ectiveness of

multigrid based on semicoarsening and line relaxation. This work also showed

multigrid to be competitive with ILU solvers on small 3D reservoir simulation

problems.

In this paper, we compare the e�ectiveness of two multigridmethods (PFMG [2]

and SMG [23]) used as preconditioners within a Newton-Krylov solver for

Richards' equation. For large saturated groundwater problems, the ParFlow

multigrid solver (PFMG) was shown to be several orders of magnitude faster

than the diagonally scaled conjugate gradient solver [2]. In the context of radia-

tion di�usion, the SMG solver was shown to be signi�cantly faster than the di-

agonally scaled conjugate gradient solver and generally faster than incomplete

factorization methods, particularly for large problems [3]. As we are interested

in large-scale simulations on parallel computers, the algorithmic scalability of

multigrid methods and the existence of eÆcient parallel implementations [2,6]

makes them an attractive alternative to more standard solvers. The focus of

this paper is on how the performance of these two multigrid methods depends
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on the statistical characteristics of the permeability �eld.

The rest of this paper is organized as follows. In the next section, we present

the formulation of Richards' equation that we use and the discretization

method we employ. In Section 3, we overview the nonlinear Newton and lin-

ear Krylov iterative methods used for the solution of the implicit system at

each time step. Section 4 discusses the preconditioners we invoke to accelerate

the Krylov method. These preconditioners include two semicoarsening multi-

grid schemes. We present numerical results with these two preconditioners in

Section 5. Lastly, Section 6 gives some conclusions.

2 Problem Formulation and Discretization

We consider the mixed form of Richards' equation [20] as our model for vari-

ably saturated ow,

@(s(p)��)

@t
�r �

 
k(x)kr(p)�

�
(rp� �grz)

!
= q; (1)

where s(p) is water saturation at pressure p, � is water density, � is porosity

of the medium, k(x) is absolute permeability of the medium, kr(p) is relative

permeability of water to air, � is water viscosity, g is gravity, q represents any

water source terms and z is elevation. The equation is completed by adding

boundary conditions and an initial condition as follows,

p = pD; on �
D; �

 
k(x)kr(p)�

�
(rp� �grz)

!
� n = gN ; on �N ; (2)

and,

p= p0; for t = 0; (3)

where �D and �N comprise the boundary of the problem domain, and n is an

outward, unit, normal vector to �N .

Note here that we use a scalar absolute permeability model. Since we are in-

terested in highly resolved models, we are assuming that the permeability can

be speci�ed on a �ne scale. In addition, we use a geostatistical model for the

absolute permeability. This model allows speci�cation of correlation lengths in

each coordinate direction. As a result, we do not specify permeability as a vec-

tor or tensor �eld. In discussions throughout the paper, we refer to anisotropy

in the problem. By this term, we mean statistical anisotropy introduced by
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the correlation lengths, and also physical anisotropy introduced by having sig-

ni�cant variation in permeability value in a given direction, independent of

other directions and not necessarily grid-aligned.

Discretization is done for time with an implicit backward Euler di�erencing

scheme. Our solvers are valid for higher order time-stepping methods, but to

keep this exposition simpler, we present the discrete systems arising from a

�rst-order in time method. For spatial discretization, we use a tensor product

grid with Nx; Ny and Nz cells in the x; y and z directions, respectively. We

then apply cell-centered �nite di�erences over this mesh. We use harmonic

averaging for interface values of the absolute permeability and one-point up-

stream weighting for interface values of relative permeability. These discretiza-

tion methods result in a coupled system of nonlinear equations that must be

solved at each time step, where the equation at each cell is given by,

Fi;j;k(p
n) = �xi�yj�zk�i;j;k�

�
s(p)n

i;j;k
� s(p)n�1

i;j;k

�
��tn�xi�yj�zkq

n

i;j;k

��tn�xi�yj�zk

 
Ux

i+1=2;j;k
� Ux

i�1=2;j;k

�xi
+

Uy

i;j+1=2;k
� Uy

i;j�1=2;k

�yj

+
U z

i;j;k+1=2
� U z

i;j;k�1=2

�zk

!
= 0; (4)

where,

Ux

i+1=2;j;k �
 
k(x)kr(p

n)�

�

!
i+1=2;j;k

pn
i+1;j;k � pn

i;j;k

�xi+1=2
(5)

is the i+ 1=2; j; k interface value of the ux x-component. Other components

are de�ned similarly.

