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Reduced Storage Matrix Methods in Stiff ODE Systems

ABSTRACT

Stiff initial-value ODE methods (e.g. BDF) normally require the Jacobian
matrix as part of a Newton or Newton-like iteration within each implicit time
step. Until recently, stiff methods have normally required the Jacobian to be
formed and stored explicitly, whether the linear algebraic method used is
direct or iterative. But any iterative linear system method which involves
the system matrix only in operator form can be made part of an inexact Newton
method within such a stiff ODE method in a manner that requires no explicit
Jacobian matrix storage. The result is a matrix-free stiff method. Such
combinations, using BDF methods, have been implemented with three Krylov
subspace methods -- Arnoldi iteration (and its incomplete form, the Incomplete
Orthogonalization Method or IOM), GMRES (the Generalized Minimum RESidual
method), and OG (the Conjugate Gradient method, assuming a symmetric positive
definite matrix). Various practical matters (scaling, starting, stopping,
etc.) are dealt with in the stiff ODE context.

In the context of general nonlinear algebraic systems, we provide some
theoretical foundation for the combined Newton-Krylov method by giving
convergence results that include errors due to the difference quotient
approximation to the linear operator.

Earlier tests showed matrix-free methods to be quite effective for certain
classes of problems. However, unless the spectrum of the problem Jacobian is
rather tightly clustered, the methods are not likely to have competitive
convergence properties. To improve their robustness, preconditioning has been
added. We have experimented with preconditioned Krylov subspace methods for
ODE systems that arise from time-dependent PDE systems by the method of
lines. Preconditioner matrices can be formed from the interaction of the PDE
variables (giving a block-diagonal matrix), and also from the spatial
transport terms (using SOR or the like). Using both together amounts to an
operator splitting approach. The additional matrix storage requirement can be
reduced greatly by grouping the diagonal blocks in a natural way. The
diagonal blocks required (if not supplied by the user) are generated by
difference quotient operations. Preconditioned Arnoldi, QMRES, and OG methods
have been implemented in an experimental solver called LSODPK that uses BDF
methods. Tests on PDE-based problems show the methods to be quite effective
in improving both speed and storage economy over traditional stiff methods,
and over matrix-free methods without preconditioning.




1. Introduction

In a previous paper [4]. we considered the use of Krylov-subspace projection
methods in solving large stiff systems of ordinary differential equations (ODE's).
Typically, methods for solving stiff ODE systems are implicit, and so require the
solution of a nonlinear algebraic system of equations at each integration step.
Newton's method (or some modification of it) appears to be the best general
approach to such systems, and this leads to solving several linear systems at
each step. For large problems, most of the work required for the integration is
in the linear algebra operations associated with these linear systems. In addi-
tion, when using direct methods to solve the linear systems, much of the core
memory required is used for the storage of the coefficient matrix and its decom-
position factors. Alternatively, the Krylov methods are iterative linear system
solvers which do not require the storage of the coefficient matrix in any form,
and hence require far less storage than direct methods. All that is required is
the ability to perform coeflicient matrix-vector multiplies. In [4], we referred to
the combined stiff ODE method /Krylov method as a matriz-free method, and dis-
cussed both theoretical and computational aspects of the combined algorithm.
In this paper, we will continue investigating these combined algorithms, with
particular emphasis on the importance of preconditioning the linear systems
solved by the Krylov methods.

To be more specific, we will consider here the numerical solution of the

ODE Initial Value Problem
¥ =1{ty). ylt)=y, (-=d/dt,yerV). (1.1)

We will assume that the ODE in (1.1) is stiff, meaning that one or more strongly
damped modes are present, and will use the popular BDF (Backward
Differentiation Formula) methods to solve it. These methods have the general

form
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Yn = ji Q;j¥n-; + hBoYn . l.ln = J(tn.¥n). (1.2)
where q is the method order. Since the BDF methods are implicil, al each time

step one must solve the algebraic system

Yn=hBef (tnY) - 8a=0, Gy = f:la,-yu-, 8,50, (1.3)
J:

for y,,. We will actually deal with an equivalent form of (1.3), namely

Fu(zn) = zn = hf (tn.an +fo25) = 0, (1.4)
in which z,, is defined by

Zn = hijn = (Yn=0a)/ Bs -

The Newton iteration then has the form:
Let z,(0) be an initial guess for z,.

For m=0,1,2, - - - until convergence:

Ps,.(m.) == F;‘(zn(m)) (1.5)
z,(m+1) = z,(m) + sp(m),

where the coefficient matrix P is some value of (or an approximation to a value

of)
Fi(z)=I-hB,J(ty) (¥=a,+F,z). (1.6)

with J(t,y) = 8f /8y ., the system Jacobian matrix.

In [4] we considered two Krylov-subspace projection methods for
approximately solving (1.5). These were Arnoldi’s Algorithm and the Jncomplete
Orthogonalization Method (I0M), both due primarily to Saad [17.18]. The prelim-
inary tests in [4] indicated the potential usefulness of these linear solvers on

ODE problems for which there is some clustering of the spectrum of the matrix
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P, but also indicated the need for some form of preconditioning of the linear sys-
tems (1.5) in order for the combined BDF/Krylov method solver to be effective
on a much wider class of problems. Preconditioning techniques must be chosen
with the particular problem features in mind, and also with a view to keeping the
storage requirements low. For problems arising from time-dependent partial
differential equation (PDE) systems, choices based on successive overrelaxation
(SOR), and on the interaction of the PDE variable at each spatial point are avail-
able.

Work that is closely related to ours includes that of Gear and Saad [9],
who originally proposed using Arnoldi's Algorithm and IOM in ‘stiﬂ‘ ODE solvers,
and Miranker and Chern [15] who considered the use of the Conjugate Gradient
Method in the solution of the model problem dy/dt = Jy by BDF methods for
which J is symmetric and positive definite. Additionally, Chan and Jackson [5]
have considered the use of Preconditioned Krylov-subspace projection methods
in ODE solvers. However, their methods differ from those considered here in
several respects. First, the basic Krylov methods considered in [5) are the Con-
jugate Residual Method (CR) and Orthomin (k) (cf. [8]). We note that CR applied
to {(1.5) is only guaranteed to converge when P is symmetric and positive definite,
while Orthomin (k) only requires that P is positive definite for convergence. Chan
and Jackson argue that for symmetric problems (i.e. / = 8f / 8y symmetric) the

step size selection strategy of the ODE solver will normally choose k so that
1-h B, A >0 (1.7)

for all X (i=1, ...,N) an eigenvalve of J. Hence, in this case P=I-hf,J would
be positive definite. When J is nonsymmetric, (1.7) holding for all A; does not
imply P is positive definite, as Chan and Jackson note. Thus, the application of
CR and Orthomin (k) to such linear systems may fail. Second, these methods are

actually applied to the preconditioned linear systems, and so one must be
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careful when choosing the preconditionings to be used so that the resulting sys-
tem has a matrix which is again positive definite, as Chan and Jackson also note.
In our setting, Arnoldi's Algorithm and GMRES are guaranteed to converge when
the matrix P is nonsingular (whether or not it is positive definite). This results in
a wider class of available preconditionings when using Arnoldi and GMRES.

The rest of the paper is organized as follows: Section 2 summarizes the
Newton and Newton-like iteration for the nonlinear system and the basic linear
iterations to be considered (Arnoldi, GMRES, and CG), and includes a new result
on an incomplete version of GMRES. Section 3 gives some local convergence
results for the combined Newton/Krylov methods. Section 4 discusses scaled
preconditioned methods in general, and Section 5 describes specific precondi-
tioners suitable for ODE systems arising from certain PDE systems. Section 6
gives some numerical test results, using a modified version of the general pur-

pose ODE solver LSODE [13,14).




2. Preliminaries

In this section we introduce a class of Newton-like iteration schemes known as
Inezact Newton Methods end discuss their relevance here in solving the non-
linear system (1.4). We then introduce the Krylov subspace projection methods

under consideration, and discuss some of their convergence properties.
(a) Newton Methods

Newton's method applied to a general nonlinear system
F(z)=0, F:R¥sR¥, (2.1)

with solution z°, results in the iteration scheme
Choose z(0) an initial guess forz° .
For m =0,1,... until convergence, do:

Solve

Ps(m)=F(z(m)) (2.2)
Set z(m+1)=z(m)+s(m),

where P=F'(z(m)) is the Newton matrix (¥' denoting 8F/ 8z). In the stiff ODE
context, a system of the form (2.1) needs to be solved at every step, and so
many ODE solvers attempt to save work by computing and storing P (and its
decomposition factors if a direct method is used to solve (2.2)) once, and using
it for all iterations on that step. Furthermore, P is also held fixed over several
steps of the integration, only discarding the current P when it is determined to
be sufficiently out of date. The resulting iteration is known as modified Newton,
and typically gives a linear rate of convergence as opposed to the quadratic rate
of convergence for the full Newton scheme.

¥hen using an iterative method to solve (2.2) approximately, one has

several options. First, in the case where P is formed and stored explicitly, and
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saved for use over several steps, then the basic iteration scheme is modified
Newion with P some approximation to F'(z(m)). One then approximately solves
the modified Newton equations (2.2) by some iterative scheme. One example of
this approach is the ODE solver GEARBI [12], which uses Block-SOR as the basic
iterative solver. Another is the solver developed by Chan and Jackson [5], which
uses the Krylov methods CR and Orthomin (k) as the iterative solvers; we note

that both of these ODE solvers require the forming and storing of the matrix P.

A second approach to solving (2.2) approximately is to work with the full Newton
equations {2.2) where P=F(z(m)). Since there is a significant cost associated
with forming P, this approach only makes sense when P does not need to be
formed explicitly. All of the Krylov subspace projection methods mentioned
above only require the action of P times a vector v , not P itself. Hence, one

possible way to approximate this action is by using a difference quotient
Pu=F(z)un(F(z+0v)-F(z))/ 0, (ceR) (2.3)

where v is a vector of unit length and z is the current iterate. This approach is
taken by the authors in [4] and continued here. We refer to these methods as
mafriz-free due to the absence of required storage for P. With either approach
there is an error associated with only approximately solving (2.2), and with the
second approach there is an additio nal error resuiting from the approximation
(2.3). We next discuss the class of Inexact Newton methods, which deals with
errors in (2.2), and then in Section 3 we discuss the combined errors associated
with (2.2) and (2.3).

From Dembo, Eisenstat and Steihaug [6], an Inexact Newton Method for
{2.1) has the following general form:

Choose z{0) an initial guess for z*.

For m=0,1, - - - until convergence, do:

Find (in some unspecified manner) a vector s(m) satisfying




F(z(m))s(m) = —F(z(m))+r(m) (2.4)

Set z(m+1) =x(m)+s(m).

The residual r(m) represents the amount by which s{m) fails to satisfy the New-
ton equation (2.2). It is not generally known in advance, being the result of some
inner algorithm which produces only an approxirﬁate solution to (2.2) (e.g. an
iterative method). Typically, one must require an auxiliary condition on the size

of the residual »{m ) for convergence. In [8], it is shown that if
Hr(m)||sn||F(z(m))|| ,m=0,12---, (2.5)

where 0<7<1, then z(m) converges to a true solution of F(z)=0 at least linearly,
as long as the initial guess x ( 0 ) is close enough. Here, ||-|| is any norm on RV,

For the present stiff ODE context, the condition (2.5) is overly restric-
tive in that actual convergence of the iterates is not necessary, and the cost of
obtaining them is high. He“re. the Newton iteration begins with an explicit predic-
tion ¥, (0). and a corresponding prediction z(0)=(y,{0)—2,)/ 8, of hy,. Thus, the

first linear system to be solved on the n® time step is Ps=b with
b=~F(z(0)) = S (tn.yn(0))-=(0).

P=F(z(0)) = I-hB, J (tr.yn (0)).

The stifIness of the problem can be expected to make b largest in the stiff com-
ponents (i.e., in the subspace corresponding to the stiff eigenvalues). Since the
prediction is normally sufficient in the nonstiff components, all one really needs
in the corrector iteration is to damp out the errors associated with stiff com-
ponents, for stability, not actual convergence. Thus it is of interest to find out
how much one can relax (2.5) and still obtain enough accuracy in the approxi-
mate solution z{(m) to £*. In [4], it is shown that if (2.5) is replaced by the

weaker condition




lir(m)|]| =6, m=0,12, - -, (2.6)
then

Bmsup) |z(m)-z"| |s6/ K ,

where K is a constant depending only upon F and z° , assuming that z(0) is
close enough to z° and § is sufficiently small. Thus, one can obtain any degree of
accuracy in z{m) desired by simply choosing 6 small enough. It is further
argued in [4] that the constant K1 for the stiff ODE context. Therefore, if ¢, is
the desired tolerance in the error for the approximate z(m), choosing 8%, is
reasonable in (2.8).

