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Abstract. Stability theory and numerical experiments are presented for a finite difference
method that directly discretizes the Neumann problem for the second order wave equation. Complex
geometries are discretized using a Cartesian embedded boundary technique. Both second and third
order accurate approximations of the boundary conditions are presented. Away from the boundary,
the basic second order method can be corrected to achieve fourth order spatial accuracy. To integrate
in time, we present both a second order and a fourth order accurate explicit method. The stability
of the method is ensured by adding a small fourth order dissipation operator, locally modified near
the boundary to allow its application at all grid points inside the computational domain. Numerical
experiments demonstrate the accuracy and long-time stability of the proposed method.
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1. Introduction. There are many methods to solve the wave equation numeri-
cally. Methods based on variational principles [1] have the advantage that the energy
is conserved, but they are not as efficient as difference methods. On the other hand,
difference methods are prone to instabilities. To avoid these one often has to add
dissipative terms, and the energy is not conserved. Luckily, the instabilities are often
weak and caused by high frequency waves which are not accurately represented any-
way. Therefore, one constructs the dissipation in such a way that it acts mainly only
on these frequencies. We feel that the fixation on energy conservation often goes too
far. Large phase-errors can destroy the solution as well.

In this paper we continue the development of numerical methods that directly
discretize the second order wave equation without first rewriting it as a system of
first order equations. In particular, we want to discuss the kind of instabilities that
can arise and how to control them. Since we treated the Dirichlet problem in [9], we
consider here only the Neumann problem

utt = ∆u + F (x, t), x ∈ Ω, t > 0,

∂u

∂n
(x, t) = f(x, t), x ∈ Γ, t > 0,(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded one- or two-dimensional domain with boundary Γ.
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Fig. 1. The points used for discretizing the Neumann boundary condition.

We will discretize (1.1) on a Cartesian embedded boundary grid. The embed-
ded boundary technique for discretizing partial differential equations dates back to
the first order technique by Weller and Shortley [15] and the higher order generaliza-
tions of Collatz [3]. More recently, several embedded boundary methods have been
presented for various types of partial differential equations. For example, Pember et
al. [12] used a Cartesian grid method for solving the time-dependent equations of gas
dynamics. Zhang and LeVeque [16] solved the acoustic wave equation with discon-
tinuous coefficients written as a first order system. They derived special difference
stencils that satisfy the jump conditions at the interior interfaces, where the coeffi-
cients are discontinuous. A staggered grid method was used by Ditkowski, Dridi, and
Hesthaven [4] for solving Maxwell’s equations on a Cartesian grid. The methods de-
scribed in these papers all solve first order systems (in time). For Poisson’s equation
with Dirichlet boundary conditions, Johansen and Colella [6] derived an embedded
boundary technique based on the finite volume method combined with multigrid.

We proceed by presenting the highlights of our proposed method. The domain
Ω is covered by a Cartesian grid with step size h where the grid points are located
at xi,j = (xi, yj)

T = (ih, jh)T , and the boundary Γ is allowed to cut through the
grid in an arbitrary manner; see Figure 1. Let tn = nk, k = 0, 1, 2, . . . , denote the
time-discretization with step size k, and let vni,j be the difference approximation of
u(xi, yj , tn). A second order accurate approximation of the Laplacian of u is given by

∆hv
n
i,j =:

1

h2
(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j).(1.2)

To be able to evaluate ∆hv
n
i,j at all grid points inside Ω, we use ghost points just

outside the domain. Consider the case in Figure 1 where the grid point xi,j is outside
of Ω, but xi,j+1 is inside. To aid in the approximation of the Neumann boundary
condition, we construct a third order accurate interpolant between three points along
the normal: (0, vni,j), (ξI , v

n
I ), (ξII , v

n
II). Here ξI and ξII = 2ξI are the distances

between xi,j , along the normal going through that point, and the horizontal grid lines
yj+1 and yj+2, respectively. After differentiating the interpolant, we get a second
order accurate approximation of the (outward) normal derivative

D(2)
n vni,j =: g0v

n
i,j + gIv

n
I + gIIv

n
II =

∂v

∂n
(xΓ

i,j , tn) + O(h2),(1.3)
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where xΓ
i,j is the intersection point between the boundary and the normal going

through xi,j . The coefficients gj are given by

g0 =
3ξI − 2ξΓ

2ξ2
I

, gI =
2ξΓ − 2ξI

ξ2
I

, gII =
ξI − 2ξΓ

2ξ2
I

,(1.4)

where ξΓ is the distance between xi,j and the boundary. Since the coefficients gj =
O(1/h), we need to use third order accurate approximations for vnI and vnII . Here we
use Lagrangian interpolation along the grid lines yj+1 and yj+2:

vnI = c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1,

vnII = c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2.

The resulting formula for D
(2)
n vi,j holds when the angle θ between the x-axis and the

normal satisfies π/4 ≤ θ ≤ π/2. When 0 ≤ θ ≤ π/4, the horizontal interpolations
to obtain vI and vII are replaced by corresponding interpolations in the vertical
direction. The expressions in the remaining three quadrants are simply obtained by
reflections in index space, leading to a total of eight different cases to treat all possible
directions of the boundary.

The second order boundary condition formula results in an overall second order
scheme, but since the boundary condition is discretized using one-sided differences,
the truncation error will be larger at the boundary than in the interior, where a
centered scheme is used. We can easily modify the above technique to construct a

third order accurate formula D
(3)
n vi,j to make the coefficient in front of the leading

second order truncation error term smaller. In this case, three interior values vI ,
vII , and vIII are interpolated using fourth order Lagrangian interpolation along three
contiguous grid lines. Hence this stencil involves 12 interior points. The third order
boundary condition formula works nicely for well-resolved geometries where there are
enough interior points. For less resolved geometries, or for very thin regions where two
parts of the boundary are close to each other, we will use the second order boundary
condition formula.

All ghost point values in (1.2) can be eliminated using formulas of the type (1.3).
The discrete approximation of the Laplacian of u (for functions subject to the bound-
ary condition ∂u/∂n = f(xΓ, t)) can then be written in matrix form:

∆u = Av + b(t) + O(h2).(1.5)

Here the array v contains the solution at all grid points inside Ω, and b(t) is the
discrete counterpart of the boundary forcing f(xΓ, t).

Because of the discretized form of the Neumann boundary condition, the matrix
A will not be symmetric. As a result, the basic scheme proposed in [9],

vn+1 − 2vn + vn−1

k2
= Avn + b(tn) + F (tn),

suffers from a weak instability (here F (tn) is the discretized version of the internal
forcing F (x, tn)). The definition of a weak instability will be given in section 4. To
understand the loss of stability, we analyze a number of model problems. We start
with the one-dimensional half-plane (section 2) and strip (section 3) problems, proving
that the difference approximation is stable in these cases, without damping. The
two-dimensional case is analyzed in sections 4–6, where we show that the tangential
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derivatives that occur in the truncation error of the boundary condition can lead
to instabilities, both for the half-plane and strip problems. We also show that our
scheme can be stabilized by a small fourth order artificial dissipation of the type
h3∆2vt. However, a centered finite difference stencil such as ∆2

hvt is wider than the
discretized Laplacian, so it is not possible to use this damping term all the way up
to the boundary (without adding extra numerical boundary conditions). Instead, we
suggest using the discrete operator h3AT (A(vn−vn−1)/k) which can be applied all the
way up to the boundary. Away from the boundary, it is equivalent to ∆2

h(vn−vn−1)/k.
For the general case with inhomogeneous boundary conditions and internal forcing,
the proposed scheme becomes

vn+1 − 2vn + vn−1

k2
= Avn + b(tn) + F (tn)(1.6)

− αh3AT

(
A(vn − vn−1)/k +

db

dt
(tn)

)
.

We note that the sparse structure of A can be used to efficiently evaluate both Av
and ATv, without the need to store the matrix explicitly; see Appendix A.

In section 7.1, we will demonstrate that this discretization does not suffer from the
“small cell” stiffness problem that commonly is encountered when the finite volume
method is used on a Cartesian grid with an embedded boundary; cf. [2]. We will also
show that the damping term inflicts an O(h2) perturbation of the undamped scheme
(section 7.2), and by numerical experiments in section 8 we will demonstrate that it
suffices to take α very small (of the order O(10−3)). Hence, the resulting numerical
solution will be second order accurate, and the scheme is well suited for long-time
calculations where it is important to keep damping to a minimum. In section 7.3, we
also present correction terms that optionally can be added to make the scheme fourth
order accurate in time and space (away from the boundary). A number of numerical
examples are presented in section 8 to assess the accuracy and long-time stability of
the method with and without fourth order corrections, both for smooth boundaries
and in the presence of corners. The proposed method is finally used for a resonance
analysis of wave propagation in a harbor.

2. The one-dimensional half-plane problem. We start with the half-plane
problem

utt = uxx, 0 ≤ x < ∞, t ≥ 0,
(2.1)

u(x, 0) = f(x),

with boundary conditions

ux(0, t) = 0, lim
x→∞

u(x, t) = 0.(2.2)

Let xν =νh, h > 0, denote the grid points, v(xν , t) be a grid function, and D+v(xν , t)=
(v(xν+1, t) − v(xν , t))/h represent the usual forward difference operator. We want to
solve (2.1), (2.2) by the simplest central difference approximation

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . ,
(2.3)

v(xν , 0) = f(xν),

with boundary conditions

D+v(0, t) + αhD2
+v(0, t) + βh2D3

+v(0, t) = 0, lim
xν→∞

v(xν , t) = 0.(2.4)
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If we set α = β = 0 or α = − 1
2 , β = 0, we obtain a first order or second order accurate

approximation, respectively. In these cases we can prove stability by energy estimates;
see [9]. If α = − 1

2 and β = 1
3 , we obtain the third order accurate approximation

D+v(0, t) −
1

2
hD2

+v(0, t) +
1

3
h2D3

+v(0, t) = 0.(2.5)

In this case, we do not know how to prove stability by energy estimates. Instead, we
will use mode analysis.