We apply this spatial discretization method because it is locally conservative,

and, in the linear case, is equivalent to the lowest order mixed �nite element

method with certain quadrature [27]. Thus, this method can be shown to

be second order in space if harmonic averaging is used for k(x) and kr(p).

Discretization errors for Richards' equation with a similar method have been

analyzed extensively in [29]. We use one point upstream weighting for kr(p)

to best capture fronts in the solution as indicated in [14].

It should be noted that as long as we solve the discrete nonlinear system to

a tolerance below the error in the discretization method, we will not change

the accuracy of the solution. In the numerical studies that follow, we choose a

small enough tolerance that the solution error is dominated by discretization

error and is thus una�ected by the choice of nonlinear solver.
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3 Newton{Krylov Methods

We employ a Newton{Krylov method to solve the nonlinear discrete problem

at each time step. This system requires the solution, p�, of F (p) = 0 where

the i; j; kth element of the vector F evaluated at pn is given as in (4).

Newton{Krylov methods were �rst used in the context of solving partial di�er-

ential equations by Brown and Saad [7]. In this method, the coupled nonlinear

system resulting from discretizing a partial di�erential equation is solved by

�rst applying a Newton linearization, then using an iterative Krylov method

to solve the resulting Jacobian systems for each Newton iteration. One big

advantage to these methods is that the Krylov linear solver requires only

matrix-vector products, which, since the system matrix is the Jacobian of the

nonlinear function, can be approximated by taking di�erences of the nonlinear

function,

J(pk)v �
F (pk + �v)� F (pk)

�
; (6)

where pk is the current iterate at the kth Newton step. The value of � is

computed via the formula given in [7],

� = sign(pk � v)
p
uroundmaxfjpk � vj; kvk1g=vTv; (7)

where uround is the machine unit roundo� function.

Thus, only the implementation of the nonlinear function is necessary, and

matrix entries need never be formed. A standard Newton method is locally

quadratic in convergence so that once the iterate, pk, is close enough to the

solution we have [12],

kpk+1 � p�k � Ckpk � p�k2: (8)

Applying the �nite di�erence method in (6) gives rise to a method that is

quadratic as long as � is chosen small enough [5].

An inexact Newton method results from a Newton method where the linear

systems are only approximately solved at each step. We use a method proposed

by Eisenstat and Walker to determine the linear system tolerances [13]. In

particular, at the kth step, we iterate on the linear system, J(pk)sk = �F (pk),
until the relative residual is less than �k where

�k = maxfe�k; (�k�1)2g; and e�k = 

 
kF (pk)k
kF (pk�1)k

!2

: (9)
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Here, F (pk) and F (pk�1) are the function evaluated at the current and pre-

vious nonlinear solution iterates, respectively, and  is 0:9. Our choice of �k

reects the amount of decrease between the function evaluated at the current

nonlinear solution iterate and the function at the previous iterate. Since the

error in Newton's method decreases quickly once we are close to the solution,

the residual decreases rapidly close to the solution. Thus, close to the solution,

the tolerance is low, requiring precise approximate solves of the Jacobian sys-

tem. Further away, the tolerance is high, preventing \oversolves" of the linear

system when a highly precise approximation to the Jacobian system solution

will not provide much more value than a coarse approximation to the nonlin-

ear system solution. Under suitable assumptions, the local convergence of this

method can be shown to be q-quadratic [13].

To enhance the robustness of the Newton method, we added the line-search

backtracking procedure detailed by Brown and Saad [7]. This procedure al-

lows adjustment of the Newton step to guarantee progress toward the solu-

tion of the nonlinear problem at each iteration. The step taken obeys the

Goldstein-Armijo conditions [12] ensuring that we have suÆcient decrease in

the nonlinear function relative to the step length, that we obey a minimum

step length relative to the rate of decrease at the current iterate, and that

we take the full Newton step close to the solution. In [19], it is pointed out

that for certain regimes, the van Genuchten curves have derivatives that are

not Lipschitz continuous. Under these conditions, standard Newton methods

can fail. The authors of [19] point out that using integrated interface perme-

abilities with Hermite splines can allow convergence in these regimes while

maintaining eÆciency. Transformation methods applied to Richards' equation

can also contribute to robustness for these situations [28]. In preliminary ex-

periments, we have found that line-search may also allow convergence in some

of these diÆcult regimes, and this is the technique we have used in this work.