For modified Newton iteration, under appropriate conditions on P and
F that guarantee the local convergence of the iterates z(m) to z° with

P#F(z°), one has linear convergence in that as m —>w
Hz(m+1)-z||/ ||z(m)-z"||>C,
where 0<C<1, and again | ||| is any norm on R¥. The estimate

Gn = {1z(m+1)—z(m)||/ ||z (m)-z(m-1){| (2.7)

of the asymptotic rate constant C can be easily found once z{(m+1) has been
computed, and then used in subsegquent stopping tests. Hence, a stopping condi-

tion on z{m +1) of the form
[ [z{m+1)~z"]|<e

will be satisfied approximately if the (verifiable) condition
C|lz(m+1)—z(m)||<c

holds, provided that C aj:proximates ¢/ (1-C), or simply C if C is sufficiently

small. LSODE uses this convergence acceleration idea in its stopping test for
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modified Newlon iterations {(along with some suitable fudge factors), and it is
quite beneficial in reducing the average number of iterations per step. In [4], it
is shown that if the Inexact Newton iterates z(m) and residuals 7 {m ) satisfy the

stronger condition
lir{m)||=n||F(z(m)||® for m=0,12....,
where 0<7<1, then for any £ >0
Hz(m+1)-z°|[sGul|z(m+1)-z(m)] [(1+£) (2.8)

for all sufficiently large m , with G, given by (2.7). When only {2.6) holds, ine-
quality (2.8) is no longer true in general. However, a heuristic argument is given
in [4] which indicates that if 6 is sufficiently small, then (2.8) does hold for all
iterates of interest. Again if £, is the prescribed tolerance for z(m), then it is
likely the case that G-needs to be much smaller than £;. The exact choices used

for 6 and ¢, are given below and in [4].

(b) Krylov Subspace Projection Methods.

In this subsection we consider three iterative linear solvers. These are
Arnoldi’s Algorithm due to Saad [16,17], the Generalized Minimum Residual
Method (GMRES) due to Saad and Schultz [19] and the Conjugate Gradient (CG)
Method due to Hestenes and Stiefel [11]. All of these are algorithms for the

approximate solution of the linear system
Az=b, (2.9)

where A is an NzN matrix, and z and b are N-vectors. Here, (2.9) represents the
full Newton equations (2.2) with A=F(z(m)),b=-F(z(m)) and the solution vec-
tor z represents the increment s(m)=z{(m+1)-z(m) giving the next Newton
iterate z(m+1). (To conform with normal usage, the letter z is also used to
denote the solutions of linear systems; the particular meaning should be clear

from the context, however.) We give here a brief development of Arnoldi and
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GMRES, along with truncated versions of these algorithms. More details on
Arnoldi are given in [16,17,18], and on GMRES in [19]. We then close with a state-
ment of the CG Method for symmetric positive definite systems.

If z, is an initial guess for the true solution of (2.9), then letting

z =z, +2z, we get the equivalent system

Az =1y, (2.10)
where 7, =b —Az, is the initial residual. Let K; be the Krylov subspace

K=span(r, . Ar,, - - - A 7i1ry).
By a Krylov subspace projection method on K; we mean a method which finds an
approximate solution

I =z, +2; , with z;ekK;.

To uniquely specify z; (or 2; ) some additional requirements are necessary.

These typically are one of two types: either require that

(b-Az) LK (or(r,-Az)L K) (211)
or

-4z | ]2 =2z +K,”b ~Az ||, ('zc!ﬁ'm —Azl2) . (2.12)
Here, orthogonality is meant in the usual Euclidean sense, and | || I‘denotes the

Euclidean norm. The combinations of requirements (2.10) and (2.11) versus
(2.10) and (2.12) give rise to different Krylov methods. Requiring that (2.10) and
{2.11) hold leads to Arnoldi's Algorithm, while (2.10) and (2.12) lead to GMRES.

Arnoldi’s Algorithm and GMRES both use an Arnoaldi process [1] to con-
struct an orthonormal basis of the Krylov subspace K;. Briefly, an orthonormal
basis (v,, - - - ,v;) of K] is constructed using the algorithm:

1. Compute 7,=b -4z, and set v,=7,/ | |7, | |2 .
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2.Forjy=1,---,ldo
‘w:'n=-4”i"_§:1 Lq”j ) “zj = (Av,w)

R g=Hwpanlle, Vi = Wi/ Ryayy

Here, (°,’) is the Euclidean inner product. If we let ¥;=[v,, - - - ,v;] denote the
Nzl matrix with columns v; and H;=(h;;) is the Izl upper Hessenberg matrix

whose nonzero entries are given by the above ky; , then Saad [17] has shown that
Hi=V{AY, and WVi=1,. (2.13)

where I, is the Izl identity matrix. It is assume throughout the vectors
Yo Ao, - * - ,LA'"lr, are linearly independent so that the dimension of K; is .
To describe Arnoldi's Algorithm , first let z;=V,y, where y, €R' . Then

condition (2.11) is equivalent to

V{AVIM-VITTo =0.
vl av s . — 1T
1f H,-—VIAV, is nonsingular, then y,=H l Vl-r'e and
5=z, +2; = Z, -H{H’l1 V{’o . (2.14)
Since Vfr, = Be, , where f=||7, ||z and e, = (1,0, - - - ,0)7eR!, (2.14) reduces to
5=z, +fV,H e, . (2.15)

An important practical consideration is the choice of I , which amounts to a
stopping criterion. A very useful identity for this is the following equation for the

residual norm:
Ho—Az )z = hsrslefu] (2.18)
where ¢;=(0, - - - ,0,1)7¢R! . The equation (2.186) follows from the relation

AV, = VH + haaviael,
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which can be derived from the algorithm. An interesting feature of the relation
(2.16) is that one does not have to form z; or y; in order to compute | |b-Az | |2
If we perform an LU factorization of H; , writing H;=LU , and assume that no

pivoting was necessary, then it can be shown [17] that
T ﬁl
hiais lel'yz 1=’H+uﬁ ([1a)/ v, (2.17)
i=1

where the §(i=1, - - - ,l-1) are the successive multipliers (subdiagonal elements
of L) . In general, a similar equation holds in which the product above is taken
only over those i for which no pivoting is done. See [17] for more details.

The use of (2.16) to estimate the error | |b-A4z;||; then leads to the

following algorithm, in which {,,; and § are given parameters:
Algorithm 2.1 (Arnoldi's Algorithm):
1. Compute 7,=b—Az, and set v,=7,/ | |7, | Il .

2. Forl=12, - - lg.g do:
i
(a) wii=Av - ) hyvi | hy=(4u,v)
i=1
hosa=|lwinal l2
V=W by
{b) Update the LU factorization of H; .
(c) Use (2.17) to compute p;=hysy, ey | = | |b-4z, ] ]2.
(d) If p;<6 , go to Step 3. Otherwise, go to (a).
3. Compute z;=z,+! |7, | |2V, H;"'e, and stop.
In the above algorithm, if the test on p, fails, and if I =l iterations have been
performed, then one has the option of either accepting the final approximation

z, , or setting z,=z; and then going back to Step 1 of the algorithm. This last

procedure has the effect of "restarting” the algorithm. We also note that due to
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the upper Hessenberg form of H, there is a convenient way to perform an LU
faclorization of H; by using the LU factors of H;_,({>1).

In Algorithm 2.1, as I gets large, a considerable amount of the work
involved is in making the vector v;,, orthogonal to all the previous vectors
vy, - ' -, . Saad [17] has proposed a modification of Algorithm 2.1 in which the
vector v;,; is only required to be orthogonal to the previous p vectors,
Vip+1,  * ¥ . Saad [17] has shown that equations (2.16) and (2.17) still hold in
this case. This leads to an algorithm called the /ncomplete Orthogonalization
Method, denoted by JOM. 1t differs from Algorithm 2.1 only in that the sum in
Step 2(e) begins at i=i, instead of at i=1 , where %, =max{1,l—-p+1) . The
remarks made after Algorithm 2.1 are also applicable to IOM. In [17], Saad com-
pares the two algorithms on several test problems, and reports that IOM is
sometimes perferred, based on total work required and run times.

When A is symmetric, the inner products h;; theoretically vanish for
i<l-1, so that one can take p=2. If 4 is also positive definite then IOM with p=2
| is equivalent to the Conjugate Gradient method [17, Sec. 3.3.1, Remark 4). Thus
a value of p less than lp,,, might be expected to be cost-eflective when 4 is
nearly symmetric.

Saad [17] and Gear and Saad [9] have given a convergence analysis of
Algorithm 2.1 which shows that Arnoldi’'s Method converges in at most N itera-
tions and suggests (but in general does not prove) that the convergence of the
iterates § z; } to the solution of {2.9) is fastest in the dominant subspace (that is,
in those components corresponding to the eigenvalues in the outermost part of
the spectrum of 4 ), which would include the stiff components for the ODE con-
text.

The possibility of a breakdown also exists when using Algorithm 2.1.

This can happen in two different ways: either w;,;=0 so that v;;; cannot be
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formed, or H;n, may be singular which means that the maximum number of
Arnoldi steps has been taken, but the final iterate cannot be computed. The first
case has been referred to as a happy breakdown, since w; ;=0 implies H, is non-
singular and z; is the exact solution of (2.9) (cf. Brown [2] or Saad [18]). The
second case is more serious in that it causes a convergence failure. In the ODE
setting, where A=J/-h§,J , a way to handle the second failure is to reduce the
stepsize h and retry the step. We note, however, this second kind of breakdown
cannot happen when 4 is positive definite. To see this, recall that H;=V74¥, , and

so for any ¥ #0
— T
(v.Hy) = (y.V;AVy)

=(Viy.AViy) >0

since V¥ #0 by the fact that V; has orthonormal columns, and since 4 is positive
definite. Thus, H; is positive definite and so nonsingular.

The GMRES method differs from Arnoldi's method only in the way the
vector y; is computed, where x;=z,+ VY, . Suppose we have taken ! steps of the

above Arnoldi process with w;;;#0. Then we have two matrices,
Visr=[vn - - o) eRN=041)

whose columns are orthonormal, and the matrix H; € R¢+1)# defined by

_ gl

Fi=pH] where 7=(0, - O YIeR'.
It follows from the Arnoldi process that

AV =V H, . (2.18)
The vector z;€K; is chosen to satisfy (2.12), namely

Hro~dzi|12=5¢g | 1To—A2 | |2 . (2.19)
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Letting 2 =¥,y and using (2.1B) gives

J(y)=llro—Az|le=||pv,-AViy| |2

=} | Visi(Be1-Hiy)| le=| 1Ber-Fiy | |e

where B=||7,|lz €,=(1.0, - - - .0)TeR**!, since V,,, has orthonormal columns.

Thus, the solution of (2.12) or (2.19) is given by
=z, +Vy .

where y; minimizes J(y) over yeR! .

The minimization of J(y) is accomplished by performing a QR factori-
zation of H, using Givens rotations. As Saad and Schultz [19] have noted, it is
desirable to be able to update the factorization of H, progressively as each
column appears (i.e., at eQery step of the Arnoldi process). This allows one to
compute the residual norm ||b—Az;| |, without computing z; at each step. To

see this, let Fj be the rotation matrix which rotates e; and e;,, by the angle 4; .

namely
-
{ ]
"1
c, -s
F. = J ’ . (2'20)
4 SeQ je— row j¢(
J J
1 -
i 1]
where c;=cos(3;) and s;=sin(%;). Next, suppose that the rotations Fy, - - - ,F;

have been applied to ﬁj . giving
F}F‘:’__I .« .. FlﬁJzﬁj‘Roi’l)zj'

where R; is upper triangular with its last row containing all zeros. At the next

step of the Arnoldi process, the last row and column of ﬁjﬂ appear. Let
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d=(d.h)T . where d'eR/*! and h=h;.z;4; . be the new column. To obtain Kj.,
first form d=FjFjs,...Fid end let its next-to-last component be denoted by r .
{Note that the last component h is the same in both d and d .) The rotation Fy4;

is then chosen to eliminate h in d . This gives

Cj,IET/ V1 +h

-h/ Vri+h?,

$;jn1=
After l steps, one has the decomposition
Q'H =R,

where @QT=F,F,_," F,eRt*1z¢+) ang ReR¢*1# js upper triangular with zeros in
P g

its last row. Thus, we have

J(y)=|Be,~Hyll|=||Pe1—-QRy|le

=!8~ Ryl 1,

—

Let R= ( 05‘0) and g,=8@7e,=(§,.9)7 with g;‘,’?’ and g&R. The value of ¥
which minimizes J{y) is then

v=(R)'g, . (2.21)
and

|16 -4z, | | =1 18@7e —Riyll2=1g] .

l
An easy calculation gives g =§ H s; , and thus we have
i=1

|16 =Az; | |o=Bls,.s |, (2.22)

which is an inexpensive way to calculate the norm of the residual associated with

z; . See Saad and Schultz [19] for more details.

The use of (2.22) leads to the following algorithm, in which Ip.x and 0
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are given parameters:
Algorithm 2.2 (GMRES):"
1. Compute 7, =b —Az, and set v,=7r,/ | |7, | |2 .

