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Abstract

Patch-based structured adaptive mesh refinement
(SAMR) is widely used for high-resolution simu-
lations. Combined with modern supercomputers,
it could provide simulations of unprecedented size
and resolution. A persistent challenge for this com-
bination has been managing dynamically adaptive
meshes on more and more MPI tasks. The dis-
tributed mesh management scheme in SAMRAI has
made some progress SAMR scalability, but early al-
gorithms still had trouble scaling past the regime
of 105 MPI tasks. This work provides two critical
SAMR regridding algorithms, which are integrated
into that scheme to ensure efficiency of the whole.
The clustering algorithm is an extension of the tile-
clustering approach, making it more flexible and
efficient in both clustering and parallelism. The
partitioner is a new algorithm designed to prevent
the network congestion experienced by its prede-
cessor. We evaluated performance using weak- and
strong-scaling benchmarks designed to be difficult
for dynamic adaptivity. Results show good scaling
on up to 1.5M cores and 2M MPI tasks. Detailed
timing diagnostics suggest scaling would continue
well past that.

1 Introduction

Patch-based structured adaptive mesh refinement
(SAMR) was first introduced by Berger, Oliger,
and Colella [BO84, BC89]. It is a popular ap-
proach for adaptive mesh refinement (AMR), with
implementations in the BoxLib [Box15], Chombo
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[Cho15, CGJ+13], AMROC [AMR15], and SAM-
RAI [HK02, SAM15] libraries, as well as multiple
applications that use these libraries.

The SAMR mesh is a hierarchy of levels with
increasing resolution (Figure 1a). To refine a re-
gion, we tag cells that need refinement and gen-
erate the finer level that covers all of the tagged
cells. The level generation procedure begins with a
clustering step that finds a set of non-overlapping
boxes covering the tags, using the Berger-Rigoutsos
[BR91] algorithm or some other clustering proce-
dure. It then applies small changes to the boxes
to suit the particular constraints of the SAMR im-
plementation, such as requiring the levels to fully
nest at each level. Finally, it partitions the boxes
by assigning them to MPI tasks, possibly modify-
ing the boxes further in the process. To update a
level in the course of a dynamic simulation, we re-
generate the level, copy the data over, and discard
the old level. Parallel distribution of meshes usu-
ally follows the LPARX model [KB96], with each
patch assigned to one MPI process, but allowing for
multiple patches per process. Hierarchies are dis-
tributed level by level to facilitate level operations
prevalent in SAMR solvers.

While the concepts in this work probably ap-
ply to other SAMR implementations, the work was
implemented and tested in the SAMRAI library.
SAMRAI is unique in its software interface and
flexibility [HK02]. For example, it integrates seam-
lessly with user data and algorithms without mod-
ifying or recompiling the library, and supports ar-
bitrary refinement ratios, such as the odd ratios
preferred by ALE-AMR [AEP04]. It was designed
from the start to run on distributed memory par-
allel computers.

Mesh management for large-scale SAMR
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emerged as a challenge in SAMRAI around 2003.
Wissink, et. al., observed that as the number
of MPI tasks exceeded O(102), the cost of com-
puting data dependencies via patch proximity
overwhelmed everything else. Also, communi-
cation time in the Berger-Rigoutsos clustering
implementation was slow [WHH03]. The first issue
was resolved by replacing the quadratic search
algorithm for detecting patch proximity with a
tree-based search that had O(K logK) complexity,
where K is the number of patches. The second
issue was addressed by grouping MPI tasks to
remove extraneous communications in the parallel
Berger-Rigoutsos implementation.
Other advances followed in the SAMR field, in-

cluding an asynchronous Berger-Rigoutsos clus-
tering algorithm [GWH06], a tree partitioner
[BGI+12], a tile-clustering approach [LB11, Lui11],
a parallel space-filling curve partitioner [LBH07,
Lui11] and distributed mesh management [Gun12].
Advances were also made in the oct-tree-based
AMR framework ALPS [BGG+10].
These advances pushed AMR computations to

the range of O(105) CPU cores. Above O(105)
cores, we have seen limitations in the scalable
ranges of the tree partitioner and the asynchronous
Berger-Rigoutsos clustering. This work contributes
clustering and partitioning algorithms that scale
better.
The tree partitioner worked by first arranging

MPI processes in a depth-first binary tree. Peer-
to-peer communication along the tree’s edges de-
termined how much work should be given to or
taken from each branch. Work moved up and down
the tree, out of overloaded branches and into un-
derloaded ones. The problem with this partitioner
was that too much data was being pushed through
a few links near the tree’s root [BGI+12]. Although
the data was tiny compared with the mesh size, it
could remain a constant fraction of the mesh size
and grow linearly with scale. Eventually, this was
too much data to move quickly through a few links.
Although we mitigated the problem in [BGI+12] by
using more direct communications in one phase of
the algorithm and increasing the minimum patch
size, the problem was still inherently there, and
would just emerge again in a larger simulation.
Clustering algorithms generate boxes covering

cells tagged for refinement. The Berger-Rigoutsos
algorithm works top-down, beginning with a global

cluster around all tagged cells. In a recursive bisec-
tion scheme, it breaks the box into smaller parts
that could exclude more and more untagged cells.
Recursion stops when clustering efficiency reaches
a given value. Evaluating the large clusters is
communication-intensive, even in the asynchronous
implementation.

In contrast, Luitjen’s tile-clustering algorithm
has no communication. The disadvantage of tiles
is the competing influences on tile size. Large tiles
are efficient to manage but less flexible for load bal-
ancing, and they tend to include more untagged
cells, reducing the clustering efficiency. Smaller
tiles are easier to partition and better at minimiz-
ing inclusion of untagged cells, but lead to more ex-
pensive mesh-management operations and require
more ghost data and intra-level data transfer.

The current work contributes a completely new
partitioner and extensions to tile clustering. The
“cascading partitioner” made better use of the
available communication network to avoid pushing
too much data through a few links. Our exten-
sions made tile clustering more flexible, combining
the advantages of small and large tiles. Both al-
gorithms were integrated it into SAMRAI’s mesh-
management system using scalable operations to
ensure the whole regridding process remained scal-
able.

Much of the work in this paper is described in the
context of its implementation; specifically, in SAM-
RAI’s mesh-management context. Because SAM-
RAI’s distributed mesh management is relatively
new, we will review it in Section 2 before getting
into the contributions of the current work. In Sec-
tion 3, we describe partitioning principles and chal-
lenges relevant to this work. Sections 4 and 5 de-
scribe the cascade partitioner and the extended tile-
clustering algorithm. Section 6 gives weak- and
strong-scaling results and examines load balance
and data locality related to the new algorithms.
Conclusions are given in the last section.

2 Mesh management context

This section reviews the basic concepts and termi-
nology in SAMRAI’s mesh management [Gun12],
including mesh metadata, BoxLevels, Connectors,
and two important operations that we have called
“bridge” and “modify.” We will describe the novel
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environment in which the partitioning and cluster-
ing algorithms work and introduce terminology to
discuss them in sufficient detail.
Mesh metadata is the data that describes the

mesh. For a patch-based mesh distributed in par-
allel, this includes the boxes that form the patches
and the owners of those patches. To facilitate ref-
erencing specific boxes, SAMRAI adds to each box
an identifier that is globally unique in the container
holding the box. Metadata also includes data de-
rived from the boxes, such as which box is close to
which. It can refer to similar data used during mesh
generation and adaptation and other steps that ma-
nipulate distributed sets of boxes. Mesh man-

agement is the generation, acquisition (through
communication), storage, and processing of meta-
data. The partitioning and clustering algorithms
presented in this paper both exercise of mesh man-
agement.
Early versions of SAMRAI used the traditional

approach of storing global metadata on every pro-
cess. This turned out to be prohibitive for large-
scale computation. Starting in Version 3, SAM-
RAI uses distributed mesh management, storing
metadata in two container classes, BoxLevel and
Connector . A BoxLevel is a distributed box
container (Figure 1b). Locally owned boxes are
called local , and others are remote. Each pro-
cess stores only local boxes in a BoxLevel. Re-
lationships between two BoxLevels are stored in
Connectors(Figure 1c). A Connector holds refer-
ences to two BoxLevels, called the base and the
head. For each local base box, a process can
store in the Connector a set of neighboring head
boxes. Borrowing from graph terminology, we can
say that Connectors are adjacency lists distributed
and stored in a data structure convenient for SAM-
RAI.
The neighbor of a local box can be local or re-

mote. Relationships between two local boxes are
called local relationships. Those between a local
and a remote box are called semi-local relation-
ships. There is usually no reason to deal with rela-
tionships between two remote boxes, which is costly
due to the sheer number of remote boxes.
Connectors are simply containers of relation-

ships. Although SAMRAI uses Connectors for
many things, there are two common uses. The
most common use is for holding proximity rela-
tionships, such as those in Figure 1c. For each base

box, a proximity Connector stores head boxes that
are close to the base box, typically nearest neigh-
bors. The head and base BoxLevels can be the
same, in which case, the Connector stores intra-
level proximity relationships. The second most
common Connector use is to hold mappings that
describe how a BoxLevel changes, such as when
it undergoes partitioning. For each base box, a
mapping Connector can hold the set of boxes that
the base box will become when the change is ap-
plied. Boxes to be removed by the mapping are
given empty neighbor sets, but we can omit neigh-
bor sets outright for boxes that do not change. This
omission provides for significant optimizations in
mappings with minimal changes.
Connectors are filled and manipulated by a va-

riety of algorithms that generate or find box re-
lationships. Two generic utility-level algorithms
commonly performed on Connectors has been fac-
tored out: the bridge algorithm and the modify

algorithm. They are schematically illustrated in
Figure 2. Both algorithms compute new proxim-
ity relationships but for different inputs. Bridg-
ing computes a new proximity Connector be-
tween BoxLevels A and B if their proximity to a
BoxLevel C is known. The modify operation up-
dates a Connector if its head D is changing to D′

according to a specified mapping Connector. Both
algorithms have been described in [Gun12].
Figure 3 illustrates SAMRAI’s use of bridge and

modify during regridding, as a new level is gener-
ated to replace an old one. Our regridding pro-
cess was similar to those described by Berger and
Colella [BC89] but had more a few more steps for
adjusting boxes. Each double-headed arrow in the
figure represents two Connectors pointing in oppo-
site directions. Green Connectors indicate deriva-
tive relationships, where a new BoxLevel was cre-
ated by an operation on an existing level. For
example, clustering derives BoxLevel “Temp 1”
by operating on the tag level Ln−1 (the level
holding tags indicating which cells should be re-
fined). This derivative relationship works as a prox-
imity relationship. The generated BoxLevel then
goes through a sequence of manipulations, as la-
beled in the figure (fix overflow, enforce nesting,
grow to boundary, refine and partition), to make
it suitable for constructing a patch level. Each
step computes a new temporary BoxLevel and sets
up a new derivative relationship that works as a
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L0

L1

L2

(a) Composite mesh (b) Mesh as sequence
of BoxLevels

(c) Inter-level
proximity
Connectors

(d) Symbolic
representation

Figure 1: Representations of the same 3-level mesh. Patches are outlined in red, green and blue for
levels 0, 1 and 2. Intra-level Connectors are not shown. The last image show symbolically the three
levels and their inter-level Connectors.