Furthermore, the line-search procedure allows convergence of the method even

when the initial guess is not local to the solution. The method, in a sense, can

bring the iterates into the radius of convergence for the Newton method. In

the case of Richards' equation, we take the approximate solution from the

previous time step as the initial guess for the nonlinear solution at the new

time step. When the time step is large, this initial guess may not be close to

the solution for the new time. However, line-searches allow larger steps than

may be possible with a local method.

As water resource problems can be very large, we apply a preconditioned

iterative process for the Jacobian system solution. Furthermore, the Jacobian

of a nonlinear elliptic operator is nonsymmetric, so we use the Krylov method

GMRES [22]. This method was developed for nonsymmetric linear systems

and has the advantages that in exact arithmetic, the linear system residual is

a nonincreasing function of iteration, and convergence is guaranteed after n

7



iterations for a linear system of size n� n.

This method builds up a Krylov basis with the matrix and initial residual,

adding one vector to this basis with each iteration. These basis vectors are then

needed in future iterations to generate new iterates. As a result of building

this basis, the memory requirements for the method increase with the number

of iterations. One way to reduce these requirements is to use the restarted

version of the method, which builds the Krylov basis up to m vectors, then

restarts the method using the mth iterate as the initial guess. By restarting,

the memory requirements for GMRES are reduced signi�cantly as only m

Krylov basis vectors need to be saved at any time. The disadvantage of the

restarted method is that convergence is no longer guaranteed.

Although with GMRES, the linear residual decreases with each iteration, the

decrease can be quite small. To make more progress in reducing the residual

at each iteration, the linear system can be preconditioned. This amounts to

solving the system, M�1Js = M�1(�F ), where M is an approximation to

the Jacobian, and systems like Mr = b are easy to solve. In this case, pre-

conditioned GMRES iterations make more progress at each step and thus will

require fewer overall steps.

4 Preconditioners

In this work, we precondition the linear system with a symmetric approxi-

mation to the Jacobian. We solve the preconditioner systems, Mr = b, by

applying one V-cycle of a multigrid method.

4.1 Preconditioning With a Symmetric Approximate Jacobian

To see how we form a symmetric approximation to the Jacobian we consider

two structurally symmetric Jacobian matrix entries. For simplicity, we con-

sider one dimension, a homogeneous medium and no gravity. The component

of the nonlinear function at the kth Newton iteration for time step n corre-

sponding to the ith cell, F n;k

i , depends on the interface velocities v
i+

1

2

and v
i�

1

2

,

each of which depends on the relative permeability evaluated at its respective

interface. These relative permeabilities are upstream weighted functions of

pressure. Taking derivatives, we see that

@F n;k

i

@p
n;k

i+1

= C

0@@kr(pn;k)i+ 1

2

@p
n;k

i+1

(p
n;k

i � p
n;k

i+1)� kr(p
n;k)

i+
1

2

1A; (10)
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and

@F n;k

i+1

@pn;ki

=C

0@�@kr(pn;k)i+ 1

2

@pn;ki

(pn;ki � pn;ki+1)� kr(p
n;k)

i+
1

2

1A; (11)

where C is a constant depending on the mesh spacings and physical constants

of the problem. Thus, the Jacobian is nonsymmetric because of the sign on

the relative permeability derivative and also because the relative permeability

derivative is taken with respect to a di�erent pressure in each of the above

equations. In this work, we form an approximation by simply dropping the

�rst right-hand side terms in (10) and (11). This approximation degrades as

an approximation to the true Jacobian in areas where the relative permeability

changes rapidly with pressure. For our current purposes, this approximation

provides an e�ective preconditioner. Other approximations are possible. See

[17] for further discussion.

4.2 Multigrid Preconditioners

Multigrid methods can be very eÆcient solvers for the linear systems arising

from discretized elliptic partial di�erential equations. Multigrid's chief advan-

tage is that it is a scalable algorithm: when properly designed, the solver's con-

vergence rate is independent of the size of the discretized system [4]. Standard

multigrid methods combine simple relaxation (which quickly reduces high-

frequency error components) with error correction from a coarser grid (which

can accurately represent low-frequency error components). For our problem,

the multigrid solver must be able to eÆciently deal with anisotropies and

widely variable coeÆcients. In the numerical results that follow, we compare

the performance of two multigrid algorithms within the context of our nonlin-

ear solution procedure: the ParFlow multigrid solver (PFMG) developed by

Ashby and Falgout [2], and the semicoarsening solver (SMG) developed by

Scha�er [23] (see also [10] and [24]).