2. Forl=1, - lnedo:

l
() wn=Av = Y hyv , hy=(4v,v;)

t=1
Rigia=llwig e
Y= Wi/ Ry
(b) Update the QR factorization of H; .
(c) Use (2.22) to compute p; =1 |7, | |2 |5y s | =] 16 —Az; | |2 .
{(d) If p; <8 , go to Step 3. Otherwise, go to (a).
3. Compute z,=z, + Vy, with y; given by (2.21), and stop.
The remarks on restarting after Algorithm 2.1 are also valid here.
As in Algorithm 2.1, it is also the case here that as I gets large much
work is required to make v;,; orthogonal to all the previous vectors v;, - - - ,y; .
One can also propose an incomplete version of GMRES (denoted by IGMRES),
which differs from Algorithm 2.2 only in that the sum in Step 2(a) Beg'ms at i=1,
instead of at i=1 , where i,=max{1,l—p+1) . One immediate problem with
IGMRES comes from the fact that equality (2.22) no longer holds. To see this,

note that from the incomplete Arnoldi process, as long as w;+;#0 , we still have
AV=VinH,

where HeRM*Y# is now a banded upper Hessenberg matrix, and V4 has
columns with unit norm but V,,V4;#/, in general. It follows that H, will still

have full column rank, and so let
H=@R

be its QR factorization. Here again, @ is an (! +1)z{l +1) orthogonal matrix, and




-19-

R, is an (I +1)zl upper triangular matrix whose last row contains all zeros. The

approximate solution z; is given by
=X, + Vlyl
where y; solves the minimization problem

ver|Ber=Fiylle (2.23)

as before, The residual associated with x; is
b—Az, =7, —Az; =T, —AViY1= V4| Be —Hul.
since 7, =8V, ,,€; - Next,
Be,~Hy, = pe,-@ Ry,
=Q[8@"e;~Rw].

and since y; solves the minimization problem (2.23) we have

-0

Be,-Hy=@ A

T
Ehin

=Bg119M 21 .
where @ =[q1,...ﬂ¢”] . Therefore,
b—Az;=BVin Q1001
which gives
[1b—Az | |2=Blglea) | Vi@l Lz (2.24)

If V,,; bas orthonormal columns, then ||Viu19:411]2=11g141]]2=1 since & is

orthogonal. In this case (2.24) and (2.22) agree, and so we must have

lgles] = Isisz .e. S| - (2.25)
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To show that (2.25) still holds when V., does not have orthonormal columns will
require some further justification. |

At each stage of the incomplete Arnoldi process the QR factorization of
H, will be updated. Let f};(} =1, --:,) be the Givens rotation matrices of

dimension (I +1)z (1 +1) defined by {2.20) so that

=Ry Faa’  Fu.
with

H‘_:QRg .
The extra subscript ! on the Fj; indicates only that they are viewed as
(1+1)x (1 +1) matrices when used to form & . The components c; and s; are
independent of  (where ! denotes the current step of the Arnoldi process). Also,
it is clear that some of the columns of @ change as ! increases. Hence, we will
write

Q@=[g11.922. - - Fera] -

Theorem 2.1: Let Vj41=[v,, - - - .u141] be the vectors computed in taking ! steps
of the above incomplete Arnoldi process. let Fj;(j=1 ---.,l) be the Givens

rotations used to factor H; into @ R, . Then the last column of & is

] L L |
Qena=([]si.eallsc.ce s woas. c)? (2.26)
i=1 i=2 i=3
end
VisiGisa=si Vg o, (2.27)

Proof : We show (2.28) by induction en ! .Forl=1,

. c, ~S
Q[:Fm:[slx cll] .
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and so gz,=(5..c,)7 . Assume (2.26) holds for  replaced by {-1. Then q,lrt_‘ is

the last row in the matrix
S=FR_yaFi2i- 7 Fraa .

Now, because Fj;_, and Fj,; (j=1, *--,1-)) are related by

we immediately bave that

| S lo
Floc,l'pl-,z"' 6,1 = (o 1)'

Next, since

— -1 \ ¢ -5
Fl;l - C 1 with C. = t l) >

0 g
and letting
S
- = (1-1)xl
S - g , S €R
)
zl,l-r
we have
- (2 14
1 — s |,
cu
where

Therefore,
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T .
Q12 =S qu0-4 )’ (2.28)
Relationship (2.26) now follows from (2.28). Finally, from (2.28),
Ve =Moualgaa=siiguatous,

which is (2.27). Q.E.D.

From (2.26) it is clear that
911;1.191=51-32 8.

and so (2.25) continues to hold for the incomplete process. Next, (2.27) gives a
relatively inexpensive way to form ¥ ,1q,4,; in (2.24). If d;=¥,;9;,;-, has been

saved from the last step, then
& 1= Vi1 @10 =S G +C Yy

can be formed at the cost of one scalar-vector multiply plus one vector add. The
norm of d;,, then needs to be computed. While not cheap, this is still much less
expensive than the complete orthogonalization method (i.e. GMRES) when p (the
number of vectors to reorthogonalize Av, against) is even modestly smaller than
lmax -

¥hen the matrix 4 is symmetric, the inner products hy theoretically
vanish for i<l -1, so that one can take p=2 as with JOM. If A is also positive
definite, then GMRES or IGMRES with p =2 is equivalent to the Conjugate Residual
method, while if 4 is only positive definite, then GMRES is equivalent to the Gen-
eralized Conjugate Residual method {cf. Saad and Schultz [19] for more details).

Saad and Schultz [18] have given a convergence analysis of Algorithm
2.2 which shows that the GMRES iterates converge to the true solution of (2.9) in
at most N iterations. We also note that Algorithm 2.2 may have breakdowns. If
w;4,=0 in the Arnoldi process, then Saad and Schultz [19] have shown z; is the

exact solution of (2.9). This is also referred to as a happy breakdown. When
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w;+1#0 , the matrix H; has full column rank, and so the least squares problem
(2.19)(or the minimization of J{y) ) can always be solved via the above QR fac-
torization. However, in some cases the approximation z; may not be of much
use. We give an example illustrating how GMRES (and also Arnoldi's method) can

have a dramatic failure.
Ezample 2.1: let A be the permutation matrix sending e,+ez~ ... #ey-e,,
where e, is the 1** standard basis vector in R¥ . Then
A = ? \1 .
\1 .

Consider solving Az=b , where b=e, and z,=0 . Then z.=A b =ey . We have

Vi=[e,. - --,e] and H, is given by
o O

Ho= (NN | & rew

{ ’
\10

with Hy=A. Hence, H; is singular for <N and the Arnoldi iterates z; do not exist

for LI<N , but zy=z.. Next, for GMRES

H,

a... 01

i, -

and J(y) is a minimum for
T =\~ T T

yzy'_:(‘Hl) Hl \/u_‘L'

Since WT,, b=e,, Hie,=0 (t=1, - - - ,N—1) because the first row of H, is all zeros.

Thus, the GMRES iterates satisfy

X, =y, = 0 (1=12 V1)

For this example, neither GMRES nor Arnoldi’s method make any progress until

I=N . Notice that restarting either algorithm when I ,,<N is of no avail here
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either.

Finally, when the matrix A is symmetric and positive definite, it is
appropriate to use an iterative linear solver specifically designed for such sys-
tems. We will consider the Conjugate Gradient Algorithm (CG) of Hestenes and
Stiefel [11] in this case. As noted above, Arnoldi’s Method and CG are theoreti-
cally equivalent when A is symmetric and positive definite. Thus CG also gen-
erates approximations z; in the Krylov subspace K; . For definiteness, we give a

version of the algorithm below.

Algorithm 2.3 (Conjugate Gradient):
1. Compute r,=b —Az, and set p,=7, .
2. Forl=1,2, - - Iy do
(a) wi=4p,
oy =171/ plw
n=ratoun
T =T -1—oqW;
(b) If || 7| |2=<6 . then stop. Otherwise, go to (c).
() Bina=rim/ riami
D= nitfiap
Ve note that the storage requirements for CG do not depend upon l ey, in TON-
trast to Arnoldi's Method and GMRES. For a modern treatment of the CG method,

see Golub and Van Loan [10].
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3. Nonlinear Convergence Theory

For all of the algorithms considered in Sec. 2(b) the matrix 4 is not needed
explicitly. All one needs is to be able to calculate matrix-vector products of the
form Av , for v any vector. Since A=F/(Z) for £ an approximation to a root of
(2.1), the matrix-vector products Av in the above algorithms can be replaced by

diflerence quotients of the form
Firv z[F(x+ov) ~F(R)] /e, @ a scalar.

The resulting algorithms will be referred to as Finite-Difference Projection
methods. In [2)], Brown has given a convergence theory for the combined
Inexact-Newton/Finite-Difference Projection methods which result when using
finite-difference versions of Arnoldi's Algorithm and GMRES to approximately
solve the Newton equations (2.2). We summarize these results in this section,
and then present a similar theory for a finite-difference version of the Conjugate

Gradient Method.

(a) Finite-Difference Arnoldi and GMRES

In this subsection we present a finite-difference version of Arnoldi's
Algorithm. We show how to relate the resuits of this algorithm applied to Az=b
to that of applying the regular Arnoldi method {Algorithm 2.1) to the perturbed

problem
{A+E)z =b ,

where b=—F(Z) and A=F(Z) . ¥We then state a result relating the size of the resi-
dual for the finite-difference algorithm to the sizes of the o 's in the difference
guotients. For more details, the reader is referred to the paper by Brown [2].

A finite-difference version of Algorithm 2.1 can be given as:

Algorithm 3.1 (Finite-Difference Arnoldi):
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1. For £, an initial guess, form g, =[F(Z +0,%,)-F(£)}/ 0, .

Set &:b—[,} Q:?‘,/u?‘,llz’ g, :3,.

2.Forl=1, - - do:
@ kerm g, - [F(R+a4)- F0)] /o,

A A A A
&) Set w, =¢. - é' ho¥, h, = 2,,, Do (=11

{=
A A
- w A - A A
l"'”ll " 1“"2 ) ‘UIH - Wlﬂ /Lzﬂ;l *

After 1 steps of this algorithm have been taken, one can compute the approxi-
mation

A A
A A -t 2T A
X = %X + vz. Hl 1 Yo >

A
assuming If}l exists. The hat’s are used to distinguish the resulting vectors and

scalars from those obtained using regular Arnoldi, Algorithm 2.1.

If I steps of Algorithm 3.1 are possible (that is, Uy #0 fori=2, - - - 1),
then the vectors gq,, - - - ,g; are linearly independent and the vectors Vg .‘3,
are an orthonormal basis for the subspace ﬁ=spa‘n(q L -»q1) . This follows

from the fact that step 2(a) above is simply a Gram-Schmidt orthonormalization

procedure. Next, let the errors in the finite- difference quotients be given by

&

A .
£ = g - AV (2n,1), 1)
If we let the NzN matrix E; be given by

E, = flvT;

1 ¢ (3.2)

A
where et =[¢£, ... £,]JeR¥* and V;=[¥, ... 5], then
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(A+ Et)'{}.‘. = fis For i1, 1. (3.3)

In [2], Brown has shown that applying Algorithm 2.1 (regular Arnoldi) to the per-

turbed problem
(A+ El)z = A, (3.4)

with z, =0, is equivalent to applying Algorithm 3.1 to the unperturbed problem

Az =n, (3.5)

again with £,=0 . (Recall that Az=b is equivalent to the system Az =7, , where

7,=b~Az, and z=z,+2 .) It follows that if £ is defined by

A AL A A oA

= HI VA =V He,
with f=]|%,||2 . then £; can be viewed as an approximate solution to the per-
turbed problem (3.4) generated by applying Algorithm 2.1 for I steps. In addi-
tion, equation (2.16) holds for the perturbed problem (3.4).

The residual associated with £;=%, +%; viewed as an approxirnate solu-

tion of the linear systemn Az =b can be expressed as
o A A
b—AXL = b-Ax, - A%
- —- 2 A A A, A
..[(b AX,) -r,,] +[r,, —(AfEl)z.J+ E 2,

1

f

or

no= 6+ [A-(ME)IR] + E3 (3.6)

b



-28-

where £,=q, —A%, =b -AZ, —f, . Thus, the residual f, can be thought of as being
composed of three types of errors: the first term on the right hand side of (3.6)
representing the error in ¥, , the second term representing the errors in solving
the perturbed system (3.4), and the last representing the errors in the
difference quotients. For the implemented algorithms in the ODE context
described later, we always assume £, =0 . This then gives ¢, =D . We now state a
slightly modified version of a result in [2].

Theorem 3.1: Let Z be an approximation to a solution z° of (2.1), where F/(Z) is
nonsingular with F’ Lipschitz continuous with constant y on a convex neighbor-

hood D in R¥ containing Z and z° . Consider the linear system
Az=b ,

where A=F(Z) and b=+(Z) . Let £, =0 and let 6>0 be given. Choose $>0 small

enough that

sYUAl, <), pyma'ilbn <<, G2

A

&nd

X+v € D -qu all ve RN bw‘.fl‘ "v”7_5 6-

Let ¢¥=(0, ... ox)TeRY be chosen so that | |oV | |<8.
Then for at least one le { 1, - ,N { the Finite-Diflerence Arnoldi

iterate £; given by

A A
Ql= r°| V

exists and satisfies

o—.I’

lb- AR, £

This result says that for o;{(i=1,---,N) chosen small enough, the
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approximation computed by Algorithm 3.1 can be made as accurate as desired.
Unfortunately, nothing can be said about the size of { required for a given 6,eas
Example 2.1 shows. However, even when the residuﬂ norm exceeds 6 for the
final £, computed {l =l,.,) . it may still be possible to continue. This follows from
the fact that the regular Arnoldi iterate z; is always a descent direction for the

full nonlinear problem. If we define the function
T
9(x) = L F(x) F(0),

then a descent direction for g at the current approximation Z is any vector p

such that

V9(®)Tp <o,

where Vg (f)=(a—a£—(f) s, gaf—(i:'))fsmce Vg(z)=F(z)TF(£)=-ATb,p is a des-
1 N
cent direction for g at T if
—b7T 4p <0.
For such a direction it follows that g (Z +Ap)<g(Z) for all A small enough. Brown

[2] has shown, when z,=0 and the Arnoldi iterate z; exists, that

~LTAxL =-bb<a for al 1=1,.. N

Hence, z; is always a descent direction for g at Z . For Algorithm 3.1, when £,=0

and £; exists we have
T x T T.12
-b ﬂxl- ~b b +b£yl.
Hence, if the &; 's are small enough, then Z; will also be a descent direction for g
at Z . See Brown [2] for more details.
In practice one would not try to enforce condition (3.7), which may be

overly restrictive on some problems. To see this, note that F=I-hB,J in the

ODE setting, and so the Lipschitz constant 7y for F'is simply hB,7y . where ¥y is
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the Lipschitz constant for 8f /8y , the ODE system Jacobian. For a typica!l stiff
problem 7, can be quite large, and so trying to force (3.7) to hold would result
in too small a value of A . This is the price one pays for using norms in the
analysis as the Lipschitz constant ¥ measures the worst-case nonlinearity in F .
A better approach is to choose the g; so that the errors in the finite-difference
quotients are small. See Brown [2] for more details, and Dennis and Schabel [7]
for more general information on computing finite-diflerence derivative approxi-
mations. Since Arnoldi and GMRES both use the same Arnoldi process, a com-
pletely similar theory is true for the finite-difference version of GMRES. We refer

the reader to [2] for more details.

