
LLNL-PRES-814279
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

RADIUSS: Rapid Application Development
via an Institutional Universal Software Stack

September 30, 2020 radiuss.llnl.gov

https://software.llnl.gov/radiuss/

LLNL-PRES-814279

Build Tools

LLNL-PRES-814279

Build Tools

Project Description License
Maturity
(years)

Website Repository Contact

Spack
A flexible package manager

for HPC
Apache-2

or MIT
~7 spack.io github.com/spack/spack

Todd
Gamblin

BLT
A streamlined CMake build
system foundation for HPC

software
BSD ~2 llnl-blt.readthedocs.io github.com/LLNL/blt Chris White

Shroud
Easily create Fortran, C and
Python interfaces for C or

C++ libraries
BSD ~3.5 shroud.readthedocs.io github.com/LLNL/shroud Lee Taylor

Technical Contact

Todd Gamblin

https://spack.io/
https://github.com/spack/spack
mailto:tgamblin@llnl.gov
https://llnl-blt.readthedocs.io/
https://github.com/LLNL/blt
mailto:white238@llnl.gov
https://shroud.readthedocs.io/
https://github.com/LLNL/shroud
mailto:taylor16@llnl.gov
mailto:mailto:tgamblin@llnl.gov

LLNL-PRES-814279

Spack
A flexible package manager for HPC

 Automates complex builds

— Easily manage hundreds of dependencies, down to versions and build options

— Easily test complex software with many compiler/MPI/BLAS combinations

 Easily share and leverage others’ work

— Leverage a library of 4,000+ community-maintained package recipes

— Leverage others’ internal/proprietary libraries with internal LLNL repositories

— Allow other users and developers to easily use your software

 Broad use inside and outside the laboratories

— ASC, LC, ENG, others at LLNL; codes at LANL, SNL, Fermi, ORNL, ANL, ECP

— Nearly 3,000 worldwide users (per docs site), highly active community on GitHub Spack users worldwide

@spackpm

LLNL-PRES-814279

BLT
A streamlined CMake build system foundation for HPC software

 Simple macros for complex tasks

— Create libraries, executables, and tests

— Manages compiler flags across multiple compiler families

— Unifies complexities of external dependencies into one easy to remember name

 Batteries included

— Example configurations for most LC/Linux/OSX/Windows system and compiler
families

— Built-in support for:

• HPC programming models

• Code health

• Documentation generation

 Open source

— Leveraged by ALE3D, Ascent, Axom, CHAI, Conduit, FloBat, GeosX, Kripke, LEOS,
MSLIB, RAJA, RAJA Perf Suite, Umpire, VBF Shaft, VTK-h

HPC Programming Models

Code Health

Documentation

Fruit
Clang-query
Uncrustify
Astyle

LLNL-PRES-814279

Shroud
Easily create Fortran, C, and Python interfaces for C or C++ libraries

 Generate wrappers with an annotated description of the C++ API

— YAML input with C++ declarations for namespace, typedef, function, class, and
struct

— Annotations to provide semantic information: intent, dimension, ownership

— Allows user control of generated names for functions and interfaces

— Provides hooks to allow custom code to augment or replace generated wrapper

 Creates a Fortran idiomatic interface

— Preserves object-oriented API

— No need to be a Fortran expert to create Fortran wrapper

— Uses C as lingua franca to access C++

 Use the same YAML file to create a Python module

— Creates an extension module, no Python source code is created

— Support for NumPy

Fortran

C

Python

User’s C/C++ code

LLNL-PRES-814279

Portable Execution and
Memory Management

LLNL-PRES-814279

Portable Execution and Memory
Management

Project Description License
Maturity
(years)

Website Repository Contact

RAJA
Loop-level abstractions to target
machine-specific programming

models and constructs
BSD ~5 software.llnl.gov/RAJA github.com/LLNL/RAJA Rich Hornung

CHAI
Optional add-on to RAJA for

automating data motion between
memory spaces

BSD ~4 software.llnl.gov/CHAI github.com/LLNL/CHAI
David

Beckingsale

Umpire
An application-focused API for

memory management on NUMA
& GPU architectures

MIT ~3 software.llnl.gov/Umpire github.com/LLNL/Umpire
David

Beckingsale

LvArray
Array classes for high-

performance simulation software
BSD ~2 lvarray.readthedocs.io github.com/GEOSX/LvArray Ben Corbett