Let AU = F be the given linear system to solve. The unknown U and right-

hand side F are vectors de�ned on a logically rectangular grid. We will use

an h superscript to denote quantities de�ned on the given grid. The ma-

trix A is symmetric, positive de�nite, and connections have the standard

\nearest-neighbor" 7-point stencil form. As the grid is logically rectangular,

there is a unique index (i; j; k) for each point on the grid. One can produce

a grid that is coarser in, say, the z�direction, by considering only the points

f(i; j; k); k oddg. We will use a 2h superscript to denote quantities de�ned on

the coarse grid. This procedure is called semicoarsening (as opposed to full

or standard coarsening) as the coarse grid is only coarser in one of the di-

mensions. Coarsening only in the direction of strong coupling (as opposed to
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all directions) results in a multigrid algorithm that is e�ective for anisotropic

problems. The multiple grids are used in a multigrid V-cycle as outlined below

[4].

V (�1; �2)-cycle

(1) Pre-relaxation on AhUh = F h. Perform �1 sweeps of relaxation.

(2) Set F 2h = I2h
h
(F h � AhUh).

(3) \Solve" A2hU2h = F 2h by recursion.

(4) Correct Uh  Uh + Ih2hU
2h.

(5) Post-relaxation on AhUh = F h. Perform �2 sweeps of relaxation.

A multigrid method is determined by several components: the relaxation

method (typically a simple iterative method like Gauss{Seidel), the inter-

polation operator Ih2h used to transfer vectors from coarse to �ne grids, the

restriction operator I2h
h

used to transfer vectors from �ne to coarse grids (in

the methods we consider, restriction is the transpose of interpolation), and the

coarse operator A2h. Note the equation to be solved in step 3 above typically

has the same form as the original grid h problem. It is solved by applying the

same algorithm using a still coarser grid 4h. Eventually, a coarse enough grid

is reached and the problem can be solved directly.

In the PFMG algorithm, pointwise red/black Gauss{Seidel relaxation is used.

To achieve robustness for grid-induced anisotropies, the grid is coarsened in

the direction with the smallest grid spacing and thus the tightest coupling.

The interpolation is based pointwise on the operator as in Dendy's Black Box

multigrid [9]. Assume semicoarsening in the z-direction, and consider a point

(i; j; k) not on the coarse grid. Let

ac
ijk
ui;j;k + aw

ijk
ui�1;j;k + ae

ijk
ui+1;j;k + as

ijk
ui;j�1;k +

an
ijk
ui;j+1;k + al

ijk
ui;j;k�1 + au

ijk
ui;j;k+1 = fijk (12)

be the equation at the point. The superscripts c; w; e; s; n; l; and u stand for

central, west, east, south, north, lower, and upper, respectively. We split the

operator Ah into an operator T in the coarsened direction (z) and an operator

B in the other two directions as follows,

Ahu=T hu+Bhu (13)

T hu=
�
ac
ijk

+ aw
ijk

+ ae
ijk

+ as
ijk

+ an
ijk

�
ui;j;k

+al
ijk
ui;j;k�1 + au

ijk
ui;j;k+1 (14)

Bhu=�(aw
ijk

+ ae
ijk

+ as
ijk

+ an
ijk
)ui;j;k

+aw
ijk
ui�1;j;k + ae

ijk
ui+1;j;k + as

ijk
ui;j�1;k + an

ijk
ui;j+1;k: (15)
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The interpolation weights are given by a 1-D operator-based interpolation us-

ing T , the operator in the coarsened direction. In particular, the point (i; j; k)

interpolates from the coarse grid points directly above and below it (indices

(i; j; k + 1) and (i; j; k � 1) on the �ne grid) with weights

wu

ijk
= �au

ijk
=(ac

ijk
+ aw

ijk
+ ae

ijk
+ as

ijk
+ an

ijk
);

wl

ijk
= �al

ijk
=(ac

ijk
+ aw

ijk
+ ae

ijk
+ as

ijk
+ an

ijk
); (16)

respectively. For �ne grid points also on the coarse grid, interpolation is the

identity; the interpolated �ne grid value is equal to the coarse grid value.