A B
C

Output
D

D′

E
Output

(a) A, B and C are BoxLevels. Bridge computes
red proximity Connector using data in black
proximity Connectors.

(b) Modify computes blue proximity Connector

given original Connectors between E and D and
the mapping from D to D′.

Figure 2: Inputs and outputs of bridge and modify operations. (Recall that BoxLevels and Connectors
are containers. Each BoxLevel symbol represents multiple boxes, and each arrow represents multi-
ple relationships between boxes in connected levels.) Double-headed arrows represent transpose pairs,
which are two Connectors pointing in opposite directions. See Section 2 for an overview of BoxLevels,
Connectors and bridge and modify operations.

mapping. We apply the modify operations using
those mappings to compute the updated proximity
Connectors shown in blue. After the new level Ln
is determined, along with its proximity to Ln−1,
bridging provides proximity Connectors shown in
red. First, we bridge for the Connector between
the old and new Ln levels. Then we use that result
in another bridge, giving the Connectors between
Ln and existing Ln+1.

While the steps from clustering to partitioning,
shown in Figure 3, are not generally new for patch-
based AMR, traditional algorithms for perform-
ing these steps require globalized metadata. The
new algorithms described in [Gun12] work for dis-
tributed metadata if the Connectors shown are
available. So the Connectors in Figure 3 are not
just illustrations, but essential data for creating the

new mesh level with all of the necessary metadata
for computation on the hierarchy.

2.1 Metadata notations

We will use script letters to symbolize BoxLevels,
for example, A and B. A Connector with base A
and head B will be shown as {A → B}. Borrowing
again from graph terminology, we read this as “a
set of directed edges from boxes inA to boxes in B.”
A Connector’s transpose has the same edges, but
they point in the opposite direction. The transpose
has a different base, so its edges are distributed
differently (unless it is an intra-level Connector).
The transpose of {A → B} is written {B → A}. A
Connector and its transpose make a transpose

pair , and we represent it using a double-headed
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Temp 1

Temp 2

Temp 3

Temp 4

Temp 5

Cluster Fix overflow

Enforce nesting

Grow to boundary

Refine

Partition

Figure 3: BoxLevels and Connectors during the generation of a new level to replace an old one. Double-
headed arrows represent pairs of Connectors pointing in opposite directions. BoxLevels denoted by L
are hierarchy levels, with the subscript denoting level number. Connectors are colored by how they
are computed. Black Connectors are pre-existing on the hierarchy. Green Connectors are derivative
relationships. Blue Connectors come from modifying another Connector. Red Connectors are the
results of bridging.

arrow, {A ⇔ B}. The double-headed arrows in Fig-
ures 2 and 3 all represent transpose pairs.

Each Connector has an associated non-negative
connector width , quantifying an important char-
acteristic of its stored relationships. The width is
an integer vector in the logical (i,j,k) space, but if
all components are the same, we can use a single
integer representation. The width of a proximity
Connector specifies how close two boxes must be
to each other to have a relationship. For a mapping
Connector, it specifies how much the mapping may
extend a level outside its old boundary. When the
width is relevant and not clear from context, we
add it to the Connector notation, as in {A ω⇐⇒ B}.
Otherwise, we leave it out. By convention, the
width’s unit is cells and always specified in the res-
olution of the Connector’s base BoxLevel. For a
transpose pair, where the base of one Connector is
the head of the other, the width is specified in the
resolution of the left BoxLevel.

3 Partitioner challenges and

design goals

The primary objective for SAMRAI’s partitioning
algorithm is to distribute equal work to all pro-
cesses, so that no process has an excessive amount
of work. The secondary objective is to reduce the

cost of transferring data between patches. We ac-
complish this by reducing partition surface area
and improving data locality. Reducing partition
surface area reduces places where data has to be
transferred during simulation. Some partitioning
characteristics, such as low surface-to-volume ratio
and contiguous partitions, correlate with reduced
partitioning boundaries. Data locality refers to how
close the data-exchanging partitions are to each
other on the network. It is generally accepted that
the closer they are, the less time the data would
spend in transit.

For dynamically adaptive meshes, partitioners
are run frequently, typically at every regrid, so they
must be fast. This is in contrast to static meshes,
which are partitioned only once, and for which par-
titioning speed is not as critical. Fast partitioning
can be at odds with good partitionings. Time saved
by an improved partition can be negated by time
spent obtaining that improvement. Some compro-
mise between partitioning quality and speed is of-
ten necessary because it is difficult to achieve both
for general configurations.

A practical challenge for SAMR is that off-
the-shelf partitioners are not very well suited for
the task. Two popular categories of mesh parti-
tioners are graph partitioners [DBH+02, BDL+15,
KK15, KK99, CP08] and space filling curves (SFC)
[LBH07]. Both types partition a set of work units
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(such as cells or fixed-sized boxes). Both view
work units as atomic and assume they are fine-
scaled. When treated as atomic, arbitrarily large
boxes in SAMR make fine-scale adjustments im-
possible. Some patch-based partitioners eliminate
large boxes by pre-cutting them and then apply-
ing an off-the-shelf partitioner. However, this in-
troduces compromises similar to those discussed in
choosing a tile size.
The primary design goals for our partitioner are

the same as for all dynamic partitioners: balanced
load, data locality, minimal surface area, and par-
titioning speed. Secondary objectives, which follow
from the primary and apply specifically to patch-
based AMR and SAMRAI, are given in the rest of
this section.
Low box count: Fewer boxes means less frag-

mentation of patch levels, indirectly improving data
locality because cells in the same box always reside
on the same process. Lower box counts have the
added benefit of requiring less data transfer be-
tween and within processes. They also have re-
duced mesh-management overhead because there
are fewer boxes to manage. Since fewer boxes leads
to more stride-one data layout, cache efficiency can
also benefit. Ideally, each process would have just
one box, though this is not achievable for arbitrary
box configurations. A more reasonable goal is to
limit the breaking of boxes as much as possible.
Low aspect ratio: Low aspect-ratio boxes cor-

relate with low surface-to-volume ratios and lead
to less partition surface area. When box cutting
is necessary, we favor cuts that yield lower aspect
ratios.
SAMRAI integration: Input and output must

be distributed with each box in the local memory of
its owner. In the SAMRAI framework, this implies
BoxLevel format. If a partitioner requires addi-
tional information, such as a global view of the in-
put, SAMRAI sees acquiring that information as a
part of the partitioner cost. Likewise, a partitioner
that does not naturally have every output box on
its owner process must take steps to put them there.
The placement of each box on its owner process fa-
cilitates scalable integration of mesh-management
components.
Proximity to reference level: SAMRAI’s dis-

tributed mesh management requires proximity data
expressed through Connectors, as Figure 3 shows.
SAMRAI provides the initial Connectors between

the partitioner’s input boxes and a reference level
(usually the tag level) and expects the partitioner
to update this proximity data when it changes the
boxes. The partitioner, responsible for the decision
to break up boxes and reassign them, is in the best
position to update proximity relationships in a scal-
able way. (SAMRAI still works if this data is not
provided, but a slower general search operation is
required to find proximity relationships.)

4 Cascade partitioner

The cascade partitioner is a top-down box-
partitioning algorithm. First, it shifts load between
the two halves of the machine to balance their work.
In this step, it does not try to redistribute loads
within each half. To redistribute within each half,
the same algorithm is applied recursively until the
halves are single processes, thus allowing load to
“cascade” to the final destination. We focus mainly
on the algorithm for balancing the two halves of a
contiguous set of process ranks.

Let us define a group as a contiguous range
of MPI process ranks, written as {first rank-last
rank}. We use the term weight to describe a total
amount of work, which is a single number. We use
the term load to describe not only the work but
its representation as a collection of boxes. The dis-
tinction is important because in distributed mesh
management, what a process can know about re-
mote processes is the weight they hold, but not the
load. Partitioning for a group means balancing its
upper and lower halves but not balancing within
each half.

Partitioning a group took four main steps.

1. Determine weight of each half.
2. Determine how much work a process in the

heavy half should give up.
3. Determine send/receive pairs for inter-group

load transfer.
4. Apportion and send (heavy half) or receive

load (light half).

Figure 4 shows the groupings and communica-
tion patterns of this algorithm applied to an eight-
process group. Step 1 starts with single-process
group weights, which are simply the current local
loads. These are the Grouping-3 groups in Figure 4.
The weights of bigger groups are built bottom-up
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Grouping 0: 0 1 2 3 4 5 6 7

Grouping 1: 0 1 2 3 4 5 6 7

Grouping 2: 0 1 2 3 4 5 6 7

Grouping 3: 0 1 2 3 4 5 6 7

Figure 4: Cascade groups for 8-process machine, ranks 0-7. Each underscore indicates a group of
processes. Recursive bisection of groups creates a binary tree where each node is a group. Each process
belongs to 4 groups. Grouping 0 has the root node which includes all processes. Grouping 3 has
single-process groups. Arcs connecting processes indicate inter-group communication pairs.

by a sequence of message exchanges by contacting
pairs in the figure. The first exchange, using the
pairs in Grouping 3, gives all processes the weights
of their Grouping-3 sibling groups and, by sum-
ming, the weight of their Grouping-2 parent group.
For example, process 0 would know the weights of
groups {1} and {0-1}. The second exchange, using
Grouping-2 contacting pairs, gives information on
the Grouping-2 sibling groups and the Grouping-
1 parent group. Process 0 would now know the
weights of groups {2-3} and {0-3}. A third ex-
change gives all processes the weights of the two
Grouping-1 groups, {0-3} and {4-7}, completing
step 1.

After step 1, all processes can determine which
half is too heavy and how much load should be
transferred to the lighter half. As a by-product
of this step, each process knows the weights of all
groups it belongs to and the weights of their sibling
groups. This data is used in the next step.

In Step 2, each half of the group has the obli-
gation to take half of the group’s weight, so the
heavy half would ideally send the difference be-
tween its weight and its obligation. Each process
in the heavy half must determine whether it should
send work to the light half and if so, what is the
ideal amount to send. Without knowing what other
processes in its group are sending, the process can
overcompensate for the imbalance by sending too
much. To prevent this, we devised two rules for
computing exactly how much a process should give
up. First, processes closer to the recipient side (in

rank space) had priority. A process farther away
could give load only when all closer processes had
given what they could and the light half still needed
more. Second, each process should give as much as
it can, up to a maximum. The maximum was the
amount needed or the local surplus, whichever was
less. Following these criteria and using the group
weights acquired in Step 1, each process could com-
pute exactly how much load other processes closer
to the light side should give up and thus how much
load it should give up. This scheme used data ac-
quired in Step 1, so it required no additional com-
munication.

In Step 3, each process in the heavy half is paired
with a process in the light half, so they can send
work they give up to the light half. For this step, we
choose the same contacting pairs we used in Step
1. Note that each process exchanges data with a
contact that has the same relative rank. A process’s
relative rank is its MPI rank minus the first MPI
rank in its group. In this step, it does not matter if
the receiver already has enough work, because we
are not yet concerned about balancing within the
halves.

