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Abstract: BLAST is a hydrodynamics research code which implements the
high-order finite element formulations of [1,2,3] and is based on the open source
finite element software library, MFEM [4]. We consider the ALE extension of a
hypo-elastic constitutive model and its use in 2D axisymmetric and full 3D cal-
culations. We also discuss the high performance computing advantages that
high-order methods provide for the case of parallel strong scaling for large
problems of a fixed size and present our latest work in using GPUs to accel-
erate the compute intensive low level kernels of the Lagrangian algorithm.

The BLAST ALE Algorithm

BLAST solves the Euler equations using a high-order finite element ALE for-
mulation based on three phases:

• Lagrangian phase: solve on moving curvilinear mesh

• Mesh optimization phase: harmonic or inverse-harmonic smoothing

• Remap phase: conservative and monotonic DG advection based remap

On a semi-discrete level our method can be written as

Lagrangian Phase Remap Phase
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where F is the rectangular force matrix, ρ is the density with discontinuous
basis ψ, v is the velocity with continuous vector basis w, and e and sij are the
energy and stress deviators, each with discontinuous basis φ.
The mass and advection matrices are defined as:
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The axisymmetric extension of the remap involves simple radial scaling, e.g.
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2Drz and 3D Lagrangian vs. ALE results for Taylor Impact

We consider the Taylor high-velocity impact problem which consists of a cylin-
drical copper rod impacting a rigid wall. We compare Lagrangian vs. ALE
results for a 2Drz calculation on 32 processors and a full 3D calculation on 128
processors. Each calculation uses Q4-Q3 finite elements with 25 dof/zone in 2D
and 125 dof/zone in 3D.

Lagrangian ALE

Method Length Max. Rad. Max. EPS Cycles Run Time
2Drz ALE 2.1738 0.6744 4.20 23,890 2.15 min
2Drz Lag. 2.1738 0.6742 4.20 496,347 26.32 min
3D ALE 2.1739 0.6743 4.21 29,348 120.30 min
3D Lag. 2.1739 0.6741 4.19 509,468 869.27 min

The ALE calculations provide a 12X speedup in 2D and a 7X speedup in 3D,
giving effectively identical answers relative to Lagrangian calculations.

Strong Parallel Scaling on LLNL’s Vulcan Supercomputer ∗

High-order methods excel at strong parallel scaling:

For a fixed mesh resolution,
512 × 256 zones, we vary the
number of cores, down to one
zone per core.

This is a p-refinement study – in-
creasing the order leads to in-
creased resolution in terms of to-
tal number of unknowns.

The higher-order methods, Q4,
Q6, and Q8, exhibit nearly per-
fect strong scaling.

∗ Results courtesy of Michael Kumbera, LLNL.

GPU Acceleration of Force Matrix Calculation ∗

Force matrix calculation uses local dense linear algebra operations (see [1]):

Fz = AzB
T
z , (Az)ik = αk

[

σ̂(q̂k) adj (Jz(q̂k))
T
]

: ∇̂ŵi(q̂k), (Bz)jk = φ̂j(q̂k),

Jz(q̂k) =
∑

i

xz,i∇̂ŵi(q̂k), ρ̂(q̂k) = (ρ̂0|J0,z|)(q̂k)/|Jz(q̂k)|, ê(q̂k) = (BT
z ez)k.

• Computation is split into six CUDA kernels (reduce register pressure).

• CPU-GPU memory copies used for vectors only (Fz are stored on GPU).

• Utilize Hyper-Q: multiple MPI tasks simultaneously use the same GPU.

GPU acceleration leads to 4X
speedup in the force matrix cal-
culation.

Additional GPU acceleration in
other parts of BLAST is possi-
ble, leading to: (a) less CPU-
GPU memory transfers, (b) bet-
ter GPU utilization, and (c) bet-
ter overall speedup.

Strong scaling study up to 30
compute nodes, a total of 480
CPUs and 60 GPUs.

Currently, MPI communications
go through the main system
(CPU) memory.

Direct GPU-GPU communica-
tions are technologically possi-
ble (GPUDirect).

∗ This work is a collaboration with Tingxing Dong, UT Knoxville.
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