For simplicity, we keep time continuous. In actual calculations we use the method
of lines. In [10] we have shown that the stability of the semidiscrete approximation
implies the stability of the totally discretized method for most standard methods of
lines.

By stability we mean here that there are no exponentially growing solutions.
Therefore, a test for stability is that (2.3), (2.4) has no solutions of type

v(xν , t) = estϕ(xν), |ϕ(xν)| ≤ const(2.6)

for Re s > 0, satisfying the boundary condition (2.4). Introducing (2.6) into (2.3)
gives us

h2s2ϕ(xν) = h2D+D−ϕ(xν) = ϕ(xν + h) − 2ϕ(xν) + ϕ(xν − h).(2.7)

Since (2.7) is a difference equation with constant coefficients, its general solution is of
the form

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2 ,(2.8)

where κ1, κ2 are solutions of the characteristic equation

(κ− 1)2 − h2s2κ = 0.(2.9)

We have κ2 = κ−1
1 , and we simplify the notation by removing the index of the roots

and set κ1 = κ, κ2 = κ−1.
Lemma 2.1. For |hs| � 1, the roots of (2.9) are of the form

κ = 1 − hs +
h2s2

2
+ O(h3s3) = e−hs(1+O(h2s2)),

(2.10)

κ−1 = 1 + hs +
h2s2

2
+ O(h3s3) = ehs(1+O(h2s2)).

Also, for Re s > 0, (2.9) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.
Proof. Equation (2.10) follows by asymptotic expansion of the roots. (It is not

surprising: The corresponding solutions of (2.1) are e−sx, esx, and (2.3) is second
order accurate.)

Assume that (2.9) has a solution

|κ| = 1, i.e., κ = eiτ , τ real,

for some s with Re s > 0. Then (2.9) becomes

−4 sin2(τ/2) = h2s2.

Therefore, Re s = 0, which is a contradiction.
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For hs → ∞, s > 0 real, the solutions of (2.9) satisfy

lim
hs→∞

κ = 0, lim
hs→∞

κ−1 = ∞.

Since the roots are smooth functions of s and |κ| �= 1 for Re s > 0, we always have
|κ| < 1, |κ−1| > 1. This proves the lemma.

The lemma shows that the solution can only stay bounded in space if σ2 = 0, so

ϕ(xν) = σ1κ
ν , |κ| < 1.(2.11)

Introducing (2.11) into the boundary condition (2.4) gives us

(κ− 1)(1 + α(κ− 1) + β(κ− 1)2) = 0.(2.12)

The cubic equation (2.12) has three roots κ = κj , j = 1, 2, 3, which lead to
possible solutions of (2.6). We obtain the corresponding s from the characteristic
equation (2.9), i.e.,

hs = ±
√

(κ− 1)2

κ
= ±(κ1/2 − κ−1/2).(2.13)

The first root, κ1 = 1, does not generate a growing solution. In fact, any root with
|κ| = 1 has this property, since inserting κ = eiξ into (2.13) yields

hs = ±2i sin
ξ

2
, i.e., Re s = 0.(2.14)

Roots with |κ| > 1 are not permissible because ϕ(xν) = σκν becomes unbounded as
ν → ∞ and violates the boundary condition (2.4). However, solutions of the type
κ = eiξ−η, ξ, η real, η > 0, correspond to

hRe s = ±(e−η/2 − eη/2) cos
ξ

2
,

which grows rapidly in time if ξ �= π + 2nπ, n = 0, 1, 2, . . . . These solutions decay
rapidly away from the boundary, and we therefore denote these solutions as boundary
layer instabilities.

Often one tries to stabilize numerical methods by adding a dissipative term to
the difference equation. Instead of (2.3), we then consider

vtt = D+D−v + σhD+D−vt.

For boundary layer instabilities, this does not work. If the boundary layer is oscilla-
tory, then one can stabilize the method, but the amount of necessary dissipation is, in
general, too large for accuracy reasons. Therefore, the only useful boundary condition
approximations are those where |κ2| > 1, |κ3| > 1. While this condition is violated
for general coefficients α, β, it is easy to see that the third order approximation (2.5)
satisfies the requirement. That approximation has α = − 1

2 , β = 1
3 , and (2.12) has

the solutions

κ1 = 1, κ2,3 =
7

4
± i

√
3 − 9

16
, |κ2,3| =

√
88

4
>

9

4
.(2.15)
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3. The one-dimensional strip problem. We consider now the wave equation
(2.1) for 0 ≤ x ≤ 1, t ≥ 0. As boundary conditions we use

ux(0, t) = 0, u(1, t) = 0.(3.1)

We approximate the continuous problem by

vtt(xν , t) = D+D−v(xν , t), ν = 1, 2, . . . , N − 1, Nh = 1,

v(xν , 0) = f(xν),
(3.2)

with boundary conditions

Lhv =: D+v(0, t) −
1

2
hD2

+v(0, t) +
1

3
h2D3

+v(0, t) = 0,
(3.3)

v(1, t) = 0.

For the analytic problem (2.1), (3.1) there is an energy estimate. Also, we can repre-
sent the solution by an eigenfunction expansion

u(x, t) =

∞∑
j=0

eλjtψj(x).

The eigenvalues λj are purely imaginary and are solutions of the eigenvalue problem

λ2ψ = ψxx, ψx(0) = ψ(1) = 0.(3.4)

Again we want to investigate whether (3.2), (3.3) has exponentially growing solutions.
We make the ansatz (2.6) and obtain

h2s2ϕ(xν) =h2D+D−ϕ(xν),

Lhϕ= 0, ϕ(1) = 0,
(3.5)

and start our discussion with the case that |sh| � 1. The discretized eigenvalue
problem (3.5) is an approximation of the continuous problem (3.4), and since the
difference stencil is compact, solutions of (3.5) with |sh| � 1 are close to solutions of
the continuous problem; see Kreiss [7]. The question is whether the eigenvalues also
are purely imaginary.

The general solution of (3.5) is

ϕ(xν) = σ1κ
ν
1 + σ2κ

ν
2 ,(3.6)

where κj , j = 1, 2, are the solutions of the characteristic equation (2.9)

κ2 − (2 + h2s2)κ + 1 = 0.

Therefore, κ1κ2 = 1, i.e., κ2 = κ−1
1 . By (2.10) we can write

κ1 = ehs̃, κ2 = e−hs̃, s̃ =: s(1 + O(h2s2)),

and

ϕ(x) = σ1e
s̃x + σ2e

−s̃x, x = xν , ν = 0, 1, 2, . . . , N, Nh = 1.
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For smooth functions w(x),

Lhw = wx(0) + γ4h
3wxxxx(0) + γ5h

4wxxxxx(0) + O(h5).

Therefore, introducing (3.6) into the boundary conditions gives us

σ1(1 + γ̃4h
3s̃3 + γ̃5h

4s̃4) − σ2(1 − γ̃4h
3s̃3 + γ̃5h

4s̃4) = 0,(3.7)

σ1e
s̃ + σ2e

−s̃ = 0.(3.8)

Here

γ̃4 = γ4 + γ41s̃
2h2 + · · · , γ̃5 = γ5 + γ51s̃

2h2 + · · ·

account for the higher order terms.
There is a nontrivial solution of (3.7), (3.8) if and only if

σ2

σ1
= −e2s̃ =

1 + γ̃5h
4s̃4 + γ̃4h

3s̃3

1 + γ̃5h4s̃4 − γ̃4h3s̃3
.

If |sh| � 1, then the eigenvalues of (3.5) converge to the eigenvalues λn = i(π2 + nπ)
of (3.4) where |hλn| � 1. Thus we make the ansatz

hs̃ = hλn + ihτ = ihµn + ihτ, µn =
π

2
+ nπ,

and obtain

e2iτ =
1 + γ̃5((µn + τ)h)4 − iγ̃4((µn + τ)h)3

1 + γ̃5((µn + τ)h)4 + iγ̃4((µn + τ)h)3
=: S.(3.9)

Since γ̃4, γ̃5 are real and bounded and µn is real, an asymptotic expansion of |S| in h
yields

|S| = 1 + O(|τ |3h3) = e2iτ .

Hence, τ must be real-valued; that is, s̃ must be purely imaginary. By the above
expansion, it follows that there is a unique solution close to λn with

iτ = iγ̃4(µnh)3 + O((µnh)4), τ real.

Thus the eigenvalues of the discrete problem are purely imaginary, provided |sh| � 1.
Now we consider the case that |sh| ≥ δ̃ > 0. The characteristic equation (2.9)

implies

|κ− 1|2 = |sh|2|κ| ≥ δ̃2|κ|.

Hence, when |κ| ≥ 1/2,

|κ− 1| ≥ δ̃/
√

2 = δ > 0.

Furthermore, when |κ| ≤ 1/2, the triangle inequality gives |1 − κ| ≥ 1 − |κ| ≥ 1/2.
Thus κ cannot be arbitrarily close to 1 when |sh| ≥ δ̃ > 0.