Technical Contact

David Beckingsale

https://software.llnl.gov/RAJA
https://github.com/LLNL/RAJA
mailto:hornung1@llnl.gov
https://software.llnl.gov/CHAI
https://github.com/LLNL/CHAI
mailto:david@llnl.gov
https://computation.llnl.gov/projects/sundials
https://github.com/LLNL/Umpire
mailto:david@llnl.gov
https://lvarray.readthedocs.io/en/latest/
https://github.com/GEOSX/LvArray
mailto:corbett5@llnl.gov
mailto:david@llnl.gov

LLNL-PRES-814279

RAJA
Loop-level abstractions to target machine-specific programming models and constructs

 Provides a portable API for loop execution

 Powerful “kernel” API to express nested, multi-dimensional loops

 Other portable features

— Reductions, scans, sorts, atomics, and multi-dimensional data views

 Supports multiple back-end targets: OpenMP, CUDA, AMD, …

 Easy to integrate into existing applications

— Loop bodies remain generally unchanged

— Can be adopted incrementally, one loop at a time

 Open source

— Used by ASC and ATMD applications and libraries, and ECP
projects: SAMRAI, MFEM, SUNDIALS, hypre, SW4, GEOS-X,
ExaSGD, Alpine, etc.

for (int i = 0; i < N; ++i) {
a[i] += c * b[i];

}

forall<EXEC_POL>(RangeSegment(0, N),
[=] (int i) {
a[i] += c * b[i];

}
);

A simple C-style loop

Same loop using RAJA

Loop execution defined by “execution policy”:
EXEC_POL can be seq_exec, openmp_exec,

cuda_exec, etc.

LLNL-PRES-814279

 Simple and unified API to a wide range of memory resources:

— DDR

— NVIDIA GPU memory

• Constant memory

— AMD GPU memory

— NUMA support

 Provides high-performance “strategies” for customizing data allocation:

— Memory pools, buffers, CUDA memory advice

 “Operations” to copy, move, set data on any memory resource

 Open source

— Underpins CHAI

— Used by LLNL ASC and ATDM applications, SW4, SAMRAI, MFEM

Umpire
An application-focused API for memory management on NUMA and GPU architectures

Umpire

memkind

SICM tcmalloc

cnmem

cudaMalloc

Umpire

DDR GDDR

API

Implementations

Hardware

auto allocator = rm.getAllocator(“DEVICE”);

double* data = allocator.allocate(1024);

allocator.deallocate(data);

LLNL-PRES-814279

 Array-like object with automatic data migration

 Provides “unified memory” without any special system support

 Integrates with RAJA

— Could be used with other programming models

 Uses Umpire, and behavior can be customized using different
Umpire “Allocators”

 Open source

— Used in LLNL ASC applications

— Works with Umpire & RAJA

CHAI
Optional add-on to RAJA for automating data transfers between memory spaces

CHAI arrays can be used on CPU or GPU,
data migrates without user intervention

chai::ManagedArray<double> data(100);

RAJA::forall<cuda_exec>(
RangeSegment(0, 100), [=] (int i) {
data[i] = i;

}
);

RAJA::forall<seq_exec>(
RangeSegment(0, 100), [=] (int i) {
printf(“data[%g] = %f\n”,

i, data[i]);
}

);

LLNL-PRES-814279

LvArray
Containers for use in high-performance simulation software

When using CHAI POLICY1 and POLICY2 can be any RAJA
policy and the data will migrate appropriately.

LvArray::Array<double,2,…> x(10, 11);

forall<POLICY1>(x.size(0),[x=x.toView()](int i)
{
for(int j = 0; j < x.size(1); ++j)
x(i, j) = foo(i, j);

});

LvArray::Array<double,2,…> sums(x.size(0));
forall<POLICY2>(x.size(0),
[x=x.toViewConst(), sums=sums.toView()](int i)
{
for(double value : x[i])
sums[i] += value;

});

sums.move(LvArray::MemorySpace::CPU);
std::cout << sums << std::endl;

 Containers

— A multi-dimensional array with a customizable
memory layout and slicing.

— A sorted unique list of values.

— A jagged two-dimensional array.

— A compressed row storage matrix and sparsity
pattern.