Unlike linear interpolation, the interpolation weights given in (16) are a�ected

by variations in the operator Ah and result in a method that is robust for

widely variable coeÆcients.

The coarse grid operator in the coarsened direction is formed by the Galerkin

conditions T 2h = I2h
h
T hIh2h. In the other two directions, a weighted sum of

coeÆcients is used. In particular, consider a �ne point (i; j; k) also on the

coarse grid. The south coeÆcient in the coarse grid operator B2h is given by

a2h;s
i;j;k

= ah;s
i;j;k

+
1

2
(ah;s

i;j;k+1
+ ah;s

i;j;k�1
): (17)

Similar averages de�ne the other o�-diagonal elements of B2h. As on the �ne

grid, the diagonal element of B2h is de�ned as minus the sum of the o�-

diagonals. The coarse grid operator is then de�ned by A2h = T 2h + B2h re-

sulting in a 7-point stencil for A2h.

In the SMG algorithm, plane-wise red/black Gauss{Seidel relaxation is used.

The values of the current approximation on the odd planes are updated simul-

taneously to satisfy the equations on these planes. This is followed by a similar

update on the even planes. These plane solves are approximated by one 2D

multigrid V-cycle. This relaxation provides robustness for anisotropic prob-

lems where the strong coupling is within the planes. Semicoarsening provides

robustness for strong coupling orthogonal to the planes.

An important, unique feature of the SMG algorithm is the de�nition of the

interpolation operator Ih2h. The de�nition is motivated by the relationship

between error on odd and even planes after an even plane relaxation sweep. To
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briey motivate the approach, consider solving the tridiagonal system Au = b.2666666666666666666666664

a1;1 a1;2

a2;1 a2;2 a2;3

a3;2 a3;3 a3;4

� � �

� � �

� � �

an�1;n�2 an�1;n�1 an�1;n

an;n�1 an;n

3777777777777777777777775

2666666666666666666666664

u1

u2

u3

�

�

�

un�1

un

3777777777777777777777775

=

2666666666666666666666664

f1

f2

f3

�

�

�

fn�1

fn

3777777777777777777777775

(18)

After relaxing the even numbered equations, the approximate solution u sat-

is�es equations

ak;k�1uk�1 + ak;kuk + ak;k+1uk+1 = fk; k = 2; 4; 6; : : : : (19)

Since the exact solution �u satis�es the same equations, the error e = �u � u

satis�es the equations

ak;k�1ek�1 + ak;kek + ak;k+1ek+1 = 0; k = 2; 4; 6; : : : : (20)

From this we can write the error at even points in terms of the error at odd

points

ek = �
ak;k�1

ak;k
ek�1 �

ak;k+1

ak;k
ek+1; k = 2; 4; 6; : : : : (21)

We can use this relation to eliminate the even numbered variables and solve

the error equation Ae = f � Au only for errors at odd points. Applying this

method recursively yields a cyclic reduction solver for the tridiagonal system

(18). The SMG interpolation is based on a generalization of this approach to

block-tridiagonal systems.

Our discrete Jacobian system has a block-tridiagonal structure; grouping un-

knowns by z-planes, the structure is like (18) except uk now represents all

unknowns in the Kth plane. To be precise, let

AK;K�1UK�1 + AK;KUK + AK;K+1UK+1 = FK (22)
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be the discrete equations for the Kth plane. Here UK is a vector composed

of all unknowns with z index equal to K, i.e. UK = (Ui;j;K; i = 1; : : : ; nx; j =

1; : : : ; ny) where nx and ny are the grid sizes in the x and y directions. UK�1 is

de�ned similarly. The matrix AK;K contains couplings within the Kth plane;

the matrix AK;K�1 couples the K
th plane to the K�1th plane; and AK;K+1 is

de�ned similarly. After relaxing the even planes, the error on even planes can

be written in terms of the error at odd planes in a way completely analogous

to (21)

EK = �A�1
K;K

AK;K�1EK�1 � A�1
K;K

AK;K+1EK+1; K = 2; 4; 6; : : : : (23)

Using the odd planes as the coarse grid and the above relation to de�ne

an interpolation operator Ih2h makes the multigrid V-cycle a direct method.

