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HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR
LAGRANGIAN HYDRODYNAMICS∗
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Abstract. The numerical approximation of the Euler equations of gas dynamics in a moving
Lagrangian frame is at the heart of many multiphysics simulation algorithms. In this paper, we
present a general framework for high-order Lagrangian discretization of these compressible shock
hydrodynamics equations using curvilinear finite elements. This method is an extension of the ap-
proach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295–1310]
and can be formulated for any finite dimensional approximation of the kinematic and thermody-
namic fields, including generic finite elements on two- and three-dimensional meshes with triangular,
quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and
velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which
is obtained via a corresponding high-order parametric mapping from a standard reference element.
This enables the use of curvilinear zone geometry, higher-order approximations for fields within a
zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation.
We discretize the internal energy using a piecewise discontinuous high-order basis function expan-
sion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by
treating material properties, such as equations of state and constitutive models, as piecewise discon-
tinuous functions which vary within a zone. To satisfy the Rankine–Hugoniot jump conditions at a
shock boundary and generate the appropriate entropy, we introduce a general tensor artificial vis-
cosity which takes advantage of the high-order kinematic and thermodynamic information available
in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete
equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-
order generalization of the so-called staggered-grid hydrodynamics (SGH) approach and we show
that under specific low-order assumptions, we exactly recover the classical SGH method. We present
numerical results from an extensive series of verification tests that demonstrate several important
practical advantages of using high-order finite elements in this context.
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1. Introduction. We are interested in solving the Euler equations of compress-
ible hydrodynamics for the purposes of modeling complex, multimaterial, high-speed
flow and shock wave propagation over general unstructured two-dimensional (2D) and
three-dimensional (3D) computational domains. Numerical methods for solving such
equations can be classified according to two classical points of view: the Eulerian and
the Lagrangian descriptions. In the Eulerian case, numerical methods are defined on
a fixed, typically Cartesian, computational mesh through which the fluid moves. In
contrast, Lagrangian methods are characterized by a computational mesh that moves
with the fluid velocity. The advantages, disadvantages, and applications of each ap-
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proach are well documented (see, for example, [5] and references therein). In this
paper, we are concerned exclusively with Lagrangian methods.

Historically, there have been two major approaches for solving the Euler equations
in a Lagrangian frame. The first, known as staggered grid hydrodynamics (SGH), em-
ploys a spatial discretization where the thermodynamic variables density, pressure, and
internal energy are approximated as piecewise constant values defined at zone (ele-
ment) centers and kinematic variables such as velocity and accelerations are defined
at the mesh nodes (vertices); see [50, 47]. Artificial viscosity, as originally proposed
by [49], is used to generate entropy across shock boundaries while still satisfying the
Rankine–Hugoniot jump conditions at an appropriate distance away from the shock
(typically a few zones). The second major approach, known as cell-centered hydrody-
namics (CCH), treats all hydrodynamic variables as zone (or cell) averaged quantities
and uses approximate Riemann solvers (in the spirit of Godunov methods) to deter-
mine velocities at mesh vertices; see [21, 38, 37]. This process naturally introduces a
sufficient level of dissipation at shock boundaries. We note that work has been done
which attempts to bridge the conceptual gap between these approaches and identifies
many similarities between them [17, 39].

In both SGH and CCH, the node-based kinematic variables are required to be
continuous in order to have a well-defined field with which to move the mesh at each
discrete time-step, whereas the thermodynamic variables are discontinuous. This is
usually referred to as a “single fluid, multiple material” approximation of the gen-
eral hydrodynamics equations. The distinction of continuous versus discontinuous
thermodynamic variables is trivial for the case of constant zone averaged values but
becomes important when we consider the more general case of higher-order bases
for thermodynamic fields. There is physical motivation for treating these variables
in a discontinuous manner since the equation of state of a material is a local prop-
erty and discontinuous at material interfaces (contact discontinuities). The exact
preservation of material interfaces is one of the attractive features of the Lagrangian
framework.