Apportioning the load in Step 4 was a matter of
bringing a container of loads to the correct weight
by transferring load between it and a holding bin.
The holding bin contains all boxes the local pro-
cess has in its possession at that moment. We out-
line the load apportioning algorithm in Section 4.4.
Once apportioned, the donor packs the work into a
message for sending.
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Note that moving load meant moving only meta-
data in the form of boxes, not voluminous mesh
data. This allowed huge portions of the mesh to
be moved without moving huge amounts of data.
We would initialize the mesh data after connecting
the new level to the hierarchy, which provides that
data (Figure 3).
As mentioned above, the algorithm we just de-

scribed only balanced the two halves of the ma-
chine. To complete partitioning, it must be applied
recursively to each half. Conceptually, one could
write a recursive function to perform this. How-
ever, we implemented it as a loop executed

⌈

lgN
⌉

times.
We can now address two details in this simplified

description of the algorithm that require more at-
tention: handling odd group sizes and dealing with
imperfect load apportioning.
Handling odd group sizes required a small modi-

fication. For groups of size 2n, such as those in Fig-
ure 4, the recursive bisection generated even-sized
groups that were straightforward to split. Sibling
groups are always the same size, so computing con-
tacting partners was trivial. For odd group sizes,
we split the group next to the middle rank and gave
the middle rank to one half. The last rank in the
smaller half had to contact the last two ranks in
the larger half. If it had to send work, it did not
matter which of the two contact to send to. We
chose to send to the first contact. The rest of the
algorithm remained unchanged.
Imperfect load apportioning refers to the inabil-

ity to apportion arbitrary weights. The cause is
the inability to cut a box into arbitrary sizes. Cuts
must be along grid lines, and sometimes only along
certain grid lines, a restriction coming from the
need to generate “valid” SAMR meshes. SAMR
implementations often allow users to specify a min-
imum patch size, further limiting the combination
of cuts allowed. How should we compute the weight
a process should give up when we did not know ex-
actly what other processes were giving up? Our
solution was to estimate what other processes were
giving up based on what they were expected to give
up, regardless of imperfect load apportioning. The
resulting imbalance caused by estimating would be
no worse than that caused directly by the inability
to apportion the correct weight.
Imperfect load apportioning may produce group

average weights higher than the global average be-

cause weight transferred was not exact. This could
lead to high overloads if we allowed that surplus to
be stuck on too few processes. To spread a group’s
surplus evenly, we only had to split it evenly among
the group’s two halves. To induce the algorithm to
do this, we reset each half’s obligation to half of the
group’s new weight before continuing the recursion.

4.1 Cascade partitioner complexity

The algorithm to balance a group’s two halves has
complexity O(lgN), where N is the number of MPI
tasks. The individual steps have the following com-
plexity. Step 1 uses a loop of length lgN to de-
termine the weight of the halves being balanced.
Messages exchanged in Step 1 have O(1) lengths,
and current supercomputers are expected to com-
plete the communication in constant time. Step
2 examines the limited view of group weights ac-
quired in Step 1, so it also has complexity lgN .
Steps 3 is independent of N and has constant com-
plexity. Apportioning the load in Step 4 has com-
plexity dependent on the size of the load container
but independent of N . Sending the load also has
complexity independent of N . Thus, the four steps
together have complexity lgN . These steps are re-
peated once for each of the lgN levels in Figure 4.
Thus the complexity for partitioning every group
has complexity O(lg2 N).

4.2 Post-partition proximity data

SAMRAI provides the partitioner with Connector

pair {R ⇔ P} containing proximity relationships
between the BoxLevel P to be partitioned and a
reference BoxLevel R . It expects the partitioner
to update that data when changing P . The stan-
dard way to update {R ⇔ P} is to set up map-
ping Connectors {P ⇔ P ′} describing the redistri-
bution of work and then use the modify operation
to update {R ⇔ P}.
To build the mapping transpose {P ′ → P}, pro-

cesses must know the original form of each post-
partition box they acquired. This can be easily
accomplished by attaching to each box a copy of
its originator. If a box gets broken up, every part
gets a copy of the originator. Wherever the box
goes, it carries the originator information. The
boxes and their originator data provides all the in-
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formation needed to populate the backward map-
ping {P ′ → P}.
To build the forward mapping {P → P ′}, pro-

cesses must know the final forms of the pre-
partition boxes they originally owned. Building
{P → P ′} requires communication. Processes that
give up their original boxes could not have known
what became of the boxes, so they must receive in-
formation from the final owners. Though they do
not know what senders to receive from, they can
receive from any process until they have accounted
for all the cells they gave up. Obviously, the final
owners must send the final boxes to the original
owners.

4.3 Correcting gross initial imbal-

ance

Gross initial imbalance is when very few pro-
cesses own virtually all the work in the pre-balance
BoxLevel. Though this problem occurs most often
during initial mesh generation, it can occur dur-
ing regridding as well. When generating level 0,
the few boxes defining the full domain are given
to process 0 before partitioning. A consequence is
that even if distributing the load were scalable, the
representation of {P ⇔ P ′} would not be. Process
0 may have ended up with a reasonable share of
the work, but it would have to store edges to ev-
ery remote box in P ′. That data would have O(N)
size, and the modify operation applied to it would
have O(N) complexity. During regrid, this condi-
tion most commonly occurs when a tag level , due
to its size, was distributed to a small fraction of a
large MPI group. Consequently, a small number of
tasks would own the resulting clusters. Figure 5a
shows a simple example of gross imbalance with
N = 4096.
To avoid forming a huge {P ⇔ P ′}, we can grad-

ually balance using multiple steps. With this tech-
nique, We transform the grossly imbalanced level
P through a sequence of k states P ,P1, P2, ... Pk,
where P ′ = Pk. Figure 5b shows the 4096-task
example with k = 3. The transformation can be
performed through the mappings

{P ⇔ P1}, {P1 ⇔ P2}...{Pk−1 ⇔ Pk} (1)

This changes {R ⇔ P} through the sequence

{R ⇔ P1}, {R ⇔ P2}...{R ⇔ Pk} (2)

with the last Connector being the final {R ⇔ P ′}.
We limit the size of each mapping by limiting

the number of processes to which loads from a sin-
gle process can spread. Let f = wmax

wavg
, where wmax

is the maximum initial weight for any process and
wavg is the average weight. f is the greatest spread-
ing an initial load must undergo if we used the
single-step map {P ⇔ P ′}. Let us limit to g the
spread of any load by any mapping in (1). The
first mapping would spread wmax out to g processes.
The second would spread those g portions to g2

processes, and so on. We could achieve the desired
spread of f using k mappings if gk ≥ f . Thus, we
replaced the single-step map with

k =

⌈

lg f

lg g

⌉

(3)

gradual mappings. For a run with N MPI ranks,
the group tree (Figure 4) would have depth m =
⌈lgN⌉. We update P and {P ⇔ R} after about ev-
ery m

k
load exchanges, with the last update always

occurring at the end. In addition to the reduction
in storage space for the mapping Connectors, the
multi-step process is also faster in time, because
kg ≪ f in the typical cases we encounter when
there is a large initial imbalance.

4.4 Load apportioning

Load apportioning refers to setting aside a given
amount of work to be sent off. Given a load con-
tainer with some weight (possibly zero), the load
apportioning algorithm tries to shift load between
it and another container, to bring the first con-
tainer’s weight to a specified amount. We shift
weights in three main ways: by moving boxes from
one container to the other; by swapping boxes be-
tween containers; and by cutting boxes to move a
part of their load.

SAMRAI’s apportioning algorithm is largely
heuristic, based on a few strategies that guide low-
level decisions to cut and move boxes.

1. We prefer moving whole boxes over break-
ing boxes, to reduce the creation of new box
boundaries. New box boundaries add to data
transfer costs and can reduce data locality by
allowing the box fragments to move away from
each other on the communication network.
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{R ⇔ P}
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{P2 ⇔ P3}

(a) Abrupt (b) Gradual

Figure 5: Abrupt vs. gradual partitioning. Upper images show an example with 4096 processes. In
gradual partitioning, the single box partitioned into 16 boxes, then 256, then 4096. Schematics show
how overlap connections between the partitioned BoxLevel P and a reference BoxLevelR were updated.
Black Connectors are inputs. Green ones are mappings. Blue ones are results from modify operations.
Partitioning transforms P to P ′ and {R ⇔ P} to {R ⇔ P ′}. Abrupt partitioning does it with a single
mapping {P ⇔ P ′}. When P is grossly imbalanced, the map’s local size can be excessive (4096 edges
in this example). Gradual partitioning forms multiple mappings that are much smaller locally (16 edges
each). See Section 4.3.

2. When moving loads, we prefer moving fewer
big boxes over more small boxes, to speed the
partitioning algorithm and avoid load recipi-
ents getting large numbers of small boxes from
multiple sources.

3. When breaking a box, we prefer cuts that cre-
ate fewer new boundaries.

4. We use a weight tolerance for treating small
imbalances as being “effectively zero”. This
avoids fragmenting the domain into small
boxes that add mesh-management cost with-
out significantly improving the balance. More
importantly, it provides the flexibility needed
to consider other partitioning objectives.

We believe this approach leads to generally

good–though not necessarily optimal–partitioning.
We did not systematically experiment with other
strategies or combinations of strategies that may
improve partition quality or partitioning speed. To
be useful in dynamic mesh adaptation, such experi-
ments should check that improvements gained were
not negated by the cost of getting the improve-
ments.

The apportioning algorithm uses a combination
of swapping and box breaking to bring the main
bin’s weight to the target value. (Moving a box
from one container to the other can be consid-
ered a degenerate case of swapping.) The algo-
rithm first tries to swap boxes between the two
containers until it cannot find any swap choices
that would bring the weight closer to the target
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value. Next, it breaks up a single box to shift
part of it over. If this succeeds, the change might
open up more swap options, so the algorithm re-
tries the swapping-breaking cycle. The cycle stops
when breaking fails to make a change. After each
swap or break, the algorithm checks the main bin’s
weight and stops if that weight is close enough to
the target value.

There are numerous details of the load appor-
tioning algorithm, such as how to choose box cut-
ting directions and cutting planes. We will describe
details that are most important to partitioner per-
formance and partition quality. For lower-level
details, most of which are heuristic, we refer the
reader to the publicly available SAMRAI source
code [SAM15].

We keep load containers sorted by the weights
of individual items inside, to speed the search for
swap pairs or boxes to break. Searching for a pair
to swap has complexity O(l1+l2), where the l terms
are the lengths of the two containers.

To discourage cuts that would lead to small or
high-aspect-ratio boxes, we evaluate boxes using

a simple score, min
(

smin

st
, 1
)

; where smin is the

length of the box’s shortest side; the threshold
length st = d

√
V , where V is the volume associ-

ated with the ideal work per process and d is the
spatial dimension. The scoring function is one for
boxes larger than st and shrinks in proportion to
the smallest side. Boxes wider than the threshold
are not too small, so they are all equally favored
with a score of one. When multiple configurations
are found to satisfy a given weight shift, we choose
the configuration with the highest box score.

