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1. Introduction 
To economically and reliably balance electrical load and generation, electrical grid operators, 

also called Balancing Authorities (BA), need highly accurate electrical power generation 

forecasts in time frames ranging from a few minutes to six hours ahead. As wind power 

generation increases, there is a requirement to improve the accuracy of 0- to 6-hour ahead wind 

power forecasts. Forecasts covering this short look-ahead period have depended heavily on 

short-term trends obtained from the actual power production and meteorological data of a wind 

generation facility. Additional data are often available from Numerical Weather Prediction 

(NWP) models and sometimes from off-site meteorological towers near wind generation 

facilities. 

The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it 

would seem that building meteorological towers in the region upwind of a wind generation 

facility would provide necessary data to refine short-term forecasts for the 80-m AGL wind and 

power forecasts. However, this additional meteorological information typically does not 

significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because 

processes controlling wind variability change from day to day and, at times, from hour to hour. 

Consequently, a meteorological tower location that provides beneficial forecast data at one time 

may not be useful a few hours later. It is also important to note that some processes causing 

significant changes in wind power production function principally in the vertical direction. These 

processes will not be detected by meteorological towers at off-site locations. For these reasons, it 

is quite challenging to determine the best type of sensors and deployment locations. 

Methods have been developed recently that can be used to address the measurement deployment 

problem. These approaches rely on the use of NWP models to assess forecast sensitivity at a 

target location and look-ahead time to measurements made at model initialization time and 

points surrounding the region of interest. The techniques are based on the fundamental 

hypothesis that locations and variables with high sensitivity are good candidates for 

measurements, since information at those locations is likely to have the most impact on the 

forecast for the desired parameter, target area, and look-ahead period. Therefore, the methods 

have the potential to help determine the locations and parameters to measure in order to get 

maximum positive impact on forecast performance for a particular site. 

To address the measurement deployment problem, Zack et al. (2010) applied the method known 

as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). The 

ESA approach was initially designed to produce spatial fields of forecast sensitivity for a set of 

prior state variables selected by the user. No strategy for determining the optimal combination of 

multiple variable-location combinations had been developed in the previously published studies. 

Zack et al. (2010) developed the Multiple Observation Optimization Algorithm (MOOA) in 

order to determine the relative predictive value and optimal combination of different 

variables/locations from correlated sensitivity patterns. 

In Zack et al. (2010), the ESA-MOOA approach was applied and evaluated for the wind plants in 

the Tehachapi Pass region for a period during the warm season. This research demonstrated that 

forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns 
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for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature 

difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi 

Pass study were coherent and consistent with the basic physical processes that drive wind 

patterns in the Tehachapi area. 

 

In this project, the ESA-MOAA approach is extended and applied to the warm season for the 

wind plant target areas of Klondike, Stateline and Hopkins Ridge located in the Washington-

Oregon area of the northwest U.S. as shown in Figure 1. The objectives of this study were to 

identify measurement locations and variables that have the greatest positive impact on the 

accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the Mid-Columbia Basin 

wind generation area during the warm season and to establish a higher level of confidence in the 

ESA-MOAA approach for mesoscale applications. 

 

 
 

Figure 1. Geographical area used in the ensemble sensitivity analysis experiments. A matrix of 

172 by 160 horizontal points with a spacing of approximately 4 km between points for 40 levels 

of the atmosphere at predetermined pressure levels (Appendix C) was overlaid on the 

Washington-Oregon domain for the experiment. The color shading depicts the terrain elevation 

(m) on the scale of the model grid. The white boxes denote the forecast target areas at Klondike, 

Stateline, and Hopkins Ridge with the broader geographic regions of the Columbia Gorge, Mid-



4 

 

Columbia Basin and Eastern Washington highlighted in red outlines. The location of the Cascade 

Range is also indicated on the map. 

 

The report is organized as follows. Section 2 highlights the methodology, Section 3 presents 

single-variable results, Section 4 covers multiple variable results, and Section 5 concludes with a 

summary and brief discussion of future work. 

2. Methods 

2.1 Description of ESA and EnKF 

The ESA approach uses data generated by a set (ensemble) of perturbed NWP simulations for a 

sample time period to diagnose the sensitivity of a specified forecast variable (metric) for a target 

location to parameters at other locations and prior times [the initial condition (IC) state variable]. 

The ensemble of NWP simulations are produced by starting with a single initial state at the 

beginning of the analysis period and introducing statistical perturbations into the initial and 

lateral boundary conditions. For subsequent simulations after the first 6 hour forecast is 

produced, the initial state is a combination of the predicted and observed state. This process 

generates a set of simulations that differ from each other due to the perturbations. The number of 

simulations must be large enough to produce a statistically significant sample for the sensitivity 

calculations. Past studies have used 48 or more ensemble members for large-scale ESA 

applications (Torn and Hakim 2008).  

The evaluation of simulation "spread" or differences between individual members of the 

ensemble was accomplished using an ensemble Kalman filter (EnKF; Houtekamer and Mitchell 

1998; Evensen 2007). The EnKF attempts to balance the predicted and observed state of the 

atmosphere by estimating the likelihood of each state at any given time over the entire set of 

simulations in the ensemble. The EnKF assumes that model errors follow a normal (Gaussian) 

distribution in order to determine the most probable state of the atmosphere. The error is assessed 

using the time dependent spread and deviations obtained from the ensemble state with that of the 

observed state. Ensemble members are allowed to integrate forward in time while the filter 

monitors the spread in the ensemble. The EnKF assesses predictabilities (likelihood of 

occurrence) of the variable of interest for the target area by monitoring the change in the spread 

of the NWP ensemble. 

In the ESA methodology, each initial state is used as the starting point for an NWP simulation. 

The NWP simulations are marched forward in time with periodic assimilation of observational 

data for some time referred to as the “analysis period”. The periodic assimilation of measurement 

data serves to keep the model state from drifting too far from the actual atmospheric conditions. 

However, it is important to keep the spread of the ensemble within an acceptable range in order 

to obtain meaningful results. 

Ensemble spread can be controlled by specifying characteristics of the IC perturbations through 

user-definable parameters. The initial perturbations are typically chosen to be relatively large 
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(i.e. larger than the observation uncertainty in the initial state) so that each ensemble member is 

unique. The ensemble spread then typically decreases during the "spin-up" of the ensemble and 

eventually comes into a balance within some general range that is indicative of the characteristics 

of the flow regime. For the Mid-Columbia Basin experiment, the range or standard deviation of 

horizontal wind speed was on the order of 3 to 7 m/s. 

Excessive ensemble divergence is usually not a problem, since an increase in spread causes the 

members to adjust more to fit the available observed values. So initially large ensemble spread 

will eventually decrease by assimilating observations. On the other hand, convergence of 

ensemble members is more of an issue. A technique called covariance inflation (Anderson and 

Anderson 1999; Anderson 2007) is used to avoid ensemble convergence (i.e. large decrease in 

spread for highly predictable flows). Covariance inflation perturbs the members in areas of low 

spread based on user-specified values for the inflation parameters. 

2.2 Model Configuration 

The simulations were generated on a three-dimensional nested grid matrix of 120 x 120 

horizontal points and 12-km spacing on the outer grid, and 172 x 160 points with 4-km spacing 

on the inner grid that covered most of Washington and Oregon. The inner grid area is depicted in 

Figure 1 and both grids are shown in Figure C1 (Appendix C). Both grids had 40 vertical layers 

at predefined pressure levels. The vertical grid spacing increases with height so there is higher 

resolution near the surface of the earth (see Appendix C for a listing of model levels). 

A nested or multiple grid approach was used for this study to help simulate the flow in the 

Pacific Northwest region. The typical summer weather pattern in this region is dominated by 

large-scale atmospheric waves propagating from the Pacific Ocean eastward. A nesting strategy 

provides a lower resolution outer grid to capture these large scale flows upstream of the area of 

interest, while allowing boundary perturbations to grow and decay within the outer grid. It is 

important to keep the boundaries of the outer grid far enough removed from the inner grid to 

prevent interactions that would lead to ensemble instability. The inner nested grid is then used to 

resolve the terrain-induced circulations near the target region with a higher degree of detail. 

The simulations were produced using version 2.2 of the Weather Research and Forecast (WRF) 

atmospheric model (Skamarock et al. 2005), and observational data were assimilated every 6 

hours using an ensemble Kalman filter data assimilation procedure within the Data Assimilation 

Research Testbed (DART) software (Anderson 2001; Anderson et al. 2009). Data from the North 

American Mesoscale (NAM) model were used for initial and lateral boundary conditions. A total 

of 48 ensemble members were used in the analysis. Appendix A contains details of the WRF 

model configuration, ensemble Kalman filter data assimilation system, and the types of data 

assimilated. 

The simulation period extended from 0000 UTC 1 May to 1800 UTC 19 June 2007. The first two 

days were designated as a “spin-up” period and the data were not used in the sensitivity 

calculations. Therefore, the analysis period covered 47 days from 3 May to 19 June 2007. The 

months of May and June 2007 were selected to encompass the period used for a ramp forecasting 

project sponsored by Bonneville Power Administration. Since a significant amount of analysis 
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has already been performed on the events during that period, results can be leveraged for the 

ESA experiments in this project. 

Even with the use of a nested grid, the ensemble mean state became unstable during several 

simulations near eastern and southern lateral boundaries.  In attempt to remove these instabilities 

the model was restarted with new perturbed IC and boundary conditions usually 2-3 days before 

the instability developed, with enough time to allow for ensemble spin-up. 

These instabilities were related to covariance inflation of the ensemble which added strong 

perturbations to the assimilated model state and eventually grew into unphysical vertical flows 

along the lateral boundaries. In future studies, the nested grid should be extended to remove any 

correlations between assimilated observations and covariance inflation. 

