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Preconditioning Newton-Krylov methods for variably saturated flow

J. E. Jones & C. S. Woodward
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, USA

ABSTRACT: In this paper, we compare the effectiveness of three preconditioning strategies in simulations
of variably saturated flow. Using Richards’ equation as our model, we solve the nonlinear system using a
Newton-Krylov method. Since Krylov solvers can stagnate, resulting in slow convergence, we investigate
different strategies of preconditioning the Jacobian system. Our work uses a multigrid method to solve the
preconditioning systems, with three different approximations to the Jacobian matrix. One approximation lags
the nonlinearities, the second results from discarding selected off-diagonal contributions, and the third matrix
considered is the full Jacobian. Results indicate that although the Jacobian is more accurate, its usage as a
preconditioning matrix should be limited, as it requires much more storage than the simpler approximations.
Also, simply lagging the nonlinearities gives a preconditioning matrix that is almost as effective as the full
Jacobian but much easier to compute.

1 INTRODUCTION
Accurate simulation of water resource management
problems requires the solution of large problems with
many spatial zones. In the case of variably satu-
rated flow problems, we need to develop scalable and
highly efficient algorithms for solving the large, non-
linear systems of equations that arise from the dis-
cretization of Richards’ equation (Richards 1931).

One approach to solving these systems is to ap-
ply a Newton method requiring a linear Jacobian
system solve at each iteration. Although Newton’s
method can have very fast convergence properties, it
will run slowly if the linear system solver is not effi-
cient. In this work, we solve the linear systems using
a multigrid preconditioned Krylov method. Properly
designed multigrid solvers are optimally efficient in
that the work grows linearly with problem size while
the convergence rate is constant. Most previous work
on multigrid solvers, however, has been in the context
of symmetric linear systems, and the Jacobian system
for the discretized Richards’ equation is nonsymmet-
ric.

In this paper, we compare various strategies for
solving the Jacobian system using multigrid. One ap-
proach is to base the multigrid preconditioner on a
symmetric approximation to the Jacobian. We con-
sider a symmetric approximation formed by delet-
ing derivatives of relative permeability that lead to
nonsymmetries, and also a symmetric approxima-
tion formed by lagging the nonlinearity in the Jaco-

bian matrix. We compare the performance of methods
based on these two symmetric approximations with
that of a multigrid method based on the full nonsym-
metric Jacobian. The two approximations have the ob-
vious advantage of requiring less storage, but the true
Jacobian has the advantage of capturing more of the
problem’s physics. We compare the efficiency of these
various preconditioning strategies within the context
of a Newton-Krylov method to solve the nonlineari-
ties.

2 PROBLEM FORMULATION
We employ the mixed form of Richards’ equation as
our model of variably saturated flow,
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where s(p) is water saturation, � is water density, � is
porosity of the medium, t is time, k is absolute perme-
ability of the medium, kr(p) is relative permeability of
water to air, � is water viscosity, g is gravity and z is
elevation.

Discretization is done for time with an implicit
backward differencing scheme and for space with a
cell-centered finite difference scheme. One-point up-
stream weighting is used for the face values of relative
permeability and harmonic averaging for the absolute
permeability. Applying these discretization schemes
leads to a set of coupled discrete nonlinear equations
that must be solved at each time step.



These discretization methods result in a coupled
system of nonlinear equations that must be solved
at each time step, where (considering just the x-
direction for simplicity) the equation at each cell is
given by,
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3 SOLUTION METHOD
An inexact Newton-Krylov method is our nonlin-
ear solver. Our use of this method is described by
Woodward in (Woodward 1998) and includes the
use of dynamic selection of linear system tolerances
with a method of Eisenstat and Walker (Eisenstat &
Walker 1996) and the line-search globalization strat-
egy given by Dennis and Schnabel (Dennis & Schn-
abel 1983). We also use the restarted version of the
GMRES Krylov iterative solver developed by Saad
and Schultz (Saad & Schultz 1986) to solve the lin-
ear Jacobian systems. The main advantage of using a
Krylov method is that it only requires knowledge of
the Jacobian matrix, J , through matrix-vector prod-
ucts which can be approximated by,

J(pk)v �
F (pk + �v)� F (pk)

�
; (4)

where pk is the kth Newton iterate for the pressure, F
is the nonlinear function, v is the vector against which
we multiply J , and � is a difference parameter usually
dependent on the size of machine round-off.