(b) Finite-Difference Conjugate Gradient
In [2], Brown has presented a convergence theory for a finite-difference

version of the Generalized Conjugate Residual method of Eisenstat, Elman and
Schultz [8]. Here, we show how a modification of this theory will allow us to prove
a result similar to Theorem 3.1 for a finite-difference version of t.hé Conjugate
Gradient Method. The main tool will again relate the results of the finite-
difference algorithm to that of applying the regular algorithm to a perturbed
problem.

If we replace the matrix-vector products in Algorithm 2.3, then we have
the following:
Algorithm 3.2 (Finite-Difference Conjugate Gradient)

1. Set @, =[F(£+0,£,)~-F(Z)]}/ 0, and let §,=b -0, .

Set §,=7, .

2 Forl=12, - do:
"T’F{F(f“’atﬁz) - F(f)]/ ]

8, =f_\Fi1/ Bl
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£,=%,_,+0,5,
£ =F_ -0,
Bio=flf/#l#i

Pii=h +§z+1ﬁt .

The hat's above again are used to distinguish the resulting vectors and scalars
from those obtained using regular Conjugate Gradient, Algorithm 2.3. Note that
once £, has been chosen and ¥, is defined, Algorithm 3.2 applied to Az =b is the

same as applying it to
Az =F, , with z=z,+% and £,=0. (3.8)

Suppose ! steps of Algorithm 3.2 are possible and the vectors $, ... f
are linearly independent. Define P, =[f, ... ,}eR"® and note that B has full
column rank. Let

£o=i—AB (=1, 1)
be the errors in the difference-quotient approximations, and let the NzN matrix
- £, be given by

E=¢/(BJB)F, (3.9)
where £'=[s, .. ¢]eR™ . Then

@=(A+E)B (=1 .0).

We can then define the perturbed problem

(A+E)z=7, . (3.10)

Note that £ is not likely to be symmetric and at the moment A+FE; is not neces-
sarily even positive definite.

We next give a result which shows that applying Algorithm 3.2 to the

reformulated problem (3.8) with £,=0 is equivalent to applying Algorithm 2.3 to
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the perturbed problem (3.10) with 2,=0.

- .

Theorem 3.2: Assume that ! steps of Algorithm 3.2 applied to (38) have been

possible. Let Ri=[f, ... f]. W=[®, ... %], B=[f: . Hin]. &. ... & end

32...._3“1 be the resulting scalars and vectors, and let £; be

the approximate

solution of (3.8). If B,=[§, ... ;] has full column rank, then [ steps of Algorithm

3.2 applied to (3.10) are possible. If /&, ¥, P 41.0,.... 04.B2. ... fis) and 2; are the

resulting scalars and vectors, then

R=R.W=W P = Py oy=8(i=1, - - - 1).B=Bili=2, -
z;=2; and
fy=F, —(A+ E,))%, , with E, given by (3.9).

Progf: The results follow from the fact that @y =(4+5)f; (i=1,
ply from the structure of the algorithms. QED

From relations {3.6) and (3.12) we next have that

Pi=e,+H+E %),

and so

Zislfll=lle o+ |17 ] [ | B2 ] |2 -
From (3.9),

&=l eIz | (ATR) A2,

col41),  (3.11)

(3.12)

-+ -,1), and sim-

{3.13)

and so we must find bounds for ||¢'|]; and H(ﬁ{ﬁ;)"f’{l |2 . To bound the

norm of g} , assume that F’ is Lipschitz continuous with constant 7 in some

neighborhood Din R¥ of a solution of (2.1). Then by Lemma 4.1.12 in Dennis and

Schnabel [7] for each i=1, - - - I

A A2
MR+ o P)-FR-Foo . « Diqmudn, ,

as long as £+0;9;£D . Thus,
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Hed lesi @4l lesHoil - 1Ifid15 @=12). (3.14)

Letting | ||| 7 denote the Frobenius norm of a matrix and ¢! =(o,, ... ,m)TGR‘)

l
2 el e[ |5 = _glllmlig%

¢ %
<Z{ Y aHl )"
1=1
Now, since P=[f, ... $;]. we have | |f;| |z<||P]|zfori=1, - -l . Hence,

Het = 1A 1E o' 2.
and so from (3.13) we have

al - A
Ailleallo+ HHIBNENG 12 1BTRY BT 1e a2 + 001, -
Similarly, from the Lipschitz continuity of F,
TENIPEP EARIEATES

and we can write

pis o, 1112 13+ 117 e+ ZHIANE 0 L, 1| BPR) B2 |18 1o (3.15)

We will use inequality (3.15) in the proof of Theorem 3.6 below.

To bound | |{PTP,) 1P} |, . we begin with a review of some of the pro-
perties of the Conjugate Gradient Method, and then introduce a definition and
prove some technical lemmas.

Theorem 3.3: Consider the linear systemn Az =b , where A is symmetric and posi-
tive definite. Suppose that ! steps of Algorithm 2.3 are possible with 7;#0 . Then

the following are true:
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v'rj=0forizj ,i,j=0, - -l

r/p;=0fori=1, -l

plAp=Ofori=1, -, l-1

.span(’ .- Pre1)=span(r,, ... 1)=span(r, Ar, ... Alry)

1, #0 implies Pr1#0

The conjugate Gradient iteraltes z; converge te the
exact solution A™'b imat most N ilerations.

Proot:
See Golub and Van Loan [10). QED

Let the function d; : R¥** 3R be defined by

d(B) = min(| | Bg | |2 : geR* with ||g||=1),

(3.16a)
(3.16b)
(3.16¢)
(3.184)

(3.16¢)

(3.16f)

for any Nzk matrix B . Clearly, d;(B)>0 if and only if B has full column rank.

Additionally, if beRY , then dy (B)>d,,([B,b]) for [B,bler™®*1). Furthermore,

if B has full column rank, then

[ I(B7B)'B| |2 = 1/de(B) .

For a proof of this last fact, see Brown [2].

(3.17)

Lemma 3.4: Consider solving Az =b using Algorithm 2.3 where A is symmetric

and positive definite. Assume that I steps have been taken with 7;#0 . Let

R=[r,....m]), W=[w, ... w]and Py,=[p,, . .. Pi+1] - Then

[ 7o | |22k s (R )2di sy (R2)>0, (k=0,---.1)
Hwy | |e2dp (B, )=d (#,)>0, and (k=1, - - 1)

o | 2de (R )=diy(Pian)>0 (=1, - - - 1+1).

(3.18a)

(3.18b)

(3.18¢c)
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Proof: I any r;=0 with i<l , then Algorithm 2.3 would have given z; as the exact
solution and the algorithm would have terminated at step 1<l . Thus r;#0 for all
i=0,1, - - -,l . By (3.16a) all the r; are orthogonal and so d;4,(%;)>0 . Since

d,(R)=117e]l2 ., we have
H7o | |22d2(R))2ds(Re) ... 2di41{R;)>0,

which gives (3.18a). By (3.16d), di4;(F+1)>0 which immediately gives (3.18c).
Since W;=AP, , if W,y =0 for some yeR' , then AP,y =0 which implies P,y =0 since
A is nonsingular. Next, P,y =0 implies ¥ =0 since P, has full column rank. Thus,
d;{#,;)>0 which gives (3.18b). QED

Iemma 3.5: Let Z be an approximation to a root z° of (2.1), where F'(Z) is sym-
metric and positive definite, with F' Lipschitz continuous with constant ¥ on a

convex neighborhood D in R¥ containing Z and z° . Consider solving

Az =b, where A=F(Z) and b is arbitrary , (3.19)

using Algorithm 2.3 with initial guess z, =0 . Assume that I steps have been taken
with r;#0 , and let w,;=4p, and P ,=[p.,_Pi+1] . Then for each £ in (O.t:')v , where

£'=d, ,{(Pi+,) , there exists a 750 such that

1+1 steps of Algorithm 3.2 applied (3.19) with £,=0 are possible, (3.20)

dul(ﬁul)?dHl(PHl)"E)O- (3.21)
|1 Bis1—Risa| l2<e .| | Proi=Pray| o<z, and (3.22)
A+E,, is positive definite with (3.23)

{1 Epaal]e=< 121(8+| | Pray) 1227 (dia(Prar) —€)

whenever ||t} |<T.

Proof:let £>0 be chosen so that
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e <t . (3.24)

Next, let >0 be chosen so that Z +veD whenever | |v]]e<u .

Then choose 7>0 so that

T<pu/(e+]| Pl l2). and (3.25)

FHe+ 11 Pl 127 (@iaa(Praa)=—2) < Amanl4) (3.26)

where Amin(4) is the smallest eigenvalue of A . Note that since z, and £, are both
zero, ¥, =F,=p,;=p,;=b. Further, b#0 since n,#0, and by Lemma 3.4, (3.18a) -
(3.18c) hold. From Algorithrn 3.2 and the Lipschitz continuity of F . 9,=D,(0,) is
a continuous function of 6, in a neighborhood of ¢,=0 , and ,»>w, as 0,—>0 .

For |o,|<T define

£,=0,-Ap, and E,=e,(F1p,) 5T .
so that

(A+E\)p =0, -

Using (3.25), Z+0,6,¢D since | |0,5,}|e=] 01| Ip1l 2 =7(e+ |1 Pl |2) <k

Thus, by {3.14)

Hel le=ZHoyl+ 1154113

5211'011 e+ Pl 127
Using {3.18c), we have

1By les FHe+ [Pl 1207 1Ipal |2

s%-(ﬁ'l [ Praa 1202/ (disr(Pisa)-2)
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whenever |0,|<7 . By (3.26) || E,| |2<A\min(A4) . and so A+E, is positive definite.

This then implies
ATA _ AT A
piw, = P (A+E)P >0,

since $,#0. Thus, &;.£,,f,.8; and $, can be formed, and it is clear that each of

these is a continuous function of o, for 0, near zero.
Furthermore,

a,—éa,,fl-azl.ﬂ-—)r ,.'ﬁz—éﬁz and f,—>p, as 0,—>0.
Hence, by choosing 7 smaller, if necessary, we have
|| Ri—R,||2<¢ and || Po—Ps) |2<e whenever |o,|<T. (3.27)
Now, for any aeR? with | |a]]2=1, we have
[ Poal |2=|| Peat+(Pe=Pp)al |,
2| | Pea| |2=1 | Pa=Pel |2

ng(Pz)"’E
2dl+](P‘*' ) -£
>0

by (3.18c), (3.24) and (3.27). This gives da(P;)>d, ,(P;+,)—£>0 and so P]P; is non-

singular with $,#0 . Next, form 1, and define
£2=1p—APo and Eo=e?(PIP,)1PL , where £2=[£,,2,] .

Then by (3.25) T+o,0.eD since

|logB2l 12| 02| |1 ol la=T{e+ ]| Pel |2)<7(e+]| | Par| |2)<u . Thus, by (3.14)

[g] |2$%‘|Ui| Al 12
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sg-m (c+l‘|PmHe)’ (=1,2)

whenever | |o®||<t, where 0®=(0,,0,)"€ R? . The bound for || E3| |¢ is then

|1 Bzl |es] e8] 1, / do(P2)

=||£%] | 5/ do(Py)

<24 102 [e(e+| | Pl |20 (dhor(Piur) )

S‘EZ'(CH | Piarl 1227 (ds1(Pror—t)

whenever | |o%||.<7 . By (3.26)' A+ E, is positive definite, and so

HI0,=pI (A+E5)p2>0,
since fz;éo . Thus &2.E2,'F2,33 and s can all be formed, and again it is clear that
each is a continuous function of the vector o® for 62 near zero, with

B+ 09,8292, F2 472,83+ B3 and Hg-+ps as 02-0 .

By choosing 7 smaller, if necessary, we have

] lﬁz"‘ﬁzl ,2(8 and l IPs“Psl |,<£ whenever ] "72! lgST .

This last inequality implies dg{Ps)=d,,,(P,,}-£>0 in a way similar to that for P,

and so ﬁ{ﬁs is nonsingular with $3#0 . Now form %@g and define

€3=’ITJ3—@3 and E3=83(ﬁgp3)'lﬁg where €3=[81.£2.83.] .

Similarly, || Es] |2 satisfies the same bound as that for | |E2| |z . and so A+Esis
positive definite.

This process can be continued for -2 more steps since P, #0 for
=1, - -,1+1, and choosing 7 smaller if necessary at each stage. We note that

since 7, #0 , it is possible to compute z;4;,7;4; and P2 using the Conjugate Gra-
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dient Method {Algorithm 2.3). Also, the fact that §;,,#0 allows the computation
of Wiy s and Epyy=et* (PR P) Bl with

Bl 1Dy =51 (A+E10))pr >0

for 7 chosen smaller if necessary. Thus f;,, exists and is a continuous function of
o**! near o *'=0 with f},,27;4, as ¢'*'20 . Thus, by choosing 7 small enough we

will have

dtn(-pu)? dis1(Pis)-€ >0
| |kl+1—R¢+1| |2<e, ] !pzn"Punl l2<e,

A+E),, is positive definite, and

| Einlles ZHe+ Pl 1% (sl Pror)=2)

for all | |o**!]|p<7. QED

The next theorem is the main result for the finite-difference CG

method, and is the analogue of Theorem 3.1 for Arnoldi's method.