The simulation period was for six hours with data assimilation performed at the beginning of 

each period. A 6-hour data assimilation cycle was chosen to allow the model enough time to 

adjust to observational data. The sensitivities were calculated for two separate time periods from 

0 to 3 hours and from 3 to 6 hours. The 1-hour sensitivities were computed from the initial time 

to hour 1 and from hour 3 to hour 4 of each simulation. The 1- and 3-hour sensitivities were 

computed because this is the look-ahead period of greatest interest to the grid operators. The 

second set of 1- and 3-h sensitivities were computed for each forecast in order to provide 

additional independent time periods for evaluation. 

2.3 Description of IC Variables  

The forecast metric (F) was defined as the average 80-m wind speed over the three target areas 

shown in Figure 1 (white boxes). The sensitivity calculation is not restricted to the same variable 

that is used to define the forecast metric. Sensitivity values can be calculated with respect to any 

quantity that can be derived from the basic set of prognostic variables in the NWP model used to 

generate the ensemble of simulations. The twelve IC state variables listed in Table 1 were 

evaluated. 
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Table 1. Twelve IC state variables used in the evaluation of sensitivity. 

Wind Speed Related 

80-m wind speed above ground level (AGL) 

250-m wind speed AGL 

1.5-km wind speed above mean sea level (AMSL) 

3-km wind speed AMSL 

Wind Shear Related 

10-m to 80-m wind shear AGL 

80-m to 500-m wind shear AGL 

500-m to 1-km wind shear AGL 

Temperature Related 

2-m temperature AGL 

2-m to 80-m temperature difference AGL 

80-m to 1-km temperature difference AGL 

80-m to 500-m temperature difference AGL 

500-m to 1-km temperature difference AGL 
 

The twelve IC parameters can be grouped into three categories: (1) Single level sensitivities, 

which include wind speed at various levels and 2-m temperature, (2) vertical wind shear, and (3) 

vertical temperature gradient. The wind shear and temperature gradients were computed for 

various layers from near the surface to a level of 1-km AGL. 

Winds at turbine hub height (80 m) are typically quite useful for predicting the same quantity 

within the target location at later times. In order to get a sense of the variation in sensitivity to 

wind speed with height, three other levels at 250-m AGL, 1.5-km AMSL, and 3-km AMSL were 

also examined. The near-surface temperature, wind shear and vertical temperature difference 

variables were chosen because they are useful for defining the characteristics of the surges of 

marine air responsible for many of the wind speed changes in the Mid-Columbia Basin. The 2-m 

to 80-m temperature difference and 10-m to 80-m wind shear define the vertical structure of the 

atmosphere below turbine level. They are more indicative of the diurnally driven variations in 

low-level wind speed and temperature profiles. The 80-m to 500-m wind shear and temperature 
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differences define the vertical structure of the atmosphere above turbine height and (during 

surges of marine air) within the marine layer. The 500-m to 1000-m wind shear and temperature 

differences define the vertical structure of the atmosphere near the top of the marine layer when 

marine air is present. 

2.4 Description of Statistical Quantities Used to Evaluate Sensitivity  

Three statistical quantities are used to qualify and quantify the relationship between the 

evaluation (IC) variables and correlation of those variables to the 80-m wind at the target 

location: sensitivity, frequency of significant sensitivity, and coefficient of determination (R
2
). In 

this study, sensitivity is defined as the magnitude of the relationship between the IC variable and 

the forecasted metric variable at a later time.  

 

Determining the true sensitivity would require a very large ensemble of perturbed NWP model 

simulations for which the ensemble spread is carefully managed to represent the true uncertainty 

of the forecast metric(s) and the IC variable states at each grid point. Obviously, the true 

sensitivity cannot be determined. However, it can be estimated by drawing from a sufficiently 

large sample (ensemble) of perturbed NWP model simulations for which the ensemble spread is 

adequately managed. Thus, for this study the sensitivity relationship is expressed as: 

  
(1) 

where ∂F/∂s is defined as the sensitivity of a target forecast metric (F) to selected IC state 

variables from prior simulated times at all points in the model domain. The covariance (cov) and 

variance (var) are computed over all ensemble members (Ancell and Hakim 2007). Thus the 

sensitivity can be thought of as the slope of a linear relationship between the IC variable and the 

forecasted variable. A higher absolute sensitivity value means that a given change in the IC 

variable will lead to a larger change in the variable being forecasted. 

 

While sensitivity gives some sense of how much the forecast metric typically changes for a given 

change in the IC state variable, it conveys no information on the strength and reliability of the 

relationship. In many cases where the IC state variable has a relatively low variance, the 

sensitivity can be high even when the relationship is weak. For this reason, the coefficient of 

determination (R
2
) was used to measure how much of the variance can be explained by the linear 

relationship between the IC variable and the forecast metric. A high R
2
 indicates that most of the 

variance can be explained by the relationship. Mathematically, R
2
 is defined as follows: 

 R
2
 = [cov(F,s)/(var(s) *var(F)] (2) 

Although a completely rigorous analysis of sensitivity R
2
 values was beyond the scope of this 

study, previous research and model experiments have indicated that R
2
 values in the 0.15 to 0.25 

range represent significant and most likely predictable relationships, while R
2
 values less than 

0.1 represent sensitivity relationships that are weak and unlikely to be useful. For an R
2
 value of 

0.15, about 40% of the forecast error is explained, which can conservatively be considered to be 

F

s

cov(F,s)

var(s)
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significant. R
2
 values of 0.1 or less indicate that 30% or less of the forecast error is explained, 

which is not considered to be significant. 

 

The frequency of statistically significant non-zero sensitivity helps to determine the usefulness of 

a given observation. At each time, a statistical test is employed to determine if there is sufficient 

confidence that the true sensitivity is non-zero as estimated using the 48-member ensemble. In 

this study, a given sensitivity is designated as “significant” if the confidence bounds are of the 

same sign at the 95% confidence level. Previous sensitivity research has shown that a 95% 

confidence interval is adequate in resolving high sensitive regions interest for synoptic flow 

(Torn and Hakim 2008). 

 

Significant sensitivity can be aggregated over many times to compute the fraction of cases for 

which the sensitivity is significant. This quantity is determined at each grid point and compiled 

to create a map. A high percentage of significantly sensitive cases indicates that a strong and 

most likely predictable relationship truly exists in the data and is not an artifact of the ensemble 

sampling technique. 

 

Sensitivities were computed from 48 ensemble members to determine the impact of an initial 

model state variable 1-hour and 3-hours ahead on the 80-m wind speed at Klondike, Stateline, 

and Hopkins Ridge. As mentioned earlier, the 1- and 3-hour look-ahead periods were chosen 

because they are of the most value to the grid operator. 

 

In addition to raw sensitivity values, the R
2
 values and significant sensitivity frequencies were 

computed for the 1- and 3-hour look-ahead times. The R
2
 values were produced for each interval 

and then averaged over the entire 47-day sensitivity period. The frequency of significant 

sensitivity periods with a 95% confidence interval were produced for the entire 47-day sample. 

 

In order to make inferences about the best measurement locations and variables to improve 

forecast performance over a wide variety of cases, it is necessary to construct a statistical 

composite of sensitivity values over a representative case sample. The simplest composite is an 

average, although other statistics may also be meaningful for a particular application. 

 

In this study, the average was constructed for all dates and times in the analysis period to obtain 

information about which areas have the highest average sensitivity over all cases. In addition, the 

average was computed for each specific subset of the analysis period – such as those which 

experience large changes (ramps) in wind power production or time periods during which a 

particular wind or weather regime was present (such as northwest or southeast flow). This 

approach yields information about the locations and variables that have the most sensitivity for 

those types of events. 
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2.5 Location and Variable Combinations 

The forecast sensitivity dataset can be used to select a combination of locations and variables 

that will provide the most improvement for the prediction of the forecast metric over the desired 

look-ahead period. Typically, the direct use of the most sensitive points would likely not yield an 

optimal solution because the IC variables, in general, have a significant degree of correlation. 

Even though a number of variables may exhibit a high degree of sensitivity, much of the 

“predictive” information in each variable is highly correlated with the information in other 

variables. Therefore, many of the highly sensitive variables/locations essentially provide 

redundant information about the variability of the forecast metric for a given look-ahead period. 

In order to address this issue, the MOOA (Zack et al. 2010) was used to determine the relative 

predictive value of different combinations of variables/locations. In this procedure, a small set of 

variables/locations is selected by a separate algorithm and then multiple linear regression is 

performed on all combinations of variables/locations within that set. Unlike the study for 

Tehachapi Pass where the maximum average sensitivity magnitude was chosen (Zack et al. 

2010), the locations of the maximum average R
2
 value were chosen here for each IC variable 

considered. The maximum average R
2
 value was chosen because it represents the goodness of fit 

for a linear regression and provides a better representation of the simulated sensitivity 

relationship than just the magnitude of average sensitivity. 

The variables are normalized prior to the regression. The normalization permits the regression 

coefficients to be used as an indicator of the relative importance of each variable when combined 

with other variables in the set. The R
2
 values of each multiple regression can also be used as an 

indicator of which combinations and individual variables/locations have the most value for a 

given forecast look-ahead period. 

2.6 Regime-Based Sensitivities 

 

Large wind ramps present a significant forecast challenge, since accurate prediction of both the 

timing and amplitude are important for grid operations. Furthermore, they are often caused by 

subtle features that are difficult to observe accurately. This study also attempts to address this 

issue by defining and analyzing the sensitivities for a period of observed wind ramp-events, 

referred to in this report as the ramp event subsample. 

 

To examine IC variables that correlate to prediction of 80-m wind for wind ramp cases, the top 

ten up and down ramps in the region were compiled for each of the three sites for a total of 20 

ramp events per site (Tables B1 through B3 in Appendix B). Tables 2 and 3 summarize the 

upward and downward ramp events for all three locations. The data were chosen from the 

generation and on-site met tower data provided by the grid system operator (Bonneville Power 

Administration). A power curve was used to estimate non-curtailed production. For this study, 

the subsample was composed of 20 ramp events for each site. Since some of the up and down 

ramps occurred within the same 3-hour interval, the number of events shown in Tables B1 
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through B3 ranges from 17 to 19 because these were the only unique 3-hour intervals for the 

cases. Event amplitudes were compared as a percent of plant capacity. 