In the following, we use the representation

ϕ(xν) = σ1κ
+ν + σ2κ

−ν , |κ| ≥ 1.
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The discrete eigenvalue problem (3.5) has a nontrivial solution if and only if

σ1Ph(κ− 1) + σ2Ph(κ−1 − 1) = 0, σ1κ
N + σ2κ

−N = 0,

i.e.,

κNPh(κ−1 − 1) − κ−NPh(κ− 1) = 0,(3.10)

has a nontrivial solution. Here

Ph(y) = y − 1

2
y2 +

1

3
y3 ≡ y(y − y2)(y − y3), y2,3 =

3

4
± i

√
3 − 9

16
.(3.11)

Lemma 3.1. There is a constant C > 0 such that (3.10) has no solution for

|κ| ≥ eCh.

Proof. Assume that |κ| = eCh. By (3.11), the zeros of Ph(y) are y = 0 and
y = y2,3 with Re y2,3 = 3/4. For |κ− 1| ≥ δ and |κ| ≥ 1, κ−1 is inside the unit circle
but bounded away from 1. Therefore, κ−1 − 1 is inside a unit circle centered at −1
but bounded away from zero. There are no zeros of Ph in this region, and we have

min
|κ|≥1, |κ−1|≥δ

|Ph(κ−1 − 1)| ≥ d > 0.

Since |κ|N = eC , and κ−3Ph(κ− 1) ≤ const for |κ| ≥ 1,

|κ−NPh(κ− 1)| = |κ−N+3| |κ−3Ph(κ− 1)| ≤ const e−C ,

|κNPh(κ−1 − 1)| ≥ deC .

Hence, (3.10) has no solution if C is sufficiently large, and the lemma follows.
We can now prove the following theorem.
Theorem 3.2. For sufficiently small h, all eigenvalues s of (3.5) are purely

imaginary and the discrete problem (3.2), (3.3) is stable.
Proof. We have already shown that all eigenvalues with |sh| � 1 are purely

imaginary. For |sh| ≥ δ̃, the eigenvalue problem (3.5) has a solution if and only if
(3.10) has a solution with |κ| ≥ 1 and |κ− 1| ≥ δ. We can write (3.10) in the form

Q(κ) =:
Ph(κ−1 − 1)

Ph(κ− 1)
= κ−2N .(3.12)

By noting that Ph(y) = Ph(y) and that eiξ − 1 = e−iξ − 1, it is easy to see that

|Q(eiξ)| = 1, |(eiξ)−2N | = 1.

Now consider κ = eiξ+ηh, 0 ≤ η ≤ C. Then,

|Q(eiξ+ηh)| = 1 + O(ηh), but |(eiξ+ηh)−2N | = e−2η.(3.13)

For sufficiently small h, (3.12) can only have solutions for η = 0 since only the left-
hand side of (3.13) scales with h. Lemma 3.1 tells us that (3.10) has no solution for
|κ| ≥ eCh, and we conclude that all solutions of (3.10) must have |κ| = 1. By solving
the characteristic equation (2.9) for s and setting κ = eiξ, we get (2.14) which shows
that all eigenvalues are purely imaginary.

Since we can represent the solution of the discrete problem (3.2), (3.3) in an
eigenfunction expansion where all eigenvalues are purely imaginary, there can be
no exponentially growing solutions, and we conclude that the discrete problem is
stable.



DIFFERENCE APPROXIMATIONS FOR THE WAVE EQUATION 1301

4. A continuous two-dimensional model problem. We now start our dis-
cussion of two-dimensional problems. The results from the one-dimensional model
seem to indicate that we need only to avoid boundary instabilities. However, there
are also highly oscillatory instabilities which can be controlled by small amounts of
dissipation. As will be demonstrated in section 5, our embedded boundary approx-
imation of the Neumann condition in general two-dimensional domains introduces
truncation errors in both the tangential and normal directions. To illustrate the type
of instabilities that the tangential terms can give, we study the solutions of the wave
equation with perturbed Neumann conditions. We start with the half-plane problem

utt = uxx + uyy, 0 ≤ x < ∞, −∞ < y < ∞, t ≥ 0,

ux(0, y, t) = εuy(0, y, t),
(4.1)

where ε is a real parameter. It turns out the size of ε is of minor importance, and we
will for simplicity consider the case ε = 1. Corresponding to section 2, the problem is
unstable if we can find exponentially growing solutions of the type

u = est+iωyϕ(x), Re s > 0, |ϕ(x)| ≤ const, ω real.(4.2)

Introducing (4.2) into (4.1) gives us the eigenvalue problem for s:

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), |ϕ(x)| ≤ const.
(4.3)

Since (4.3) is a differential equation with constant coefficients, its general solution is

ϕ(x) = σ1e
λx + σ2e

−λx, λ =
√
s2 + ω2, Reλ ≥ 0.(4.4)

Clearly, Reλ > 0 for Re s > 0. Therefore, |ϕ(x)| ≤ const if and only if σ1 = 0, i.e.,

ϕ(x) = σ2e
−λx, Reλ > 0.(4.5)

Introducing (4.5) into the boundary condition gives us

−λ = iω.

Since Reλ > 0, there are no solutions of type (4.2). However, let s = i
√

2ω + η,
η > 0. Solving (4.4) for λ gives

lim
η→0

λ = i|ω|.

Thus, for ω < 0, there is a solution of type (4.2) but with Re s = 0,

u = ei
√

2ωt−i|ω|(x+y).(4.6)

There is no exponential growth in time and, for large ω, the solutions are highly
oscillatory in space. Furthermore, there is no decay in the x-direction. Hence, s =
i
√

2ω is a generalized eigenvalue (see [5] for a definition) which forecasts instabilities
for the corresponding problem on a bounded domain.
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To demonstrate these instabilities, we next consider the strip problem,

utt = uxx + uyy, 0 ≤ x ≤ 1, −∞ < y < ∞, t ≥ 0,

ux(0, y, t) = uy(0, y, t), ux(1, t) = 0.
(4.7)

Again, we construct solutions of the type (4.2). Instead of (4.3), we now obtain the
eigenvalue problem

ϕxx = (s2 + ω2)ϕ,

ϕx(0) = iωϕ(0), ϕx(1) = 0.
(4.8)

Introducing the general solution (4.4) into the boundary conditions shows that (4.8)
has a solution if

λ− iω

λ + iω
= e2λ.(4.9)

Theorem 4.1. The strip problem (4.7) is unstable. For large |ω| there are
solutions of the type (4.2) with

Re s ≈ 1√
8

log(2|ω|), i.e., e(Re s)t = (2|ω|)t/
√

8.(4.10)

Proof. Let

λ = λr + iλi,

and assume that

λi = −ω, |ω| � 1.

By (4.9),

λr − 2iω

λr
= e2λre−2iω.(4.11)

Take |ω| large and argω such that the arguments of the left- and right-hand sides of
(4.11) match. The modulus matches if

λ2
r + 4ω2

λ2
r

= e4λr ,

i.e., to the highest order in ω,

λr ≈ 1

2
log(2|ω|).

Thus,

s = ±
√
−ω2 + λ2 ≈ ±

√
−2ω2 − iω log(2|ω|),

and (4.10) follows.
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The above example shows that the stability of the left and right half-plane prob-
lems is not enough to ensure stability for the strip problem. The reason is that the
generalized eigenfunctions (4.6) do not decay in space but are reflected back and
forth between the boundaries at x = 0, 1, respectively. Every time they hit the left
boundary they are amplified. These are highly oscillatory instabilities, and we will
see that they can easily be controlled by small amounts of dissipation. This example
also illustrates that nondissipative difference methods of our type are prone to weak
instabilities, i.e., instabilities that grow only algebraically in time (see (4.10)). Note
that a weak instability also occurs if the tangential derivative in (4.1) is replaced by
a higher order, odd, tangential derivative.

To demonstrate a strong instability, we study the half-plane problem where the
boundary condition in (4.1) is replaced by

ux = βuyy, x = 0,(4.12)

where β is a constant. As before, we look for solutions of the type (4.2), and using the
same arguments as above, we know the solution must have the form (4.5). Inserting
this ansatz into the boundary condition (4.12) gives

−λ = −βω2.(4.13)

Since Reλ > 0, there are no solutions with Re s > 0 when β < 0. Next we investigate
if there are any generalized eigenvalues. Setting s = iτ yields λ =

√
−τ2 + ω2, so −λ

is either real and negative or purely imaginary. When β < 0, the right-hand side of
(4.13) is always real and positive, and we conclude that there are not any generalized
eigenvalues either. Hence, the case β < 0 is stable.

When β > 0 and ω is large, (4.13) is solved by

s ≈ βω2,

and inserting (4.13) into (4.5) gives

u = eβω
2t−βω2x+iωy, ω large, β > 0.

Hence, these solutions have a thin boundary layer in space and grow exponentially in
time. This is a strong instability. As we shall see in section 5, this type of instability
can only be controlled by dissipation when the coefficient β is small. Perturbing the
Neumann condition by a higher order, even, tangential derivative results in the same
behavior; i.e., the stability depends on the sign of the coefficient.

5. The discrete half-plane problem in two dimensions. We consider next
the two-dimensional half-plane problem for

utt = uxx + uyy, 0 ≤ x < ∞, −∞ < y < ∞, t ≥ 0,(5.1)

with the boundary condition

ux(0, y, t) = 0, |u(x, y, t)| ≤ const,(5.2)

and approximate it by

vtt = (D+xD−x + D+yD−y)v,(5.3)
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with the third order accurate boundary condition (2.5)

Lhv(0, y, t) = 0, |v(x, y, t)| ≤ const.(5.4)

Here v is a discrete function varying on a grid

{xν = νh, yµ = µh}, ν = 0, 1, 2, . . . , µ = 0,±1,±2, . . . .