 All containers support customizable allocation
behavior and work on device

 Integrates with RAJA and optionally CHAI

 Open source

— BSD license

— Used by GEOSX ECP project

LLNL-PRES-814279

Application CS Infrastructure

LLNL-PRES-814279

Application CS Infrastructure

Project Description License
Maturity
(years)

Website Repository Contact

Axom
Flexible software infrastructure for the

development of multi-physics
applications and computational tools

BSD ~5 software.llnl.gov/axom github.com/LLNL/axom Rich Hornung

Technical Contact

Rich Hornung

Please direct detailed technical questions to the Axom developer team:
axom-dev@llnl.gov

https://software.llnl.gov/axom
https://github.com/LLNL/axom
mailto:hornung1@llnl.gov
mailto:hornung1@llnl.gov
mailto:axom-dev@llnl.gov

LLNL-PRES-814279

Application CS Infrastructure (Axom)

 Motivated by LLNL ASC next-generation code planning

— Core infrastructure for the LLNL ATDM code

— Used across the LLNL ASC code portfolio

 The report (at right) contains 50 recommendations spanning

— Software architecture and design

— Software processes and tools

— Software sharing and integration

— Performance and portability

— Co-design, external interactions, research

 In development for 5+ years

 Open source

LLNL-PRES-814279

Application CS Infrastructure (Axom)

“coordsets”: {
“coords”: {

“type”:
“explicit”

“values”: {
“x”:

[double],
“y”:

[double]
}

}
},
“topologies”: {

…
…

Mesh-aware data schema

P0

P1

P2

P3

Parallel file I/O & burst
buffer support

Hierarchical key-value
in-memory datastore

Surface queries & spatial
acceleration data structures

Mesh data model

Unified inter/intra-package message
logging & parallel filtering

File 1File 0

LLNL-PRES-814279

Application CS Infrastructure (Axom)

cell 1

cell 3

cell 2

cell 4

material A

material B

material C

 Examples of Axom application support

— Centralized, hierarchical simulation data management

— Parallel file I/O for checkpoint-restart and visualization

— Access to in-situ visualization and analysis tools

— Shaping in arbitrary, complex material geometries

— Immersed boundaries, interfaces

— Building blocks for particle-based algorithms

— Integrated cross-package parallel message logging

LLNL-PRES-814279

Application CS Infrastructure (Axom)

Axom
Component

Description

Sidre
In-core hierarchical key-value data management, plus parallel file I/O (restart, viz. files), support for heterogeneous

memory systems, etc.

Quest Spatial point/surface queries; in-out, signed distance, point containment, point-in-cell, etc.

Primal Geometric primitives (point, vector, triangle, etc.) and operations (distance, intersection, closest point, etc.)

Spin Spatial acceleration data structures; octree, kd-tree, R-tree, BVH, etc.

Mint Mesh data model; structured, unstructured, particles.

Slam Set, relation, map abstractions.

Slic/Lumberjack Unified/shared inter-package message streams, parallel logging, and filtering.

All Axom components provide native interfaces for C++, C, and Fortran (Python in the works).

LLNL-PRES-814279

Math + Physics Libraries

LLNL-PRES-814279

Math + Physics Libraries

Project Description License
Maturity
(years)

Website Repository Contact

MFEM
Unstructured high-order finite

element library
BSD ~15 mfem.org github.com/mfem Tzanio Kolev

hypre
Preconditioners and solvers for

large-scale matrices
Apache-2

or MIT
~20 www.llnl.gov/casc/hypre github.com/hypre-space Rob Falgout

SUNDIALS
Nonlinear and

differential/algebraic equation
solvers

BSD ~20 www.llnl.gov/casc/sundials github.com/LLNL/sundials
Carol

Woodward

SAMRAI
Structured Adaptive Mesh

Refinement framework
LGPL-2.1 ~20

computation.llnl.gov/projects/
samrai

github.com/LLNL/SAMRAI Noah Elliott

XBraid
Lightweight support for multigrid

Parallel-in-Time
LGPL-2.1 ~5 www.llnl.gov/casc/xbraid github.com/xbraid Rob Falgout

Technical Contact

Tzanio Kolev

http://mfem.org/
https://github.com/mfem/mfem
mailto:tzanio@llnl.gov
http://www.llnl.gov/casc/hypre
https://github.com/hypre-space
mailto:falgout2@llnl.gov
http://www.llnl.gov/casc/sundials
https://github.com/LLNL/sundials
mailto:woodward6@llnl.gov
https://computation.llnl.gov/projects/samrai
https://github.com/LLNL/SAMRAI
mailto:elliott22@llnl.gov
http://www.llnl.gov/casc/xbraid
https://github.com/xbraid
mailto:falgout2@llnl.gov
mailto:kolev1@llnl.gov

LLNL-PRES-814279

MFEM
Lightweight, scalable C++ library for finite element methods

 Supports arbitrary high-order discretizations and meshes for a wide variety of
applications

 Flexible discretizations on unstructured grids

— Triangular, quadrilateral, tetrahedral and hexahedral meshes.