 

The upramp event amplitudes varied from 63.0% at Klondike to 98.7% at Stateline. The down 

ramp event amplitudes varied from -50.5 % at Stateline to -98.8 % at Hopkins Ridge. The 

durations ranged between 70 to 170 minutes for the upramps and from 70 to 220 minutes for the 

down ramps. These high impact ramp events are of particular interest because the locations and 

importance of the correlated IC variables for these events could not be represented well by the 

47-day average results. When looking at the 47-day average, the high impact events will often be 

represented as outliers. Therefore, additional correlations were computed for the high impact 

ramp cases. Sensitivities computed for the ramp cases were then evaluated using the MOOA 

approach. 

 

Table 2. Summary of upward ramp event for the three locations. 

Wind  

Plant Location 

Max 

Upramp 

% Cap 

Min 

Upramp

% Cap 

Max        

10-Min 

Upramp 

Min         

10-Min 

Upramp 

Max 

Upramp 

Duration 

(Min) 

Min 

Upramp 

Duration 

(Min) 

Hopkins Ridge 98.2 86.4 66.4 17.5 130 90 

Stateline 91.1 73.9 64.2 11.7 170 70 

Klondike 76.0 63.0 70.3 9.2 120 70 

 

Table 3. Summary of downward ramp event for the three locations. 

Wind  

Plant Location 

Max  

Down 

ramp 

% Cap 

Min 

Down 

ramp 

% Cap 

Max        

10-Min 

Down 

ramp 

Min 10-

Min 

Down 

ramp 

Max  

Down ramp 

Duration 

(Min) 

Min  

Down ramp 

Duration 

(Min) 

Hopkins Ridge -98.8 -70.1 -30.8 -9.8 130 90 

Stateline -89.7 -50.5 -34.0 -6.4 220 70 

Klondike -74.6 -60.7 -65.8 -12.7 130 70 

 

3. Single-Variable Results 

This section discusses the spatial variation of sensitivity, R
2
, and frequency of significant 

sensitivity for a number of the variables listed in Table 1. Section 4 discusses the use of the 

MOOA technique to find optimal combinations of variables and locations.  

3.1 Variation of Sensitivity by Time of Day 

The flow in the Mid-Columbia Basin for the time period examined is more variable and 

influenced by mid-tropospheric, larger-scale patterns than for the Tehachapi Pass region (Zack et 

al. 2010). Large scale motions tend to have a higher day-to-day variability than the smaller scale 

(mesoscale) circulations in the Tehachapi Pass driven by terrain, land surface type, and sea 
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surface temperatures interacting with the diurnal cycle of heating and cooling. 

 

Overall, the analysis indicates that the average Mid-Columbia Basin sensitivities are heavily 

influenced by the air being channeled eastward by the large-scale flow through the Mid-

Columbia Basin and the profile of the low-level stability within the basin (Figure 2). Also, within 

the boundary layer, perturbations tend to amplify on the western front range of the Cascade 

Mountains as these features travel eastward toward the target location. The fact that more 

variable, large scale flows dominate the Washington-Oregon region seems to generate lower 

average sensitivities when compared to Tehachapi Pass. 

The warm season sensitivity results for the Washington-Oregon region exhibited little significant 

diurnal variation in the sensitivity (not shown). This result was quite different from the warm 

season patterns in the Tehachapi Pass that were characterized by significant variations in the 

forecast sensitivity based on time of day (Zack et al. 2010). 

The sensitivity results for the Mid-Columbia basin do show day-to-day variability in the 

locations and variables that have the greatest impact on the forecasts. Thus, the day-to-day 

variability is not very useful in directly meeting the primary object of this research, which is to 

identify measurement locations and variables that have the greatest positive impact on the 

accuracy of the 0- to 6-hour wind forecasts. However, as part of future research, an analysis that 

identifies flow regimes that make up the day-to-day variability could be useful in understanding 

how specific sensor deployment strategies impact forecasts for specific regimes. 

 

Figure 2. Left panel depicts the ensemble mean 80-m wind vectors and speed contoured for the 

outer domain. The right panel depicts the 80-m streamlines with terrain (color shading) for 

ensemble member number one on the inner grid over the Columbia Gorge (white box shown in 

the left panel). The right panel shows the 80-m flow being channeled eastward through the Mid-

Columbia Basin. Both images are valid at 1500 UTC 12 May 2007. 
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3.2 Case Example 

The output data from the ensemble of simulations provide a large volume of information about 

the space-time connection of atmospheric variability within the simulation domain. Figure 3 

illustrates an example of data from all ensemble members and the resulting linear relationship for 

F, defined as the average 80-m wind speed in a rectangular area representing Hopkins Ridge for 

0000 UTC 15 June 2007. In this case, the IC state variable is the 80-m wind speed three hours 

earlier at grid point (127, 85). Figure 2 indicates this as (127, 85), which is located to the 

southwest of the Hopkins Ridge target forecast area just to the east-southeast of Stateline (point 

A in Figure 5). Each data point denotes the value of the 80-m wind speed at grid point (127, 85) 

from 0000 UTC and the average 80-m wind speed in the Hopkins Ridge target area at 0300 UTC 

from one of the 48 ensemble members. 

The plot indicates that there is a well-defined relationship between changes in 80-m wind speed 

for point (127, 85) at 0000 UTC and changes in the average 80-m wind speed over the forecast 

target area three hours later. The slope of the regression line through these points defines the 

sensitivity of the forecast metric to this specific IC variable and location for the date, time, and 

look-ahead period under consideration. The interpretation of the regression line is that a 1 m/s 

change in the 80-m wind speed at point (127, 85) is associated with a 1.15 m/s change in the 80-

m wind speed in the Hopkins Ridge target area three hours later. The R
2
 value for this regression 

is 0.429, which indicates that variation of the 80-m wind speed at 0000 UTC explains 

approximately 43% of the variance in the forecast target metric three hours later. 

Another set of data from all ensemble members for the same date and time is shown in Figure 4. 

The forecast metric is the same (80-m wind speed in the Hopkins Ridge target area) but the IC 

state variable is the 80-m wind speed at a different model grid point (10, 98), which is denoted as 

point B in Figure 5. This point is located over the Pacific Ocean just about due west of Hopkins 

Ridge. The slope of the regression line associated with these data is essentially zero and the R
2
 

value is also approximately zero indicating the variable at this point for 0000 UTC explains none 

of the variance of the forecast metric three hours later at 0300 UTC. 

A spatial representation of the sensitivity patterns for a particular date and time can be created by 

constructing a contour map of the sensitivity values (i.e. the slopes of the regression lines 

between each grid point and the target area). The map for 0300 UTC 15 June 2007 is shown in 

Figure 5. The forecast target region is represented by the white box. The map indicates that there 

is a region of high sensitivity in Oregon just south of the border to the southwest of Hopkins 

Ridge for this time period.  
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Figure 3. Scatter plot of an IC state variable (80-m wind speed) for model grid point 

(127, 85) at 0000 UTC 15 June 2007 versus a forecast metric (80-m wind speed) at 0300 

UTC from each of the 48 ensemble members and the associated regression line. 

 

 
 

Figure 4. Scatter plot of an IC state variable (80-m wind speed) for model grid point (10, 

98) at 0000 UTC 15 June 2007 versus a forecast metric (80-m wind speed) at 0300 UTC 

from each of the 48 ensemble members and the associated regression line. 
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Figure 5. Forecast sensitivity of the average 80-m wind speed in the white box (forecast 

metric box) at 0300 UTC 15 June 2007 to 80-m wind speed three hours earlier with areas 

of high (point A) and low (point B) sensitivity marked. 
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3.3 Climatology of Sensitivity 

In order to make inferences about the best measurement locations and variables to improve 

forecast performance over a wide variety of cases, it is necessary to analyze a statistical 

composite of sensitivity values over a representative sample of cases. Two analyses were 

performed. One analysis includes all cases while the other was done on a subsample of cases that 

only included large ramps in wind power production. 

 

The average sensitivities, R
2
 values, and frequency of significant sensitivities were computed 

over all time periods in the 47-day analysis period for several selected IC variables for Hopkins 

Ridge, Klondike and Stateline. The area of maximum R
2
 (Fig. 14 and Appendix F) and 

sensitivity values (Figs. 7-13 and Appendices D and E) varies from site to site, but the 

parameters show the same general magnitude regardless of the metric location, suggesting that 

these results may be useful at all rather than one specific location. This result was most evident 

in R
2
 values of 80-m wind sensitivity at various metric sites for the 3-hour look ahead period 

which all show maximum R
2
 values ~0.15 in close proximity to the target regions (Figures F12, 

F14, F18). 

3.3.1 Look-Ahead Time Sensitivities  

The average 47-day sensitivity values of 80-m wind speed in the target box to 80-m wind speed 

for 1-hour look-ahead period are shown in Figure 6. The highest sensitivity values for the 1-hour 

look-ahead time are in close proximity to the metric location while the 3-hour look-ahead time 

(Fig. 7) shows the highest sensitivity values located further upstream (to the southwest). 

However, the magnitude of the maximum sensitivity, however, is lower at the 3-hour look-ahead 

time (note the different scales in Figs. 6 and 7). 

 

For the 47-day average, there was a similar decrease in magnitude of R
2
 and maximum R

2
 with 

increasing look-ahead time and distance from the forecast site (not shown). The high 1-hour 

look-ahead sensitivities and R
2
 values for 80-m wind speed very close to the target location 

shows that for average forecast skill, persistence tends to dominate as the best forecast method at 

very short lead times. This relationship between forecast skill and persistence is not true for ramp 

events as discussed in section 4. As the look-ahead time increases, correlations between the IC 

parameter and the metric parameter tend to decrease with the area of maximum correlation 

typically farther upstream. 
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Figure 6. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m 

wind speed (m/s) throughout the entire grid domain for a 1-hour ahead forecast for all time 

periods in the 47-day analysis period for Hopkins Ridge. 