We use two box-cutting schemes in SAMRAI:
planar and cubic. The planar cut is a single cut
across the box. We try to cut a longer side before
considering a shorter one. The cubic cut aims to
carve out a portion with “nearly” equal sides at
one of the box’s corners. The sides of the cubic
cuts are limited by the size of the box being cut, of
course, and could be highly unequal. When both
planar and cubic cuts give work amounts within
the acceptable range, we choose the one with the
higher box score. Multiple leftover boxes are given
a width score equal to the product of the individ-
ual box scores. This tends to favor planar cuts
because they give at most one leftover box, though
this would only differentiate boxes with a width be-

low the threshold.

We use a weight tolerance, wt = χwavg, where χ

is a small constant, to determine when an appor-
tioned weight is close enough to its target weight
and also for comparing multiple apportioning re-
sults. Apportioned weights within wt of the target
weight are considered close enough. Once within
this range, the load apportioning algorithm re-
turns, regardless of whether further improvements
are possible. When comparing two apportioning re-
sults, all weights within wt of the target are consid-
ered equivalent. Distinctions between apportion-
ing results within this tolerance are based on box
scores.
Note that our load-apportioning algorithm does

not consider proximity of boxes in computational
space, nor does it consider proximity of processes
on the communication network. This is a limita-
tion of this approach. However, it is somewhat
mitigated by the resistance to worsening locality,
e.g., by not cutting boxes until absolutely neces-
sary. Input boxes tend to have good data locality,
because a reasonably intelligent box-clustering im-
plementation can easily give them the data locality
characteristics of the tag level. We did see some in-
creased communication times during data transfer
when scaling our benchmarks to larger machines,
but it was not clear at this point whether better
locality would significantly improve the communi-
cation time.

5 Tile clustering

The main goal of clustering is to find a set of non-
overlapping boxes that contains all cells the user
has tagged to be refined and as few untagged cells
as possible. However, performance considerations,
both of the tiling process itself and for the result-
ing patch layout, may influence the best choice of
clustering algorithm. In tile clustering, we select
boxes from a pre-determined tile pattern rather
than computing each one. Our tile-clustering algo-
rithm was based on Luitjen’s [LB11]. The essential
approach is to overlay the rectangular (i,j,k) space
with a grid of tiles of fixed size τ , measured in in-
teger number of cells. If a tile overlaps any tagged
cells, we generate a box for that tile.
Tile clustering is very simple and very fast.

Unlike the Berger-Rigoutsos algorithm [BR91,
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GWH06], it avoids generating, acquiring, and
searching through histograms of tags. This saves
communication and–when the bounding box of the
tags is very big–memory. Moreover, if the tag-level
patch boundaries coincide with tile boundaries on
the level being generated, each generated tile sits
entirely inside its tag-level box, and the clustering
process can be completely local. This is trivial to
achieve by using the same logical tile size τ on tag
and new levels, regardless of the different resolu-
tions.
The tile approach, like the block-structured mesh

approach, requires choosing a tile size that bal-
ances clustering efficiency with mesh-management
speed. Smaller tile sizes improve clustering effi-
ciency by excluding untagged cells at a finer granu-
larity. However, it takes more small boxes to cover
the tags, which slows down mesh-management op-
erations and creates more data-transfer surfaces. In
our implementation, we sought modifications that
allowed us to use small tile sizes yet still reduce the
number of boxes.
We extended Luitjen’s scheme in three ways.

First, our implementation worked when tag-level
patches and tile boundaries did not line up, result-
ing in tiles overlapping multiple tag-level patches,
including remote ones. We needed this extension
because SAMRAI’s gridding algorithm allows ap-
plications to use arbitrary partitioners through a
virtual interface. Those partitioners may produce
boxes that cross tile boundaries. Second, we kept
tile size relatively small for better clustering effi-
ciency, but we added the additional step of coalesc-
ing the generated boxes to reduce their numbers.
Third, as with the partitioner, we must generate
proximity data connecting the generated boxes to
the tag level. The following two subsections de-
scribe the first two extensions. Generating proxim-
ity data was integrated into both extensions.

5.1 Non-local tile clustering

We began by applying Luitjen’s local tiling algo-
rithm without modification. Tags were stored in
the tag level, represented by T . Each process
looped through its tag-level patches and generated
a box matching a tile wherever it found tags over-
lapping the tile. These boxes (also called clusters
in this context) were stored in a BoxLevel, C. As
we did this, we populated local proximity relation-

ships in Connector {T 0⇐⇒ C}. Up to this point,
this was a completely local step, requiring no com-
munication.
Two problems came up when tag-level patch

boundaries did not align with tile boundaries.
First, tiles that overlapped multiple patches may
be duplicated because tags may exist on multiple
patches. If those patches were on different pro-
cesses, the processes would not know about the du-
plicates. Second, semi-local proximity relationships

would be absent from {T 0⇐⇒ C}. Neither problem
could be fixed without communication.
We found missing semi-local relationships by

bridging across {C 0⇐⇒ T } and {T Γ⇐⇒ T } and re-

assigning the result back to {C 0⇐⇒ T }. According
to the bridge theorem in [Gun12], this bridge could
find all missing relationships if Γ ≥ τ , where τ is
the tile size. SAMRAI has mechanisms to ensure
{T Γ⇐⇒ T } is available.
Once we have semi-local relationships in

{C 0⇐⇒ T }, we could detect duplicate clusters and
delete them without further communication. We
scanned {C 0−→ T } to find all c ∈ C such that c

overlaps multiple boxes in T . For each set of du-
plicate clusters, we kept only the first one from the
lowest-ranked process.
SAMRAI allows arbitrary-sized computational

domains that do not necessarily conform to tile
boundaries. This allowed clusters to extend outside
not only the patch that generated them but also
outside the mesh boundary. These were sheared
off in a simple operation that did not require any
communication. After the change, another modify

operation updated {C 0⇐⇒ T }. This simple shear-
ing step also effectively removed pieces of boxes
that crosses block boundaries in multi-block mode.
(SAMRAI disallows patches crossing block bound-
aries.)

5.2 Coalescing clusters

Coalescing clusters, our second extension to Luit-
jen’s tile-clustering scheme, reduced the number of
boxes during regridding and eventually in the mesh.
Solver performance typically also improved or at
least did not noticeably degrade.
Coalescing need not be perfect to help, and it

should not be treated as a global optimization prob-
lem. Even if we could coalesce to get a single clus-
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ter, it would be unwise to do it because we would
have to cut up the cluster again during partitioning
and deal with gross imbalances.
Rather than coalescing globally, each process co-

alesced its own clusters. This was a local oper-
ation, as was setting up the mapping Connector

to describe the change. The only required com-
munication added by coalescing was in the modify
operation to update {C ⇔ T }.
SAMRAI’s simple box-coalescing algorithm is

implemented in the BoxContainer class method
coalesce. It performs an exhaustive search for
pairs of coalescible boxes. After each successful
coalescing, the search restarts from the beginning.
The algorithm has cubic complexity in the number
of boxes being coalesced. This could take too long
even when we limited the input to local clusters
in C, because many fixed-size tiles were required to
cover the tagged regions in our benchmarks. We ac-
celerated the coalescing step by sorting potentially
coalescible boxes into a tree structure to limit the
number of boxes subjected to the simple coalesce
algorithm.
The new coalescing method is shown in Algo-

rithm 1. The simple coalesce algorithm was used
if there were sufficiently few boxes (line 1). Oth-
erwise, we moved each box into one of two tem-
porary containers. If the box had the majority of
its volume in the lower half of the bounding box of
all boxes in the original container, it went in the
“lower” container; otherwise, it went into the up-
per container (line 8). The temporary containers
were recursively coalesced then recombined. In the
recombination step, boxes that were in one tempo-
rary container but touched the other container were
first placed into a third temporary container, where
they were coalesced among themselves before join-
ing the other boxes. In this way, only boxes that
had a chance of being coalesced are checked. Al-
though there were still potentially coalescible boxes
after recombining, we did not check for them. Our
goal was speed, not perfection.
The if-block at line 9 prevented infinite recursion

caused by rare cases when all boxes went into one
container, leaving the other empty. We tried to
reduce the container size by selecting some boxes
to go into the empty container. If that did not
work, we simply fell back on the simple coalesce
algorithm.
Coalescing might arguably slow the solver by

Algorithm 1 coalesceTiles(BoxContainer s):
Coalesce boxes in s using a tree structure to orga-
nize boxes into smaller groups for coalescing.

1: if s.size() < smin then

2: s.coalesce() {Simple coalesce algorithm}
3: return
4: end if

5: bb ← s.boundingBox() {bounding box for all
boxes in container.}

6: splitdir ← direction of longest side of bb
7: BoxContainer lower, upper

8: Split s into lower and upper, where lower con-
tains boxes with more volume is in the lower
half of bb along direction splitdir, and upper

contains the rest of the boxes.
9: if lower.empty() or upper.empty() then

10: Move from the non-empty container to the
empty container all boxes that crosses the
mid-plane of bb

11: if lower.empty() or upper.empty() then

12: s.coalesce()

13: return
14: end if

15: end if

16: coalesceTiles(lower)

17: coalesceTiles(upper)

18: BoxContainer t

19: Move from upper and lower into t all boxes
that touch the other container’s bounding box.

20: t.coalesce() {Simple coalesce algorithm}
21: s.clear() {Clear out container.}
22: Move contents of upper, lower and t to s

23: return;
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making patch data too big to fit into cache. To
make sure they do fit, the boxes could be bro-
ken down to the right sizes after partitioning in a
fast step involving breaking up local boxes, build-
ing a map, and applying a modify operation. This
systematic approach would limit metadata size for
as long as possible and reliably ensure all patches
would be correctly sized. We did not explore cache
efficiency because until this point, the primary
problem had been mesh-management cost.

6 Results and discussion

We evaluated our algorithms using two perfor-
mance test codes in SAMRAI, one for linear ad-
vection and one for Euler hydrodynamics. Both
integrated conservation equations in the volume in-
tegral form,

∂

∂t

∫

Ω

UdΩ+

∮

∂Ω

F · dS = 0 (4)

applied to the finite volume Ω with closed boundary
∂Ω, where U is the conserved quantities and F is
the corresponding flux. The differential area vector
dS points outward on S.
The first performance test integrated the linear

advection equation to move a scalar quantity u in
a uniform constant velocity field a. Thus, U = u

and F = au in equation (4). This test used the
“LinAdv” performance code in SAMRAI.
The second performance test integrated the Eu-

ler equations for compressible hydrodynamics, with

U =





ρ

ρv

ρE



 (5)

where ρ is density, v is velocity and E is total en-
ergy. The nonlinear flux vector

F =





ρv

ρv ⊗ v + pŜ

ρEv



 (6)

is composed of transport of mass, momentum and
energy by velocity v and by pressure p = (γ −
1)(ρE − ρ|v|2) acting on dS. γ = 1.4 is the specific
heat ratio. This test used the “Euler” performance
code in SAMRAI.