— Local conforming and non-conforming refinement.

— Bilinear/linear forms for variety of methods: Galerkin, DG, DPG, …

 High-order and scalable

— Arbitrary-order H1, H(curl), H(div)- and L2 elements. Arbitrary order curvilinear meshes.

— MPI scalable to millions of cores and GPU-accelerated. Enables application development
on wide variety of platforms: from laptops to exascale machines.

 Built-in solvers and visualization

— Integrated with: HYPRE, RAJA, UMPIRE, SUNDIALS, PETSc, SUPERLU, …

— Accurate and flexible visualization with VisIt and GLVis

 Open source

— BSD license with thousands of downloads/year worldwide.

— Available on GitHub. Part of ECP’s CEED co-design center.

High-order
curved elements Parallel non-conforming AMR

Surface
meshes

Compressible flow
ALE simulations

Heart
modeling

LLNL-PRES-814279

Hypre
Highly scalable multilevel solvers and preconditioners

 Conceptual linear system interfaces

— Provides natural “views” of the linear system: structured, semi-structured, finite
element, linear algebraic

— Enables more efficient data storage schemes and kernels

 Scalable preconditioners and solvers

— Structured and unstructured algebraic multigrid (including constant coefficient)

— Maxwell solvers, H-div solvers, and more

— Demonstrated scalability beyond 1M cores

 Integrated with other math libraries

— SUNDIALS, PETSc, Trilinos

 Unique, user-friendly interfaces

 Open source

— Used worldwide in a vast range of applications

— Available on GitHub, Apache-2 or MIT license

Magneto-
hydrodynamics

Electro-
magnetics

Elasticity / plasticity

Facial surgery

LLNL-PRES-814279

SUNDIALS
Adaptive time integrators for ODEs and DAEs and efficient nonlinear solvers

 ODE integrators:

— CVODE(S): variable order and step BDF (stiff) and Adams (non-stiff)

— ARKode: variable step implicit, explicit, and additive IMEX Runge-Kutta

 DAE integrators: IDA(S) - variable order and step BDF integrators

 Sensitivity analysis (SA): CVODES and IDAS provide forward and adjoint SA

 Nonlinear solvers: KINSOL - Newton-Krylov, Picard, and accelerated fixed point

 Modular design

— Written in C with interfaces to Fortran

— Users can supply own data structures and solvers

— Optional use structures: serial, MPI, threaded, CUDA, RAJA, hypre, & PETSc

— Encapsulated parallelism

 Open source

— Freely available (BSD License) from LLNL site, GitHub, and Spack

— CMake-based portable build system

— Can be used from MFEM, PETSc, and deal.II

 Supported by extensive documentation, a sundials-users email list, and an active user
community

 Used by thousands worldwide in applications from research and industry

Magnetic reconnection

Dislocation dynamics

Subsurface flow

Core collapse super-nova

LLNL-PRES-814279

XBraid
Parallel-in-time multigrid solver software

 Speeds up existing application codes by creating concurrency in the time dimension

 Unique non-intrusive approach

— Builds as much as possible on existing codes and technologies

— Converges to same solution as sequential code

 Demonstrated effectiveness and potential

— Tech: Implicit, explicit, multistep, multistage, adaptivity in time and space, moving
meshes, spatial coarsening, low storage approach

— Apps: Linear/nonlinear diffusion, fluids (shocks), power grid (discontinuities), elasticity,
optimization, …

— Codes: Strand2D, Cart3D, LifeV, CHeart, GridDyn, …

 Leverages spatial multigrid research and experience

— Extensive work developing scalable multigrid methods in hypre

 Open source

— Available on GitHub, LGPL-2.1

Inviscid Burgers

T
im

e

T
im

e

Moving Mesh

Navier-Stokes

Parallelize space and time
Store several time steps

Power Grid

Up to 50x speedup on some problems (so far)

LLNL-PRES-814279

SAMRAI
Structured adaptive mesh refinement applications infrastructure

 Object-oriented library, scalable and flexible for use in many applications

 Full support of AMR infrastructure

− Multi-level dynamic gridding of AMR mesh

− Transparent parallel communication (MPI)

− Load balancing

− Data type for common mesh centerings (cell, node, face, . . .)