3.3.2 Site-to-Site Sensitivity Variability 

The variability of the sensitivity patterns from site to site can vary widely depending on which IC 

variable was used in the sensitivity calculations. The sensitivity of 80-meter wind speed at each 

target location to the variation of 80-m wind speed 3 hours earlier at all grid points are shown in 

Figures 7 through 9. An area of high sensitivity values located just south of the Mid-Columbia 

Basin in northern Oregon is present for all target locations. This relationship between the wind 

speed at the target location and the wind speed three hours earlier along the Mid-Columbia Basin 

has the highest magnitude relationship for the Klondike location as shown in Figure 9. For a 1 

m/s increase in wind speed within the area of maximum sensitivity for Klondike, there will be 

0.5 m/s increase 3 hours later at the Klondike target location. 

A second area of increased sensitivity values are located parallel to the Cascade Range running 

from north central Washington toward the south through Oregon. This area of high sensitivity 

corresponds with the region of higher 80-m wind speeds shown in Figure 2 where eastward-

flowing marine air exiting the Columbia Gorge is still channeled by somewhat higher terrain to 

the north and south. For such a high magnitude sensitivity to exist, there has to be enough spread 

(uncertainty in the true initial state) in the IC and metric variables to account for it, especially if 

R
2
 is not small, as is the case here (not shown).  
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Figure 7. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

80-m wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast for 

all time periods in the 47-day analysis period for Hopkins Ridge. Note that the scale 

extends from 0 to 0.35. 

 

 
 

Figure 8. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

80-m wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast for 

all time periods in the 47-day analysis period for Stateline. Note that the scale extends 

from 0 to 0.35. 
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Figure 9. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

80-m wind speed (m/s) throughout the entire grid domain for a 3-hour ahead forecast for 

all time periods in the 47-day analysis period for Klondike. Note that the scale extends 

from -0.05 to 0.5. 

 

3.3.3 Sensitivity of Different IC Parameters 

To determine the impact of other variables on wind speed at the target locations, the twelve IC 

parameters listed in section 2.3 were examined for all three metric locations. This subsection 

examines how sensitivity varies among variables. 

Similar to the Tehachapi region results (Zach et al. 2010), winds at 80 m seemed useful to 

predict the wind speed at the 80-m level within the target location at a later time. Sensitivities 

were also computed for 250-m AGL wind speed, 1.5-km AMSL wind speed and 3-km AMSL 

wind speed for the three target locations. At the lowest level, 250-m wind speeds produced 

almost identical results to that from the 80-m level, with the maximum sensitivities being slightly 

lower in magnitude (not shown). For winds higher up in the atmosphere, the sensitivity pattern 

converged along the Cascade Range, as shown in Figure 10 for Hopkins Ridge for the 3-km 

level. Even though sensitivity values are lower for this level, the higher terrain to the west (i.e. 

upstream in the seasonal climatological flow) is an area of increased uncertainty in the 

simulations. 

As seen in the previous results for the Tehachapi region (Zack et al. 2010), levels far above the 

turbine height can yield useful statistical relationships. Therefore, the role of wind speed change 

with height (i.e. wind shear) was examined as an IC parameter for the three layers listed in Table 

1 (10-m to 80-m AGL, 80-m to 500-m AGL, 500-m to 1-km AGL). The greatest sensitivity 
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values over a large area were obtained by examining the 10-m to 80-m AGL layer that is just 

below turbine height. Results for this layer at Klondike are shown in Figure 11 while those for 

Stateline and Hopkins Ridge are presented in Appendix D (Figs. D3 and D4). The area of highest 

sensitivity is located to the east of Klondike along the Mid-Columbia Basin. 

When wind shear is high below the turbine height, the wind speed at the turbine height is almost 

certain to be high as well. This increase in wind speed may be fueled by cooling of the 2-m 

surface temperatures just upstream of the Klondike location at higher elevations, which can lead 

to downslope flow toward the target location. This situation is illustrated in Figure 12 by 

negative sensitivity values to 2-m temperature just to the west of the Klondike metric location in 

the higher terrain of the Cascade Range.  

Above the surface layer, there is also an enhanced region of higher sensitivity values for the 2-m 

to 80-m temperature difference IC parameter (Figure 13 and D7 and D8 in Appendix D). This 

area of enhanced sensitivity is collocated with the increased values in low-level wind shear 

sensitivities (for Klondike). For regions of highest sensitivity, a strong decrease in temperature 

with height near and just below the turbine height is correlated to an increase in the Klondike 

wind speed 3 hours later. The plausible mechanisms for increasing wind speed at the target 

location are horizontal transport as well as mixing of higher momentum air downward from air 

above the turbine height. Strong cooling above the turbine layer or warming below the turbine 

layer would help facilitate vertical mixing and increase wind speeds within the target location. 

 
 

Figure 10. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

3-km AMSL wind speed (m/s) throughout the entire grid domain for a 3-hour ahead 

forecast for all time periods in the 47-day analysis period for Hopkins Ridge. Note that 

the scale extends from 0 to 0.14. 
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Figure 11. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

10-m to 80-m AGL wind shear throughout the entire grid domain for a 3-hour ahead 

forecast for all time periods in the 47-day analysis period for Klondike. Note that the 

scale extends from 0 to 3.5.  

 
 

Figure 12. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

2-m temperature throughout the entire grid domain for a 3-hour ahead forecast for all 

time periods in the 47-day analysis period for Klondike. Note that the scale extends from 

-2 to 0.2.  
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Figure 13. Average sensitivity of 80-m wind speed (m/s) within the white target box to 

2-m to 80-m temperature difference throughout the entire grid domain for a 3-hour ahead 

forecast for all time periods in the 47-day analysis period for Klondike. Note that the 

scale extends from -2 to 12.  
 

The vertical temperature gradient sensitivities were also examined for 80-m to 500-m AGL, 500-

m to 1-km AGL and 80-m to 1-km AGL. These IC variables as well as some of the wind shear 

IC variables did not produce any obvious regions of high sensitivity or produced regions of the 

highest sensitivity that were located far from the target location. Figure E1 (Appendix E, lower 

left) shows areas closest to the target location produced low sensitivities of 80-m wind to the 80-

m to 1-km AGL temperature gradient. Areas along the southern boundary showed high 

sensitivity that is likely related to boundary perturbations rather than physical processes 

correlated with the target region. There were some areas of moderate sensitivity that could be 

physically correlated to the target site located far from the metric location. An example in Figure 

D1 shows the 3-km wind speed sensitivities to the 80-m wind speed for the Hopkins Ridge target 

area. 

The sensitivities to the 80-m wind speed for other target locations and IC variables, such as 

vertical wind shear, vertical temperature difference and temperature listed in Table 1 are 

provided in Appendix D. Overall, sensitivities with the best results were obtained from the 

lowest levels of the atmosphere for vertical gradient changes (wind speed and temperature). 

These parameters were chosen for use in the MOOA as discussed in Section 4. 

3.3.4 Coefficient of Determination (R
2
) Analysis 

Similar to a map of sensitivities (e.g. Fig. 9), R
2
 can be plotted for the entire region as well (Fig. 

14). The average value of the sensitivity relationship for 80-m wind speed (Fig. 9) at every grid 
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point for all 47 days shows the regions of high sensitivity and high R
2
 are, for the most part, 

collocated. However, some regions of high sensitivity east of the metric location have somewhat 

lower R
2
. Since R

2
 is a measure of the amount of variance in the forecast metric that is explained 

by the relationship, it is hypothesized that as long as the magnitude of the sensitivity can be 

measured in the region of highest R
2
 values, these locations will most likely contribute useful 

information to the model initial state and subsequently improve the forecast performance of 80-

m wind speeds 3 hours later at the target location. Therefore, areas of high R
2
 values can be good 

candidate locations for future atmospheric observations. These locations were examined in more 

detail using the MOOA methodology discussed in Section 4 to determine the best combinations 

of observations and locations that would most improve the forecast of 80-m wind speed. 

 
 

Figure 14. Average R
2
 of the sensitivity of 80-m wind speed (m/s) within the white target 

box to 80-m wind speed throughout the entire grid domain for a 3-hour ahead forecast for 

all time periods in the 47-day analysis period for Klondike. Note that the scale extends 

from 0 to 0.22. 

3.3.5 Significant Sensitivities 

As noted earlier, an alternative summary statistic is the frequency with which an IC variable 

exhibits statistically significant non-zero sensitivity at the 95% confidence level. If this criterion 

is satisfied for a specific grid point and time, it indicates only a 5% probability that the sensitivity 

was produced by random data variations drawn from a sample in which the actual sensitivity was 

zero or of a different sign than the estimated sensitivity. Thus it is very unlikely that the actual 

sensitivity is zero or of a different sign at that point and time. However, this statistic does not 

provide information about the magnitude of the sensitivity. 
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For the Mid-Columbia Basin, the statistically significant non-zero sensitivity at the 95% 

confidence level was computed for each forecast interval in the 47-day analysis sample. Then the 

fraction of the 47-day sample having non-zero sensitivity was calculated for each of the IC 
variables under considerations. 

Figure 15 illustrates the frequency of statistically significant non-zero sensitivity to the 80-m 

wind for a 3-hour forecast of the average 80-m wind speed in the metric area (white box) for the 

Hopkins Ridge location. This plot is similar to Figure 7 but for statistically significant 

sensitivities with a 95% confidence interval instead of raw sensitivity values. The frequency is 

over 50% for the points within the metric box itself and the area of greater than 45% frequency 

extends along the eastern half of Washington southwest to the Mid-Columbia Basin. The highest 

frequency of around 50% is in the immediate vicinity of the metric box itself. The fact that the 

area in the vicinity of the metric box has a high frequency of statistically significant non-zero 

sensitivity but a somewhat smaller average sensitivity (Figure 7) suggests that the 80-m winds in 

metric box have a very persistent, but smaller sensitivity to the local values 3 hour earlier, while 
sensitivities to the west are stronger, but less consistent. 