The GMRES method can suffer from stagnation
if the linear system is left unpreconditioned. In or-
der to make more progress in reducing the resid-
ual at each iteration, we precondition the linear Ja-
cobian system. This amounts to solving the system,
M�1Js = M�1(�F ), where M is an approximation
to the Jacobian, and systems like Mr = b are easy to
solve. In this case, preconditioned GMRES iterations
make more progress at each step and thus will require
fewer overall steps.

3.1 Multigrid preconditioner
Previous work (Jones & Woodward 2000) has shown
multigrid to be a robust and scalable method for
solving the linear preconditioning systems (comput-
ing M�1). Multigrid’s chief advantage is that it is
a scalable algorithm. Thus, when properly designed,

the convergence rate of multigrid is independent of
the size of the discretized system. Standard multigrid
methods combine simple relaxation (which quickly
reduces high-frequency error components) with error
correction from a coarser grid (which can accurately
represent low-frequency error components).

Let MU = B be the given linear system to solve,
here the unknownU and right-hand side B are vectors
defined on a logically rectangular grid. We will use an
h superscript to denote quantities defined on the given
grid, and a 2h superscript to denote quantities defined
on a coarser grid. The multiple grids are used in a
multigrid V-cycle, as follows,

V (�1; �2)-cycle

1. Perform pre-relaxation on MhUh = Bh by exe-
cuting �1 sweeps of a simple solver.

2. Set B2h = I2h
h
(Bh
�MhUh).

3. Solve M2hU2h = B2h by recursion. If on the
coarsest grid, solve this system exactly.

4. Correct Uh
 Uh + Ih2hU

2h.

5. Perform post-relaxation on MhUh = Bh by exe-
cuting �2 sweeps of a simple solver.

A multigrid method is determined by several com-
ponents: the relaxation method (typically a simple it-
erative method like Gauss–Seidel), the interpolation
operator Ih2h used to transfer vectors from coarse to
fine grids, the restriction operator I2h

h
used to transfer

vectors from fine to coarse grids, and the coarse op-
erator M2h. Note the equation to be solved in step 3
above typically has the same form as the original grid
h problem. It is solved by applying the same algo-
rithm using a still coarser grid 4h. Eventually, a coarse
enough grid is reached, and the problem can be solved
directly.

In modeling subsurface flow, the multigrid solver
must be able to efficiently deal with anisotropies and
widely variable permeability coefficients. In this work
we use the semicoarsening multigrid (SMG) algo-
rithm developed by Schaffer (Schaffer 1999). In the
SMG algorithm, plane-wise red/black Gauss–Seidel
relaxation is used. The values of the current approxi-
mation on the planes perpendicular to the z-axis (the
xy-planes) are updated simultaneously to satisfy the
equations on these planes. These plane solves are
achieved by one 2D multigrid V-cycle. This relaxation
provides robustness for anisotropic problems where
the strong coupling is within the planes. Semicoars-
ening (i.e. coarsening the grid only in the direction
perpendicular to the relaxation planes) provides ro-
bustness for strong coupling orthogonal to the planes.
An important, unique feature of the SMG algorithm



is the definition of the interpolation operator Ih2h. It is
built from the coefficients of the matrix M h by fol-
lowing an approximate reduction method, see (Schaf-
fer 1999) for details. The resulting interpolation op-
erator is “operator dependent” in that the coefficients
of Mh effect the interpolation weights. This provides
robustness for problems with discontinuous coeffi-
cients. In our tests, we use the transpose of inter-
polation for restriction (i.e. I2h

h
= (Ih2h)

T ) and form
the coarse grid matrix by the Galerkin method (i.e.
M2h = I2h

h
MhIh2h). These choices preserve symme-

try,M2h is symmetric if Mh is. However, for nonsym-
metric Mh, other choices for restriction are possibly
more appropriate, see (Bandy et al. 1998).