− Data transfer operations (copy, coarsen, refine, time interpolation)

 Flexibility provided to applications

− Applications provide numerical kernels to operate on distributed patches

− Users may define and own their own data structures

− Works on different geometries (Cartesian, staggered, multiblock, etc.)

− Applications choose when and where to use SAMRAI data structures

− Interfaces to solver libraries included (hypre, SUNDIALS, PETSc)

− VisIt visualization and HDF5 checkpoint/restart supported

 Open source

− LGPL 2.1 license, available on GitHub

Fixed geometry
Eulerian methods

Lagrangian
moving grids

Multi-physics
applications

• RAJA threading
interfaces and
Umpire memory
management for
GPUs are being
developed

• CMake-based build
system coming
soon

LLNL-PRES-814279

Performance and
Workflow Tools

LLNL-PRES-814279

Performance and Workflow Tools

Project Description License
Maturity
(years)

Website Repository Contact

Caliper
Always-on performance

measurement library
BSD ~5 llnl.github.io/Caliper/ github.com/LLNL/Caliper David Boehme

SPOT Performance history tracking BSD
In

development computing.llnl.gov/projects/caliper github.com/LLNL/Caliper
Matthew

LeGendre

Flux
Resource management and

scheduling
LGPL-3.0 ~6 flux-framework.org github.com/flux-framework Dong Ahn

Maestro
WF

A tool and library for
specifying and conducting

general workflows
MIT ~2.5 maestrowf.readthedocs.io github.com/LLNL/maestrowf Frank Di Natale

Spindle
Library loading and program

start-up at scale
LGPL-2.1 ~6 computing.llnl.gov/projects/spindle github.com/hpc/spindle

Matthew
LeGendre

LBANN
Machine learning training and

inference at extreme scale
Apache-2 ~5.5 lbann.readthedocs.io github.com/LLNL/lbann

Brian Van
Essen

Technical Contact

Matthew LeGendre

https://llnl.github.io/Caliper/
https://github.com/llnl/Caliper
mailto:boehme3@llnl.gov
https://computing.llnl.gov/projects/caliper
https://github.com/llnl/Caliper
mailto:legendre1@llnl.gov
https://flux-framework.org/
https://github.com/flux-framework
mailto:ahn1@llnl.gov
http://maestrowf.readthedocs.io/en/latest
https://github.com/LLNL/maestrowf
mailto:dinatale3@llnl.gov
https://computing.llnl.gov/projects/sundials
http://github.com/hpc/spindle
mailto:legendre1@llnl.gov
https://lbann.readthedocs.io/en/latest/index.html
https://github.com/LLNL/lbann
mailto:vanessen1@llnl.gov
mailto:legendre1@llnl.gov

LLNL-PRES-814279

Caliper
A library for always-on performance monitoring

 Add simple annotations to source code

— Physics regions, Key loops, other semantics

 Link code with Caliper library from C++, C, or Fortran

 Attach arbitrary performance measurement tools to your regions

 Leave Caliper in and always have performance data available

LLNL-PRES-814279

SPOT
Performance analysis and history tracking

 Collect performance results from arbitrary application runs, track performance
across users and history

 Integrate performance analysis tools into applications

— Annotate code regions with Caliper

— Control performance collection through command line or input deck

— Store history of performance data and visualize through web interfaces

 Caliper interfaces with applications

— Annotation interface puts labels on code and data regions

— Varity of metrics (time, memory bandwidth, MPI usage, etc.) are collected and
reported against annotation labels.

— More reliable that traditional performance tools.

 SPOT visualizes history of Caliper-collected runs

— Any application run can report performance data to SPOT.

— Track how performance changes with code releases and across systems

— Explore performance data to identify issues

 Under active development & integrated into several large codes

Performance Dashboards

History Tracking

Drill-Down on Performance with Specialized Visualizations

LLNL-PRES-814279

Flux
Next-generation resource management and scheduling framework to address
emerging challenges

 Workflow challenges

— Modern Workflows are increasingly difficult to schedule

— Cancer Moonshot Pilot2, Machine Learning LDRD Strategic
Initiative, …

 Resource challenges

— Changes in resource types are equally challenging

— GPGPUs, Burst buffers, under-provisioned PFS BW, …

 Fully hierarchical approach for job throughput/co-scheduling

 Graph-based resource model for resource challenges

 Rich APIs for workflow communication and coordination

 Consistent APIs for workflow portability and reproducibility

@FluxFramework

LLNL-PRES-814279

MaestroWF
A standard framework to make simulation studies easier to manage,
run, and expand

 Consistent study specification definition

— Specify multi-step workflows in a human-readable and self-documenting
YAML specification.