This result is consistent with the fact that the recent history of the winds in the vicinity of the 

wind generation facility typically has, on average, the most predictive value. The off-site 

locations to the southwest along the Mid-Columbia Basin have a much higher average sensitivity 

(Figure 7) and the frequency of statistically significant non-zero sensitivity is modestly lower 

near 45%. At this location, offsite data may be highly useful in a subset of cases. The 

combination of high average sensitivity and high frequency of non-zero sensitivity make these 

among the best locations for additional measurements to improve the forecasts at the Hopkins 

Ridge location. 

Similar results were obtained for Klondike, highlighting an area of interest along the Mid-

Columbia Basin in Northern Oregon (Fig. 16). The locations of largest statistically significant 

sensitivities were within the metric area for Klondike. The sensitivity values for Klondike are 

greater than those for Hopkins Ridge, which could be useful in determining where to place 

observation sites. The fact that the Klondike sensitivity values are larger than those for Hopkins 

Ridge gives greater confidence that 3-hour forecasts for Klondike would benefit from added 

observations in the more frequently sensitive area. 

The plots of significant sensitivities typically feature spatial patterns that are more similar to R
2 

than average sensitivities. However, the 80-m wind speed results for Klondike are an exception 

as both significant (Fig. 16) and average sensitivity (Fig. 9) show large values east of the metric 

box, while average R
2
 (Fig. 14) does not. This result implies that R

2
 is much higher to the west of 

the metric location at Klondike than the value used to compute the 95% confidence threshold for 

significant sensitivities. 

 

When the highest average and significant sensitivities do not overlap in a given region, it 

indicates that, in the area of highest average sensitivity, a small change in the IC value can be 

correlated to a relatively large change in wind speed 3 hours later at the metric location. But, the 

area of high average sensitivity values can be neither common nor of a magnitude that is 



25 

 

statistically significant for that sample. 

An example of this scenario is shown by comparing areas for Hopkins Ridge in Figures 7 and 15. 

The region of maximum significant sensitivity is located just southeast of the metric location, 

while the highest magnitude average sensitivity values are located far to the southwest along the 

Mid-Columbia Basin. This spatial disconnect may be due to the impact of outlier events on the 

average sensitivity values. Because average values can be affected by outlier data, they produce 

high sensitivities even though the high sensitivity values are uncommon (and hence not 

statistically significant at the 95% confidence level). On the other hand, significant sensitivities 

weigh each period with the same magnitude, regardless of the magnitude of the sensitivity. 

Therefore, outlier events do not affect the significant sensitivity results and the most frequent 
relationship is revealed. 

 

 

Figure 15. Frequency (fraction of time periods) of statistically significant non-zero 

sensitivity at the 95% confidence level of the average 80-m wind speed in the forecast 

metric area (white box) for Hopkins Ridge to 80-m wind speed 3 hours earlier for the 47-
day sample. 
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Figure 16. Frequency (fraction of time periods) of statistically significant non-zero sensitivity at 

the 95% confidence level of the average 80-m wind speed in the forecast metric area (white box) 
for Klondike to 80-m wind speed 3 hours earlier for the 47-day sample. 

3.3.6 All Case Summary 

Correlation parameters for 80-m wind speed, 2-m to 80-m temperature gradient, and 10-m to 80-

m wind shear show the best results; therefore these parameters should provide the maximum 

improvements to short-range forecasts at the target locations. Results from this section show that 

additional observations in a region extending from the Columbia Gorge eastward through the 

Mid-Columbia Basin would be the most valuable in improving the short-term forecast at the 

target locations. The Klondike site showed higher magnitudes of sensitivity, R
2
 and frequency of 

significant sensitivity than the other locations. 

 

It is hypothesized that these three parameters help the model to accurately simulate the impacts 

of the advection of 80-m wind speed and vertical mixing from wind shear and vertical 

temperature gradient on turbine-level wind speeds. The IC variables not used were those that 

produced inconsistent sensitivity results such as low values near the metric location or high 

values located much farther away. 

 

The correlation statistics give the most unambiguous results as to the predictive relationship of a 

given variable for the target location. To determine if one location could improve the forecast at 

multiple metric locations, similarities between the sensitivity fields and R
2
 values for different 

metric locations must be examined. The most notable location where this occurred was within 
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the lower elevations along the Mid-Columbia Basin, which had increased 80-m wind speed 

sensitivities to several target locations. For example, Figures 8 and 9 show very similar 

sensitivity patterns for Stateline and Klondike. The 80-m wind speed sensitivities for Hopkins 

Ridge shown in Figure 7 were also quite similar. Even though there are some differences 

between sensitivity fields, the southern edge of the Mid-Columbia Basin (for all sites) and parts 

of Eastern Washington State (for Stateline and Hopkins Ridge) are potentially very important 

locations for wind measurements. 

 

Figure 17 compares the 10-m to 80-m wind shear plots of Stateline and Hopkins Ridge, while 

Figure 11 shows the same parameter for Klondike. The regions of high sensitivity are generally 

in the same area for Stateline, Klondike and Hopkins Ridge, indicating that a single observing 

location could improve forecasts for all three sites. This simulated relationship should be tested 

over a larger sample that includes all seasons and, if possible, validated using available 

observations to determine the potential value of additional sensors in the region. 

 

Figure 17. Average sensitivity of 80-m wind speed (m/s) within the white target box to 10-m to 

80-m AGL wind shear throughout the entire grid domain for a 3-hour ahead forecast for all time 

periods in the 47-day analysis period for Stateline (left) and Hopkins Ridge (right). 

 



28 

 

4. Multiple Variable Results 
Section 3 discussed the spatial variation of sensitivity and several statistical quantities used to 

identify the most useful locations over the 47-day period. This section explores techniques to 

identify the best combination of variables and locations to achieve maximum reduction in 

forecast error. 

MOOA was applied to the forecast sensitivity data generated for the Mid-Columbia Basin. 

Separate calculations were performed for the full 47-day sample and the ramp-event subsample 

described in section 2.6.  

Of the twelve variables listed in Table 1, only 80-m AGL wind speed, 2-m to 80-m AGL 

temperature difference, and 10-m to 80-m AGL wind shear were chosen for use in the MOOA 

regression method. These variables were selected because: (1) they showed the largest maximum 

R
2
 values and frequency of significant sensitivity for all three forecast locations, and (2) visually 

the largest R
2
 values were located near or upstream of the forecast sites. Also, it was important 

that the location of largest R
2
 values overlap with non-zero values of sensitivity, implying 

physical and not just statistical correlation with the metric variable. 

For multivariate regression, the locations for each variable were chosen using the maximum 

average R
2
 during the period over which the MOOA was applied to either the full or ramp subset 

period. Plots of R
2
 values used to pick the locations in the multivariate regression are shown in 

Appendix F. An example where areas of increased R
2
 do not overlap with highest sensitivity is 

shown by comparing Figures E1 (Appendix E, bottom left) and F22 (Appendix F). 

Only one wind speed level was selected due to the likely high degree of correlation between 

them, and because of computational limits in applying MOOA to multiple variables. The 2-m 

AGL temperature showed R
2
 values that were only slightly lower than those of the three 

included variables for Klondike and Stateline. However, regions of significant R
2
 were located 

significantly farther away from the forecast metric site than the other three variables along the 

crest of the Cascade Range as shown in Appendix F Figures F13, F17 and F21. It would be 

challenging to measure representative 2-m temperature at these locations in complex terrain. 

More importantly, the large separation distance suggests that 2-m temperature sensitivity at these 

points is correlated but not physically linked to the forecast metric in the regions of interest. 

Measurements of 2-m temperature or other variables with similar relationships would not likely 

improve forecasts of the target metric when assimilated directly into NWP models. 

In general, the locations of maximum average R
2
 values are somewhat different for all cases and 

the ramp subsample (Figs. 18 through 20). The 80-m wind observation and wind shear maximum 

R
2
 values are usually near the metric box for both samples and three locations, while the lapse 

rate measurement is usually in higher terrain upstream or to the west of the metric location. 

Once this set of variables/locations was determined (Figs. 18 through 20), multiple linear 

regression was performed on all combinations of variables/locations separately for the full 

sample and ramp event subsample. The R
2
 values for the resulting regression equations for each 
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site are listed in Tables 5 through 7. Among the single variable regressions for the full period 

averages, the 80-m wind speed had the highest R
2
 value for all sites except Stateline, indicating 

that this variable is most likely the best single quantity to measure at that location. The results at 

Stateline suggest that a quantity involving any low-level wind information could be equally 

helpful, since the 80-m wind speed has a slightly lower R
2
 value than shear. 

However, the R
2
 values for the other two single variable regressions were only modestly lower, 

which suggests that they might add additional predictive value. The ramp subsample for these 

sites showed that wind shear and the vertical temperature gradient become increasingly 

important for all sites except Stateline. Therefore, the value in measuring multiple variables 

depends on the period being examined, suggesting that a regime-based study could help to 
quantify these results. 

As in previous efforts focused on the Tehachapi region (Zack et al. 2010), all two-variable 

regressions had a substantially higher R
2
 value than the best single variable regression. For the 

most part, no two-variable observation combinations produced significantly higher R
2
 than the 

other combinations. The one exception is Stateline, where the 80-m wind speed and 10-m to 80-

m shear offer somewhat higher R
2
, especially for all periods. The results from the three-variable 

regressions indicate additional value – using all three variables yielded a higher R
2
 than only two 

except at Stateline for all periods and Hopkins Ridge for ramp periods. 