However, this is not a practical approach in that using (23) leads to non-

sparse interpolation operators. In the SMG algorithm, sparse approximations

to these ideal interpolation operators are used. The matrices �A�1
K;K

AK;K�1

and �A�1
K;K

AK;K+1 are approximated by diagonal matrices with the same ac-

tion on constant vectors. The computation of these interpolation operators

involves a plane solve for each even grid plane, which we approximate with

one 2D multigrid V-cycle. The coarse grid versions of A are de�ned by the

Galerkin condition, i.e., A2h = I2h
h
AhIh2h. This results in a slight growth in the

size of the coarse grid stencils. The �ne grid stencil is 7-point and all coarser

grid stencils are 15-point.

The PFMG method is cheaper per iteration than the SMG method in both

oating point operations and storage. As we will see in the numerical results

section, when both methods work well, PFMG is faster. SMG is generally more

robust, however. In particular it can deal with anisotropies that vary in direc-

tion throughout the grid. This robustness is due to the use of semicoarsening

and plane relaxation. SMG, because it faithfully follows the Galerkin condi-

tion, is provably convergent for symmetric positive de�nite matrices. Also,

the �ll-in in the coarse grid stencil allows SMG to more accurately represent

anisotropies that are not grid-aligned on coarser grids.

5 Numerical Results

We conducted a number of numerical tests to study how these two multigrid

preconditioners performed for problems with varying amounts of heterogeneity

and anisotropy in the permeability �eld. Often, geostatistical models are used

to describe the subsurface permeability. We use the turning bands algorithm

[26] with the exponential covariance model. The algorithm implementation
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allows speci�cation of the mean value, standard deviation and directional cor-

relation lengths. The standard deviation describes how much variation, or

heterogeneity, exists between uncorrelated cells. The di�erence in correlation

lengths describes the amount of variation, or statistical anisotropy, there is

from one direction to the next. Note that, as mentioned earlier, problems can

also exhibit physical anisotropy that contributes to preferential ow through

the domain and is modeled by either a tensoral permeability or layers not

aligned with the grid. Many problems of interest are exhibit heterogeneity

and physical as well as statistical anisotropy.

We have compared the performance of the two multigrid methods described

above in the context of a test case based loosely on the Lawrence Livermore

National Laboratory (LLNL) site. The problem domain was 300m�1; 000m�
120m The mean permeability was 1m/day with correlation lengths of 50m in x,

100m in y and 5m in z. Permeability values were cut o� below 10�6 and above

102. Porosity was 30%. Initial conditions were taken in hydrostatic equilibrium

with the pressure head at the domain bottom set to 90m. No ow boundary

conditions were imposed on the left, right and bottom of the domain, with

0.1ft/year inow ux on the top. Dirichlet conditions were imposed on the

front and back of the domain in such a way as to impose a 20m pressure head

gradient from front to back. In all cases, relative permeability and saturation

curves were evaluated with van Genuchten formulas [16]. Exact formulas were

used with no curve-�tting. The parameters � and n were set to 0:1=m and 2,

respectively. The residual saturation was 20% and the domain was considered

saturated at 99%. We used an initial time step of 0:1day and doubled the time

step size after every successful time step. We ran to a �nal time of 25days. If a

time step failed, we cut the step size by 1=2 and recomputed the step, growing

the step size again if the recomputation was successful.

Stopping criteria for the nonlinear solver was as follows. The solver stopped if

the nonlinear residual, kFk, from (4) was less than 10�6. We chose this value

to assure that the iteration error would be smaller than the discretization

error, and thus, solutions with di�erent solvers would be the same.

The �rst experiment showed the e�ect of changing the standard deviation

while maintaining the rest of the problem parameters. Table 1 shows the results

of changing the variance (or square of the standard deviation) from 0 to 25 for

this problem. We have included this large span of variances to account for the

need of modelers to study e�ects of uncertainties in their models. The higher

variances are not expected to occur often in practice, but a useful code should

have a robust solver at least as an option so that modelers can run with these

extreme values if they need to understand some e�ect.