3.2 Choice of preconditioning matrices
The best choice of the preconditioning matrix, M , is
unclear. In this work, we have compared three possi-
bilities for this matrix. To best motivate these choices,
we consider the differential form of the nonlinear sys-
tem to be solved at time step n,

F (pn) = �r � (K(pn)(rpn� �grz))

+
s(pn)��� s(pn�1)��

�tn
= 0; (5)

where K(pn) = kkr(p
n)�

�
is the nonlinear coefficient.

At Newton step k + 1 for time step n, we need to
solve the Jacobian system, J(pn;k)hk =�F (pn;k), for
the pressure increment hk, where pn;k, is the kth New-
ton iterate for the pressure at time step n. The dif-
ferential form of this system is derived by taking the
Frechét derivative of the nonlinear function to get the
action of the Jacobian on the vector hk,

J(pn;k)hk = lim
�!0

F (pn;k + �hk)� F (pn;k)

�
; (6)

which is just
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Adding and substracting r�(K(pn;k+�hk)rpn;k)

�
and then

taking the limit in the derivative gives the following

system,

s0(pn;k)��

�tn
hk �r � (K(pn;k)rhk)

�r � (hkK 0(pn;k)(rpn;k � �grz))

= �F (pn;k); (8)

where s0 and K 0 are the derivatives of the saturation
and the nonlinear coefficient, respectively.

For the discretization methods used in this work
and discussed in Section 2, as long as interface av-
eraging is done consistently, an equivalence can be
shown between the discretized form of this Jacobian
system and the Jacobian matrix arising from differen-
tiating the entries of the nonlinear function, F . Thus,
we can discuss the Jacobian and its preconditioner in
this differential form where the operator is easier to
understand.

Note that the second left-hand-side term of (8) is
an elliptic term operating on the unknown hk. The
third left-hand-side term is first order in hk, involves
derivatives of the nonlinear coefficient function, and
leads to nonsymmetries in the discrete matrix. Our
choices of preconditioning matrices differ in the way
that they approximate the third left-hand-side term of
(8).

Our first preconditioning matrix choice is to ap-
proximate the full Jacobian system (8) by taking all
terms except the third left-hand-side one. This is sim-
ilar to applying a single iteration of a fixed point
scheme to the nonlinear system. We call this the Pi-
card approach.

Our second choice of preconditioning matrix is mo-
tivated by expanding the third left-hand-side term in
(8) as,

�r � (hkK 0(pn;k)(rpn;k � �grz)) =

�K 0(pn;k)(rpn;k � �grz) � rhk

�r � (K 0(pn;k)(rpn;k � �grz))hk: (9)

When discretization is applied, the first right-hand-
side term of this expansion leads to off-diagonal el-
ements of the linear system matrix, while the sec-
ond term only leads to diagonal elements. Our second
choice in preconditioning matrix arises from neglect-
ing the first right-hand-side term in this expansion and
approximating the Jacobian system with,

J(pn;k)hk �
s0(pn;k)��

�tn
hk �r � (K(pn;k)rhk)

�r � (K 0(pn;k)(rpn;k � �grz))hk: (10)



We call this the symmetric approximation approach.
Note that because K 0

� 0 for all p, and since we are
using upstream weighting for the relative permeabil-
ities, we know that the third right-hand-side term of
(10) leads to a positive contribution to the matrix di-
agonal.