In addition to R
2
 values, the actual magnitudes of the normalized coefficient values were 

examined to determine the importance of each variable. Table 8 shows these coefficient values 

for the regression at Klondike using the three variables discussed previously. In the Klondike 

region for the general average 47-day correlations, 80-m wind speed has the highest coefficient 

value implying that it is the most important for the general sample to predict 80-m wind speed at 

the target location. On the other hand, 2-m to 80-m temperature lapse rate has the lowest 

coefficient value of 0.037 meaning it may not provide much additional information when 

observations of all three variables are available. 

For the ramp case statistics, the coefficient for Klondike 2-m to 80-m temperature lapse rate 

increases substantially from the 47-day average value (Table 8). The 10-m to 80-m wind shear 

coefficient also increases from 0.251 for the 47-day average to 0.284 for the ramp event average 

while the 80-m wind speed coefficient decreases from 0.260 to 0.095. These results suggest that 

for ramp events, vertical processes play a much more important role, and added observations of 

vertical temperature and wind speed gradients become increasingly useful in the prediction of 

wind speed at the target location. The ramp regime results suggest that computing sensitivity 

statistics for additional carefully defined regimes may identify additional valuable observing 

sites. 

The results in Table 5 only represent the average R
2
 for all the time periods in the respective 

sample. However, the R
2
 values actually vary substantially among the ramp sample time periods 

from a high of about 0.8 to a low of slightly under 0.02 (Figure 21). A similar degree of 

variability was found in the full 47-day sample. Thus, it is evident that the forecast metric is 

substantially more sensitive to this combination of variables/locations for some time periods than 
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others. 

In addition to variability in the three-variable R
2
 values within the ramp-event sample (Figure 

21), there was also a considerable amount of variability in the relative contributions of each 

variable at its location of maximum R
2
 (Figure 22). As noted earlier, the variables have been 

normalized, so the magnitude of the coefficients is a direct indication of the relative influence of 

each variable on the overall relationship. 

It is evident that all three IC variables show substantial variation in R
2
 among cases. 

Furthermore, R
2
 varied significantly between cases depending on IC variable suggesting that 

different variables are important in different cases. For example, vertical processes may be 

important in cases with large R
2
 for wind shear or vertical temperature difference while 

horizontal processes may be important when R
2
 for 80-m wind speed is large. As a result, the 

best IC variables/locations to observe for one type of ramp event could be different from those 

for another type of event. Breaking out ramp events into several regimes based on the triggering 

mechanism may provide additional value. This approach would require selecting a lower 

threshold for ramp amplitude in order to provide a larger sample size. 
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Figure 18. Points of maximum average 47-day (top) and ramp subset (bottom) R
2
 

sensitivity for a 3-hour forecast of the average 80-m wind speed over the Klondike target 

area (white box) for three IC variables: (1) 80-m wind speed, (2) 10-m to 80-m wind 

shear, and (3) 2-m to 80-m temperature difference. The color shading depicts the 

elevation (m) of the model terrain above sea level. 
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Figure 19. Points of maximum average 47-day (top) and ramp subset (bottom) R
2
 

sensitivity for a 3-hour forecast of the average 80-m wind speed over the Stateline target 

area (white box) for three IC variables: (1) 80-m wind speed, (2) 10-m to 80-m wind 

shear, and (3) 2-m to 80-m temperature difference. The color shading depicts the 

elevation (m) of the model terrain above sea level.  
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Figure 20. Points of maximum average 47-day (top) and ramp subset (bottom) R
2
 

sensitivity for a 3-hour forecast of the average 80-m wind speed over the Hopkins Ridge 

target area (white box) for three IC variables: (1) 80-m wind speed, (2) 10-m to 80-m 

wind shear, and (3) 2-m to 80-m temperature difference. The color shading depicts the 

elevation (m) of the model terrain above sea level. 
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Table 5. Average R
2
 value for 1-, 2-, and 3-variable sensitivity regression for a 3-hour forecast 

of 80-m wind speed in the Klondike target area for all time periods and only ramp periods. 

IC Variables All Periods Ramp Periods 
One Variable 

(1) 80-m wind speed 0.305 0.302 

(2) 10-m to 80-m wind shear 0.294 0.314 

(3) 2-m to 80-m temperature difference 0.249 0.258 

Two Variables 

(1) and (2) 0.359 0.346 

(1) and (3) 0.349 0.370 

(2) and (3) 0.348 0.383 

Three Variables 

(1), (2) and (3) 0.395 0.411 
 

Table 6. Average R
2
 value for 1-, 2-, and 3-variable sensitivity regression for a 3-hour forecast 

of 80-m wind speed in the Stateline target area for all time periods and only ramp periods. 

IC Variables All Periods Ramp Periods 
One Variable 

(1) 80-m wind speed 0.168 0.180 

(2) 10-m to 80-m wind shear 0.180 0.158 

(3) 2-m to 80-m temperature difference 0.160 0.121 

Two Variables 

(1) and (2) 0.300 0.241 

(1) and (3) 0.245 0.231 

(2) and (3) 0.259 0.223 

Three Variables 

(1), (2) and (3) 0.300 0.282 
 

Table 7. Average R
2
 value for 1-, 2-, and 3-variable sensitivity regression for a 3-hour forecast 

of 80-m wind speed in the Hopkins Ridge target area for all time periods and only ramp periods. 

IC Variables All Periods Ramp Periods 
One Variable 

(1) 80-m wind speed 0.195 0.141 

(2) 10-m to 80-m wind shear 0.194 0.189 

(3) 2-m to 80-m temperature difference 0.149 0.229 

Two Variables 

(1) and (2) 0.233 0.265 

(1) and (3) 0.266 0.229 

(2) and (3) 0.268 0.233 

Three Variables 

(1), (2) and (3) 0.299 0.265 
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Table 8. Average coefficient values of the three-variable sensitivity regression for a 3-hour 

forecast of 80-m wind speed in the Klondike target area for all time periods and only ramp 

periods. 

 

IC Variables All Periods Ramp Periods 
Three Variables 

(1) 80-m wind speed  0.260 0.095 

(2) 10-m to 80-m wind shear 0.251 0.284 

(3) 2-m to 80-m temperature difference 0.037 0.213 

 

 

 

Figure 21. R
2
 value for a multiple regression of three normalized IC variables from their 

respective points of maximum average 47-day sensitivity for a 3-hour forecast of the 

average 80-m wind speed in the Klondike metric box for each of 17 ramp events. 
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Figure 22. Absolute value of the regression coefficient for combinations of three normalized 

IC variables from their respective points of maximum average ramp case R
2
 value for 3-hour 

forecasts of 80-m wind speed in the Klondike metric box for each of 17 ramp events. 

 

The MOOA analysis suggests that it is necessary to utilize all three of the identified 

variables/locations in order to achieve consistent value for the ramp event cases. However, there 

is likely more information to be extracted from the sensitivity dataset given that several factors 

were not considered in this preliminary analysis.  

One issue is that the locations of the second and third variables were chosen based on the 

maximum single variable regression R
2 

value. However, the locations of maximum R
2
 for each 

variable are not necessarily the locations that will achieve the highest R
2
 for a 2- or 3-variable 

regression. It is certainly possible that the maximum R
2 

locations may be more strongly 

correlated with each other than other sites with somewhat lower R
2
.
 
In this case, it is conceivable 

that a combination of two or three sites, several with R
2
 values less than the maximum for single 

variable regression, will produce the highest R
2
 value for multivariable regression.  

One method to test a larger set of variables and locations would be to start with the location of 

highest R
2
 for a single variable. A two-variable regression could be performed with this point 

and every grid point for the second variable. A map of the 2-variable regression R
2
 values could 

be created. Then the location would be selected that produces the maximum 2-variable R
2
. A 3-

variable regression would be done for these two variables and locations as well as every grid 

point location of the third variable. A second R
2
 map would be extracted. Finally, the location 

that produced the maximum 3-variable
 
regression R

2
 would be selected. Although this exercise 

would be computationally intensive, it would help to determine the optimal location for 

additional observations given a known first location and variable.  



37 

 

5. Summary 
In past research, the ensemble sensitivity analysis (ESA) has been applied to large-scale weather 

prediction. Zack et al. (2010) extended the ESA method to the mesoscale by adding a multiple 

observation optimization algorithm (MOOA) to analyze forecast sensitivity in the Tehachapi 

Pass region of California. The ESA-MOOA approach was used in the current effort to study 

forecast sensitivities of 80-m wind speed in the Washington-Oregon region. 

The ESA-MOOA is based on statistical analysis of data from an ensemble of NWP model 

simulations for an analysis period that is representative of the weather regimes in the area of 

interest. The ensemble members differ from each other due to perturbations introduced in the 

initial and boundary conditions of the simulations. The resulting analyses are used to estimate 

forecast sensitivity to prior values of atmospheric state variables for selected variables and look-

ahead periods. One or more composites (e.g. averages, frequency) of forecast sensitivity 

parameters can then be generated to provide information about the climatological sensitivity 

patterns. These composite patterns can, in turn, provide guidance on where to deploy 

meteorological sensors to achieve the greatest impact on forecast performance for the desired 

variable and look-ahead period. 

 

The ESA-MOOA was applied to the Mid-Columbia Basin using the WRF 2.2 atmospheric model 

and DART data assimilation software. An ensemble of 48 members was generated over a period 

extending from 1 May to 19 June 2007. The first two days were considered to be a spin-up 

period for the ensemble and were excluded from the forecast sensitivity calculations. Output was 

saved every hour and the forecast sensitivity for 1- to 3-hour look-ahead periods was computed 

from the hourly output data. Twelve prior state variables were considered in the analysis. Three 

areas of interest were examined along the Mid-Columbia Basin at Hopkins Ridge, Stateline, and 

Klondike. The forecast sensitivity was computed for all time periods in the sample as well as a 

ramp event subsample for all three sites of interest. The ramp event subsample consisted of 17 to 

19 time periods for each site in which large changes (up or down) in wind power production 

occurred in a 3-hour or shorter period. 