We see that as the variance increases, the number of nonlinear and linear

iterations required to solve to the �nal time of 25 days increases. After a
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variance of 10, PFMG fails to solve 3 consecutively decreased time steps,

and SMG starts to show signi�cant increases in iteration counts. However,

SMG is robust enough to withstand the extreme heterogeneity posed by these

problems and allow the nonlinear solver to make progress. Compute times

show that PFMG gives rise to a faster solution when it is successful, but the

range of heterogeneity in which it is successful is quite small.

Table 1

Total nonlinear and linear iteration counts for solving the variably saturated ow

test case with 40�40�55 = 88; 000 unknowns to 25 days with increasing variances.

Preconditioner Variance NL Iters. Lin. Iters. Compute Time (s)

PFMG 0 41 148 946

SMG 0 39 137 1,085

PFMG 5 68 232 1,509

SMG 5 61 215 1,672

PFMG 10 121 434 2,848

SMG 10 83 291 2,260

SMG 15 74 337 2,384

SMG 20 88 406 2,888

SMG 25 110 531 3,729

In this data, we see that changing the preconditioner leads to changes in the

nonlinear solver iteration counts. These changes are due to one of two reasons.

The �rst reasons is that an inferior preconditioner may fail to solve the linear

problem to the speci�ed tolerance. In that case, we may have a very poor

Newton update and thus the nonlinear iteration may take longer to converge.

The other possibility for the di�ering numbers of nonlinear iterations is that if

the linear system tolerance is on the borderline of what is required to get the

most e�ective Newton update, a superior preconditioner may solve the linear

system more precisely in the �nal iteration than an inferior preconditioner

would allow. With both preconditioners, the linear system will be solved to

the required tolerance, but one will lead to a better Newton update than the

other. Once this happens for a single linear solve, the two solves will be on

di�ering paths to the solution. Note that the solutions will agree to as many

digits as are requested in the nonlinear system tolerance for both solves.

The next test was to ascertain solver robustness for varying correlation lengths.

Table 2 shows results from running the test case to 5 days with a factor of 8

increase in correlation lengths and a variance of 10. See Figure 1 for plots of

the permeability �elds. As the permeability data becomes more correlated, we

see that the problem becomes easier to solve. Thus, with a variance for which

PFMG struggles for short correlation lengths, we can see PFMG succeed for
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the longer correlation lengths. In summary, we see that for highly correlated

�elds, the solvers perform similarly to how they performed for low variances.

This is not a surprise. It should be noted, however, that when choosing a solver

for a given problem, the variance and correlations should both be considered.

Using one independent of the other to choose a solver may lead to choosing

a solver that takes too much time and memory to solve the problem or, still

worse, fails to converge at all.

Table 2

Total nonlinear and linear iteration counts for solving the variably saturated ow

test case with 40�40�55 = 88; 000 unknowns to 5 days with increasing correlation

lengths and a variance of 10.

Preconditioner Corr. Lengths NL Iters. Lin. Iters. Compute Time (s)

PFMG 25, 50, 2.5 89 314 2,246

SMG 25, 50, 2.5 81 189 1,841

PFMG 50, 100, 5 105 334 2,500

SMG 50, 100, 5 61 214 1,760

PFMG 100, 200, 10 101 342 2,683

SMG 100, 200, 10 62 169 1,535

PFMG 200, 400, 20 38 136 936

SMG 200, 400, 20 38 137 1,127

The third test was to look at run times speci�cally for a case exhibiting phys-

ical anisotropy. For this case, we considered a problem with an inclined plane

running through it. The problem domain was 30m� 30m� 30m. Porosity was

30%. Initial conditions were taken as a constant pressure head set to �10m.

Boundary conditions were speci�ed to be Dirichlet values in hydrostatic equi-

librium with interpolated values on a line going from the front left corner of

the domain bottom to the back right corner of the domain bottom. The pres-

sure head value at the two corners were �100m at the front left and 100m at

the back right . In all cases, relative permeability and saturation curves were

evaluated with van Genuchten formulas [16]. Exact formulas were used with

no curve-�tting. The parameters � and n were set to 0:1=m and 2, respectively.

The residual saturation was 20% and the domain was considered saturated at

99%. We used a single time step of 1day Nonlinear iteration stopping criteria

were the same as in the �rst test case.