Theorem 3.6: Let T be an approximation to a root z° of (2.1), where F'(Z) is sym-
metric and positive definite, with F' Lipschitz continuous with constant 7 in a

neighborhood D in RY of z° containing Z . Consider solving the linear system
Az =b , (3.28)

where A=F(Z) and b=—-F(Z) . Let 6>0 be given. Then there exist constants
o,7>0 and an integer L<N such that the Finite-Difference CG iterates Z; exist for

1=0,1, - - - ,L and satisfy

pi=|1b—-AZ; | |<6 (3.29)

for at least one <L , whenever | |6t |{<7, of=(0, ... 0;)TeRL , and |0, |<a.
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Proof: Lel £, be an initial guess for the solution A~*b and form %, =b -, , where

& = [FR+ax) - F)] /0

b
where |0, |<a and a>0 is chosen so that
a7llf.“§sd and £+0,%, D whenever |o, |<a. (3.30)
i £,=0, then b=10, , and so
2 =llb-Axl, ¢ Xiginil, < £
P,— "XOI—‘i_‘dB'xoz—ﬁ')

using (3.30) and the Lipschitz continuity of ' . Thus, if f, =0 we are finished.

For ¥, #0 , let z=£, +2z, and then applying Algorithm 3.2 to the problem
Az =F, ,£,=0, (3.31)

is equivalent to applying Algorithm 3.2 to (3.28) with initial guess £, . Next, apply
Algorithm 2.3 to (3.31) with 2,=0. Let L<N be the maximum value of ! such

that the CG iterates § 2; } exist for =1, - - - ,L and satisfy
A
W, = I(r;,-/lzll(,_ >0 for 1=1,--., L-1.
. Since L is the maximum such value, 2;=47'f, and 7,=0 .

Lemma 3.5 applied to (3.31), with b=, and z replaced by z , then implies that
for each £ in (0,¢) , where £ =d;{P.) , there exists a 7>0 such that:

te
L steps of Algorithm 3.2 applied(3.31) with 2, =0 are possible, (3.32)

dy(Pp)=d; (PL)-£>0, (3.33)
[ RL—Ry||2<e.| | PL—R]|2<¢, and (3.34)
A+E; is positive definite with (3.35)

Bz |les ZHe+ 1P 12?7 (d (PL)-2)=7C

AT, mane-
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whenever ||ol||z<7 . By use of the Perturbation Lemma (see Theorem 3.1.4 in
Dennis and Schnabel [7], and the proof of Theorem 3.3 in Brown [2]), T can be

chosen smaller if necessary so that

| 1(A+EL)! ] le=2]|A7Y |2.
The residual for £; =%, +£; as a solutiion to (3.28B) is then
Froe, +F +E 2] .
Hence,
Pr=liTelle= [leo o+ |Fe] |2t | Enlle] 2Ll ]2.
Next, let zz be the exact solution of the perturbed problem {4+ £} )z =f, . Then
erlle< [I{A+EL) P [ le< 2] A7 2 | o]z

Since

E1—2p=(A+EL ) [(A+EL)2; 7o ]
=—(A+E.) 7,

we have

HELllz= 11201 let THA+E) M e 11712 € ANA™H, (Wily + UFLIL),
Thus, using (3.15)

pr= S5, 115+ 2147 le T C(l b-4%, | |+ FH15 1 15)

+11fL112(1+27C| 1471 [2)

<L w2147 arC(l 1822, |12+ D+ 11711 +27C1 1471 12) -

Since ||F;||z»0 as ||ol||220 we easily see that (3.29) holds by choosing T

smaller, if necessary. QED
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As we noted earlier, Arnoldi’s Agorithm is equivalent to the Conjugate
Gradient Method when A4 is symmetric and positive definite. Therefore, when
z, =0 the CG interates z; satisfy

~bTAz;= -bTb<0 forl=1,- - ,N.
Thus, z; is always a descent directioin for g(z)=kF (z)TF(z) at z=Z. Similarly,
the finite-difference CG iterates £; will be descent directions (when £,=0) if the

&;'s are small enough.

Rl oliE L LRy S
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4. Scaling and Preconditioning

The basic linear iteration methods considered in the previous sections are not of
much practical value as they stand. As discussed in [4], realistic problems
require the inclusion of scale factors, so that all vector norms become weighted
norms in the problem variables. However, even the scaled iterative methods
seem to be competitive only for a fairly narrow class of problems, characterized
mainly by tight clustering in the spectrum of the system Jacobian. Thus for
robustness, it is essential to enhance the methods further. As in other contexts
involving linear systems, preconditioning of the linear iteration is a natural
choice. In what follows, the use of scaling is reviewed, and then preconditioned
scaled iteration methods and algorithms are studied in a general setting.
(a) Scaling

The user of an ODE solver must provide parameters that define error
tolerances to be imposed on the computed solution. In LSODE, there are relative

and absolute tolerances RTOL and ATOL such that the combination

w, = RTOL;

.v;;_,| + ATOL

is applied as a scale factor for component y* during the time step from {,_; to

t,. Specifically, a weighted root-mean-square norm
[z ||wews =[N Zjl\l(zi/wi)z]l/z

is used on all error-like vectors. Thus if we define a diagonal matrix
D =~V Ndiag (w,, - -+, wy),

we can relate this to an Ly norm:

[z |1 wrus =110z {2 .

The linear systems P s =7 in (1.5) or {2.2) can be restated in scaled form in
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terms of D™'s =§ and D' r = 7. Likewise, the nonlinear system F{z) =0 can
be restated in a scaled form- f(?ﬁ)= 0. The scaled version of the I0M algorithm,

denoted SIOM, is described in detail in [ 4 ].

(b) Preconditioned Krylov methods.

When a basic iteration fails to show acceptable convergence on a given
problem, preconditioning is often beneficial, espec.ially whén the cause of the
slow convergence can be identified with one or more parts of the problemn which
are (individually) easier to deal with than the whole problem. Generally, precon-
ditidning in an iteratiye method for solving A z = b means applying the method

instead to the equivalent system
(P apPly(Pz)= (P lo)or Az =0, (4.1)

where P, and P; are matrices chosen in advance. The pregonditioned problem is
easier to solve than the original problem provided that (1) linear systems
Pz =c and Pz = ¢ can be solved economically, and {2) the product P; P;is in
some way close to A. Condition (1) is essential because carrying out the method
on A Z = b clearly requires evaluating vectors of the form P! c, at the begin-
ning of the iteration, during each iteration, and at the end. Condition (2) is less
well-defined, but means simply that the convergence of the method for Az =b
should be much better than for Az = b, because b is somehow close to the idgn—
tity matrix (for which convergence is immediate).

The system (4.1) is said to be preconditioned on both sides, with P; the
left preconditioner and Pz the right preconditioner. Either matrix could be the
identity, and in that case one is preconditioning on the left only or right only,
with a single matrix approximating A.

It is essential that the scaling of the linear system (discussed above) be
retained in the preconditiéned methods. Since the scaling matrix D is based on

the tolerance inputs to the ODE solver, D™! can be thought of as removing the
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physical units from the components of z_so that the components of D'z can be
considered dimensionless and mutually comparable. On the other hand, the
matrix A = /-h8,0f / 0y is not similarly scaled, and so, because P, and P; are

based on approximating A , the matrix
A=P' AP

is also not similarly (dimensionally) scaled. More precisely, it is easy to show
that if the {i,j) elements of P; and P, each have the same physical dimension as
that of 4, i.e. the dimension of %/ y;, then so does the (i,5) element of A. The
same is true for the vectors £ and b: the ith component of each has the same
physical dimension as that of y;. It follows that the diagonal scaling D! should
be applied to I and b in the same way that it was applied to z and b without
preconditioning. Thus we change the system (4.1) again to the equivalent scaled

preconditioned system

L

(D' AD)(D7E) = (D7bJor & £ =T . ' (4.2)
Combining the two transformations, we have
A=DPPIAPID £ = D' P b=D""P b . (4.3)

An alternative point of view is to rescale the system first, to .
(D'AD) (D7'z) = (D7)

and then apply preconditioners &, &2 to D7'AD, to get
(Qr'D7'ADQ:") (Q:D7'z) = (Q1'D7'b) .

But if the @ are unscaled to P, = D D71, this

system is identical to (4.2).
Consider now one of the Krylov subspace methods applied to the scaled

preconditioned problem. These methods all have in common the generation of
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the Krylov sequence

Kp7,:=04, - - }

from the initial residual 7,. We can assume that T, = 3-—2‘:’0 corrésponds to a
given initial guess z, and residualﬁ; = b—Az, for the original problem, by way of

relations
= D'\Pyz, .7, = DV P,

The correction vector £ -Z, is chosen from the span of the sequence I? trun-
cated to a given finite length (the number of linear iterations performed). But

from the relation T = D 'P,x, the subspace in which the correction z -z, is
chosen is instead the span of PElDE (truncated), and this is the subspace we
are ultimately interested in. Thus for a fixed matrix A and fixed initial residual

T,, define

K(P,.Py) = P7'DR=fp; ' DAF, =01, - §. (4.4)

This is the sequence whose first ! vectors are used to get z;-z,. The following

easy result helps to clarify the roles of left and right preconditioning.

Thesrem 4.1: The transformed Krylov sequence given by Eq. (4.4) satisfies

K(P\.P2) = K(I.P, P) = K(P\P2.I) . | (4.5)

Proof: The general vector in the sequence K(P; P,) is

P3ID(D I PIAPSIDY DV P I, = P (PrIAPS ) Prir,

= P3P AP Py, = (PFYPT'A) PP, .
The last two expressions are identical to phe corresponding vectors in X (I,P,P3)
and K(P,Ps.1) respectively. Notice that all D and D! factors also drop out. QED
The above result says that the subspace of interest is independent of

the scaling matrix D, and independent of whether the two preconditioners £,
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and P; are applied on opposite sides or their product applied onl one side or the
other. Moreover, if P, and P, ¢commute, the subspace is also unchanged if the
preconditioners are interchanged: K(P,,Pz)=K(P2.P,;). However, this indepen-
dence does not hold in the actual algorithms. Dependence on D is evident every
time a convergence test is applied to the norm of a vector. Dependence on the
arrangement of the preconditioners (as weli_as on D) arises in the posing of
orthogonality or minimality conditions on the résidual. For example, in the
Arnoldi method the residual A2 — ¥, must be orthogonal to ]A('; (the l-dimensional
subspace spanned by the first I vectors in ]?) with Eei}. This equivalently

rewritten as

D7P{1 (42 ~1,) LD\ PoK, with zeK; = Pi'DRy

in the case of preconditioners (P),P,). But for preconditioners (/,P;Pg)this con-

dition becomes

D YAz —1,) LD 1P\P2K,, z€K
and for preconditioners {(P,P,./) it becomes
DP P Maz DK, | zek,,

and the three conditions are not equivalent in general, although X is the same

in all three.
{c) Preconditioned Krylov Algorithms.

For given preconditioners P; and P,, specific preconditioned algorithms result
from applying the basic IOM and GMRES algorithms of Sec. 2 to the transformed
system AZ=b in (4.2). Most of the algorithmic issues that arise in the unprecon-
ditioned case carry over directly to the preconditioned case, and we will adopt

the same decisions that were made earlier (and described in [4]}, as follows:
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s« We take z, =0, having no choice readily available that is clearly better.
« We will incorporate the scaling in an explicit sense, storing
vectors 7; that arise in the method as it stands rather than

unscaled vectors DU; =v; .

* We use a difference quotient representation

W1 (ty+ov) = ()0, o] lwrus)”

although in the code described in [4], we also included a user option to

supply Jv in closed form.

» We use the modified Gram-Schmidt procedure for orthogonalizing basis

veclors.

e VWe handle breakdowns in the same same manner as in the basic algo-

rithms.

« We will use the same constant 6= .05 ¢, as a bound on the residuals
|1b-Az; || yrus ( £, is the tolerance on the non- linear iteration).

The presence of preconditioning does have some side effects on the

algorithm, however. One is that we must actually deal with the

operator
Av=v-hg, Jv,

as opposed to dealing wiih Jv and making corrections accordingly. This is

ol

because the span [% A&,, - .A'%,] is not generally the same as

% J%

oo 17, Jwith J = D7V PV P5D, unless PyPp=1.

Secondly, the residual quantity p; computed during the algorithm is
[ 171112 = | |8 —4Z| |2, and in general this is not directly related to the quantity
V7] wrus = | |b—Az; || yrus in which we are really interested. Instead, we have

arelation 7, = D™'Py'r, and hence
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p=llFllz= 1P s - | (4.6)

In order to impose a convergence test that comes closer to the test
|17:] | vrus <4. including the effect of P, when it is nontrivial but without going

to the extra expense of computing |}7;] | vrus . Wwe use a test
P < 8= S|P | | wrus/ 1mo || wrus -

That is, the factor by which P;! reduces the norm of 7, is_ included as an
approximation to the factor by which P;! would reduce the norm of r,. In par-
ticular, the convergence test made at 1=0 is precisely ||7, || ypus <0, indepen-
dent of P,.

Because of Eq. (4.6), there is some theoretical advantage to doing all
preconditioning on the right only, but whether this is a real advantage in prac-
tice is unclear.

We can now state our algorithms for scaled preconditioned versions of
the IOM and GMRES method. These are given for arbitrary z,, for the sake of

generality, and denoted hereafter by SPIOM and SPGMR, respectively.