 

The forecast sensitivities showed that some initial conditions (IC) variables had a low impact on 

the forecast. Other initial states produced very localized and high sensitivity areas in which the 

80-m wind speed forecast at one of the target locations was highly correlated to the IC variables. 

This result was quite different from the Tehachapi Pass study (Zack et al. 2010) which found 

well-defined, localized patterns of high sensitivity for a number of prior state variables. The 

differences in sensitivity intensity and patterns between Tehachapi Pass and the Mid-Columbia 

Basin are consistent with the physical processes that drive the wind patterns in both areas. The 

primarily warm season, diurnal cycles that dominate the weather in Tehachapi Pass result in 

well-defined sensitivity patterns, while the Mid-Columbia Basin region is affected by larger 

scale flow regimes resulting in less defined and weaker sensitivity patterns. 

  

The most consistently sensitive variables for the Mid-Columbia Basin forecast targets were: (1) 

80-m wind speed, (2) 10-m to 80-m wind shear, and (3) 2-m to 80-m vertical temperature 



38 

 

gradient. These variables showed regions of high sensitivity and explained variance extending 

from the Columbia Gorge along and just south of the Mid-Columbia Basin stretching into far 

eastern Washington State. Areas within the Mid-Columbia Basin showed correlations to all three 

sites. This result suggests that a relatively small number of observations in this area would have a 

beneficial impact on the 80-m wind speed forecast at all three target locations. 

 

The MOOA was applied using the locations with highest explained variance (R
2
) of the average 

sensitivity over the complete 47-day period and also a subsample of the 20 ramp events. The 

high-sensitivity locations were mainly to the west of the target locations. The only exception was 

the area of sensitivity to low-level temperature gradient, which is located in regions of high 

terrain well removed from the target region.  

 

Results from the MOOA suggest that the greatest benefit would come from observing all three 

variables examined, as shown by high values of explained variance (R
2
). When broken down to 

single variable correlations, the 80-m wind speed and 10-m to 80-m wind shear produced equally 

high R
2
 values, indicating the importance of each single observation. This result applied for both 

the full 47-day period and the ramp event subsample at all three locations. Although these two 

variables produced strong R
2
values, 2-m to 80-m temperature gradients are also correlated with 

80-m wind speed three hours ahead at Klondike, especially for ramp cases. Therefore, all 

variables should be considered when adding future observations, since each one contributes 

information to the model initial state. 

  

The results demonstrate that the methods used in this study can produce physically consistent 

forecast sensitivity, explained variance, and statistically significant frequency results on 

mesoscale space and time scales. In addition, they can be used to provide specific and physically 

reasonable guidance for the design of sensor networks intended to improve forecast performance 

of specific variables at target locations.  

 

There are number of possibilities for extending the pioneering work done in this study. Forecast 

sensitivity and other computed fields as well as observation deployment strategies derived from 

them were not validated. Such validation is essential before using the methodology as a routine 

tool to formulate sensor network deployment strategies. These issues could be addressed by 

observation denial experiments using actual data gathered at target locations or observing system 

simulation experiments (OSSEs; Kalnay et al. 1985; Arnold and Dey 1986). 

 

Data denial and/or OSSEs would reveal whether the highly sensitive areas do indeed have a 

significant impact on the prediction of 80-m wind speed at target locations. The analysis could be 

stratified by events or weather regimes to determine the value of observations for critical events. 

Regime-based analysis could help determine where observations might be needed in regions that 

are sensitive to highly variable flows instead of focusing on the most common patterns. Also, 

performing experiments over a longer time period could help account for biases related to season 

and current weather regime as well as address issues of representativeness given the limited 

sample size. 
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The analysis could also be expanded to include other prior state variables such as time-varying or 

spatially-varying fields in addition to the twelve considered in this study. Finally, the MOOA 

could be enhanced to consider multiple locations from each prior state variable, using locations 

from multivariate regressions, in addition to the maximum average explained variance (R
2
) of a 

univariate regression considered here. Other possibilities include using the field of highest 

significant sensitivity frequency to determine the location for multivariate regression. When 

trying to find one observation location that can benefit multiple target locations, a cost function 

approach combining sensitivity magnitude and R
2
 values (or significant sensitivity) for multiple 

target locations could prove useful. 
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Appendix A: Specifications of the ESA Configuration 
 

Table A-1. Configuration of the WRF 2.2 model and grid used in this investigation 

Grid 

Matrix Size (NX,NY,NZ): Outer Grid: 120 X 120 X 38, Inner Grid: 172 X160 X 38 

Grid cell size: Outer Grid ~12 km, Inner Grid ~ 4 km 

Model Configuration 

WRF single-moment (WSM) 3-class ice scheme 

Long wave radiation scheme: Rapid radiative transfer model 

Short wave radiation scheme: Dudhia scheme 

Boundary layer scheme: YSU scheme 

No convective parameterization 

60 second time step on outer grid, 20-second time step on inner grid 

Runge-Kutta 3rd order time integration 

Horizontal Smagorinsky 1st order closure  

6th-order numerical diffusion turned on 
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Table A-2. Configuration of the Data Assimilation Research Testbed (DART) module 

Square root Ensemble Kalman Filter  

Cycled every 6 hours 4 times a day with various observations 

Ensemble size: 48 members 

Perturbed IC from National Weather Service (NWS) Rapid Update Cycle (RUC) for first 

cycle 

Perturbed boundary conditions for each assimilation period, boundary conditions also from 

RUC 

Deterministic inflation based on spatially-varying state space (I.e. covariance inflation) 

Initial inflation standard deviation 0.6 

Initial inflation 1.0 

Table A-3. Data Assimilated Every 6 Hours into the Ensemble of Simulations 

Assimilated Observations Evaluated observations 

 'RADIOSONDE_TEMPERATURE',     

 'RADIOSONDE_U_WIND_COMPONENT', 

 'RADIOSONDE_V_WIND_COMPONENT', 

 'RADIOSONDE_SPECIFIC_HUMIDITY',   

 'ACARS_TEMPERATURE', 

 'ACARS_U_WIND_COMPONENT', 

 'ACARS_V_WIND_COMPONENT', 

 'ACARS_SPECIFIC_HUMIDITY', 

'MARINE_SFC_TEMPERATURE', 

'MARINE_SFC_SPECIFIC_HUMIDITY', 

 'RADIOSONDE_SURFACE_ALTIMETER', 

'MARINE_SFC_ALTIMETER', 

 'LAND_SFC_ALTIMETER', 

 

'METAR_TEMPERATURE_2_METER', 

 'METAR_U_10_METER_WIND', 

 'METAR_V_10_METER_WIND', 

 'MARINE_SFC_U_WIND_COMPONENT', 

 'MARINE_SFC_V_WIND_COMPONENT', 

 'LAND_SFC_U_WIND_COMPONENT', 

 'LAND_SFC_V_WIND_COMPONENT', 

 'DEW_POINT_2_METER',/ 

 'LAND_SFC_TEMPERATURE', 

 'LAND_SFC_SPECIFIC_HUMIDITY', 
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Appendix B: Table of Ramp Events 
 

Table B1. List of large ramp events used to define the ramp subsample for the sensitivity 

analysis for Hopkins Ridge. 

Start Time 

(YYYY MMDD HHmm) 

(UTC) 

Amplitude 

(% Capacity) 

156.6 MW 

Maximum 5-

minute ramp rate 

(% Capacity) 

Duration 

(minutes) 

Upward Ramps    

2007 0604 2110 98.7 20.3 120.0 

2007 0523 2310 98.0 57.2 120.0 

2007 0521 2250 96.9 17.5 110.0 

2007 0603 1940 95.7 66.4 100.0 

2007 0518 2040 95.4 39.0 120.0 

2007 0512 1610 94.0 26.6 120.0 

2007 0604 1640 93.6 31.4 90.0 

2007 0520 2220 87.9 20.8 110.0 

2007 0526 2330 92.3 33.8 130.0 

2007 0604 0050 86.4 27.2 120.0 

Downward Ramps    

2007 0604 1810 -98.8 -30.8 90.0 

2007 0603 2120 -97.1 -19.4 110.0 

2007 0521 2020 -90.6 -22.0 110.0 

2007 0614 0850 -80.5 -11.9 130.0 

2007 0605 0040 -77.5 -20.7 120.0 

2007 0511 0210 -72.9 -14.6 100.0 

2007 0528 1050 -72.4 -13.9 120.0 

2007 0521 1410 -73.2 -9.8 130.0 

2007 0508 1450 -74.3 -12.5 130.0 

2007 0517 0240 -70.1 -17.6 120.0 
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Table B2. List of large ramp events used to define the ramp subsample for the sensitivity 

analysis for Stateline. 
 

Start Time 

(YYYY MMDD HHmm) 

(UTC) 

Amplitude 

(% Capacity) 

300 MW 

Maximum 10- 

minute ramp rate 

(% Capacity) 

Duration 

(minutes) 

Upward Ramps    

2007 0512 1510 91.1 28.8 120.0 

2007 0603 1950 91.0 64.2 70.0 

2007 0604 2050 87.2 32.2 110.0 

2007 0603 2210 81.2 23.0 110.0 

2007 0523 2150 79.6 21.7 120.0 

2007 0518 2000 78.6 17.2 120.0 

2007 0521 1710 75.6 21.0 110.0 

2007 0510 2140 86.3 11.7 170.0 

2007 0606 2140 73.9 14.4 120.0 

2007 0508 1800 77.0 18.5 130.0 

Downward Ramps    

2007 0604 2350 -89.7 -17.5 120.0 

2007 0603 2100 -88.0 -34.0 70.0 

2007 0606 1730 -83.7 -15.0 160.0 

2007 0521 1910 -68.6 -18.9 120.0 

2007 0602 0010 -62.5 -13.5 120.0 

2007 0506 0930 -61.6 -6.6 130.0 

2007 0524 0150 -57.3 -16.4 100.0 

2007 0513 1130 -61.6 -8.4 150.0 

2007 0528 1000 -76.4 -6.4 220.0 

2007 0511 0150 -50.5 -7.2 120.0 
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Table B3. List of large ramp events used to define the ramp subsample for the sensitivity 

analysis for Klondike. 