We Fourier-transform the difference equation with respect to y and obtain

v̂tt =

(
D+xD−x − 4

h2
sin2(ωh/2)

)
v̂,

(5.5)
Lhv̂(0, ω, t) = 0, |v̂(x, ω, t)| ≤ const.

Thus, we obtain a one-dimensional problem for every fixed ω and can apply mode
analysis as before. Then

v̂(xν , t) = estϕ(xν), Re s > 0,

is a solution of (5.5) if there are solutions ϕ(xν) of the eigenvalue problem(
s2 +

4

h2
sin2(ωh/2)

)
ϕ = D+xD−xϕ,(5.6)

Lhϕ = 0, |ϕ(x)| ≤ const,(5.7)

with Re s > 0. The eigenvalue problem (5.6), (5.7) is of the same type as for the
one-dimensional half-plane problem in section 2. In particular, the general solution
has the form (2.8), where κ now is a solution of the two-dimensional characteristic
equation

(κ− 1)2 − (s2h2 + 4 sin2(ωh/2))κ = 0.(5.8)

It is straightforward to show that this characteristic equation has the same essential
properties as in the one-dimensional case. To be precise, we have the following lemma.

Lemma 5.1. For |hs| � 1 and |hω| � 1, the roots of (5.8) are of the form

κ = 1 − hλ +
h2λ2

2
+ O(h3λ3) = e−hλ(1+O(h2λ2)),

κ−1 = 1 + hλ +
h2λ2

2
+ O(h3λ3) = ehλ(1+O(h2λ2)),

where λ =
√
s2 + ω2, Reλ > 0, for Re s > 0. Also, for each fixed ω and for Re s > 0,

(5.8) has no root with |κ| = 1 and exactly one root κ with |κ| < 1.
Proof. The proof follows by straightforward generalization of Lemma 2.1.
Since the boundary conditions are the same as in the one-dimensional case, we

can use the same arguments as in section 2 to show that there are no solutions of (5.6),
(5.7) for Re s > 0, which implies that there are no exponentially growing solutions
of (5.5). Note that for the Neumann boundary condition approximation (5.4), the
boundary normal is aligned with the x-direction.

Our goal is to construct stable difference approximations for general domains. In
this case the boundary condition for the differential equation is

∂u/∂n = 0, ∂/∂n : derivative normal to the boundary,(5.9)
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and in general the normal is not aligned with the mesh. In the following, we will
study the continuous boundary conditions perturbed by the leading truncation error
terms. In the literature this technique is often used for the Cauchy or spatially pe-
riodic problems, and the truncation terms appear only in the differential equation.
The obtained equation is often called the “modified equation”; see, for example, [14]
or [11]. Here we use the technique to analyze the influence of truncation errors in
the boundary conditions. The modified equation is a more accurate description of
the discretized problem than the continuous problem. Or rephrased, the numerical
solution approximates the modified equation to a higher order of accuracy than the
continuous problem. However, the modified equation can only model low and inter-
mediate frequencies in the discrete solution, and we rely on the dissipation to control
the highest frequencies.

In section 4 we have discussed half-plane and strip problems. The reason is
this: For analytic initial boundary value problems where there are no direct energy
estimates, the study of wellposedness can be reduced to the study of half-plane and
strip problems. This is done in the following way. In the neighborhood of every
boundary point P with tangent Tg we use a locally smooth map to transform the
curved boundary locally onto Tg. Then we study the half-plane problem with Tg

as the boundary. After freezing the variable coefficients we can solve the problem by
Fourier–Laplace transform. If for all these half-plane problems there are no eigenvalues
or generalized eigenvalues s with Re s ≥ 0, then the original problem is well posed;
see Kreiss and Lorenz [8].

We shall now apply this technique to analyze the stability of the discrete problem.
Let the angle θ between the outward normal and the x-axis be defined as in Figure 1.
We consider the differential equation on the half-plane n · x ≤ 0, i.e.,

x cos θ + y sin θ ≥ 0.(5.10)

To be able to calculate the truncation error of the discrete boundary condition we
assume that the solution u of the differential equation is smooth and decays rapidly
to zero for x2 +y2 → ∞, in the half-plane (5.10). Also, we extend it smoothly beyond
the boundary such that the extended u decays rapidly to zero for x2 + y2 → ∞ in the
whole plane.

The truncation error in the third order Neumann boundary condition satisfies
(π/4 ≤ θ ≤ π/2)

D(3)
n u(xi, yj) =

∂u

∂n
(xΓ

i,j) + C1h
4 ∂

5u

∂n5
(xΓ

i,j) + C2h
3 ∂

4u

∂n4
(xΓ

i,j) + h4R1 + h3R2 + O(h5).

Here,

R1 =

3∑
ν=1

C1ν
∂5u(x̃ν , yj+ν)

∂x5
, R2 =

3∑
ν=1

C2ν
∂4u(x̃ν , yj+ν)

∂x4
.

The terms in R1, R2 originate from interpolation errors in vI , vII , and vIII , respec-
tively.

Derivatives with respect to x and y can be related to normal (∂/∂n) and tangential
(∂/∂σ) derivatives. We have

∂

∂x
= − sin θ

∂

∂σ
− cos θ

∂

∂n
,

∂

∂y
= cos θ

∂

∂σ
− sin θ

∂

∂n
.
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We can also use Taylor expansions to express derivatives at (x̃ν , yj+ν) in terms of
derivatives at the boundary point xΓ

ij . After some calculations we obtain

D(3)
n u(xi, yj) = (1 + R)

∂u

∂n
−
(
h4β1

∂5u

∂σ5
+ h3β2

∂4u

∂σ4

)
+ O

(
h5 ∂6u

∂n6−j∂σj

)
.

Here R is an operator of the form

R =
∑

p+q≥3

βpqh
p+q ∂p+q

∂np∂σq
.

We can write the half-plane problem for the differential equation in the form

∂2u

∂t2
=

∂2u

∂n2
+

∂2u

∂σ2
, n ≥ 0, −∞ < σ < ∞,

∂u

∂n
= 0 for n = 0.

After Fourier-transforming with respect to σ and Laplace-transforming with respect
to t, we obtain

∂2û

∂n2
= (s2 + ω2)û.

Thus,

û = e−
√
s2+ω2 nu0(s, ω),

∂û

∂n
= −

√
s2 + ω2û,

and the Fourier–Laplace transform of ∂/∂n is −
√
s2 + ω2. After freezing the coeffi-

cients, we Fourier–Laplace-transform the truncation error and obtain

D̂(3)
n = −(1 + R̂)

√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4) + O((|ω| + |s|)6h5).

Here,

R̂ =
∑

p+q≥3

βpq(−
√

(hs)2 + (hω)2)p(ihω)q = O((|hs| + |hω|)3).

For |hs| + |hω| sufficiently small, ‖R̂‖ ≤ 1/2, and we can write

D̂(3)
n = (1 + R̂)

(
−
√
s2 + ω2 − iβ1h

4ω5 + β2h
3ω4

1 + R̂

)
+ O((|ω| + |s|)6h5)

= (1 + R̂)(−
√
s2 + ω2 − (iβ1h

4ω5 + β2h
3ω4)) + O((|ω| + |s|)6h5).

By neglecting the O(h5) term and transforming back to physical space, the boundary

condition D
(3)
n u = 0 corresponds to

(1 + R)

(
∂u

∂n
− β1h

4 ∂
5u

∂σ5
− β2h

3 ∂
4u

∂σ4

)
= 0.

By assumption, ‖R‖ is small and the boundary condition can only be satisfied if the
term following (1 + R) is zero. After changing spatial variables, n → x and σ → y,
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we arrive at the modified equation model corresponding to the discrete half-plane
problem (5.3)–(5.4) in domains where the normal is not aligned with the mesh:

utt = uxx + uyy − αh3utyyyy, α ≥ 0, x ≥ 0, −∞ < y < ∞,(5.11)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, |u| ≤ const.(5.12)

We have added a dissipation term to the differential equation because we shall need it
later. Note that we have only added dissipation in the tangential direction, to avoid
having to add any extra boundary conditions.

After Fourier-transforming in y and Laplace-transforming in t, we obtain

ûxx = (s2 + ω2)û + saû, a = αh3ω4, Re s > 0,(5.13)

with boundary conditions

ûx(0) = bû(0), |û| ≤ const, b = iβ1ω
5h4 + β2ω

4h3.(5.14)

As |ω| gets larger, the Fourier symbol of the second divided difference, − 4
h2 sin2(ωh

2 ),

deviates more and more from the Fourier symbol of a second derivative, −ω2. In
particular, for the highest frequency on the mesh (ωh = π), the symbol of the second
divided difference is −4/h2, while the symbol of the second derivative is −π2/h2.
Hence, the highest frequencies on the mesh are not accurately modeled by the modified
equation. We therefore restrict the following analysis to |ωh| ≤ 1.