The LinAdv and Euler performance tests fol-
lowed the Berger-Colella scheme [BC89] for inte-
grating on the mesh hierarchy. This scheme inte-
grates one level at a time, employing any level in-
tegrator suitable for single-level (non-AMR) grids.
It links the level solutions together with two types
of inter-level operations. To maintain conservation
at coarse-fine mesh boundaries, it matches the flux
on the coarse grid with that on the fine. Where
coarse and fine solutions overlap, it synchronizes
the coarser solution by replacing it with a coarsen-
ing (averaging) of the fine-level solution.
The level integrator used a finite-volume dis-

cretization of equation (4), storing the volume-
averaged U in each cell. To get F on dΩ, we used
a Godunov scheme, computing the state on both
sides of dΩ and using a Riemann solver to com-
pute the state on dΩ. For the advection equation,
the state took on the upwind value. For the Eu-
ler equation, we used the Colella-Glaz approximate
Riemann solver [CG85] to compute the state on dΩ.
We also used variants of Colella’s corner transport
upwind scheme [Col90], which accounted for multi-
dimensional effects at corners in ∂Ω.
The levels were advanced in time using the ex-

plicit forward-Euler time-stepping scheme. Ad-
vancing the entire mesh used the time-refinement
scheme of [Tra95, HK02], in which a finer level takes
multiple but smaller time steps for each time step
on a coarser level. The solution is synchronized
at the end of the coarse level time step, when the
solution time is the same for both coarse and fine
levels.
The physics and numerics of linear advection

were very simple. They serve as a familiar and
well-understood point of reference with which to
compare regridding costs. They make the bench-
mark a good stress test for regridding performance,
because they provide little computation in which to
hide the cost of regridding. In contrast, the Euler
benchmark was had more computation, though it
was still simple compared to current multi-physics
simulations and high-order methods.
All performance tests were run on Lawrence Liv-

ermore National Laboratory’s Sequoia BGQ ma-
chine. Sequoia had 96K (98,304) compute nodes.
Each node had 16 GB of memory shared among 16
CPU cores. The CPUs were PPC A2 chips running
at 1.6 GHz. Each core had 4 hardware threads.
The benchmarks and SAMRAI code were not
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threaded, but multiple threads could be used to
run multiple MPI tasks. We typically saw a
modest gain in numerical integration time at 2
tasks/core but lost it at higher thread use. The
communication-dominated regridding components
benefited little. The weak-scaling benchmarks in
this work used 2 task/core, but the strong-scaling
benchmarks used 1 task/core.
We ran the cascade partitioner with a spread-

ing limit of g = 500, in equation (3) and weight
tolerance factor χ = 0.05 (Section 4.4). For the re-
cursion limit in tile coalescing in Algorithm 1, we
used smin = 20.

6.1 Weak-scaling linear advection

results

Our first benchmark was the advection of sinusoidal
wavy walls. Figure 6 shows a sample of the mesh
from this benchmark. Without the waviness, the
walls would be perpendicular to the x-axis. The
exact x-coordinate of the nth wall was given by

xw(y, z) = x0 + axt+ nλ (7)

+A cos [ky(y + y0 − ayt)] cos [kz(z + z0 − azt)]

where (x0, y0, z0) were initial displacements of the
walls, (ax, ay, az) were components of advection ve-
locity a, (ky, kz) were wave numbers of the sinu-
soidal function in the y- and z-directions, and λ

was the distance between consecutive walls in the
x-direction. The exact solution u(x, y, z, t) was con-
stant between walls and jumped by a value of one
across each wall. We used physical parameters of
λ = 8, ky = kz = 2π

8
, a = (2, .55, .55), A = 1

2
, and

(x0, y0, z0) = (3, 0, 0).
Level 0 had mesh size of 24x3x3 cells/core, cov-

ering a physical region from the origin to (8,1,1).
We increased work by expanding the computational
domain. We grew it in the y- and z-directions as
core count grew from 1 to 64. At 64 cores, the do-
main was 8x8x8, big enough to fit a whole period
of the wavy wall. After this point, we increased
the domain in the x-, y- and z-directions, one at
a time. Each time we doubled the domain in the
x-direction, the number of walls doubled. At 1M
cores, there were 32 walls. The refinement ratios
were 3 in each coordinate direction. We used tile
sizes of 3x3x3 on the coarsest level and 9x9x9 on
other levels. We ran the simulation with a Courant

number of 0.43 for six Level-0 time steps. We re-
gridded each level (except level 0) after every 9 time
steps on that level.
Weak-scaling performance studies require pre-

cise control of the number of cells in the mesh.
This turned out to be difficult because the num-
ber of cells could not be specified directly (except
on level 0). Mesh size could only be indirectly con-
trolled by tuning error estimates and thresholds.
For the needs of this study, the mesh size was too
sensitive to the error threshold, and it was virtu-
ally impossible to find a single threshold value to
give the mesh both the size and depth the study
required. Moreover, the region tagged using the er-
ror estimate tended to grow with solution time due
to numerical diffusion of the discontinuity.
To avoid some of the difficulties in mesh size con-

trol, it was necessary to tag cells using the exact
solution. We tagged cells that had any node within
a “buffer distance” of the exact location of a wall,
in any coordinate direction. The buffer distances
were 0.15, 0.045, 0.015, 0.005, and 0.0015 when tag-
ging on levels 0 through 4, respectively. The box
configuration in Figure 6 was generated with these
buffer distances. Although this controlled the tags
directly, the mesh was still indirectly controlled, so
its size varied slightly. Actual mesh sizes from the
benchmark runs are given at the top of Figure 7.
Higher resolution allowed more exacting refinement
leading to smaller variations on finer levels. We
chose the midpoints between the minimums and
maximums as the representative sizes. The cell
counts came from the 5-level run, but they were
similar for other hierarchy depths. Cells-per-core
was 22.2×103, 195×103, and 1.640×106 for the 3-,
4-, and 5-level meshes respectively.
We scaled the Wall benchmark from 1 to 1M

(1,048,576) cores, with 2 MPI tasks/core. The
three timing plots in the middle of Figure 7 show
overall performance on 3-, 4- and 5-level meshes.
Raw timer values were the maximum timer value
across all processes. To remove the effects of mesh-
size variations, we normalized the times by the
number of cell updates performed. Major compo-
nents contributing to the total time are shown in
the three timing plots in the middle of the figure.
“Numerical Kernels” refers to the time spent ex-
ecuting the sequential numerical kernels on struc-
tured grids (patches). “Advance Levels” includes
the kernels plus filling physical and coarse-fine
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Figure 6: Wall configuration with three levels at 128-cores, showing two wavy walls. Without the
waviness, the walls would be perpendicular to the x-direction. Patch outlines are red, green and blue
for levels 0, 1 and 2, respectively. To increase the problem size, we doubled the domain by in the y-, z-
then x-direction, rotating through them in order. Each time the domain doubled in the x-direction, the
number of walls doubled.

boundaries, matching flux at coarse-fine bound-
aries and computing stable global time steps on
each level. We will use this as the static solver
cost (the total cost had there been no regridding).
Technically, static solver cost should also include
level synchronization, but level advance cost made
a good approximation because synchronization cost
tended to be very low. “Regrid” is the total cost of
regridding, including steps in Figure 3, populating
mesh data and recomputing data transfer sched-
ules for the new hierarchy configuration. Total cost
includes advancing levels, regridding, and synchro-
nizing levels.

The numerical kernel code was sequential, so
its time was unaffected by communication perfor-
mance. The jump occurring between 8 and 16
cores in the timing plots were likely due to using
threads to run MPI tasks. Though we specified 16
MPI tasks when running the problem on 8 cores,
the 16-core runs were the first in each scaling se-
quence where each cores actually had to run two
MPI tasks, changing the timing trend at that point.

(This jump did not appear when we ran with 1
task/core.) From 16 cores on, Numerical Kernels
times were very steady. It was nearly 2 microsec-
onds per cell update on the 3-level mesh and 1.5
microseconds per cell updates on the two bigger
meshes.

The Advance Level curves dipped slightly be-
tween 1 and 4 cores, jumped as the numerical ker-
nels did at 16 cores, then dropped again between
32 and 64 cores. The dipping behavior was caused
primarily by the exact boundary conditions. They
used sine functions, which turned out be much
more expensive when compared with the numeri-
cally simple cell updates. Below 32 cores, all phys-
ical boundaries were exact. At 32 cores, the j-
boundaries switched from exact to periodic and
stopped using sine functions. At 64 cores, the k-
boundaries did the same. The i-boundaries were
always exact because the solution was not periodic
in i, but only level 0 touched these boundaries, so
the time spent on them was not discernible in the
plots. Surface-to-volume ratio of the computational
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domain also contributed to the subtle dip. The do-
main was a slender rod at one core and had a high
surface-to-volume ratio, amplifying boundary con-
dition costs. As it grew, the high aspect ratio and
surface-to-volume ratio went away.
After early transient changes, the Advance Level

curve started a slightly rising but steady, non-
accelerating trend. The last two plots in Figure 7
show parallel speed-up and efficiency of the Ad-
vance Level step and the overall run. Both were ref-
erenced to the 64-core run to avoid the early tran-
sients. Overall efficiency at 1M cores was still high:
72%, 79% and 84%, depending on the amount of
work per core. Without gridding, the overall time
would be close to the Advance Level time, which
had efficiency of 74%, 85% and 88%. At 1M cores,
the efficiency loss rate was between 3% and 5% ev-
ery 10X increase in core count and showed no sign
of accelerating.
Adding levels increased floating point computa-

tion as well as regridding cost because of the addi-
tional levels and boxes. However, regridding cost
rose more slowly, leading to higher parallel effi-
ciency for meshes with more levels. At 1M cores,
the ratio of regridding cost to level advance cost
was 1.35 for the 3-level configuration. It was about
1
2
for 4 levels and about 1

4
for 6 levels.