 

Start Time 

(YYYY MMDD HHmm) 

(UTC) 

Amplitude 

(% Capacity) 

99 MW 

Maximum 10-

minute ramp rate 

(% Capacity) 

Duration 

(minutes) 

Upward Ramps    

2007 0515 2000 76.0 22.8 120.0 

2007 0603 1430 75.5 26.9 120.0 

2007 0508 1230 75.5 14.9 120.0 

2007 0610 1020 73.9 70.3 120.0 

2007 0602 1920 73.1 29.0 70.0 

2007 0616 0700 72.6 61.7 120.0 

2007 0601 2000 67.4 23.1 120.0 

2007 0518 1430 66.8 19.5 120.0 

2007 0524 1550 63.1 9.2 120.0 

2007 0520 1900 63.0 27.4 120.0 

Downward Ramps    

2007 0523 2020 -74.6 -61.4 110.0 

2007 0513 2000 -72.7 -54.8 70.0 

2007 0611 0350 -71.7 -44.3 100.0 

2007 0610 0910 -69.2 -65.8 70.0 

2007 0602 2050 -72.7 -20.4 130.0 

2007 0611 1550 -65.4 -65.3 70.0 

2007 0509 0420 -64.7 -16.8 100.0 

2007 0604 0050 -62.3 -12.7 100.0 

2007 0619 2210 -61.7 -15.3 120.0 

2007 0603 1630 -60.7 -43.0 90.0 
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Appendix C: Vertical Levels of the Model 
 

 
 

Figure C1. The figure depicts the outer (12-km) and inner (4km) nested grids. The three-

dimensional nested grid matrix consisted of 120 x 120 x 40 l points with 12-km horizontal grid 

spacing, and an inner grid of 172 x 160 x 40 points with 4-km spacing. 
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Model 

Level 

Number 

Pressure 

Level pa 

Approx. 

Altitude (m) 

Model 

Level 

Number 

Pressure 

Level pa 

Approx. 

Altitude 

(m) 

1 102444 0 21 52500 5200 

2 100000 100 22 50000 5600 

3 97500 300 23 47500 6000 

4 95000 550 24 45000 6400 

5 92500 750 25 42500 6800 

6 90000 1000 26 40000 7200 

7 87500 1250 27 37500 7600 

8 85000 1500 28 35000 8200 

9 82500 1750 29 32500 8600 

10 80000 2000 30 30000 9100 

11 77500 2250 31 27500 9600 

12 75000 2500 32 25000 10,200 

13 72500 2750 33 22500 10,900 

14 70000 3000 34 20000 11,750 

15 67500 3300 35 17500 12,200 

16 65000 3600 36 15000 13,700 

17 62500 3900 37 12500 14,700 

18 60000 4200 38 10000 16,100 

19 57500 4500 39 7500 20,000 

20 55000 4800 40 5000 26,000 
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Appendix D: Additional Variable Sensitivity Results  
3-km Wind Speed 

 

 
Figure D1. Average sensitivity of 80-m wind speed (m/s) within the white target box to the 3-

km wind speed throughout the entire grid domain for a 3-hour ahead forecast at all time periods 

in the 47-day analysis period for Hopkins Ridge. 

 

 
Figure D2. Average sensitivity of 80-m wind speed (m/s) within the white target box to the 3-

km wind speed throughout the entire grid domain for a 3-hour ahead forecast at all time periods 

in the 47-day analysis period for Stateline. 
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10-80m Wind Shear 

 

 
Figure D3. Average sensitivity of 80-m wind speed (m/s) within the white target box to 10-m to 

80-m wind speed difference (shear) throughout the entire grid domain for a 3-hour ahead forecast 

at all time periods in the 47-day analysis period for Hopkins Ridge. 

 

 
Figure D4. Average sensitivity of 80-m wind speed (m/s) within the white target box to the10-m 

to 80-m wind speed difference (shear) throughout the entire grid domain for a 3-hour ahead 

forecast at all time periods in the 47-day analysis period for Stateline. 
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2-m Temperature 
 

 
Figure D5. Average sensitivity of 80-m wind speed (m/s) within the white target box to the 2-m 

temperature throughout the entire grid domain for a 3-hour ahead forecast at all time periods in 

the 47-day analysis period for Hopkins Ridge. 

 

 
Figure D6. Average sensitivity of 80-m wind speed (m/s) within the white target box to the 2-m 

temperature difference throughout the entire grid domain for a 3-hour ahead forecast at all time 

periods in the 47-day analysis period for Stateline.  
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2-m to 80-m Temperature Lapse Rate 

 

 
Figure D7. Average sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 

80-m temperature difference (lapse rate) throughout the entire grid domain for a 3-hour ahead 

forecast at all time periods in the 47-day analysis period for Hopkins Ridge  

 

 
Figure D8. Average sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 

80-m temperature difference (lapse rate) throughout the entire grid domain for a 3-hour ahead 

forecast at all time periods in the 47-day analysis period for Stateline. 



52 

 

Appendix E: Additional Sensitivity Results for Klondike for 
Stateline and Hopkins's Ridge 
 

 

 
Figure E1. Average sensitivity of 80-m wind speed (m/s) within the white target box to 80-m to 

1-km temperature difference throughout the entire grid domain for a 3-hour ahead forecast at all 

time periods in the 47-day analysis period for Hopkins Ridge (top), Klondike (bottom left), and 

Stateline (bottom right). 
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Appendix F: R2 Plots  
 

1-Hour Ahead Hopkins Ridge 

 

Figure F1. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 1-hour ahead forecast at all time periods in the 47-day analysis 

period for Hopkins Ridge. 

 

Figure F2. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m to 80-m 

temperature difference for a 1-hour ahead forecast at all times in the analysis period for Hopkins 

Ridge. 
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Figure F3. Average R2 sensitivity 80-m wind speed (m/s) within the white target box to 10-m to 80-m 

wind speed difference for a 1-hour ahead forecast at all times in the analysis period for Hopkins Ridge. 
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1-Hour Ahead Stateline 

 

Figure F4. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 1-hour ahead forecast at all time periods in the 47-day analysis 

period for Stateline. 

 

Figure F5. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m to 80-m 

temperature difference throughout the entire grid domain for a 1-hour ahead forecast at all times in the 

47-day analysis period for Stateline. 
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Figure F6. Average R2 of 80-m wind speed (m/s) within the white target box to 10-m to 80-m wind 

speed difference throughout the entire grid domain for a1-hour ahead forecast at all times in the 

analysis period for Stateline. 
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1-Hour Ahead Klondike 

 

Figure F7. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 1-hour ahead forecast at  all time periods in the 47-day analysis 

period for Klondike. 

 

Figure F8. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m to 80-m 

temperature difference throughout the entire grid domain for a 1-hour ahead forecast at all times in the 

analysis period for Klondike. 
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Figure F9. Average R2 of 80-m wind speed (m/s) within the white target box to 10-m to 80-m wind 

speed difference throughout the entire grid domain for a 1-hour ahead forecast at all times in the 

analysis period for Klondike. 
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3-Hour Ahead Hopkins Ridge 

 

Figure F10. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 3-hour ahead forecast at all time periods in the 47-day analysis 

period for Hopkins Ridge. 

 

Figure F11. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m to 80-m 

temperature difference throughout the entire grid domain for a 3-hour ahead forecast at all times in the 

analysis period for Hopkins Ridge. 
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Figure F12. Average R2 of 80-m wind speed (m/s) within the white target box to 10-m to 80-m wind 

speed difference throughout the entire grid domain for a 3-hour ahead forecast atr all times in the 

analysis period for Hopkins Ridge. 

 

Figure F13. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m temperature 

throughout the entire grid domain for a 3-hour ahead forecast for all times in the analysis period for 

Hopkins Ridge. 
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3-Hour Ahead Stateline 

 

Figure F14. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 3-hour ahead forecast at all time periods in the 47-day analysis 

period for Stateline. 

 

Figure F15. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m to 80-m 

temperature difference throughout the entire grid domain for a 3-hour ahead forecast at all times in the 

analysis period for Stateline. 
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Figure F16. Average R2 of 80-m wind speed (m/s) within the white target box to 10-m to 80-m wind 

speed difference throughout the entire grid domain for 3-hour ahead forecast at all times in the analysis 

period for Stateline. 

 

Figure F17. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m temperature 

throughout the entire grid domain for a 3-hour ahead forecast at all times in the analysis period for 

Stateline. 
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3-Hour Ahead Klondike 

 

Figure F18. Average R2 of 80-m wind speed (m/s) within the white target box to the 80-m wind speed 

throughout the entire grid domain for a 3-hour ahead forecast at all time periods in the 47-day analysis 

period for Klondike. 

 

Figure F19. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 2-m to 80-

m temperature difference throughout the entire grid domain for a 3-hour ahead forecast at all times in 

the analysis period for Klondike. 
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Figure F20. Average R2 sensitivity of 80-m wind speed (m/s) within the white target box to 10-m to 

80-m wind speed difference throughout the entire grid domain for a 3-hour ahead forecast at all times 

in the analysis period for Klondike. 

 

Figure F21. Average R2 of 80-m wind speed (m/s) within the white target box to 2-m temperature 

throughout the entire grid domain for a 3-hour ahead forecast at all times in the analysis period for 

Klondike. 
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Figure F22. Average R2 of 80-m wind speed (m/s) within the white target box to 80-m to 1-km 

temperature gradient throughout the entire grid domain for a 3-hour ahead forecast at all times in the 

analysis period for Klondike. 