Preconditioned Scaled /0H (PSIOM):

1. (a) 7, =b —Ax,; stop if | |7 || wpus <6 .

(b) B2 0P compule RN, = Bl o0 5

8= Pi'ro | | wrus/ 1170 | | weus, ©1=F 7 Hro |l

2. Forl=12 - -+ lp.y do:

(a) Compute A5, = DVP[1AP;DD, .

(b) o =5~ % -y Fui whered, =max(1.l-p+1). by = (45,.%)

€ hyary = alle. B = ﬁ;lﬂ/;:l«l-.l.l .

(d) Update the LU factorization of A=(Fy)[tzt).

(e) Indirectly compute p;=| |b 4%, || b y (16)- (2.17).

(f) If p, <8, go to Step 3; otherwise go to (a).
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3. Compute £=| |7, | |V A e, 2,=2,+P; D5,

Scaled Preconditioned GMRES (SPGMR):

1. (a) 7o =b —Az,; stop if | |7, | | wpus <6.

(b)%=D"'R™ fo, compute IEIL =URM e )l ems »

8'=6 | Py || waus/ 1170 | | maus 1=/ 1o |12

2. For l=L,2, - - - ey, doO:

{a) Compute ZUFD"P—IIAP-ZIDF;.

(b) 7;1+1=ZW+1—2}=i°g1¢17,~. where 1, =max{1,l —p +1).hy =(40,.7;).

(€} Braa= 115 1l 2B =T/ Rt

(d) Update QR factorization of I‘-'I;=(IT1,)[(I +1)zl].

{e) Compute residual fp indivectly by (2.2¥)-(2.27).

(f) It p; <6, go to Step 3; otherwise go to (a).
3. Compute | |7, '! \le;Tel = (:iql) ‘z"=f’;.7?'_11§¢ L=, +P—21D§ )

In the case of the CG methbd, further considerations are necessary

because of the assumptions made there that 4 is symmetric positive definite. CG
with preconditioning, or PCG, involves a single matrix M which is also assumed to

be symmetric positive definite. In the absence of scaling, the PCG algorithm is

the equivalent of applying CG to the transformed system,

(M—IIZA_M'-IIZ) (MIIZz) = (M-IIZb ),

but is expressed in such a way that no square roots are involved {see Golub and
Van Loan [10]). In the presence of scaling, there seem to be two choices as to
how to apply PCG, depending on whether we assume symmetry in the original or
the scaled form of the syétém (they cannot both be symmetric for a nontrivial
scaling matrix D). In either case, we certainly want to measure the scaled resi-

dual, i.e. test ||b—Az|] ygus. in the convergence tests. We therefore arrive at
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two diflerent algorithms, as follows:

Under the assumption that A itself, and a preconditioner M approximating A4,
are symmetric positive definite or nearly so, we can apply PCG to Az = b without
use of scaling except that the norm of 7,=b-Ar; that we test is

|171] | wrus = || D77y | |2 . We will refer to this simply as PCG.

Preconditioned Conjugate Gradient (PCG). .
1. 7, =b—Az,; stop if | |7, |] wrus <96.
2. For1=1,2, - - -l . do:

(a) Compute 2,y = M7 'r_,.

(b) i=2", ra/7% Zg"'z—z (By=0).

(c) p=z 1 +Bipi-1 (P1=2) -

(d) Compute Ap; .

() ay=2/ 1,1/ ferpl .

() =z roupy, Ti=TIo— o Ap.

() I | |7y ] wvrrs <6 . stop; otherwise go to (a).
'Alternatively. it may be appropriate to assume instead that the scaled matrix
A=D71AD, and the corresponding scaled preconditioner ¥ = D™'MD, are both
symmetric positive definite, and to apply PCG to the scaled system
Az=b(Z=D'z,b=D"'b) with preconditioner M. We refer to this as scaled PCG,
or SPCG. There appears to be a slight advantage in efficiency to making the
scaling implicit by rewriting the algorithm in terms of unscaled quantities. The
result is the same as the above PCG algorithm except in the calculation of the

inner products in §; and ¢; , which are now
Bi=2/,D7r_y/ 22D, o (4y=0). =2/, D11/ /D2 4p, .

This SPCG algorit:hm can also be obtained by applying CG to the transformed

system (4.2) - (4.3), in which P, = P, = /%, keeping in mind that M=D7MD is
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assumed to be symmétric. while M and M'/? = DI*/2D! are not (in general).

We have implemented both PCG and SPCG, filling in algorithm details in
the samé way as done for the other methods {using z, = 0, a difference quotient
Jv,0=.05¢,, etc.). Of course, each algorithm is subject to breakdown when applied
to a problem for which the assumed symmetry or definiteness fails to hold. Thus
the denominators in §; and a; are tested for being zero before the divide is

done.
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5. Preconditioners for Reaction-Diffusion Systems

The preconditoned Krylov su.bspace methods described so far are quite general
in nature, with preconditioner matrices that are as yet unspecified. In this sec-
tion some specific choices will be described, as motivated by‘ODE systems that
arise from PDE systems by the method‘ of lines (MOL). At this point, our
approach attempts to compromise between totally general methods, in which
problem structure is not exploited at all, and totally ad hoc solution schemes, in
which the algorithm and problem features are so closely lﬁlked that flexibility as
to problem scope js lost. Here the preconditioners will exploit problem struc-
ture, within a setting of general purpose methods {BDF, Newton, and Krylov). The
genéral and special parts of the algorithm are logicaily well separated. To the
extent that some storage for preconditioner matrices (and associated data) will
be required, our methods are no longer truly matrix-free in some cases. How-
ever, since storage economy (as compared to traditional stiff system methods)
is still a prime concern, any choice of preconditioners should be strongly

influenced by its storage costs.

{a) Problem Structure.

The class of problems we shall concentrate on here is that of ODE sys-
tems in time that are the result of treating time-dependent PDE systems by
some form of the method of lines. Assume that a vector u=u(t,z) of length pl is
governed by a PDE system in time f and a space variable z {of any dimension) of

the form

du/dt= R(t,z,u) + S(t,z,u), : (5.1)

plus initial and boundary conditions, in which R represents reaction terms and S
represents a spatial transpbrt. operator in z (diffusion, advection, etc.). Thus K
is assumed to be a point function of « , while S contains partial derivatives of ©u

with respect to z. The MOL treatment of such a system consists of representing
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the spatial variation of 4 in a discrete manner, and thereby obtaining a semi-
discretized form of (5.1) in which S is replaced by a discrete function, while the
time derivative remains continuous. To be more specific, but without digressing
unduly into MOL techniques, consider traditional finite difference discretizations
of (5.1). In this case, discrete values u; represent u(t,z;) at g discrete mesh
points z; and suitable difference approximations to S{t,z,u) at each z;, and to

the boundary coyndition's are formed. The vector
y=(uy. )T
of length N=pg then satisfies an ODE system
y=R(t,y) + S(t.y), (5.2)

with gi\;en initial conditions, in which K and S are discrete forms of R and S.

Of course there are many variations on this approach (staggered grids,
moving grids, etc.) and there are radically different discretization choices, not-
ably the various finite element schemes. The latter generally result in ODI sys-
temns that are linearly implicit, with a square mass matrix multiplying y. For the
present, we will assume that, whatever the spatial discretization, the ODE sys-
tem has been put into the explicit form (5.2) (possibly by multiplying by the
inverse of a mass matrix), although it is a straightforward matter to extend our
methods so as to treat linearly implicit systems as such. In order to reflect this

greater generality in (5.2), we will denote the global vector ¥ as
y=(y1. - )T (5.3)

in which each of the g blocks ¥; (each of length p) is associated with a point
z=z;, but may or may not represent a discrete value of the original vector ¢ in
(5.1).

In (5.2), the essential feature of the additive splitting E+5 is that R does not
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involve any spatial coupling, while S involves little or no interaction between the
components of y; at any giveri point z;. Thus the individual blocks of (5.2) can be

written
Be=Li(ty)=Re(tm) + Sty - ), (5.4)

where F; is a function of 3; but no other ¥;. while the dominant feature of S; is
the coupling among various y; arising from the discretization of spatial deriva-
tives.
(b) Block-Diagonal Preconditioners.

T6 obtain a preconditioner matrix M that is intended to approximate
the Newton matrix A=J-hf,J, the most obvious approach is to consider a
matrix L that approximates the system Jacobian J, and use #=/-h§, L. For the
blocked ODE system given by (5.2)-(5.4), a natural choice for L is one that is
block-diagonal and hence can accurately reflect the interaction of the com-
ponents at each spatial point, but not the spatial coupling. Thus consider a

block-diagonal matrix

B=diag(B,. - - .B,) (5.5)
in which each B, is pzp. We can get B to approximate J in one of two ways:

B;=df/ 0y, (i** diagonal block of J) (516)
or

B;=0FR./ dy; . ‘ (5.7)

We will refer to these choices as the total block-diagonal and the interaction-

only approximations, respectively. They differ by 85,/ dy; , the diagonal part of
the discrete transport Jacobian. |

In either case, the computation and processing of the matrix B and M=/-hg, B

is certainly a nontrivial matter. It may be that the problem permits the B; to be
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supplied in closed form fairly cheaply, but in most practical cases, we expect
that this is not feasible. Then a diﬂ'erené:e quotient approximation to & must be
done. For this, we assume that a routine to compute the individual blocks
Ji(t.y) (in the total case) or K;(t.%;) (in the interaction only case) is supplied
and is reasonably inexpensive. The cost of one such evaluation would be
expected to be about 1/g tirﬁes that of evaluating all of f (¢ )=y (somewhat
more in the total case, somewhat less in the interaction only case). Then a
difference quotient estimate of B; will involve p such calls (assuming a base
value of f; or F; is saved for use in the difference quotients, bul without exploit-
ing any sparsity structure within B;), and the total cost of & wi.. be about that of
P evaluations of f.

Once F is evaluated, it is subjected to LU decomposition, and the LU
factors of the blocks are saved. Then these are used as needed whenever a vec-
tor B~ is called for. Periodic reevaluation of B is done by the same strategy
used for traditional methods involving evaluation and use of the Jacobian J.

The biock-diagonal structure of B allows for considerable potential
speedup if the scheme is implemented on a multiprocessor. The various blocks,
corresponding to the various spatial points, can be evaluated, then factored, and
the factors applied to a given (blocked) vector, all in parallel with one another.
As many as g processors can be occupied concurrently for a problem with g
mesh points. Block-diagonal preconditioning can be expected to improve p;er-
formance considerably when the interaction among the components of u at
each point z is the dominant contributor to the stiflness of the system (5.2). The
inclusion of part of the transport contribution, as done in (5.6), may or may not
improve performance further.

The storage cost is clearly an ar‘:lditiional p%q = pN words, to hold the

B; and then their factors. This cost could well be greater than that of all of the
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remaining work space involved when p 1s siz#ble. although not nearly as big as
the cost of storing all of the Jacobian and its LU factorization in a typical multi-
dimensior;al system treated by a traditional method.

A natural way to reduce the storage cost is to do grouping of the diago-
nal blocks B;. By this we mean that the spétial points are grouped, most likely
by a simple decomposition of the original spatial domain, and for each group
only one B; is evaluated and used as an approximation £6 the others in the
group. This is simply the analog in spalce of the strategy of periodic Jacobian
evaluations in time - a strategy which is widely used and highly cost- effective. In
both ideas, the motivation is that the Jacobian elements needed are likely to
vary smoothly as functions of the relevant independent variable (space or time)
and so need only be evaluated on some subset of the discrete values of that vari-
able that are generated. The resulting crude approximation to Jacobian ele-
ments is acceptable within a Newton iteration, whereas the full set of discrete
values is dictated by the accuracy of the final computed solution. If the g spa-
tial points r; are somehow grouped into g groups {(not necessarily of equal size)
then the cost of evaluating the grouped block- diagonal approximation B goes
down to about p(g/ g) evaluations of f, and the storage is reduced to p2%9. Thus
there is a potentially great reduction in storage costs with grouping, but the
reduction in computing cost depends on whether significantly more linear

and/or nonlinear iterations must be taken than were taken without grouping.

(c) Transport-Based Preconditioners.

Another natural éhoice presents itself for blocked problems of the type
(5.2)- (5.4), namely a preconditioner that uses the discretized transport opera-
tor S;. Here the interaction of the componenté at each point is ignored, and for
each component separately, a preconditioner arises upon treating the transport

contributions of the problem by traditional iterative methods such as SOR (suc-
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cessive overrelaxation). The details of this preconditioner will depend heavily on
the particular nature of the problem. In order to be somewhat specific here,

suppose that the transport occurs linearly in 5; , so that we can write
Si(tyy - y)= 21—4:'.‘!; + Biy; + ,E,Uijyj . (5.8)
VAS J>i

Assume further that the various coeflicient blocks (all pzp) in (5.8) are diagonal,
reflecting the fact that component iteraction is completely accounted for in the

term R; of (5.4).

Then the blocked matrix

B (i) L
Ly g |~ L+B+ U | (5.9)
y |

is an approximation to 85/ 8y on yvhich a preconditioner can be based. (It may
not be all of 5/3y because the coeflicients might depend on ¥, and that
dependence is being ignored here.) The corresponding approximation to
A=I-hg. T is

B-L-U=(I-hg,B) ~ hfL-hg,U.

which also has diagonal pzp blocks.

Now consider, for example, the application of SOK to the system
(B-L-U)x =b. ' , (5.10)

We must suppose that the acceleration parameter @ is given, and if no better
information about its choice is available, we may simply have w=1 (and we are
doing Gauss-Seidel iteration). The initial guess is some easily computable vector

z° = M, b, where the matrix #, might be O, or B}, or o(B-wL)™, for example.