The general solution of (5.13) is given by

û = σ1e
λx + σ2e

−λx,(5.15)

where λ now satisfies

λ =
√
s2 + ω2 + sa, Reλ ≥ 0.(5.16)

Since Reλ > 0 for Re s > 0, the boundary conditions are satisfied if and only if

σ1 = 0, λ = −b = −(iβ1ω
5h4 + β2ω

4h3).(5.17)

There are two possibilities:
1. If β2 ≥ 0, then there are no solutions of (5.17) with Re s > 0 since Reλ > 0,

but Re (−b) ≤ 0. Furthermore, when the dissipation coefficient α > 0, Reλ > 0 also
for Re s = 0, ω �= 0. Hence, there are no generalized eigenvalues when α > 0, and we
conclude that the half-plane problem is stable.

2. If β2 < 0, then the problem can be unstable. We want to show that if |β1|
and |β2| are small, the problem can be stabilized by a small α > 0.

Theorem 5.2. If β2 < 0, |β2| � 1, |β1| � 1, and α ≥ K|β1β2|, K = const,
the modified half-plane problem (5.11)–(5.12) is stable; i.e., the eigenvalue problem
(5.13)–(5.14) has no solutions with Re s > 0 and no generalized eigenvalues Re s = 0
for ω �= 0.

Proof. Introducing (5.17) into (5.16) gives

s2 + sa + ω2 − b2 = 0.

Since |ωh| ≤ 1, |a| ≤ |α||ω|. If we assume 0 ≤ α ≤ 1, we have |a| ≤ |ω| and
ω2 − a2/4 ≥ 3ω2/4. Therefore,

s = −a

2
± i

√(
ω2 − a2

4

)√
1 − b2

ω2 − a2/4
.(5.18)
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By assumption |b2| � ω2. We can therefore expand the square root and conclude
that

s = −a

2
±
(
i

√(
ω2 − a2

4

)
− ib2

2
√
ω2 − a2/4

+ · · ·
)
.

Hence,

Re s ≈ −α

2
h3ω4 ± Im b2

2
√
ω2 − a2/4

= −α

2
h3ω4 ± β1β2(ωh)7ω2√

ω2 − a2/4
< 0

for α ≥ 4|β1β2|/
√

3.
We have numerically computed the truncation error coefficients β1 and β2 for

our boundary condition approximation. To conserve space, we will only report the
result of these computations here. For all possible directions of the boundary normal
and all permissible distances between the ghost point and the boundary, we found
that −0.065 < β2 < 0.015 and −0.063 < β1 < 0.063. It is critical that |β2| is small
since the case β2 < 0, |β2| = O(1) cannot be stabilized by adding a dissipative term
to the differential equation. In earlier versions of our numerical code we added a
tangential smoothing operator to the boundary condition approximation. In terms of
the modified problem this means that β2 > 0. The dissipation operator proposed in
section 1 seems to be so efficient that this extra smoothing operator is not needed.

6. The two-dimensional strip problem. Here we generalize the modified
equation approach to study the stability of solutions on a bounded domain,

utt = uxx + uyy − αh3utyyyy, α ≥ 0, 0 ≤ x ≤ 1, −∞ < y < ∞,(6.1)

ux = β1h
4uyyyyy + β2h

3uyyyy, x = 0, ux = 0, x = 1.(6.2)

Remark. In reality the boundary condition at x = 1 also contains truncation
order terms, but the results are the same.

After Fourier- and Laplace-transforming the problem, (6.1)–(6.2) becomes

s2û = ûxx − (ω2 + as)û, a = αh3ω4,(6.3)

ûx(0) = bû(0), ûx(1) = 0, b = iβ1ω
5h4 + β2ω

4h3.(6.4)

The general solution of (6.3) now has the form

û = σ1e
λx + σ2e

−λx,(6.5)

where λ is the solution of (5.16), i.e., Reλ > 0 for Re s > 0. Introducing (6.5) into
(6.4) shows that there is a nontrivial solution if and only if

λ− b

λ + b
= e2λ.(6.6)

We have already studied the corresponding half-plane problem and shown that for
β2 ≥ 0, there are no eigenvalues s, with Re s > 0, and that there are no general-
ized eigenvalues when α > 0. For β2 < 0, Theorem 5.2 shows when the half-plane
problem is stable. Hence, it can be expected that the strip problem also is stable.
In Appendix B, we perform a detailed calculation to verify the stability of the strip
problem. From this calculation, we can also read off the order of magnitude of the
dissipation coefficient α that is necessary for stability. The results are summarized in
the following theorem.

Theorem 6.1. If the half-plane problem (5.11)–(5.12) is stable, the modified strip
problem (6.1)–(6.2) is stable for α > 0, α = O(h3/4).
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7. General two-dimensional domains. In this section, we will add some de-
tails to our proposed scheme that were left out of the general description in section 1.

7.1. Near boundary behavior of the discretized Laplacian. The discret-
ized Neumann boundary condition (1.3) can be used to eliminate all ghost point values
in the discretized Laplacian (1.2). Referring to the case shown in Figure 1, we get at
the point (i, j + 1),

∆hv
n
i,j+1 =

1

h2
(vni+1,j+1 + vni−1,j+1 + vni,j+2 − 4vni,j+1)

− gI
h2g0

(c0v
n
i,j+1 + c1v

n
i+1,j+1 + c2v

n
i+2,j+1)(7.1)

− gII
h2g0

(c3v
n
i,j+2 + c4v

n
i+1,j+2 + c5v

n
i+2,j+2) +

f(xΓ
i,j , tn)

h2g0
,

assuming that (i, j) is the only nearest neighbor of (i, j + 1) that is outside of Ω.
If additional points are outside, other formulas of the type (1.3) would be used to
eliminate those points as well. The coefficients g0, gI , gII are given by (1.4). Since
0 ≤ ξΓ ≤ ξI and h ≤ ξI ≤

√
2h, the denominator g0 satisfies

1

2
√

2h
≤ 1

2ξI
≤ |g0| ≤

3

2ξI
≤ 3

2h
.

Because the coefficient g0 in (7.1) is bounded away from zero, we conclude that this
discretization of the Laplacian does not suffer from the “small cell” stiffness problem.

7.2. Accuracy of the damped scheme. For simplicity, let the grid function
v satisfy the semidiscrete problem, where time is left continuous,

vtt = Av + b + F − αh3AT (Avt + bt).

Let the error in the discrete solution be e = u − v, where u is the solution of the
continuous problem (1.1) evaluated on the grid. We have

ett = ∆u−Av − b + αh3AT (A(vt + ut − ut) + bt)

= ∆u−Au− b + Ae − αh3ATAet + αh3AT (Aut + bt).

We split the error according to e = eI + eII and let eI satisfy

AeI = −αh3AT (Aut + bt).(7.2)

Now, Aut + bt is a second order accurate approximation of ∆ut evaluated on the
grid. Furthermore, away from the boundary, AT∆ut is a second order approximation
of ∆2ut, but near the boundary AT∆ut = O(∆ut/h

2). Hence the right-hand side
of (7.2) is O(h) near the boundary but O(h3) in the interior. Due to the smoothing
properties of the elliptic operator A (see Figure 2 and Table 1 for a numerical example),
we gain one order of magnitude when solving for eI , resulting in

eI = O(h2).

Since the right-hand side of (7.2) is smooth in time, we also have eI
tt = O(h2) and

AeI
t = O(h). The equation for eII is

eII
tt = AeII − αh3ATAeII

t − eI
tt − αh3ATAeI

t + ∆u− (Au + b).
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Fig. 2. Numerical test of the smoothing properties of AeI = h3AT u. The left figure shows a
contour plot of the right-hand side h3AT u, and the right figure shows the solution eI for N = 171;
see Table 1 for quantitative information. In this case, the computational domain was a circle with
unit radius and the test function was ui,j = cos(xi) sin(yj). The problem was solved using the
conjugated gradient algorithm.

Table 1

Smoothing properties of the operator A investigated by solving AeI = h3AT u for different grid
sizes for the case shown in Figure 2. Clearly, eI = O(h2) while h3AT u = O(h).

N ‖eI‖∞ ‖h3AT u‖∞ h

171 3.43 × 10−4 4.36 × 10−2 2.82 × 10−2

341 9.21 × 10−5 2.20 × 10−2 1.41 × 10−2

681 2.40 × 10−5 1.20 × 10−2 7.06 × 10−3

Because Au + b is a second order accurate approximation of ∆u and h3ATAeI
t =

O(h2), all forcing terms are of the order O(h2). Hence

eII = O(h2),

which shows that the damped scheme is second order accurate.

7.3. Fourth order corrections. To reduce the phase-error away from the
boundary, we can optionally add a fourth order correction term,

∆h,4v
n
i,j = −h2

12
(Dx

+D
x
−γi,jD

x
+D

x
− + Dy

+D
y
−γi,jD

y
+D

y
−)vni,j ,

to our second order accurate approximation of the Laplacian. Clearly, this stencil is
too wide to be evaluated all the way up to the boundary, so the grid function γi,j
must be identically zero in a band near the boundary. Away from the boundary we
want γi,j ≡ 1 to make the correction term cancel the second order truncation error in
∆hvi,j . To aid in the construction of γi,j , we initially compute a smoothed distance
function di,j ≥ 0 using the technique described in [13]. The value of the distance
function at a grid point approximately equals the distance between that grid point
and the nearest boundary. Hence, the distance function is zero on the boundary
and increases monotonically away from the boundary, making it straightforward to
construct a smooth γi,j that is zero near the boundary (di,j ≤ ε1) and one away from
the boundary (di,j ≥ ε2). In all numerical examples presented below, we used ε1 = 3h
and ε2 = 13h. The resulting scheme can be written in semidiscrete form as
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vtt = Av + Bv + F + b − αh3AT

(
Avt +

db

dt
(tn)

)
,(7.3)

where B represents the fourth order correction term. The symmetry of B and the
smoothness of the distance function of γi,j seem to give stability. A heuristic argument
for this is that B cannot generate any boundary layer instability, since this type
of instability decays rapidly away from the boundary and in this region ∆h,4v

n
i,j is

arbitrarily small. And the other type of instability discussed above, highly oscillatory
in the whole domain, is effectively stabilized by our damping term. The smoothness
of the distance function implies that no new spurious solutions are generated. The
smoothness furthermore guarantees accuracy of order two in the transition region.
Hence, the resulting scheme will only be second order accurate. The main benefit
of the fourth order spatial correction will be a reduced phase-error away from the
boundary. For this reason we will call the resulting scheme the “internally fourth
order” method.