— Studies can be linear or parameterized, are easily shareable between users,
and can be software generated.

— Easily repeat studies simply by launching an existing specification.

 Lightweight workflow automation and monitoring

— Studies are parsed, expanded based on parameters, and monitored
automatically.

— Workflows are expanded into DAGs, with workflow steps being launched as
their dependencies allow them.

 Easy for users to specify and launch workflows

— Specifications being shareable allows existing studies to serve as templates
for new ones (making both set up and knowledge sharing easier).

— A study specification allows users to build standard infrastructure to generate
the necessary YAML to run larger collections of studies.

Hello,
Jim

Hello,
Kelly

Hello,
Michael

Hello,
Pam

Bye,
Jim

Bye,
Kelly

Bye,
Michael

Bye,
Pam

say-hi

LLNL-PRES-814279

Spindle
Scalable application start-up

 Job launch not scalable with many libraries or Python

— Solves start-up issues from loading libraries and Python
modules at scale

— Nodes hammer shared file systems when searching and
loading libraries

— Impacts users across whole center

 Spindle makes job launch scalable

— Single node loads libraries/python-modules.

— Broadcasts libraries to other nodes over high-bandwidth
communication network.

— Run by:

 Open source

— LGPL-2.1 with thousands of downloads/year worldwide

— Available on GitHub

% spindle srun –n 512 ./myapp

LLNL-PRES-814279

LBANN
Livermore Big Artificial Neural Network Toolkit

 Distributed deep learning training and inference

— Optimize for strong and weak scaling network training

— Train large networks quickly

— Enable training on data samples or data sets too large for other
frameworks (e.g., 3D data cubes, billion sample data sets)

— Optimized distributed memory algorithm

— Including spatially decomposed convolutions

— Multi-level parallelism (model / data / ensemble)

— Hydrogen GPU-accelerated distributed linear algebra library

— Optimized asynchronous GPU-aware communication library

 Utilize unique HPC resources at scale

— InfiniBand and next-generation interconnect

• Low latency / high cross-section bandwidth

— Tightly-coupled GPU accelerators

— Node-local NVRAM

— High bandwidth parallel file system

 C++ / MPI + OpenMP / CUDA / ROCm / NCCL / cuDNN

 Open source under Apache license

— github.com/LLNL/lbann

— github.com/LLNL/Elemental

— github.com/LLNL/Aluminum

CPU-Only GPU-Accel

CUDA-aware MPI

NCCL + MPI P2P

NCCL + NVSHMEM

Hydrogen
GPU-Accelerated

Distributed Linear Algebra

LBANN
Scalable Deep Learning Toolkit

Aluminum
High-performance GPU-aware

community library
Distributed Linear Algebra

MPI

https://github.com/LLNL/lbann
https://github.com/LLNL/Elemental
https://github.com/LLNL/Aluminum

LLNL-PRES-814279

Data Management and
Visualization

LLNL-PRES-814279

Data Management and Visualization

Project Description License
Maturity
(years)