These first two preconditioning choices lead to
symmetric preconditioning matrices for M . Thus,
they require significantly less storage than the full Ja-
cobian. The third choice of preconditioning matrix
that we consider is just to use the full Jacobian, and
not an approximation to it. However, this choice re-
quires full matrix storage and more time to compute.
In addition, much of the multigrid literature has been
geared toward the solution of symmetric matrices, and
solver heuristics may not perform as well for the full
Jacobian.

4 NUMERICAL RESULTS
In order to test the relative effectiveness of the three
preconditioning choices outlined above, we have in-
cluded these preconditioning matrices in the vari-
ably saturated flow option of the ParFlow three-
dimensional, parallel porous media flow simulator.

We consider a test case with a saturated zone at
the bottom of the domain and with an inflow flux
from the right. We first ran some comparisons with
an essentially two-dimensional case (no heterogene-
ity in the permeability field) and then with a three-
dimensional case where we applied some heterogene-
ity using the turning bands algorithm (Tompson et al.
1989). The specifics of the test case are as follows.
The domain is a 100 cm cube, and the mean perme-
ability is 4:0cm2. Heterogeneous cases have a stan-
dard deviation of 3:0cm2, correlation lengths in the
x and y directions of 50cm and in the z direction of
20cm. Constant head boundary conditions of 20cm
and –20cm, respectively, are specified on the left and
right faces with no flow conditions everywhere else.
An initial condition of –20cm is taken over the entire
domain. The residual saturation is Sres = 0:2 and the
domain is considered fully saturated when saturation
is 0:99. Porosity is taken to be 30%. To run the solvers
over a variation of time step sizes, we started with a
time step of 0.0005day and doubled the step size af-
ter each step, eventually completing eleven steps to
get to the final time of 1day. The homogeneous cases
used 30� 10� 30 grids; the heterogeneous cases used
30� 30� 30 grids.

We have used the vanGenuchten (vanGenuchten
1980) curves for the specification of relative perme-
abilities and saturations and include two cases. For
both cases, we specify n as 3:0. In one case, we spec-
ify the � parameter as 0:02 and in the other � = 0:2.
Figures 1 and 2 show the curves for the two cases.
We see that for the � = 0:02 case, the kr and s curves

look like broadened s-curves. For the � = 0:2 case,
the curves are very steep. In general, we would ex-
pect the first case to be easier to solve as it gives rise to
a diffusive solution and a more slowly moving time-
dependent behavior. We expect the second case to be
harder as it gives rise to a much more quickly chang-
ing solution. In the second case, the nonlinearities of
the problem should be more difficult for the solvers.

−30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

Pressure Head  (cm)

Saturation and Relative Perm. for alpha = 0.2

Relative perm.
Saturation    

Figure 1: Relative permeability and saturation curves
for � = 0:02, n = 3:0.
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Figure 2: Relative permeability and saturation curves
for � = 0:2, n = 3:0.

We allow one multigrid V-cycle per preconditioner
call, a maximum of 30 nonlinear iterations and a max-



imum of 30 Krylov vectors. All runs were done on a
SUN Sparc Ultra 10 workstation at Lawrence Liver-
more National Laboratory.

The results for the homogeneous cases are summa-
rized in Tables 1 and 2. We report the number of lin-
ear and nonlinear iterations taken at each time step for
each of the three preconditioning strategies: full Jaco-
bian, symmetric approximation, and Picard approach.
The tables also report the total computing time.

Table 1: Homogeneous case with � = 0:2. LI = linear
iterations, and NI = nonlinear iterations.

Time Jaccobian Symmetric Picard
(day) LI NI LI NI LI NI
0.0005 7 4 7 4 7 4
0.0015 7 5 7 5 7 5
0.0035 9 5 9 5 9 5
0.0075 8 6 8 6 9 6
0.0115 9 6 9 6 9 6
0.0315 8 5 9 5 9 5
0.0635 10 5 13 5 13 5
0.1275 10 7 15 7 15 7
0.2555 12 8 20 6 27 7
0.5115 17 9 40 9 23 9
1.0000 25 13 48 12 53 10
Totals 122 73 185 70 201 69
Run Time 242 sec 264 sec 270 sec

Table 2: Homogeneous case with�= 0:02. LI = linear
iterations, and NI = nonlinear iterations.