(In v +es+5) we wse ﬂr\m 'H\"V‘J Lko}'ce ‘pr\- Mo c)

o st
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The iteration is given by
-1-
vz +0(B-wl) b.
with
L=(B-wL) [(1-w)B +wU].

Thus a given number, m, of iterations produces an iterate

- " ) -1
z™= fz°+(.f. S +WL+/)w(B-wl) b=Mb,

where
M= LM, +o( LY - - +!5(B—wL)-1. (5.11)

This matrix # represents a preconditioner for the system Ar = b. In practice, it
would be applied by carrying out the SOR iteration in whatever.manner is most
appropriate for the particular problem, depending on the number of spatial
dimensions, the boundary conditions, the uniformity or variation of the
coeflicients, etc. Keeping storage to @ minimum would be an important criterign

in the implementation.

An easy variation of SOR as a preconditioner is Symmetric SOR, or SSOR, where

each iteration has a forward and a backward sweep:

V2 = Lxv + (B-wl) 'wb
vt = Lzv+/2 +(B—0U)"lwb

where L= (B-olU)[(1-w)B+wL].
Some given number of SSOR iterations, say m, has the same cost as 2m SOR
iterations, but may be more effective because of the symmetrization.

In special cases, one might be able to do even better in approximating
the solution of {5.10). For example, suppose that the dominant transport pro-

cess is simple diffusion, that the mesh is uniform, and that for each PDE




-80-

component the diffusion coeflicient is constant. Then the product Jz represents
a decoupled set of discrete diffusion operators (with source term), dV% +r and
the system Az =z -hB,Jz =b, after division by hf,d in each PDE component,

corresponds to a collection of scalar Helmholtz equations

A +V2 =5, A==1/hB,d ,

discretized on a uniform mesh. For such a problem, fast Poisson solvers are
available. To the extent that the diffusion operator dominates the physical tran-
sport process, the resulting preconditoner should be very eflective.

It should be emphasized that in all of the above cases, the various PDE
components, i.e. the components of the vector u in (5.1), are treated indepen-
dently. Whichever of these preconditioners is used, it'is applied separately to
each PDE component. In particular, the implementation of the combined
algorighm on a multiprocessor could readily take advantage of this fact by car-
rying out the preconditioning operations concurrently for the various com-
ponents.

(d) Operator Splitting.

The preceding paragraphs give specific pr;econditioner matrices
without saying just how they are to be applied. Clearly, if a single matrix is
chosen as a preconditioner, it can be applied on the left as P, or on the right as
P, in the SPIOM or SPGMR algorithms, or as the matrix ¥ in PCG or SPCG. But if
two different matrices are available AS preconditioners, then in SPIOM or SPGMR
they can be applied as Py, ‘and P,, in either order, or their product (in either
order) could be applied on one side 'only, or the product applied as M in PCG or
SPCG. There seems to be no convincing argument for or against any particular

choice of arrangements of the preconditioners for a given Krylov algorithm.

For the reaction-transport problems described above, choosing both a block-

diagonal (presumably the interaction-only choice) and a transport-based
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prgcondjtioner constitutes an operator splitting approach to preconditioning
that closejy resembles split{ing methods used elsewhere. The block-diagonal
matrix B is dominated by the interaction of the PDE components at each spatial
point, while the transport-based matrix M attempts to account for the
remainder of the problern. Each matrix can be dealt with reasonably efficiently,
in contrast to the matrix J=3f /8y which reflects both the interaction and the
transport operators.

This splitting approach obviously generalizes in the same sense that
traditiénal splitting methods do, to ODE systems with any additive splitting. Thus

suppose the system is

=5 =S ettt

with the various terms jk representing distinct physical processes (operators).
Assume further that the individual Jacobian matrices i =? fl': /3y are easily
computed or approximated in such a way that a system(/-hg, Jk )z =b can be
solved {or approximately solved) efficiently. Then each matrix Ak=1' -hf, Jlt (or
a computable approximation to it) serves as a preconditioner and the product of
A, - .A . is a single preconditioner to the linear system Az=b,A=/-hf,J .
Two products, of two subsets of these Ak' could be used as left and right precon-
ditioners. The best choice of order in the Aproducts is unclear in general, apd
performance may not depend strongly on the order. Heuristically, the use of
P=A4,4;--- A as a preconditioner would be expected to do well to the extent

that P approximates A, i.e. to the extent that
(I-hByJ1) **+ (I=hfeds) R I=hpo(J +Jot = +Jy).
The two matrices above agree only to first order in h. The errors in P associated

with higher order terms would have to be dealt with by the Krylov method in

order for the combination to be effective.
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6. Numerical Tests
‘Tests of the methods described above were done using an experimental
solver derived fom the general purpose ODE solver LSODE, which uses BDF
methods for stiff problems. Stiff test problems were generated by applying
the method ‘of lines to PDE systems in two space dimensions. What follows is
a brief description of the solver, and a description of tests on three prob-

lems. All testing was done on a Cray-1 at LLNL.
{a) LSODPK, an Experimental Solver.

A solver package called LSODPK {Livermore Solver for ODE's with Precondi-
tio ned Krylov methods) was created from LSODE, in which to implement the
preconditioned iteration methods. LSODPK resembles the solver LSODP
described in [4], which uses (unpreconditioned) Arnoldi and I0M. LSODPK allows
the user to select among Arnoldi/IOM, GMRES, PCG, and SPCG as the basic itera-
tion method, and accepts user-supplied routines to accornplilsh the precondi-
tioning operations. This is shown in a simplified form in Fig. 1. The driver rou-
tine, LSODPK, calls a single-step routine, STODPK, which calls PKSET to prepare
for preconditioning, and SOLPK to carry out the linear systém solution by calling
one of four other routines, as shown. The user supplies F (ffor f (t.,y ) asin
LSODE, but also two routines, JAC and PSOL, for preconditioning. {All three

names are dummy names, passed by the user to LSODPK.) JAC must cempute and pre-
process any Jacobian-related data involved in the preconditioning.

PSOL must carry out the preconditioning of a vector, i.e. replace a
vector v with Pilv, P‘2'1v, or M"lv, depending on the choice of method
and the nature of the preconditioning. Various integer flags are input
by the user to specify these choices, and a flag is passed to PSOL to
specify which Pilv is desired when both are possible.
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LSODPK
STODPK f—u [
PRSET | =
JAC
SOLPK prr—
SPGMR
PCG PSOL
SPCG "

Fig. 1. Simplified Block Structure of LSODPK




-64-

In all other respects, the overall algorithm in LSODPK is the same as LSODE
and/or LSODP. Calls to PKSET (hence to JAC) are made as infrequently as judged
suitable, by the same heuristic rules that govern J evaluation in LSODE. As in
LSODP, the default value of the heuristic convergence test constant 6§, , is .05 (e S:.ofe.))
that of Ly is 5, and that of the parameter p is lyax(giving complete rather than
incomplete methods).
Various cumulative performance statistics are made available by

LSODPK. These include:

NST = number of time steps

NFE = number of f evaluations

'NPE = number of preconditioner evaluations (JAC calls)

NNI = number of nonlinear iterations

NLI = number of linear iterations

NPS = number of preconditioner solves {PSOL calls)

NCFN = number of nonlinear convergence failures

NCFL = number of linear convergence failures

NFE is also equal to NNI + NLI + 1 (plus the number of internal restarts at order
1, if any). In addition, LSODPK monitors the average Krylov subspace dimension

AVDIM = ANLI / ANNI,

and the convergence failure rates
RCFN = ANCFN/ ANST
RCFL = aNCFL/ ANN!

within an output interval. Warning messages are printed if these appear to be
too large. ‘

While the preconditioning routines JAC and PSOL are not part of the
LSODPK solver as such, we have generated several pairs of routines for use on

tests in PDE-based problems. One such pair generates the total block-diagonal
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part of the Jacobian, in e'ither user-supplied or finite-difference form, and then
uses LU factorizations of the blocks fo;' linear system solutions. A second pair
generateé the interaction-only block-diagonal matrix and also performs a fixed
number of SOR (actually Gauss-Seidel) iterations on the diffusion terms in the
system (not coded very eﬁicie_ntly). A third uses the interaction-only matrix and
treatsv the diffusion terms with a fast Poisson solver, namely HWSCRT [20]. Three
other JAC/PSOL pairs are the analogs of the first three in which block-grouping
is done by a static partitioning of the 2-D mesh. The partitioning is a simple
Cartesian one in which a discrete M;xM; mesh is divided into NN, groups by
partitioning each 1-D mesh of size M;. uniformly into N; groups, N; being an

integer divisor of M; . Other possibilities are easy to imagine.

(b) Test Problem 1.
We begin with a problem that was used in [4] to test LSODP, namely a
system derived from a 2-D diurnal kinetics-transport PDE system with two

species. The PDE’s have the form

i i3 ' i Yt s
%._sKh{-g—-+E(N(Z)‘a‘z—')+vx Jax + R (c',¢C ) L) (el

and are discretized by finite differencing on a 20x20 mesh, giving a system of site
NEG*800. The details are available in [4], and so are not repeated here.
ﬁis problem was run with LSODP (i.e. with unpreconditioned SIOM),
and with LSODPK with a variety of method choices. The preconditioners test:ed
included the total block-diagonal part of the Jacobian, appli€d on either the left
or right, denoted BDL and BDR (respectively) in the table below. Also tested were
the analogous preconditioners with block grouping, denoted BGL and BGR, using
a simple partitioning of the 20x20 mesh into 4=2*2 or 25=5%5 groups. The diago-
nal blocks were generated by difference q\:\ctients in the results given here.
Preliminary runs with a 10x10 mesh, supported by a close look at the

Jacobian of this problem, showed that the lack of symmetry makes PCG or SPCG
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a poor choice here. Thus in Table 1 we giye the results of runs on the 20x20 mesh
for the $PIOM and SPGMR algorithms {(in LSODPK), as well as for SIOM (in LSODP).
In the col'umn' headings, PRE denotes the preconditioner choice, NGR denotes
the number of groups of diagonal blocks, AVDIM is the overall average subspace
dimension {(NL1/NNI), and RT is the CPU run time in sec. The tolerances used

were RTOL=10"% and ATOL = 1079.

TABLE 1. RESULTS FROM PROBLEM 1
Method PRE NGR NST NNI NLI AVDIM RT

SIOM - - 2341 4525 10059 222 654
SPiOM  BDL - 2350 2788 6397 2.29 835
SPIOM  BDR - 2318 2748 6257 228 Bi.Z2
SPGMR BDL - 2348 2793 6536 2.34 B44

SPGMR BDR - 2357 2820 6374 2.26  83.5
SPIOM BGR 5*5 2258 2655 6254 2.36  78.7

SPIOM  BGR 2*2 2341 2801 6405 229 785

As is clear from Table 1, the LSODP solver, using unpreconditioned
scaled IOM, is the fastest overall choice. It is also faster than LSODE (with
banded treatment of J) and GEARBI (with block SOR), as documented in [4],
where the good performance of LSODP is explained in terms of tight clustering
in the spectrum. The addition of preconditioning has two opposing eflects: It
reduces the average number of nonlinear iterations per step (NNI/NST) from
about 1.9 to about 1.2 without changing the total number of steps appreciably.
But it roughly doubles the average cost per nonlinear iteration, not by taking
more linear iterations, but by having to compute and process the precondi-

tioner. The cost of computing and factoring the diagonal blocks is reduced by a
Freliminary runs wilh a i1UX1U mesmn, supportea’ oy a-ciost fodkucitk

Jacobian of this problem, showed that the lack of symmetry makes PCG or SPCG
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of the backsolve operations outweighs the cost savings from the reduced NNI. If
the function f were more expensive, the opposite would probably be true, and a
choice such as SPIOM-BGR would be the likely winner. Finally, the data here
shows no significant preference between SPIOM and SPGMR, nor between left and
right preconditioning, and this is the reason only one such choice was made for
the block grouping tests.

The total storage requirement is also minimal for LSODP. The total
length of the real and integer work arrays is 12,882, or about 16.1*NEQ. For the
LSODPX runs, it is about 20.1*NEQ for BDL or BDR, but 17.3*NEQ to 17.1*NEQ for

BGR.

{(c) Test Problem 2.

In order to obtain test problemé easily with higher numbers of
interacting components, we have used models of multi-species food webs [3], in
which mutual competition and/or predator-prey relationships in a spatial
domain are simulated. The general form of these models, for s species in two

dimensions, is
dct/ 0t = fu(z.y.t.c) + difey +c;y)(i=1.2. cos), (8.2)

with

Jilz.y.t.e)=ct(b+ 3 azc?). (8.3)

j=1

Themteraction and diffusion coefficients (a;.b;.d;) could be functions of (z.y.t)
in general. The choices made for this and the next test problem are for a simple
model of p prey and p predator species {s=2p), arranged in that order in the
vector c. We take the various coeflicients to be as follows:

ay = —1(all i)

Qy=-4107¢ (isp, 3>p)

a; = 104(i>p.j<p) (6.4)

[RE T TR RN
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(all other a(,-=0))
b = (1+azy) (i=p) | | (6.5)
b = —(l+ozy) (i>p) ) : -
d =1 (isp) (8.6) '
d; =.05 (i>p)

The domain is the unit square 0<z,y<l, and 0<t<10 . The boundary conditions
are of Neumann type {zero normal derivatives) everywhere. The coeflicients are
such that a unique stable equilibrium is guaranteed to exist in the constant co-
efficient case =0 [3], namely c=—~A"'b , and empirically the same appears to
be true for a>0 . In this problem we take a=1.