Website Repository Contact

Conduit
Simplified data exchange for HPC

simulations
BSD ~6 software.llnl.gov/conduit github.com/llnl/conduit

Cyrus
Harrison

Ascent
Flyweight in situ visualization and

analysis for HPC simulations
BSD ~4 ascent-dav.org

github.com/alpine-
dav/ascent

Matt Larsen

zfp
In-memory compression of floating-

point arrays
BSD ~6 zfp.readthedocs.io github.com/LLNL/zfp

Peter
Lindstrom

SCR
Multilevel checkpointing support and

burst buffer interface
BSD ~13 scr.readthedocs.io github.com/LLNL/scr/

Kathryn
Mohror

VisIt
Feature-rich mesh-based visualization

and analysis platform
BSD ~20 visit.llnl.gov github.com/visit-dav/visit

Cyrus
Harrison

GLVis
Lightweight high order visualization for

MFEM
LGPL-2.1 ~11 glvis.org github.com/GLVis/glvis Tzanio Kolev

Technical Contact

Cyrus Harrison

https://software.llnl.gov/conduit
https://github.com/llnl/conduit
mailto:cyrush@llnl.gov
http://ascent-dav.org/
https://github.com/alpine-dav/ascent
mailto:larsen30@llnl.gov
https://zfp.readthedocs.io/
https://github.com/LLNL/zfp
mailto:lindstrom2@llnl.gov
https://github.com/LLNL/scr/
mailto:mohror1@llnl.gov
http://visit.llnl.gov/
https://github.com/visit-dav/visit
mailto:cyrush@llnl.gov
https://glvis.org/
https://github.com/GLVis/glvis
mailto:kolev1@llnl.gov
mailto:cyrush@llnl.gov

LLNL-PRES-814279

Conduit
Simplified data exchange for HPC simulations

Conventions for sharing in-memory mesh data

Hierarchical in-memory data description

 Provides an intuitive API for in-memory data description

— Enables human-friendly hierarchical data organization

— Can describe in-memory arrays without copying

— Provides C++, C, Python, and Fortran APIs

 Provides common conventions for exchanging complex data

— Shared conventions for passing complex data (e.g., simulation
meshes) enable modular interfaces across software libraries and
simulation applications

 Provides easy to use I/O interfaces for moving and storing data

— Enables use cases like binary checkpoint restart

— Supports moving complex data with MPI (serialization)

 Open source

— Leveraged by Ascent, VisIt, and Axom

LLNL-PRES-814279

 Ascent is an easy to use in-memory visualization and analysis library

— Use cases: making pictures, transforming data, and capturing data

— Young effort, yet already supports most common visualization operations

— Provides a simple infrastructure to integrate custom analysis

— Provides C++, C, Python, and Fortran APIs

 Uses a flyweight design targeted at next-generation HPC platforms

— Efficient distributed-memory (MPI) and many-core (CUDA or OpenMP) execution

— Has lower memory requirements then current tools

• Demonstrated scaling: In situ filtering and ray tracing across 16,384 GPUs on
LLNL’s Sierra Cluster

— Requires less dependencies than current tools (e.g., no OpenGL)

 Open source

— Leverages Conduit, will also be released with Visit

Ascent
Flyweight in-situ visualization and analysis for HPC simulations

Visualizations created using Ascent

Extracts supported by Ascent

LLNL-PRES-814279

 Production end-user tool supporting scientific and engineering applications

— Use cases: data exploration, quantitative analysis, visual debugging,
comparative analysis and generation of presentation graphics

— Provides a rich feature set and a flexible data model suitable for many scientific
domains

— Includes more than 100 file format readers

— Provides GUI and Python interfaces, extendable via C++ and Python

 Provides parallel post-processing infrastructure that scales from desktops to
massive HPC clusters

— Uses MPI for distributed-memory parallelism on HPC clusters

— Development underway to leverage on-node many-core (CUDA or OpenMP)
parallelism

 Open source

— Used as a platform to deploy research from the DOE visualization community

— Initially developed by LLNL to support ASC, now co-developed by several
organizations

VisIt
Full-featured visualization and analysis for HPC simulations

Visualizations created using VisIt

VisIt

LLNL-PRES-814279

GLVis
Lightweight OpenGL tool for accurate and flexible interactive finite element visualization

 Accurate visualization

— 1D/2D/3D, volume/surface, triangular/quad/tet/hex, low/high-order meshes

— Arbitrary high-order, scalar and vector finite element and NURBS solutions

— Visualization of parallel meshes and solutions

 Lightweight and interactive

— Unlimited number of refinement and de-refinement levels

— Support for antialiasing, accurate cutting planes, materials, lighting, and transparency

— Processor and element shrinking for better visualization of 3D mesh interiors

 Flexible server support

— Simultaneous visualization of multiple fields/meshes in separate GLVis windows

— Local visualization for remote parallel runs with secure socket connections

— Persistent visualization of time-evolving fields

 Open source

— LGPL-2.1. Available on GitHub

— Based on the MFEM finite element library

— Used in MFEM, MARBL/BLAST, LiDO, and more

Supports general
meshes and fields

GLVis server sessions with multiple windows

Visualization of a time-dependent
high-order BLAST simulation

LLNL-PRES-814279

Scalable Checkpoint/Restart (SCR) Library
Enables fast, portable I/O to burst buffers across HPC systems