Time Jacobian Symmetric Picard
(day) LI NI LI NI LI NI
0.0005 7 4 7 4 7 4
0.0015 8 4 8 4 8 4
0.0035 8 4 8 4 8 4
0.0075 9 4 8 4 7 4
0.0115 9 4 8 4 7 4
0.0315 9 4 11 4 11 4
0.0635 8 4 15 5 14 5
0.1275 10 4 17 5 16 5
0.2555 13 5 22 5 19 5
0.5115 13 5 29 6 24 6
1.0000 17 6 34 6 27 7
Totals 111 48 167 51 148 52
Run Time 172 sec 203 sec 191 sec

For the case � = 0:2, the numbers of nonlinear and
linear iterations are plotted in Figures 3 and 4. Here
we see that as the time step size grows, the number of
nonlinear and linear iterations grows. The growth in
the number of linear iterations is particularly dramatic
with the symmetric approximation and the Picard ap-
proach; as the time steps grow, the linear systems
become less diagonally dominant and thus harder to
solve. As one would expect, the full Jacobian is the

best preconditioner (both in terms of number of lin-
ear iterations and computing time) followed by the
symmetric approximation and the Picard approach, in
that order. Changing � to 0:02, we see that the nonlin-
ear problem becomes easier. The numbers of nonlin-
ear and linear iterations, and total computing time are
all reduced. This agrees with our intuition mentioned
above in discussing the shapes of the Van Genuchten
curves. Note that in this case, the Picard approach out-
performs the symmetric approximation.

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

Time Step

N
o
n
lin

e
a
r 

It
e
ra

ti
o
n
s

 Jac
 Sym
 Pic

Figure 3: Number of nonlinear iterations at each time
step
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Figure 4: Number of linear iterations at each time step



The results for the heterogeneous cases are sum-
marized in Tables 3 and 4. Here, we report only the
total number of linear and nonlinear iterations taken
and the total computing time. In terms of overall run
time, the results using the full Jacobian and the Picard
approach are quite close.

Table 3: Heterogeneous case with � = 0:2. LI = linear
iterations, and NI = nonlinear iterations.

Jacobian Symmetric Picard
LI NI LI NI LI NI

Totals 182 102 359 155 315 91
Run Time 954 sec 1495 sec 943 sec

Table 4: Heterogeneous case with � = 0:02. LI = lin-
ear iterations, and NI = nonlinear iterations.

Jacobian Symmetric Picard
LI NI LI NI LI NI

Totals 162 63 232 66 197 64
Run Time 611 sec 688 sec 622 sec

For this test case, the results using the symmetric
approximation are considerably worse than the other
two, especially in the case � = 0:2. For this value, the
code reached the maximum number of nonlinear iter-
ations (30) for the tenth time step and then reduced the
size of the time step and completed two more steps be-
fore getting to the final time. We are unsure as to why
this matrix approximation is inferior in this test prob-
lem. However, we believe that the poor performance
is related to the fact that we are including a term that
inflates the matrix diagonal without making a corre-
sponding increase in the off-diagonals. Determination
of why this approximation performs the way it does
and perhaps finding a better symmetric approximation
to the Jacobian are the subjects of current and future
research.

5 CONCLUSIONS
The numerical tests described above, although limited
in scope, show that the Jacobian matrix appears to be
an effective preconditioning matrix. However, com-
pute times for this choice are not much better than for
using the Picard approach, which requires just over
half the storage of the full Jacobian. In addition, use
of the Picard approach does not require computing
derivatives of relative permeabilities at any time in the
solution process. In cases where these values are ob-
tained by table lookups, this avoidance of derivative
computation can reduce potential inaccuracies as well
as saving compute time.
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