We imposed a permeability of kD = 1m per day at points not on the inclined

plane and changed the permeability value, kP , for points on the plane from

1 to 105. Figure 2 shows a schematic of the permeability �eld, and Figure

3 shows the run times for the two preconditioners. We see that as kP gets

larger, PFMG struggles more and eventually fails to solve the problem for the

16



Fig. 1. Increasing correlation lengths (�x; �y; �z): (25m, 50m, 2.5m) upper left, (50m,

100m, 5m) upper right, (100m, 200m, 10m) lower left, (200m, 400m, 20m) lower

right.

105 case. For low values, however, the PFMG preconditioner gives a faster

solution.

Last, we investigated the parallel scalability of the nonlinear solution pro-

cess. In the results we report the parallel scaled eÆciencies de�ned as follows.

Consider a global problem of size N distributed across P processors and let

T (N;P ) be the run time for the code (or component of the code). The scaled

eÆciency is de�ned by E(n; p) = T (n; 1)=T (pn; p). A scaled eÆciency of one

indicates perfect machine utilization, i.e., one can double the problem size

without increasing the run time provided that one also doubles the number of

processors used in solving the problem.

Taking the LLNL-based test case, using a variance of 0, 8 constant time steps

of 0.0125 day, and all other problem data the same as in the �rst set of exper-

iments, we performed a scaled speedup study with the two preconditioners.
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Fig. 2. Domain with inclined plane.
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Fig. 3. Run times for varying perme-

ability kP on an inclined plane.

Results from this study are shown in Figures 4 and 5. We added more un-

knowns by re�ning the domain in all three directions. Scaled eÆciencies here

are poor. Looking closely, we see that the poor performance is due to lack of

scaling of the nonlinear function evaluation. As we decompose the domain in

the z direction, we generate groupings of cells on the upper processors that

contain more cells in the unsaturated zone than in processors with cells in the

lower portion of the domain. As a result, the computation of the relative per-

meability and saturation in these upper domain cells is more expensive, and

the nonlinear function is not well load-balanced. Decomposing the domain in

only the x and y directions removes this imbalance, and we see that the scaled

eÆciencies are much improved in Figures 6 and 7. This parallel study shows

that modelers need to understand how best to utilize more resources in a given

parallel machine, and be able to adjust the use of the machine to the physics

of the problem being studied.

6 Conclusions

The results in this paper show that the Newton-Krylov-Multigrid method can

be an eÆcient and robust solver for large-scale, highly heterogeneous, variably

saturated ow problems. The comparisons between the two multigrid solvers

(SMG and PFMG) illustrate the balancing of eÆciency and robustness. The

PFMG solver is cheaper per linear iteration and, largely for this reason, faster

than SMG when both methods work. However, for some diÆcult problems,

SMG is more e�ective. The diÆculty of the problem is inuenced by the degree

of heterogeneity, the correlation lengths, and the strength of anisotropies.

These results are important to consider when choosing the appropriate solver
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the full nonlinear solve using SMG and

PFMG for decomposing in x and y.
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SMG, PFMG and the nonlinear func-

tion evaluation for decomposing in x
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for a given physical problem. If the main axes of the permeability �eld do

not align with the numerical grid, then a complex solver such as SMG will be

required. If the permeability is highly correlated, then a simpler solver such

as PFMG should be e�ective even for higher variances.
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Parallel load balancing of the problem physics must also be considered. A

solution method can be computationally scalable for some parallel discretiza-

tions but seem not to be scalable for others if the wrong decomposition is

used. In particular, the above results show that decomposing in the direction

of water table uctuations can lead to ineÆciencies, and a better use of a

parallel machine is to decompose the domain in directions orthogonal to these

changes.

The results given here address solvers for the discrete, nonlinear systems of

equations arising from the application of cell-centered discretization techniques

to the mixed form of Richards' equation. Further work in this area would in-

clude investigation of Newton-Krylov-Multigrid solvers for discrete systems

arising from the discretization of transformed formulations of Richards' equa-

tion. Reference [28] indicates these techniques can reduce nonlinear iteration

counts over standard solvers. However, the performance of multigrid precon-

ditioners for the resulting linear systems is unknown.

Results in this paper have shown solver responses to varying degrees of prob-

lem heterogeneity and anisotropy. We have not, however, addressed the case

of spatially varying relative permeability and saturation curves. In some sense,

this variation just adds another component to the heterogeneity of the prob-

lem. As a result, we expect the solvers' performances to compare similarly to

what we have seen. Understanding the impact of this physical characteristic

is another area of future work.
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