Complex and communication-intensive, regrid-
ding naturally scaled worse than integrating the
solver. However, Figure 7 shows that it remained
a manageable overhead cost when there was rea-
sonable computational work. Even with little com-
putation, regridding cost did not blow up or ex-
hibit the O(N) scaling characteristic of handling
globalized data. Figure 8a shows the major mesh-
management timings in detail for the 4-level Wall
benchmark. The top plot shows the cost of regrid-
ding components. Though we had not discussed all
operations shown in the plot, it was important to
reveal their trends to ensure no poorly scaling com-
ponents would dominate as we scaled up. Even fast
components would eventually do this if their slope
on the log-log plot was too high. The “Compute
Boxes” time includes everything required to com-
pute boxes that form the new levels and connect
them to the tag level.
The initial rise of nearly all curves in regrid-

ding was typical for operations dominated by peer-
to-peer communication, as the number of possible
peers increased. This increase should not scale with

MPI task count, and the leveling out of the curves
shows that it did not. Clear and steady trends in
Figures 7 and 8 suggest that scaling trends could
continue well past 10M cores.
Partitioning was the worst scaling component

in regridding seen in Figure 8a, likely due to its
O(lg2 N) complexity, but its slope was mild. At
1M cores, it amounted to only 12% of the cost of
computing boxes, 5% of regridding cost and 2% of
the total time in simulations with only 195×103 un-
knowns per core. Clustering was three times faster
and rose even more slowly, with a curve shape typ-
ical of peer-to-peer communications. The Bridge
and Modify curves represented all the bridge and
modify operations in Figure 3, except for those
within clustering and partitioning. Both had char-
acteristics associated with peer-to-peer communi-
cation, but bridging was significantly more expen-
sive. The number of bridge and modify operations
was roughly the same so the difference between the
two was due to individual operation times.
Figure 8b shows clustering component costs for

the 4-level Wall configuration. Coalescing scaled
exceptionally well and adjusting {C ⇔ T } for the
change was even faster. The higher coalesce-
adjustment cost starting at 64 cores was likely due
to the extra work the modify operation had to do
to find overlap relationships across periodic domain
boundaries. The most expensive clustering compo-
nent was increasing the width w of the {C w⇐⇒ T }
Connector. The algorithm we described in Sec-
tion 5 only computed proximity for a zero width.
SAMRAI’s gridding algorithm and communication
schedules require a finite width, which was com-
puted from operations anticipated during and after
regridding. To increase w to the correct value, we
did another bridge operation. Increasing width ac-
tually happened outside of clustering, so it was not
a part of the Total Clustering time.
Figure 8c shows the cascade partitioner compo-

nent for the 4-level Wall configuration. The most
expensive component was using the change maps
to update {R ⇔ P}. The fastest-growing cost was
the O(lg2 N) operation to combine children groups
to get weights for the next-bigger group, but at 1M
cores, it was only half the cost of using the map
and about 1.5% of total regridding cost.
The 3-level result may be roughly compared to

our former wall propagation results in [Gun12], if
we account for some differences first. The current
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Mesh size for Wall benchmark

Level Cells per core
number

h0

h on level incl. coarser
0 1 216 216
1 3 2,267 ± 3.5% 2,483
2 9 19,848 ± 6.3% 22.2×103
3 81 172,766 ± 5.9% 195×103
4 243 1,445,150 ± 0.6% 1.640×106

Figure 7: Wall benchmark mesh size and weak-scaling results: Full mesh size for a given depth includes
finest level and all coarser levels. Most cells are on the finest level. The three timing plots use the first
legend and give results for hierarchy depths of 3, 4, and 5 levels. Parallel speed-up and efficiency use the
second legend. They are in reference to the 64-core run, to avoid the initial transient behavior caused
by expensive exact boundary conditions.
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(a) Regridding component times.

(b) Clustering component times.

(c) Partitioning component times.

Figure 8: Weak-scaling Wall benchmark mesh-management scaling.
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work used a refinement ratios of 3, regrid inter-
val of 9 time steps and averaged 22.2K cells/core.
The former results used a refinement ratio of 2, re-
grid interval of 4 time steps and averaged 27.3K
cell/core. The current normalized regridding time,
if multiplied by 9

4
× 22.2

27.3
≃ 1.83, may be directly

compared to the former regridding time. (The older
benchmark was run on a smaller BGQ machine and
there had been system upgrades, but these were
likely to have only a secondary affect on perfor-
mance.) Figure 9 shows the current and former re-
gridding time plots. The table at the bottom of the
figure shows the hypothetical time reduction had
we used the new algorithms. All measures showed
significant improvement, and clustering time prac-
tically disappeared. However, the most important
difference was that while old regridding time began
to increase linearly after 64K cores, the current re-
sult maintained its steady trend, making it usable
for much larger scales.

6.2 Strong-scaling linear advection

results

The Sphere advection test was the first of two
strong-scaling benchmarks. We used the spheri-
cal feature because of its contrast to the wavy wall.
While the walls were thin features that spread out
cross the mesh, the sphere was thicker and com-
pact. The sphere had an inner radius of 0.9 and
outer radius of 1.1, propagating through a cubic
domain with corners at (0,0,0) and (16,16,16) in
physical space. The initial center of the sphere was
(6,6,6) in physical space, and the propagation ve-
locity a = (1.0,0.5,0.5). The sphere was sufficiently
far from domain boundaries so only level 0 touched
the physical boundaries and exact boundary con-
ditions were not required. We tagged cells that
were within certain distances of the sphere, either
inside or outside of it, in any coordinate direction.
The distances were 0.07, 0.03125, 0.00625, 0.00125,
0.00025, and 0.00005 for tagging on levels 0 through
5, respectively. The hierarchies were 3 to 6 levels
deep, with refinement ratios of 4, giving a mesh
spacing ratio of 1024 from coarsest to finest. Each
level took 4 time steps for every time step taken
on the next-coarser level. A level was adapted once
every 8 time steps, except for the static level 0.
Strong-scaling did not require a sequence of

meshes with specific sizes, so we did not use do-

main expansion. We set up level 0 with a 32x32x32
grid and increased mesh sizes by adding levels.
The table at the top of Figure 10 shows represen-

tative mesh size on each level for the Sphere bench-
mark. Mesh-size variations were even smaller for
this benchmark than for the Wall benchmark. We
used the midpoints between minimum and max-
imum values as the representative sizes. Global
mesh size ranged from 971×103 cells for the 3-level
mesh to 24.5×109 cells for the 6-level mesh, cover-
ing a range of 4 orders of magnitude.
We ran this benchmark up to 1.5M cores. The

four timing plots in Figure 10 show overall scaling
performance. The left sides of these plots show that
regridding the Sphere benchmark took as little as
5% to 10% of the total run time. Regridding lost
speed-up well before the solver did. (The regridding
curves leveled out earlier.) Eventually, regridding
costs overtook non-regridding costs, but the point
at which the curves cross was further out the bigger
the mesh grew.
The sequential numerical kernel was the best

scaling component, as expected. It stopped speed-
ing up and abruptly leveled out when there was
not enough work to occupy every MPI task, on the
3- and 4-level meshes. When this happened, the
other major timers also leveled out, because meta-
data also leveled out. However, on the 5- and 6-
level cases where the mesh continued to be divided
into smaller parts to use the additional cores, meta-
data continued to grow, and regridding eventually
reversed direction. It is important to note that re-
gridding remained relatively flat even after revers-
ing directions. This indicates that simple changes
such as reducing regrid frequency could extend the
scalable range.
The last two plots in Figure 10 show parallel

speed-up and efficiency the Sphere benchmark. For
each mesh, we chose as reference the smallest core
count that the mesh could run on without running
out of memory. An exception was for the 4-level
mesh, which ran down to 1 core, but that did not
reflect the available memory because the core had
access to the node’s entire 16GB of memory. We
chose the 4-core run because it had cell/core count
in line with the reference runs for the bigger meshes.
So the reference runs were on 1, 4, 128 and 8K cores
for the 3-, 4-, 5-, and 6-level meshes, respectively.
The 3-level mesh, with only a quarter of the work

per core of the deeper meshes on reference runs, lost
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(a) Three-level Wall regridding time.
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(b) Regridding time plot from [Gun12], which used a similar 3-Level wall benchmark.

Regrid Clustering Partitioning
Number of cores 64K 256K 64K 256K 64K 256K
Time reduction 43% 68% 99% 100% 58% 62%

(c) Hypothetical regridding component time reductions by new algorithms at 64K and
256K cores (after incorporating the 1.83 factor).

Figure 9: Regridding time comparison between 3-Level wall benchmarks in this work vs earlier work
[Gun12]. Times in plot (a) should be multiplied by 1.83 to compare to times in (b).

21



efficiency fastest. Its overall speed-up was about 11.
The other three meshes, with 3-4 million cells/core
in the reference run, managed overall speed-up in
the range of 40-60. The solver saw nearly an order
of magnitude more speed-up.
The 6-level run exhibited an unexpected super-

linear speed-up between 8K and 64K cores, visible
in the efficiency plot and also discernible in the 6-
level timing plot. The 5-level run also experienced
super-linear scaling, but to a smaller degree. This
behavior started in the numerical kernels, so it was
not likely due to communication issues. It could be
due to patches shrinking enough to fit into cache.
The point at which a problem fails strong-scaling

is difficult to define and is a stronger function
of problem size than efficient algorithms. For a
more precise way to compare regridding strong-
scalability, we look at the ratio of regridding over-
head cost to the more scalable, predictable and bet-
ter understood sequential computation cost. We
quantify regrid scalability using the work per core
at the point where they are equal. The intersection
of the Regrid and Numerical Kernels curves for the
3-, 4-, 5-, and 6-level meshes occurred around 18,
280, 6,400, and 270,000 cores, corresponding to 54,
58, 80, and 91 thousand cells/core. This param-
eter could be used to compare results across the
four orders of magnitude in problem size. More-
over, it was unaffected by the super-linear speed-
up and reference choice, unlike speed-up and ef-
ficiency. The parameter revealed something in-
teresting. The smaller meshes may have stopped
scaling orders of magnitude earlier, but they actu-
ally scaled to a point of less work per core before
regridding overhead became significant. The de-
graded values for the larger problems might reflect
the overhead of using more tasks. Because these
problems all used the same computational kernels,
computational work could not be the reason for
the difference. However, the Euler benchmark does
have more computational work, allowing it to run
more efficiently at the higher task counts.
Figure 11a shows the breakdown of regridding for

the 4-level Sphere benchmark. Partitioning took
less than 10% of regridding time, and clustering
took less than 1%. Most components did speed
up between 1 and 128 cores but had no signifi-
cant gains beyond that. Partitioning and enforc-
ing proper nesting times did not shrink much be-
fore growing, but they also started out very small.

At the high end, bridging took the longest, twice
as long as all the steps in computing boxes. As
with the weak-scaling case, bridging was signifi-
cantly more expensive than modifying. No individ-
ual component dominated the timing or threatened
to do so.
Figure 11b shows the breakdown of the parti-

tioner timings. Although little partitioning speed
was gained with more cores, the speed loss at the
higher end was mild. No component dominated the
partitioning cost or threatened to do so.
Figure 11c shows the breakdown of the clustering

timings. Local clustering and coalescing were local
operations, so they scaled well until they ran out
of work and leveled out abruptly. Increasing width
and adjusting for coalesced tiles both required com-
munication, but increasing width was significantly
slower and scaled less well. The main difference
might be because increasing width used a bridge
while coalesce adjustment used a modify operation.