We can also improve the basic second order time-integration method by using
a fourth order accurate Taylor series method. Consider the second order system of
ordinary differential equations

wtt = Cw + F ,

where C is a symmetric negative semidefinite matrix. A fourth order time-discretization
is given by

wn+1 − 2wn + wn−1

k2
= Cwn + F n +

k2

12
(C(Cwn + F n) + F n

tt),(7.4)

and it is stable for

max
j

(−λj)k
2 < 12,

where λj are the real-valued nonpositive eigenvalues of C. The scheme (7.4) can be
formulated in predictor-corrector form,

w̃n+1 = 2wn − wn−1 + k2Cwn + k2F n,(7.5)

wn+1 = w̃n+1 +
k2

12
(C(w̃n+1 − 2wn + wn−1) + k2F n

tt).(7.6)

Hence, the predictor step (7.5) is simply the second order time-integration scheme pre-
sented above. The discrete damping term is added to the predictor-corrector scheme
in the same way as in (1.6). For the spatially fourth order method, we take C = A+B;
otherwise C = A. We note that the corrector step (7.6) needs only a second order
accurate approximation of wtt. Hence, from an accuracy standpoint we can omit the
correction term and always take C = A in this step. Numerical experiments (see
section 8) indicate that the resulting scheme is stable.

We start the time-integration at n = 0. For the fourth order time-discretization,
we take v0

i,j = u0(xi, yj) and need to use a fifth order accurate approximation

of u(xi, yj ,−k) for v−1
i,j . This is achieved by using the differential equation to
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approximate higher order time derivatives,

v−1
i,j = u0(xi, yj) − ku1(xi, yj) +

k2

2
(Dx

+D
x
− + Dy

+D
y
−)u0(xi, yj) +

k2

2
F (xi,j , 0)

−k3

6
(Dx

+D
x
− + Dy

+D
y
−)u1(xi, yj) −

k3

6
Ft(xi,j , 0)

(7.7)

−k2h2

24
((Dx

+D
x
−)2 − (Dy

+D
y
−)2)u0(xi, yj)

+
k4

24
(Dx

+D
x
− + Dy

+D
y
−)2u0(xi, yj) +

k4

24
Ftt(xi,j , 0).

Note that the last three lines can be omitted for the second order time-discretization.

8. Numerical examples. In this section we numerically solve (1.1) with the
schemes described above. For the cases where an analytical solution is known, we use
this solution to initialize the computation at time levels t = −k and t = 0. For the
cases where an analytical solution is not known we use the initialization (7.7).

We will denote the CFL-number by CFL≡ k/h. Note that for a two-dimensional
periodic domain, our second order time-integration scheme (1.6) is stable for CFL
≤ 1/

√
2 ≈ 0.71, while the fourth order predictor-corrector scheme (7.5), (7.6) is

stable for CFL≤
√

3/2 ≈ 1.22. Also note that all errors are measured in max-norm.
In all examples presented below, the fourth order predictor-corrector time-

integrator (7.5), (7.6) is used together with the internally fourth order spatial cor-
rection. The second order scheme (1.6) is always used together with the second order
spatial discretization. Unless otherwise noted, the Neumann boundary condition is
discretized using the third order accurate formula to reduce the constant in the second
order truncation error, as was mentioned in the introduction.

To evaluate the accuracy of the method, the forcing function is chosen such that
the exact solution is the trigonometric traveling wave:

u(x, y, t) = sin(ω(x− t)) sin(ωy), ω = 4π.(8.1)

The domain Ω is taken to be an ellipse centered at the origin with semiaxes xs = 1 and
ys = 0.75. The Cartesian grid covers the rectangle −1.1 ≤ x ≤ 1.1, −0.85 ≤ y ≤ 0.85.
In Table 2, we present a grid refinement study for the second order scheme (1.6) and
the internally fourth order predictor-corrector scheme (7.5), (7.6). The fourth order
correction applies only in the interior of the domain, and the second order errors
near the boundary clearly dominate the total error. Hence, in this case, there is no
apparent benefit of using the internally fourth order method. The time step can be
taken twice as large, but this gain is balanced by having to evaluate the Laplacian
twice instead of once per time step. Also note that the influence of the damping term
is so small that it changes only the last digit in the error in one of these runs.

To more clearly illustrate the benefits of using a fourth order correction away
from the boundary, we select the forcing function F and boundary data f such that
the exact solution is a spatially localized, outwardly traveling wave,

u(x, y, t) = φ(
√
x2 + y2 − t), φ(ξ) =

1

2

(
1 + tanh

ξ − ξ0
ε

)(
1 − tanh

ξ − ξ1
ε

)
.

(8.2)

Note that such waves are exact solutions to the unforced wave equation in one and
three space dimensions, but not in the two-dimensional case. The domain Ω is taken
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Table 2

Grid refinement study showing the errors in the computed solutions when the exact solution
is the trigonometric function (8.1). Here, CFL = 0.5 for the second order scheme and CFL = 1.0
for the internally fourth order predictor-corrector scheme. The grid size N = 101 corresponds to
h = 2.4 × 10−2 and N = 201 corresponds to h = 1.2 × 10−2. The first line corresponds to the
undamped case, α = 0, and the second line shows the damped case with α = 0.001.

Second order scheme Predictor-corrector scheme

t α N = 101 N = 201 ratio N = 101 N = 201 ratio

2.0 0.0 8.75e-02 2.10e-02 4.17 10.7e-02 2.17e-02 4.93

2.0 0.001 8.77e-02 2.10e-02 4.18 10.7e-02 2.17e-02 4.93

Table 3

Grid refinement study showing the errors in the computed solutions when the exact solution
is the outwardly traveling wave function (8.2). Here, CFL = 0.5 for the second order scheme and
CFL = 1.0 for the predictor-corrector scheme. The grid size N = 201 corresponds to h = 1.8×10−2

and N = 401 corresponds to h = 9.0 × 10−3. In all cases, the damping coefficient was α = 10−3.

Second order scheme Predictor-corrector scheme

t N = 201 N = 401 ratio N = 201 N = 401 ratio

0.5 3.29e-2 8.63e-3 3.8 1.23e-3 8.78e-5 14.0

0.75 4.59e-2 1.23e-2 3.7 1.73e-3 1.26e-4 13.7

1.0 1.05e-1 3.12e-2 3.4 2.71e-2 3.23e-3 8.4

1.25 5.89e-2 1.73e-2 3.4 1.76e-2 2.53e-3 6.9

to be the circle, |r| ≤ 1.5, and the Cartesian grid covers the square −1.6 ≤ x ≤ 1.6,
−1.6 ≤ y ≤ 1.6. The parameters in φ are taken to be

ξ0 = 0.3, ξ1 = 0.5, ε = 0.07.

The wave reaches the boundary at t ≈ 0.8. In Table 3 we see that for the internally
fourth order method, the error is at least one order of magnitude smaller and the con-
vergence rate is much higher before the wave hits the boundary. No such distinction
can be made for the second order method, where the errors grow more gradually in
time. Furthermore, the errors in the internally fourth order method are substantially
smaller than those of the second order method, especially before the wave hits the
boundary.

We proceed by investigating the long-time stability properties of the method. We
take the domain to be the same ellipse used above and take the forcing functions such
that the exact solution is the trigonometric traveling wave (8.1). In Figure 3, we show
the error in the solution as a function of time for different values of α and for different
grid sizes. We conclude that it is sufficient to take α = 2 × 10−3 for both the second
order and the predictor-corrector scheme. Note that these computations integrated
the solution for long times. In particular, the second order scheme on the finer grid
(N = 401) required 66,666 time steps to reach t = 200. Also note that there is no
long-time increase in the error, which indicates that the damping is very mild.

We next study the homogeneous problem

F (x, t) ≡ 0, f(x, t) ≡ 0,

in a domain bounded by an ellipse centered at the origin, with semiaxes xs = 2.0 and
ys = 2.54. The Cartesian grid covers the square −2.1 ≤ x ≤ 2.1, −2.64 ≤ y ≤ 2.64.
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Fig. 3. The max-norm of the error in the solution as a function of time. The second order
scheme (1.6) was run at CFL = 0.5 (left), and the predictor-corrector method (7.5), (7.6) was run
at CFL = 1.0 (right). Note that to stabilize the solution, the damping coefficient had to be slightly
larger for the second order scheme (2× 10−3) than for the predictor-corrector method (1.5× 10−3).

We take initial data to be

u0(x, y) = φ(
√

x2 + (y − yF )2),

where φ(ξ) is given by (8.2). The upper focal point is located at yF =
√
y2
s − x2

s ≈ 1.56
and

u1(x) = −φ′(
√
x2 + (y − yF )2).

The parameters in φ(ξ) are

ξ0 = 0.2, ξ1 = 0.4, ε = 0.035.