 SCR provides fast, scalable I/O performance for LLNL applications

— SCR caches output data in node local storage like RAM disk or burst buffer, which
can be as much as 1000x faster than the parallel file system

— SCR hides the complexity of different burst buffer systems and storage
architectures

 Easy integration into application codes

— Simple wrapper API around existing checkpoint/restart code

— Full featured scripting tools wrap existing job launch commands, e.g. srun →
scr_srun

 SCR now enables fast I/O for general output from applications

— SCR can now cache visualization dumps or other output to node local storage and
drain data to the parallel file system in the background

— Applications can output data more frequently without the overhead

 Open source

— Available on GitHub with BSD license

SCR’s I/O strategies scale with the number of
nodes in an HPC job

SCR protects your
data and manages
the complexity of
HPC storage
hierarchies for
performance
portable I/O

LLNL-PRES-814279

ZFP
In-memory compression of floating-point and integer arrays

 Provides a conventional array interface for multidimensional scalar fields

— Supports constant-time read & write random access to any array element

— Hides complexity of (de)compression via C++ operator overloading

— Provides efficient data access via iterators, views, proxy references and pointers

— Supports thread safe access and STL algorithms

 Provides a simple API for (de)compression of whole arrays

— Supports prescribed error tolerance or precision, exact storage, lossless
compression

— Supports OpenMP and CUDA parallel (de)compression at up to 150 GB/s
throughput

— Provides C++, C, Python, and Fortran APIs

— Suitable for compressing checkpoints, viz dumps, MPI messages, CPU-GPU
transfers

 Open source

— BSD licensed and available via GitHub, Spack, and Fedora RPM

— Supported by Intel IPP, HDF5, Silo, ADIOS, VTK-m, LEOS, E4S, …

Raw floating-

point array

Block floating-

point transform

Orthogonal

transform

Embedded

coding

Compressed

bit stream

compressed blocksvirtual array

software cache

application

240:1 compression

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States
government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not
be used for advertising or product endorsement purposes.

radiuss.llnl.gov

lc.llnl.gov/confluence/display/RAD/RADIUSS

https://software.llnl.gov/radiuss/
https://lc.llnl.gov/confluence/display/RAD/RADIUSS

	RADIUSS: Rapid Application Development�via an Institutional Universal Software Stack
	Build Tools
	Build Tools
	Spack�A flexible package manager for HPC
	BLT�A streamlined CMake build system foundation for HPC software
	Shroud�Easily create Fortran, C, and Python interfaces for C or C++ libraries
	Portable Execution and Memory Management
	Portable Execution and Memory Management
	RAJA�Loop-level abstractions to target machine-specific programming models and constructs
	Umpire�An application-focused API for memory management on NUMA and GPU architectures
	CHAI�Optional add-on to RAJA for automating data transfers between memory spaces
	LvArray�Containers for use in high-performance simulation software
	Application CS Infrastructure
	Application CS Infrastructure
	Application CS Infrastructure (Axom)
	Application CS Infrastructure (Axom)
	Application CS Infrastructure (Axom)
	Application CS Infrastructure (Axom)
	Math + Physics Libraries
	Math + Physics Libraries
	MFEM�Lightweight, scalable C++ library for finite element methods
	Hypre�Highly scalable multilevel solvers and preconditioners
	SUNDIALS�Adaptive time integrators for ODEs and DAEs and efficient nonlinear solvers
	XBraid�Parallel-in-time multigrid solver software
	SAMRAI�Structured adaptive mesh refinement applications infrastructure
	Performance and Workflow Tools
	Performance and Workflow Tools
	Caliper�A library for always-on performance monitoring
	SPOT�Performance analysis and history tracking
	Flux�Next-generation resource management and scheduling framework to address�emerging challenges
	MaestroWF�A standard framework to make simulation studies easier to manage,�run, and expand
	Spindle�Scalable application start-up
	LBANN�Livermore Big Artificial Neural Network Toolkit
	Data Management and Visualization
	Data Management and Visualization
	Conduit�Simplified data exchange for HPC simulations
	Ascent�Flyweight in-situ visualization and analysis for HPC simulations
	VisIt�Full-featured visualization and analysis for HPC simulations
	GLVis�Lightweight OpenGL tool for accurate and flexible interactive finite element visualization
	Scalable Checkpoint/Restart (SCR) Library�Enables fast, portable I/O to burst buffers across HPC systems
	ZFP�In-memory compression of floating-point and integer arrays
	Slide Number 42