6.3 Strong scaling Euler Results

We remarked that there was little numerical com-
putation in the linear advection benchmarks, mak-
ing them good stress tests for regridding perfor-
mance. With an Euler benchmark we could con-
trast the physically simple linear advection with
more complex physics of hydrodynamics. This
benchmark used the same spatial discretization and
time stepping scheme, but it had 5 unknowns per
cell and more complex, non-linear physics.
The simulation was for an expanding spheri-

cal shock wave. The physical domain, a box
from (0,0,0) to (2,2,2), was initialized with a high-
pressure spherical region centered at one corner.
The sphere radius was 1. Pressure inside the sphere
was 1140.35× 105 times the outside pressure. Oth-
erwise, ρ = 1 and u = (0, 0, 0) everywhere initially.
The Euler benchmark used 4 levels, with

244x244x244 cells on Level 0. Refinement ratio was
4, and tile size was 8x8x8. The domain boundary
did not match tile boundaries, but our implemen-
tation did not require it to. We ran the problem
at a Courant number of 0.9 for two Level-0 time
steps (equivalent to 128 steps on the finest level).
Each level was adapted after every 8 steps (except
level 0).
Figure 12 shows the mesh sizes and overall scal-

ing results of the Euler benchmark. The mesh grew
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Mesh size for Sphere Benchmark

Level Global cell count
number

h0

h on level incl. coarser
0 1 32768 32768
1 4 131072 163840
2 16 806912 ± 5.6% 970752
3 64 15.325 ×106 ± 0.15% 16.30×106
4 256 492.617 ×106 ± 0.10% 508.9×106
5 1024 24.0931 ×109 ± 0.0055% 24.60×109

Figure 10: Sphere benchmark mesh size and strong-scaling results: See Figure 7 for explanation. Parallel
speed-up and efficiency are referenced to 1 core for the 3-level mesh, 4 cores for the 4-level, 128 cores for
the 5-level, and 8K cores for the 6-level.

23



(a) Regridding component times.

(b) Clustering component times.

(c) Partitioning component times.

Figure 11: Scaling of regrid in Sphere problem.
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significantly due to the growing shock wave and
expansion fan. It started with 4.31×109 cells and
doubled to 8.74×109, almost all on the finest level.
The last two plots in Figure 12 show speed-

up and efficiency for the Euler benchmark. The
speed-up factor was 60 and still climbing at 1.5M
cores, though efficiency dropped to 32%. The non-
regridding portion had sped up more than 100
times and an efficiency of 56%.
Regridding cost overtook numerical kernel cost

around the last data point, 1.57×106 cores, cor-
responding to mesh size of 2.6-5.3 thousand
cells/core, or 13-27 thousand unknowns/core.
Comparing this with the 54-91 thousand un-
knowns/core for the Sphere benchmark shows that
the Euler benchmark not only overcame the over-
heads of using on more tasks, it scaled to another
factor of four reduction in work per core. We be-
lieve this provides a concrete measurement for com-
paring strong-scaling efficiency. Note that it is valid
to compare these two benchmarks because both
had equally good load balancing (see Section 6.5)
and the same time integrator and regridding fre-
quency.
Figure 13 shows the breakdown of regridding for

the 4-level Euler benchmark. At 1.5M cores, parti-
tioning took less than 10% of regridding time and
clustering took less than 2%.

6.4 Choices affecting relative regrid-

ding cost

Regridding is an overhead that is commonly viewed
in terms of what fraction of the overall time it took.
Though relative regridding cost is a very useful
metric, by itself, it does not describe a complete
picture. Choices we made could easily have a sig-
nificant effect on this metric.
We showed above that increasing mesh size and

depth decreased relative regridding cost for the
weak-scaling benchmark, even though mesh man-
agement and computational work both increased.
Using higher-order discretizations, non-linear dis-
cretizations, multi-stage integrators, or solving
more complex physics all would increase compu-
tation without a corresponding increase in meta-
data, resulting in lowering the relative regridding
cost. Even poor load balance and data locality
could help hide regridding cost by increasing the
integrator cost.

Changing regridding frequency would have an
immediate proportional effect on total regridding
time. This choice is usually accompanied by grow-
ing finer levels in space to ensure important features
would remain well resolved until the next regrid,
creating more computational work that further re-
duces relative regridding cost but possibly increases
total cost. Similarly, using large tiles would reduce
mesh-management cost, but leads to more unnec-
essary refinement, possibly resulting in more cost.
We believe that the benchmarks we chose were

challenging for mesh-management algorithms, in
that there was a lot of regridding and little compu-
tation to hide that cost. Most problems in practice
would have significantly more complex physics and
computations to hide mesh-management costs. On
the other hand, the BGQ computer, on which we
ran the benchmark, had a high ratio of communi-
cation speed to processor speed. On another com-
puter, the relative cost of communication-intensive
regridding could be higher.

6.5 Load balance

Load balance and data locality are qualities that
can help a solver run faster. In SAMRAI, they are
the result of the clustering and partitioning opera-
tions. This subsection examines how effectively the
new algorithms balance loads. Section 6.6 examines
data locality.
Table 1 shows cell and box counts per task for the

weak-scaling Wall benchmark. Max and average
values refer to the maximum and average over all
MPI tasks. The max

avg
ratio is the key parameter for

evaluating the degree of overload affecting the slow-
est process and consequently the whole. The parti-
tioner managed to keep the max overload to about
10% where possible (on levels 2-4). On level 0, the
max was 9 times the average, but this figure is mis-
leading. The max load was only 846 cells more than
the average. Similarly, on level 1, the max load was
33% more than the average, but the overload was
less than a single tile. Overload that amounted to
small actual work surplus did not have a significant
effect on speed. In our discussion, we will disregard
overloads caused by lack of work rather than poor
balancing.
Although box count is of secondary importance

compared with cell count, it is important to keep it
low. Excessive box counts slow the search for data
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Mesh size for Euler benchmark

Level Global cells (×106)
number

h0

h initial final
0 1 14.53 14.53
1 4 15.72 15.72
2 16 245.1 284.7
3 64 4032 8099

total 4037 8413

Figure 12: Euler benchmark mesh size and strong-scaling results. See Figure 7 for explanation. Parallel
speed-up and efficiency are referenced to 8K cores.
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Figure 13: Regrid of strong-scaling Euler Problem.

dependency and create too many places where we
have to transfer data. The right side of Table 1
shows box-count statistics. As we noted, Level 0
was short on work. It averaged 0.15 boxes per pro-
cess. The max

avg
ratio of 6.67 was high, but again,

this was due to lack of work, and we will disregard
these cases. Average box counts for levels 1-3 were
1.02, 3.63, and 20.98 boxes/process, growing with
work amount but otherwise reasonable. Level 4 av-
eraged 160.6 boxes. While this seems large, it came
from discretizing the expansive, non-grid-aligned
walls at high resolution. The box count was ac-
tually very low compared to the nearly 1,000 boxes
it would have taken had we not coalesced the tiles.
Level 4 averaged 4,513 cells/box, or about 6 times
the tile size. Only 6% of these boxes on this level
came from the partitioning step. The partitioner
effectively limited extraneous box cutting.

Table 2 shows size characteristics for the strong-
scaling Sphere benchmarks. The characteristics
changed as we distributed the fixed-sized mesh on
different process counts, so we present typical re-
sults on small, medium and large process counts:
8K, 128K, and 1.5M. As we saw with the weak-
scaling benchmark, when there was enough work
(at least 1 tile) per process, the partitioner man-
aged to keep the max overload to around 10%.

At 1.5M processes, the Sphere benchmark’s
Level 5 flipped between dominant overload char-
acteristics of 7% and 14% but averaged about 10%

overload. We show both characteristics at the bot-
tom of the table. The large overload in this case
was caused by an average work load that had gotten
too small compared with the tile size. The biggest
overload of 2040 cells was equivalent to about half
a tile. This illustrates the desirability of smaller
tile sizes for fine-scale balancing.

Box counts averaged less than 4 per process for
most Sphere benchmark meshes. The exception
was on the finest level at 8K processes, which av-
eraged 18.71 boxes/process. As in the Wall bench-
mark, this was caused by the number of cells re-
quired to discretize a large feature at a fine scale.
Only 2.5% of the boxes came from the partitioner.
The average box contained 157,162 cells, or about
38 16x16x16 tiles. The 18.71 boxes compared well
with the 718 it would have taken had we not coa-
lesced tiles. Though higher box counts contributed
to more mesh-management work, in this case, they
were necessary and correlated with high cell counts,
so their cost remained low compared to computa-
tions, as we saw in the scaling plots of Figure 10.

Results for the Euler benchmark, shown in Ta-
ble 3, were similar. The largest average box count
was 123, for Level 3 on 8K processes. That number
compares well with the 1446 tiles that would have
been required had we not coalesced.
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Level cells/task boxes/task avg cells
num. avg max-avg max

avg
avg max max

avg
per box

0 108 864 9.00 0.15 1 6.67 721
1 1,094 364 1.33 1.02 2 1.97 1076
2 10,525 1,139 1.11 3.63 11 3.03 2786
3 91,239 10,092 1.11 20.98 44 2.10 4348
4 724,558 59,117 1.08 160.6 311 1.94 4513

Table 1: Weak-scaling Wall benchmark typical cell and box counts (per MPI task): This representative
data came from a snapshot of the 1M-core run. Tile size for this benchmark was 9x9x9, or 729 cell/tile.
The clustering and partitioning algorithms effectively balanced load while keeping box counts low.

Core Level cells/task boxes/task avg cells
count num. avg max-avg max

avg
avg max max

avg
per box

0 4 4,092 1024 ≪ 1 1 * 4096
1 16 4092 1024 ≪ 1 1 * 4096
2 93 4,003 44.0 0.02 1 * 4096

8K 3 1,856 2,240 2.21 0.45 1 2.21 4096
4 60,095 2,881 1.05 3.25 11 3.39 18,343
5 2,940,995 274,364 1.09 18.71 92 4.92 157,162

0 ≪ 1 4,096 * ≪ 1 1 * 4096
1 1 4095 4096 ≪ 1 1 * 4096
2 6 4,090 683 0.0015 1 * 4096

128K 3 116 3,980 35.4 0.028 1 * 4096
4 3,756 341 1.09 0.92 3 3.27 4089
5 183,819 16,885 1.09 3.68 17 4.62 49,941

0 ≪ 1 4,096 * ≪ 1 1 * 4096
1 ≪ 1 4,096 * ≪ 1 1 * 4096
2 1 4,095 * ≪ 1 1 * 4096

1.5M 3 10 4,086 426 .0023 1 * 4096
4 313 3,783 13.1 0.077 1 * 4088

2,090 1.14 9486
5 15,318

1,066 1.07
1.61 5 3.10

9493

Table 2: Typical cell and box counts for strong-scaling Sphere benchmark on 8K, 128K, and 1.5M cores.
Asterisks denote large max

avg
values caused by small averages and are therefore not meaningful. Tile size

for this benchmark was 16x16x16, or 4096 cells/tile. Level 5 had two dominant overload characteristics
at 1.5M processes.
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Core Level cells/task boxes/task avg cells
count num. avg max-avg max

avg
avg max max

avg
per box

0 1,773 531 1.30 1.62 3 1.85 1095
1 1,919 2,048 4.27 1.59 3 2.52 1209

8K
2 29,923 2,845 1.10 8.36 27 3.23 3581
3 740,482 64,894 1.09 123 272 2.21 6060

0 111 1617 15.6 0.21 1 4.85 538
1 120 392 4.27 0.23 1 4.27 512

128K
2 1,870 178 1.10 1.58 4 2.54 1186
3 46,280 4,408 1.10 9.13 38 4.16 5068

0 9 1,719 187 0.017 1 * 538
1 10 502 51.2 0.019 1 * 512

1.5M
2 156 356 3.29 0.30 1 3.25 512
3 3,857 239 1.06 2.55 8 3.14 1515

Table 3: Typical load balance statistic for the strong-scaling Euler benchmark on 8K, 128K, and 1.5M
cores. The Euler mesh changed rapidly. This data was taken at the end of one Level-0 time step.
Asterisks denote large max

avg
values caused by small averages and are therefore not meaningful. Tile size

for this benchmark was 8x8x8, or 512 cells/tile.