Note that the initial data is chosen such that the wave is essentially traveling radially
outwardly from the focal point (0, yF ). By making a ray-tracing argument, we see
that a high frequency wave should reflect the boundary and refocus at the other
focal point (0,−yF ). This was verified for the Dirichlet problem in [9] (Figure 6).
For the Neumann boundary condition, we should get a similar behavior, except that
the solution should have the opposite phase compared to the Dirichlet case. This is
confirmed in Figure 4, where we show a well-resolved calculation using the predictor-
corrector scheme with N = 801 and CFL = 1.0. It is interesting to use this calculation
as a yard-stick to compare the quality of the solutions from both schemes at a lower
resolution, N = 401; see Figures 5 and 6. Observe the more pronounced over- and
undershoots for the second order method in comparison to the predictor-corrector
method, indicating that the phase-error dominates at the time of comparison. In all
these calculations, the damping coefficient was α = 0.001.

While all theory and all numerical experiments up to this point have been pre-
sented for the third order accurate discretization of the boundary conditions, our
practical experience with the second order boundary condition stencil is at least as
good. The advantage of the second order stencil is that it uses fewer internal points,
which becomes important for thin or marginally resolved geometries. However, near
true corners, the second order boundary condition needs to be modified to avoid using
grid points where the solution is undefined; see Figure 7. To avoid this problem, all
grid points are first scanned in a preprocessing step to detect interior points within√

2h of corners. All such points that also have at least two exterior nearest neighbors
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Fig. 4. Contours of the bouncing wave solution to the Neumann problem. Here a reference
solution is produced with the predictor-corrector scheme, CFL = 1.0, N = 801, t = 3.12 (left), and
t = 4.41 (right). The dashed line is the boundary and the contour spacing is 0.2.
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Fig. 5. Contours of the bouncing wave solution to the Neumann problem. The second order
scheme is used with CFL = 0.5 (left) and the predictor-corrector scheme is used with CFL = 1.0
(right). Here N = 401, t = 4.41, and the contour spacing is 0.2.
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Fig. 6. Comparison of the bouncing wave solution for the Neumann problem at t = 4.41 along
the line x = 0 centered around y = −2.0 (left) and y = −1.2 (right). The reference solution is
for N = 801 (solid), the second order scheme is for N = 401, CFL = 0.5(“+”), and the predictor-
corrector scheme is for N = 401, CFL = 1.0(“o”).
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Fig. 7. The standard second order boundary condition stencil (outlined with a dash-dotted line)
for the ghost point at “X” involves the point “ O”, where the solution is undefined due to the corner.
In this case, the boundary stencil at “X” is reduced to a divided difference between the solution at
“−1” and “X.”
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Fig. 8. The max-norm of the error for a rotated square domain, as a function of time. The “ ∗”
correspond to the grid size h = 1.417× 10−2, and the “+” represent the grid size h = 7.087× 10−3.
The damping coefficient was α = 2 × 10−3.

get marked with a “−1.” The boundary condition stencil at ghost points neighboring
a “−1” point is then modified to be a divided difference between the ghost point
and the “−1” point; i.e., the direction of the normal is locally changed to be either
vertical or horizontal. As a consequence, no undefined points are involved in the
boundary stencil near the corner, and the resulting contribution to the discretized
Laplace operator (the matrix A) will be locally symmetric.

While the modified boundary condition approximation will be at most first order
accurate near each corner, it is not clear what impact that truncation error has on
the accuracy of the solution. We are also interested in the long-time stability of the
resulting scheme. To investigate these issues, we take the domain to be a square with
side length 2, rotated 10 degrees relative to the grid directions. In rotated coordinates
x̃ = x cos(θ) + y sin(θ), ỹ = −x sin(θ) + y cos(θ), θ = 10π/180, an exact solution of
the homogeneous wave equation can be constructed using Fourier expansion. Here we
take

u(x̃, ỹ, t) = sin

(
πx̃

2

)
sin

(
3πỹ

2

)
cos(ωt), ω =

π
√

10

2
,

which satisfies homogeneous Neumann conditions along x̃ = ±1 and ỹ = ±1, respec-
tively. The errors in the computed solutions on two grid sizes are reported in Figure 8,
indicating that the solution is almost second order accurate despite the corners. How-
ever, for reasons not currently understood, the errors accumulate and seem to grow
linearly in time.

In our last numerical example, we use the numerical method to compute the
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Fig. 9. The geometry for the harbor model (left). The computational grid covered −1.05 ≤ x ≤
1.05, −0.55 ≤ y ≤ 0.55 and had 801× 401 grid points corresponding to the grid size h = 2.6× 10−3.
The forcing is located at the “ x” and the signal is recorded at the “+.” The right figure shows the
lowest modes in the discrete Fourier transform of the recorded signal, as a function of the frequency.
The spikes indicate eigenfrequencies.

eigenfrequencies and eigenmodes of the domain shown in Figure 9. Since the wave
equation models the propagation of small amplitude water waves, we may think of
this geometry as representing a simple harbor. Even though the grid is rather fine,
the wide stencil used by the third order boundary condition couples the solution at
some ghost points near the ends of the convex fingers protruding into the domain. By
coupling we mean that at least one of the interior points in one boundary condition
stencil is also a ghost point. Satisfying the boundary conditions at all ghost points
would then require an iteration over the ghost point values. To avoid this iterative
procedure, we will instead use the second order boundary condition, which uses fewer
interior points in its stencil. For this case, the solution does not get coupled at any
ghost points. To estimate the eigenfrequencies, we apply a forcing to two consecutive
points in space,

F (xi,j , yi,j , t) =

⎧⎪⎨
⎪⎩
Ke−(t−t0)

2/ε21 , i = I1, j = J1,

−Ke−(t−t0)
2/ε21 , i = I1 + 1, j = J1,

0, otherwise.

Here K = 105, ε1 = 0.07, t0 = 1.0. We choose this forcing since it is likely to
have a component along each eigenmode, except the constant mode corresponding
to the zero eigenvalue, which is present due to the Neumann boundary condition.
We start the computation from rest and integrate up to time T = 200. During
the computation, the solution is recorded at another point (Ir, Jr). This signal is
then Fourier-transformed in time, after which the eigenfrequencies of the domain
appear as spikes in the spectrum; see Figure 9. Note that the frequency resolution is
limited by 2π/T , so a longer computation leads to a more accurate estimate of the
eigenfrequencies. Also note that the eigenvalues of

∆u = λu in Ω,

∂u

∂n
= 0 on Γ

are related to the eigenfrequencies ω through λ = −ω2.
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Fig. 10. A contour plot of the solution at t = 62.4 approximating the eigenmode corresponding
to the eigenfrequency ωr = 0.90 (left). Here, the contour levels are equally spaced between −0.8 and
0.8. The right figure shows the time-history of the solution at the point (x, y) = (−0.6526,−0.1976).
Because of resonance, the amplitude grows linearly in time.

To compute the corresponding eigenmode, we perform a second computation,
where the forcing is taken to be

F (x, y, t) = sin(ωrt)γ
′(x− x0)γ(y), γ(ξ) = e−ξ2/ε22 , x0 = −0.6, ε2 = 0.2.

The frequency of the time-harmonic forcing is chosen to obtain resonance. In this
computation, we take ωr = 0.90, which is the approximate location of the first spike
in the spectrum; see Figure 9. Due to resonance, the solution will be more and
more dominated by the corresponding eigenmode as time increases, assuming that the
forcing is not orthogonal to that mode. The resulting eigenmode is shown in Figure 10
together with the time-history of the solution in one point, which demonstrates the
expected linear growth in amplitude.

9. Conclusions. We have presented stability theory and numerical examples
for a Cartesian embedded boundary scheme which directly discretizes the second or-
der wave equation subject to Neumann boundary conditions, without rewriting the
problem as a system of first order equations. Since the discrete approximation of the
Laplacian subject to the Neumann boundary condition leads to a matrix A that is
not symmetric, the stability theory developed in [9] does not directly apply. Indeed,
numerical experiments in two-dimensional domains indicate that the basic undamped
scheme is unstable. In the one-dimensional case, we prove that the semidiscrete
scheme is stable, thus indicating that the instability is due to two-dimensional ef-
fects. In two dimensions, tangential derivatives are present in the truncation error of
the boundary condition, when the boundary is not aligned with the mesh. A two-
dimensional stability theory is presented that first is used to show the destabilizing
effect of perturbing a Neumann boundary condition by tangential derivatives. The
stability theory also predicts that a small fourth order dissipative term h3∆2ut can
control the destabilizing effects of high order tangential derivatives. The discrete sta-
bilization term h3ATA(un −un−1)/k is proposed for the practical computation. This
term can be evaluated all the way up to the boundary so no extra numerical bound-
ary conditions are necessary. After discretization in space, the system of second order
ordinary differential equations is integrated in time using a second or fourth order
explicit method. Improved spatial accuracy can be achieved away from the boundary
by adding a fourth order spatial correction term. Our numerical examples indicate
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that the resulting scheme is second order accurate measured in max-norm and that
the time step can be chosen independently of small grid cells near the boundary. Nu-
merical experiments also show that the amount of dissipation needed to stabilize the
scheme is very small and, for smooth boundaries, long-time computations do not show
any accumulation of the error. A simple modification of the scheme in the vicinity of
corners is proposed, but more work is needed to fully understand its implications.

Work is underway to generalize the proposed method to Maxwell’s equations
written as a system of second order wave equations, which requires more complicated
boundary conditions to be satisfied. Further work is also planned to extend the method
to three space dimensions.