The initial eonditions used for this problem are taken to be simple
peaked functions that satisfy the boundary conditions, given by the polynomial

function
c¥(z.y) = 10+i[16z(1-z )y (1-y)]? (1=<iss),

which varies between 10 and 10+1 .
The PDE system (6.2) (plus boundar} conditions) was discretized with
central differencing on an mzm mesh, much the same as for Problem 1 (see
[4]). The resulting ODE system has size NEQ@=2pm?2 . 1t is stiff, and an estimate of
the spectrum is easily obtained from the interaction terms f; . for which the
dominant eigehva.lues are about —10*%p(1+azy) for the components at a mesh .
point {(z,y) . However, the diffusion terms cause the profiles to flatten out at
steady state, so that the equilibrium values of any species c' are spread by a
factor of only about 1.08 rather than 1+a=2 (though the spread factor exceeds 2

during the transient). However, the discrete diffusion terms contribute
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significantly to the stiflness also.
For the tests reporéed here, we take m =12 (144 mesh points), and we

take two cases for p ,

(a) p=5 (10 species, NEQ = 1440),

(b) p =10 {20 species, NEQ = 2880).
we report results for LSODPK with a variety of method choices. The tolerances
used were RTOL = 10™® and ATOL = 107% . The PCG and SPCG methods were not
tested because the Jacobian at equilibrium is highly nonsylrnmetric. The precon-

ditioner pairs tested, with mnemonic names used in the tables, are as follows:
BDL: total block-diagonal part of J on left;
BDR: total block-diagonal part of J on right;

0SS: operator splitting, using 5 SOR (Gauss-Seidel) iterations on the

diffusion terms for P, and the interaction-only Jacobian for

OSF: operator splitting, using H¥SCRT on the diffusion for P, and the

interaction-only Jacobian for P; .

Where a block-diagonal part of the Jacobian J is required, both a closed-form
user-supplied option (USJ) and a difference quotient option from (DQJ) were
tested. Further, we tested the analogous set of preconditicner pairs in which
block grouping was done, with NGR =n, *n, groups from a Cartesian product par-
tition of the mesh with n,; groups in each dimension ( ny a division of 12). All the
various possible combinations are too numerous to test completely. Nor did we
test the other poésible arrangements of the preconditioners (interchanging P,
with Pz , or using the product on one side only), as we do not expect those to
yield major variations in performance. However, we did run tests using the indi-

vidual preconditioners in 0SS by themselves, i.e.
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SOR: left éreconditioning with 5 SOR (actually Gauss-Séidel) iterations;
IQJ: right precondit.ioning. with interaction-only Jacobian.

Table 2a giveé results for thé 10-speci_es case (p=5) , beginning with
those from SIOM (without preconditioning). We see that various precondi-
tioned method combinations do better than SIOM, both in statistics and run
time. The benefits of preconditioning in reducing the number of linear and
nonlinear iterations per step, and also the number of failed steps and step
size reductions forced by convergence failures, is clear for the SPGMR
method with 0SS and OSF preconditioning. The BDL and BDR choices give
competitive run times but with much higher average numbers of (cheaper)
linear iterations per step—a tradeoff of dubious merit when more costly
forms f are contemplated. The one-sided choices SOR and 10J fail even
more badly. The OSF choice is more expensive than OS‘S here because the 5
SOR iterations are evidently cheaper than the HWSCRT call and nearly as
eflective. For the same problem with more diffusion, namely ;=10 (i<5) ,
the preference order is reversed, with run times of 54 for 0SS (where 10
SOR iterations was found necessary) vs 38AOVSF. From the close agreement
between SPGMR and SPIOM performance, with either 0SS or BDR precondi-
tioning, no further testing of SPIOM seemed to be worth doing. The use of
block grouping with OSS raised AVDIM only slightly, but reduced the cost

slightly and reduced the required storage considerably - by a factor of
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about .63 in the case of 9 groups and .67 with 4 groups.

TABLE 2a. RESULTS FOR PROBLEM 2 (p=5)
Method PRE NGR NST NNI  NLI AVDIM RT

SIOM - - 678 1125 4018 357 39.2
SPGMR  0SS(USJ) - 354 404 596 1.48 273
SFGMR OSF(USI) - 354 401 567 141 34.0
SPGMR BDL{USJ) - 393 502 1434 286 29.0
SPGMR BDR(USJ) - 395 485 1283 265 271
SPGMR SOR - 566 1063 3061 288  76.3
SPGMR  I0J(USJ) - 448 577 1744 3.02 35.0

SPGMR  0SS(USJ) 9 351" 400 640 1.60 27.1

SPIOM  0SS(USJ) - 355 403 588 146 27.4
SPIOM BDR(USJ) - 409 501 1368 2.73 29.1
SPGMR OSS(DQJ) - 354 403 597 1.48 29.3

SPGMR OSS(DQJ) 9 351 400 640 1.60 27.5
SPGMR 0SS(DQJ) 4 350 396 649 164 27.3
SPGMR BDR(DQJ) - 408 512 1408 275 33.1
SPGMR BDL(DQJ) - 390 480 1324 276 30.2
SPGMR BDR(DQJ) 9 401 497 1381 278 27.3

The last six entries in Table 2a deal with the case of difference quotient
Jacobian elements. Again block grouping is effective, and it gives a greater
overall cost reduction here because of the higher cost of computing the
diagonal blocks with DQi

It should be mentioned here that the overall average AVDIM above is
somewhat misleading bécause it includes the nonstiff transient (roughly

0<t<1073 ), which contributes nearly half the total cost. The local averages
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ANLI/ A NN] for intervals beyond the transient are much higher, uniformly
exceeding 1.5 for t>.1 ar;d uniformly exceeding 4 for £25. Thus many of the
options tested would have perforrﬁed better with a value of I,y higher than
5, but then their storage requirements would be higher accordingly. We can
also see here the potential benefits of a stiff /nonstiff switching algorithm in
combination with these algebraic methods.

Knowing the relative effectiveness of the various method choices for
the p=5 case, we ran tests on the p=10 case with a more restricted set of
choices. On the grounds that realistic problems are usually too complex to
allow for closed form Jacobian element calculation, we consider only the
DQJ option. Table 2b shows the resutts for SPGMR, with OSS and BDR as
preconditioners. Here 0SS is the better choice, as BDR suffers from
repeated convergence failures in the linear iteration. The use of block
groﬁ ping is cost-effective in both theA SPGMR-0SS and SPGMR-BDR cases,
and also for SPIOM-0SS, and the total storage required is reduced by a fac-
tor of in the 9-group case and .45 in the 1-group case. That is, the relative
flatness of the equilibrium solution is being éxploited in the preconditioner,
so as to reduce the total work space from about 38 NEQ to about 17 NEQ,

with a speedup of 11% in addition.

TABLE 2b. RESULTS FOR PROBLEM 2 (p = 10)
Method  PRE ~ NGR NST NNI NLI AVDIM RT
SPGMR 0SS(DQJ) - G874 420 626 149  63.9
SPGMR O0SS(DQ)) 9 374 421 696 165 56.6
SPGMR OSS(DQJ) 1 375 424 704 186 56.6
SPGMR BDR(DQJ) - 416 612 1370 268 73.0
SPGMR BDR(DQ)) 9 429 529 1488 281 588
SPIOM O0SS(DQJ) 1 375 422 691 164 56.2
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{3) Test Probiem 3

The parameters in Problem 2 are such that the solution is rgther flat
spatially over the stiff part of the problem. In order to obtain a more realistic
situation, the problem can be made much more inhomogeneous spatially by
increasing the parameter a in the interaction coefficients b; in {6.5). For Prob-
lem 3, we take a=50, leaving all other problem parameters unchanged from
Problem 2. We consider the same two cases, p=5 and p=10, with the same ini-
tial conditions and discretization {on a 12x12 mesh). The solution now shows a
spread in each c' by a factor of up to 5.2 at equilibrium, and equilibrium is
reached somewhat sooner.

Table 3a contains results for this problem in the 10-species case (p=5).
The runs with SIOM (no preconditioning) and with SPGMR-SCR failed to finish
after 1 minute and so were stopped. Clearly this problem requires a precondi-
tioning that includes the interaction Jacobian. All cases in the table are for
user-supplied Jacobian elements; all our data suggests that the DQJ results
would show a similar preference order. The OSS preconditioner was faster than
OSF, as in Problem 2, but here both were slower than the I0J (interaction-only)

preconditioner. The diffusion apparently contributes less (relatively) to the

7 stiffness, so that dropping the SOR preconditioning at the cost of a somewhat

higher average Krylov dimension seems to be a good tradeoff in terms of total
cost. The BDL and BDR (block-diagonal) preconditioners perform much like 10J,
with BDR slightly faster. Thus the inclusion of the diagonal transport coeflicient
has little effect on either NLI or the run time, when there is no block grouping.
Block grouping is effective with both I0J and BDR, but less so for 10J; the reasons
for the higher NLI there are not clear. For BDR, there is also evidence that using
fewer than 18 groups is probably unwise. The considerable inhomogeneity of the

equilibrium solution and the moderate amount of diffusion (though not dom-




-74-

inant) are such that the optimal choice of preconditioner here is total block-
diagonal on the right with some block grouping. The SPIOM runs with 10J and
BDR agree well with the SPGMR results.

TABLE 3a. RESULTS FOR PROBLEM 3 (p = 5)

Method PRE NGR . NST NNI NLI AVDIM RT
SIOM - - (failed to finish) >60
SPGMR 0SS - 300 344 418 122 210
SPGMR SOR -  (failed to finish) ) >60
SPGMR 10J - 299 346 626 181 154
SPGMR BDL - 300 346 670 194 16.2
SPGMR BDR - 299 344 605 176 15.2
SPGMR OSF - 306 351 437 125 279
SPGMR BDR 36 299 345 644 187 149
SPGMR BDR 16 299 342 63 186 145
SPGMR BDR 9 298 343 655 1.91 147
SPGMR 10J 36 306 355 687 1.94 156
SPGMR 10J 16 311 366 755 2.06 165
SPIOM 10 . - 308 359 706 197 16.9
SPIOM BDR - 299 342 601 176 15.0

For the larger case p=10 (¢ =20) , we again restrict our testing to the
SPGMR method and the DQJ option. The results are given in Table 3b. As before,
both 10J and BDR have lower run times than OSS as preconditoners, despite a
higher average Krylov dimension. Also as before, block grouping is cost-effective,
but by a much wider margin, because of the larger number of species and the
DQJ option. ¥With 10J there is a clearly optimal choice of 36 groups, whereas BDR

is less sensitive to the number of groups, with a minimal run time at 16 groups.
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The total work space storage for SPGMR-BDR (18 groups) is about 19.4 NEQ, or

about half of that for SPGMR-BDR without block grouping.

TABLE 3b. RESULTSVFOR PROBLEM 3 (p = 10)
Method PRE NGR NST NNI NLI AVDIM RT
SPGMR 0SS - 322 36'? 466 1.27  54.1
SPGMR  10J - 318 363 6958 1.81 41.9
SPGMR  10J 36 330 380 776 2.04 | 37.1
SPGMR  10J 16 365 432 1044 2.4.2 45.0
SPGMR BDR o 331 380 738 1.94 46.8
SPGMR BDR 36 323 371 715 1.93 353
SPGMR BDR 16 324 378 754 1.99 348

SPGMR BDR = 9 349 40v 933 2.29  40.2
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7. Conclusion

Krylov subspace iteration methods for linear systems can be combined
with Newt.bn iteration and the BDF method to obtain effective algorithms for stiff
ODE systems. We have shown how the Arnoldi/IOM, GMRES, and CG methods fit
into such combinations, and provided some theoretical support for the com-
bined linear/nonlinear iteration when a finite-difference approximation is used
for the linear operator. We have also given algorithms fof these methods that
include both scaling and preconditioning, and implemented these in an experi-
mental solver called LSODPK.

For some problems, mainly those with much spectfal clustering, the
basic iteration methods with only scaling added are sufficient. But for most
problems, preconditioning is necessary to achieve robustness. We have con-
structed several preconditioner combinations for reaction-diffusion problems,
using the reaction and transport operators individually, or in combination as in
operator splitting, and using grouping of blocks of Jacobian elementg involved to
achieve both storage and computational economies.

The tests we have reported show that these methods are eﬁective on at
least & small set of test problems. The optimal choices of method combinations
depend on the nature of the problem, and may not be clear without experimen-
tation. Preconditioning based on operator splitting does well on most of PDE-
based problems we tested, but not all. For some cases, where diffusion and
interaction terms are both equally dominant in the stiff part of the problem, we
found that neither the splitting approach nor one using either operator alone
seemed to do well. In general, we found that SPGMR is slightly preferable to
SPIOM, but that on problems where a symmetry assumption is true or approxi-
mately true, PCG or SPCG can be more efficient. The same is probably true for

the GCR (Generalized Conjugate Residual) method, although we have not
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included that method in our testing.

There are other types of preconditioners in use elsew!,cre that we have
not yet stll.:die.d. but which might prove useful in connection with the methods
used here. These include block-SOR {which has had considerable success by
itself within BDF solvers), incomplete LU or modified forms thereof (MILU), poly-
nomial preconditioners (e.g. Chebyshev), and Quasi-Newton (based on rank- one
matrix updates). The block-diagonal preconditioners would benefit greatly
from a dynamic group selection scheme,

Finally, we hope to see these methods extended to other types of stiff
ODE methods (e;g. implicit RK), and to implicit forms of ODE's (e.g. Ay=g, or

fully implicit systems), and to diﬂerential-algebfaic equations.
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