6.6 Data locality

We knew of no generally acceptable metric for com-
paring data locality, but we attempted three eval-
uations: patch ownership image, Connector statis-
tics, and MPI wait time during mesh data transfer.

Images of the mesh colored by ownership pro-
vided an initial qualitative evaluation. Figure 14
shows this for the Euler benchmark. For this il-
lustration, we dropped the mesh down to 3 levels
and ran on 64 MPI tasks. (The 4-level mesh in the
benchmark was challenging to plot, due to its size.)
The ownership images of levels 1 and 2 showed
that patches close together in physical space tend
to be close together in MPI rank space. This trans-
lated to being close on the communication network
of BGQ machines and others where proximity in
MPI rank space correlated with network proxim-
ity. There was also a degree of inter-level proxim-
ity, suggested by the ownership correlation between
the two levels. Coarse-level patches tend to overlap
fine-level patches with similar color, as seen in the
third image.

Statistics of proximity Connectors provided our
second indicator of data locality. As a reference
for comparing intra-level locality, we use a hypo-
thetical parallelpiped domain cut through by grid
planes. In the 3D limit away from level boundaries,

this produces boxes with 26 neighbors each. In the
2D limit, it is 8 neighbors. If we size the boxes
to fit the average workload, each process is given a
single box. Intra-level data transfer requires com-
municating with 26 other processes in the 3D limit.

Tables 4 and 5 show key statistics from
Connectors to Level 5 (L5) of the Sphere bench-
mark. L5 was large and had the greatest risk
of fragmentation and loss of locality. (The Wall
benchmark had a larger level, but its periodic fea-
tures could lead to an artificial mesh-dependent
pattern on the edges statistics.) Fragmentation risk
increased with more MPI tasks, so we present the
data for 8K, 128K, and 1.5M tasks.

The intra-level proximity Connector

{L5 5−→ L5} in Table 4 had a width of 5 cells,
the maximum that SAMRAI required for this
particular Connector. There was an average of
13.5 edge

box
at 8K tasks, increasing to 22.5 at 1.5M

tasks. This was significantly better than the 26
edges in the hypothetical partitioning. Although
the spherical feature was about 410 cells across and
appeared 3D from on the scale of the cells, it was
only 25.6 tiles across and only 3.37 averaged boxes
across. On the scale of boxes, the feature appeared
more 2D and thus the statistics was closer to those
for the 2D hypothetical partitioning. In this case,
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(a) Level 2. (b) Level 1 with Level 2 in outline.

(c) Levels 2 and 1 superimposed.

Figure 14: Patch owners for Euler benchmark: This 3-level, reduced-size, 64-process configuration il-
lustrates typical proximity characteristics. Colors reflect patch ownership, changing from zero (blue) to
63 (red). Physically close patches tend to be close in rank space for both inter-level intra-level patches,
suggesting significant data locality.

coalescing tiles greatly improved data locality by
creating boxes on the order of the feature size.

At 8K tasks, {L5 5−→ L5} averaged 93.7 neigh-
bors per task. A neighbor is a head box with an
edge from a local base box. If there were multi-
ple base boxes with edges to a neighbor, we still
counted it as one neighbor. Of the 93.7 neigh-
bors, 75 were remote, and these were owned by
an average of 34.4 tasks. This was worse than the
26 remote tasks for the hypothetical partitioning,
particularly considering that we were close to the
2D limit. However, with 252 edge

task
average, limiting

them to only 34.4 remote tasks indicates signifi-
cant locality. Moreover, 18.7 (20%) of the neigh-
bors were local, which could provide some work
to keep the process busy while waiting for asyn-
chronous messages during data transfer. We do

not, however, know how important that effect is.

At 1.5M tasks, L5 was more finely partitioned
and less coalesced. Boxes were smaller and the
feature appeared more 3D. The edge statistics re-
flected this. Each task averaged 31.4 neighbors in

{L5 5−→ L5}, and almost all of them (29.7) were
remote. With an average of 1.61 boxes per task on
L5, one could not expect multiple local intra-level
neighbors on the level. On average, these neighbors
were owned by 25.8 remote tasks, very close to the
26 of the hypothetical partitioning.

Table 5 shows statistics for the coarse-to-fine
Connector {L4 3−→ L5}. Inter-level Connectors
tend to have different characteristics than intra-
level Connectors because (1) inter-level patches
can overlap, (2) coarser level patches tend to
be physically much larger and (3) coarse-to-fine
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Connectors tend to be physically wider. The

{L4 3−→ L5} Connector’s width was equivalent to
12 L5 cells. Relative to intra-level Connectors,
coarse-to-fine Connectors contains many more re-
lationships for fewer base boxes. Fine-to-coarse
Connectors have more base boxes but fewer rela-
tionships per box, which does not shed much insight
on data locality.

At 8K MPI tasks, for {L4 3−→ L5}, each task av-
eraged 101 edges, connecting to 81.6 neighbors. On
average, 16.2 edges pointed to local boxes. Given
the average of 18.71 box

task
on L5, 16.2 local neigh-

bors was a high degree of locality. The 64.4 remote
neighbors lived on 29.4 remote tasks, which is simi-
lar to the 26 tasks for the hypothetical partitioning.

At 1.5M tasks, only 8% of tasks had any edges

in {L4 3−→ L5}, which could not make for mean-
ingful statistics. For example, there was an aver-
age of 96.9 edge

box
but the deceptive 7.4 edge

task
was due

to the vast majority of task having no edge. We
will instead examine the 128K-task run. It had a
low 0.92 box

task
, but that was sufficiently far from zero

to provide meaningful numbers. At 128K tasks,

{L4 3−→ L5} averaged 35.8 edge
task

, connecting to 35.8
neighbors, so no neighbors were connected multi-
ple times in the average case. Of these neighbors,
2.4 were local and 35.8 were remote. Given only
3.68 box

task
in L5, 2.4 local neighbors represents sig-

nificant locality.

High data locality helps data transfer by reduc-
ing internal boundaries, reducing message tran-
sit times, or eliminating transit time completely
in cases where source and destination are both
local. It also helps computing transfer sched-
ules that specify which data should be transferred
where. Poor data locality could increase data-
transfer time, so our third locality evaluation exam-
ines data-transfer time. Figure 15 shows how data-
transfer components scaled for the benchmarks run
with four levels. We used the sequential Numerical
Kernels time for comparison. In the weak-scaling
benchmark all components scaled well, exhibiting
characteristics seen in regridding operations with
peer-to-peer communication. They initially rose
due to the increasing number of available tasks to
communicate with, but they leveled out before the
point of 100 tasks.

In the weak-scaling benchmark, constructing and
executing refine schedules each took about a third

of the time numerical kernels did. Though this
seems high, recall that the kernel for linear ad-
vection was very simple. Executing refine sched-
ules took about as much time as exact boundary
conditions did up to 32 cores. Bridge and modify
operations were used in refine schedule construc-
tion, where temporary supplemental levels were
computed and connected. Their good weak-scaling
characteristics suggest fast metadata operations.
The two MPI wait timings for mesh data transfer
also scaled well, again suggesting good data local-
ity. Coarsen schedules were simpler and used less
often, so their cost was well below that of refine
schedules.

Data transfer characteristics for strong-scaling
benchmarks were more difficult to evaluate, be-
cause locality effects were subtle compared with
those due to rapidly shrinking local work. However,
the ordering of the components was very similar
to that of the weak-scaling case, suggesting similar
effects of data locality. In the Euler benchmark,
where there was more significant computation, rel-
ative cost of data transfer was lower for all compo-
nents.

7 Summary and conclusion

We developed and benchmarked two significant al-
gorithms for patch-based AMR regridding: a flexi-
ble tile-clustering algorithm and a cascading parti-
tioning algorithm. Integrated into SAMRAI’s dis-
tributed mesh-management scheme, they required
no unscalable communication to work. Our test
benchmarks were designed to be challenging for dy-
namic regridding, using simple physics and numer-
ics, frequent regridding, and a broad range of mesh
sizes. They scaled well to 1.5M cores and to 2M
MPI tasks.

Our weak-scaling benchmarks achieved efficien-
cies of 72% to 84% at 2M tasks. Strong-scaling
benchmarks achieved 11X to 60X speed-up fac-
tors. More importantly, detailed timing of all op-
erations showed smooth, steady trends that sug-
gest we could continue into significantly higher core
counts. Varying mesh size and physics complexity
showed that relative regridding cost would be sig-
nificantly lower for problems that had more com-
putational work than our benchmarks did.

The partitioner kept maximum overloads to
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Figure 15: Data transfer cost for weak-scaling advection, strong-scaling advection and strong-scaling
Euler benchmarks: For reference, the cost of the serial numerical kernels is also shown. (Coarsen
schedule times are missing from the Euler benchmark because the timers were inadvertently disabled.)
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{L5 5−→ L5} Task count
intra-level statistics 8K 128K 1.5M

edges/box 13.5 19.2 22.5
edges/task 252 70.6 36.3

local neighbors/task 18.6 3.7 1.6
remote neighbors/task 75 44.4 29.7

remote neighbor owners/task 34.4 31.5 25.8

Table 4: Data locality indicators from intra-level Connector for Level 5 of Sphere benchmark at time
0.129.

{L4 3−→ L5} Task count
inter-level statistics 8K 128K 1.5M

edges/box 31.0 38.9 96.9
edges/task 101 35.8 7.4*

local neighbors/task 17.3 2.4 0.1*
remote neighbors/task 64.4 33.4 7.3*

remote neighbor owners/task 29.4 24.9 6.2*

Table 5: Data locality indicators for coarse-to-fine (Level 4 to Level 5) Connector for Sphere benchmark
at time 0.129. The Connector was wider than that in Table 4. It was 3 Level-4 cells (12 Level-5 cells).
Values with * are not useful because they are averages over tasks, but only 8% of tasks owned boxes on
L4.

about 10% using minimal box cutting to prevent
over-fragmenting levels. The clustering algorithm
did a good job coalescing tiles–averaging as high
as 38 tiles per box–to reduce metadata size and
mesh-management cost, increase data locality, re-
duce memory used by ghost cells, and speed up
data transfer. We compared the different bench-
marks by examining the amount of local computa-
tion at the point where the regridding time equals
sequential computation time. This removed the
more dominant effects of work load differences and
demonstrated that problems with more computa-
tional work could scale to a smaller amount of work
per process.

Further research could include extensions to the
partitioner to support non-uniform work function,
a load-apportioning scheme that considers loca-
tions to further improve data locality. Since re-
gridding time and over-fragmentation seems to be
under control, a fast operation to limit patch sizes
could speed up solvers by improving cache effi-
ciency. Threading and graphics processing units
(GPU) appear to be the next big step in compu-

tational speed, so finding a way to thread mesh-
management operations will be important. This
would be very challenging because mesh manage-
ment has so little metadata to work on and it is
very communication- and logic-intensive.
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