Appendix A. Computing AT u. Using standard notation for an N×N matrix
A and vectors u and v, the most straightforward way of computing v = ATu might
be

vi =

N∑
j=1

Aj,iuj .

However, when the matrix is sparse, it is inefficient to store all matrix elements
explicitly. If we let aT

i denote the ith row of A, we can write A in row form,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

aT
1

aT
2

...

aT
N

⎞
⎟⎟⎟⎟⎟⎟⎠

, AT = (a1,a2, . . . ,aN ),(A.1)

and v = ATu =
∑N

j=1 ajuj . Hence, another way of computing ATu is by accumu-

lating the contributions from each column of AT , i.e., each row of A:
1. v = 0;
2. for j = 1, 2, . . . , N do v + = ajuj .

Here the operator + = means evaluate the right-hand side and add the result to the
left-hand side (as it is defined in the “C” programming language).

Next consider the particular form of the matrix A = A that arises in our embedded
boundary discretization. Away from the boundary, A is defined by (1.2). Near the
boundary, outside points in the stencil get eliminated using the discretized Neumann
boundary condition, resulting in a stencil of the type (7.1). In general, each row of A
will only have a few nonzero entries. To simplify the notation, we define u(k, l) =: uk,l.
Each row of the matrix can then be written in sparse form as

Au|i,j =:

NZi,j∑
k=1

a
(k)
i,j u(I

(k)
i,j , J

(k)
i,j ),(A.2)

where NZi,j is the number of nonzero entries for the row corresponding to grid point

(i, j), and (I
(k)
i,j , J

(k)
i,j ) is the grid point index of the kth contribution to Au in that

row.
Equation (A.2) represents the matrix A in a sparse row form corresponding to

(A.1). The operation v = ATu can therefore be computed using the above accumu-
lation algorithm,
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1. v = 0;
2. for all grid points (i, j) inside Ω do

for k = 1, 2, . . . , NZi,j do

v(I
(k)
i,j , J

(k)
i,j )+ = a

(k)
i,j u(i, j).

We note that it is only necessary to form the sparse representation of A at interior
points where some neighbors are outside Ω. If all neighbors of (i, j) are interior, the
“for k”-loop in the second step in the accumulation algorithm can be replaced by

v(i + 1, j) + =
u(i, j)

h2
, v(i− 1, j) + =

u(i, j)

h2
, v(i, j) + = −4u(i, j)

h2
,

v(i, j − 1) + =
u(i, j)

h2
, v(i, j + 1) + =

u(i, j)

h2
.

Appendix B. Proof of Theorem 6.1. The proof is divided into three cases:
|λ| � |b|, |λ| � 1, and |λ| ≤ C|b|.

Case 1, |λ| � |b|. We have (λ − b)/(λ + b) ∼ 1. To make the modulus of the
right-hand side of (6.6) be close to one,

λ = Niπ + λ̃, |λ̃| � 1, N ≥ 1 integer.

(Note that N = 0; i.e., |λ| � 1 is treated in Case 2 below.) To first approximation
in λ̃,

λ̃ + iNπ − b

λ̃ + iNπ + b
= 1 + 2λ̃.

Therefore,

λ̃ + iNπ − b = λ̃ + iNπ + b + 2λ̃2 + 2iNπλ̃ + 2bλ̃

or

λ̃2 + (iNπ + b)λ̃ + b = 0.

Since |λ| � |b|, |b| � Nπ, and we can expand the roots of λ̃ in the small parameter
ε = b/Nπ, |ε| � 1,

λ̃ = − iNπ + b

2
± i

Nπ

2

√
1 − 4b

Nπ

(
i

2
− 1

Nπ
+

b

4Nπ

)

= − iNπ + b

2
±
(
iNπ + b

2
+

ib

Nπ
+ O(ε2)

)
.

Only the plus sign gives |λ̃| � 1, and we have

λ = iNπ + λ̃ ≈ iNπ +
ib

Nπ
.

By solving the characteristic equation (5.16) for s and inserting the above expression
for λ,

s = −a

2
±

√
a2

4
− ω2 −N2π2 − 2b− b2

(Nπ)2
.(B.1)
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We assume that

0 ≤ α ≤ 1.(B.2)

Since |ωh| ≤ 1, we have that

|a| ≤ |ω|,(B.3)

so N2π2 + ω2 − a2/4 is real and positive. Because |b|/Nπ � 1, we can expand the
roots of (B.1),

s = −a

2
± i

√(
N2π2 + ω2 − a2

4

)√
1 +

2b

N2π2 + ω2 − a2/4

(
1 +

b

2N2π2

)

= −a

2
±
(
i

√(
N2π2 + ω2 − a2

4

)
+

ib√
N2π2 + ω2 − a2/4

+ · · ·
)
.

We have ib = −β1ω
5h4 + iβ2ω

4h3, and N2π2 + ω2 − a2/4 ≥ 3ω2/4, so

Re s ≈ −1

2
αh3ω4 ∓ β1ω

5h4√
N2π2 + ω2 − a2/4

≤ −1

2
αh3ω4 +

2|β1|ω4h4

√
3

.(B.4)

Therefore, Re s < 0 for α ≥ 4|β1|h/
√

3, and we conclude that there can be no expo-
nentially growing solutions with |λ| � |b|, when α exceeds that value.

Case 2, |λ| � 1. If |λ| � 1, we can replace (6.6) by

λ− b

λ + b
= 1 + 2λ,

i.e.,

λ2 = −b + O(b3/2).(B.5)

Then (5.16) gives us

s = −a

2
±
√

a2

4
− ω2 + λ2 ≈ −a

2
±
√

a2

4
− ω2 − iβ1ω5h4 − β2ω4h3,(B.6)

and by making the same expansion as above we obtain

Re s ≈ −1

2
αh3ω4 ± |β1|ω4h4

√
3

.

Hence, in this case, Re s < 0 for α > 2|β1|h/
√

3, and there can be no exponentially
growing solutions with |λ| � 1 when α satisfies that inequality. Note that (B.5)
implies that |b| � 1 when |λ| � 1.

Case 3, |λ| ≤ C|b|. From Case 2 above, we know that |b| � 1 when |λ| � 1. We
can therefore assume that |b| ≥ δ1 > 0. Since |b| = ω4h3

√
β2

2 + β2
1ω

2h2 and |ωh| ≤ 1,

c1h
−3/4 ≤ |ω| ≤ h−1.(B.7)

Let us define a complex number ρ such that

λ + b = ρb,(B.8)
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that is, |ρ− 1| ≤ C. There are two possibilities:

(a) |ρ| ≥ δ > 0, (b) |ρ| ≤ ε � 1.

For possibility (a), we start by deriving a bound for Reλ. Let λr = Reλ and λi =
Imλ. From (6.6)

e2λr =

∣∣∣∣λ + b− 2b

λ + b

∣∣∣∣ ≤ 1 +

∣∣∣∣ 2b

λ + b

∣∣∣∣ = 1 +
2

|ρ| ≤ 1 +
2

δ
,

and therefore

λr ≤ 1

2
log

(
1 +

2

δ

)
= c2.(B.9)

By solving the characteristic equation (5.16) for s, we have

s = −a

2
±
√

a2

4
− ω2 − λ2

i + 2iλiλr + λ2
r.

Since (B.7) bounds |ω| from below, λ2
r � ω2. Hence, we can neglect this term, expand

the roots of s as before, and use (B.9) to get

Re s ≤ −1

2
αh3ω4 +

c2|λi|√
3
4ω

2 + λ2
i

.

Let ρr = Re ρ and ρi = Im ρ. The relation (B.8) gives λi = ξω4h3, where the real-
valued coefficient ξ = ρiβ2 + (ρr − 1)β1ωh. Clearly, for all |ρ| ≥ δ and |ωh| ≤ 1,

|λi|√
3
4ω

2 + λ2
i

=
|ξ||ωh|3√
3
4 + ξ2ω6h6

≤ c3|ωh|3.

Since |ω| is bounded from below by (B.7), Re s < 0 for α > 2c2c3c
−1
1 h3/4.

For possibility (b), we exploit that Reλ > 0 for Re s > 0. We have

λ = −b(1 − ρ), |ρ| � 1.(B.10)

When ρ = 0, this case reverts to (5.17) and the half-plane problem. For β2 > 0,
Re (−b) = −β2ω

4h3 < 0, but Reλ > 0 for Re s > 0, which is contradicted by (B.10).
Hence there are no solutions with Re s > 0 when β2 > 0. When β2 < 0, β1 � 1, and
|β2| � 1, Theorem 5.2 applies and the problem can be stabilized by a small amount
of dissipation α ≥ K|β1β2|.

For the perturbed case, |ρ| = ε, ε � 1, a simple computation yields

Re (−b + ρb) = (−1 + ρr)β2ω
4h3 − ρiβ1ω

5h4,

and Re (−b + ρb) < 0 if (−1 + ρr)β2 + |ρiβ1| < 0, i.e.,

β2 >
|ρi|

1 − ρr
|β1| ≈ ε|β1|.(B.11)

Hence, when |ρ| ≤ ε, there cannot be any solutions with Re s > 0 when (B.11) is
satisfied. For β2 < ε|β1|, we can apply the same expansion as in Theorem 5.2 for the
half-plane problem. Since λ is perturbed by ρb = O(ε), the roots of s can only be
perturbed by O(ε), and the amount of dissipation necessary to stabilize the problem
remains essentially the same.

This concludes the proof of Theorem 6.1.
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