Typically, the staggered grid and cell-centered methods employ finite difference
or finite volume techniques to compute spatial gradients which are required for cal-
culating forces. For example, in the case of SGH, the forces acting on a given mesh
node due to the gradient of the scalar pressure field are computed using the pressure
values and mesh coordinates of the zones which share that node. Since the mesh is an
evolving quantity throughout the duration of a Lagrangian computation, its quality
changes from time-step to time-step and therefore influences the solution accuracy
via the strong dependence on local mesh spacing and quality of finite difference/finite
volume gradient computations. This strong dependence on local mesh quality leads
to the so-called mesh imprinting phenomenon, where a Lagrangian calculation can
prematurely terminate due to mesh tangling or an overly restrictive Courant limited
time-step. Such mesh-based errors feeds back into the computation in a nonlinear
fashion and can therefore be amplified over time leading to nonphysical results such
as symmetry breaking and spurious grid vorticity [24]. In addition to mesh imprint-
ing, SGH Lagrangian calculations have long suffered from the so-called hourglass
mode instabilities which are caused by the inability of a numerical method to resolve
the gradient of the highest frequency spatial mode of a given computational grid (the
so-called checkerboard pressure mode). If left unchecked, such modes can grow indef-
initely in a time-dependent problem leading to spurious grid distortion. To address
this instability, it is often necessary to introduce artificial forces in the momentum
equation which are designed to resist (or filter out) the offending modes [25, 48].
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The arbitrary Lagrangian–Eulerian (ALE) technique was developed largely to
overcome many of these issues [30, 4, 31, 20]. In a typical ALE implementation, the
mesh is evolved in a Lagrangian manner until the element quality deteriorates, at
which point it is adjusted according to some prescribed quality metrics. This remesh-
ing step is followed by the remap phase, where the solution variables are conservatively
and monotonically remapped onto the new mesh. The ALE technique is a very ma-
ture methodology and is the basis for many large-scale, massively parallel simulation
codes. Though we do not consider the details of ALE in this paper, we point out
that the Lagrange step, where the equations are discretized on a computational mesh
which has been moved with the fluid, is at the core of every ALE method. It is also
important to emphasize that despite its many advantages in maintaining mesh quality
and general robustness, ALE will not solve the underlying errors in symmetry and
energy conservation that are generated by the Lagrange step.

There has been much work in developing improvements to both the SGH and
the CCH approach. The so-called compatible hydro approach of [10, 13, 3] was de-
veloped to overcome several of the long-standing deficiencies of Lagrangian methods,
including the inability of many numerical methods to exactly conserve the total en-
ergy. The compatible method introduces the notions of subzonal corner masses and
corresponding corner forces, which are used to compute work terms for updating the
internal energy in a manner which conserves total energy exactly. Furthermore, the
corner masses are used to infer subzonal pressure changes which are then used to com-
pute internal zone forces designed to resist hourglass mode deformations, and zone
“collapse” and, in general, to improve the robustness of Lagrangian computations.
Taking a different approach to improving the quality of Lagrangian methods, several
researchers have advocated the use of improved artificial viscosities for SGH formula-
tions such as the edge and tensor artificial viscosity formulations of [15, 12, 11, 32].
Similar work has been done for the case of CCH Lagrangian methods by improving
the way in which nodal velocities are obtained, as in [39].

Recently, there has been interest in the application of the finite element method
(FEM) [18] to the Euler equations and in exploring the connections between FEM and
the traditional SGH approaches. In [44, 45] the authors introduce the use of stabilized
Q1, P1, and Q1/P0 elements for multiscale Lagrangian hydrodynamics where they
make use of many techniques from finite element theory, such as parametric element
mappings, mass and stiffness matrices, and mass lumping, to formulate their meth-
ods. Furthermore, a connection between the compatible hydro method and traditional
FEMs is described in [1]. While these low-order finite element schemes have shown
some promise, there has been relatively little research in high-order approaches for La-
grangian computations. Notable exceptions are [34], where a discontinuous Galerkin-
type method with an acoustic Riemann solver on triangular grids is described; [7],
which introduces a high-order cell-centered scheme where the edges of each zone are
parametrized by rational quadratic Bezier curves; and [16], where a third-order ENO-
based scheme on topologically structured 2D meshes with quadratically curved edges
is proposed.

The goal of this paper is to present another contribution to this research area,
which centers on a generalized FEM treatment of the compressible hydrodynam-
ics equations, that includes the case of higher-order basis functions obtained via
a high-order mapping from a reference element. To focus the presentation, we re-
strict ourselves to 2D and 3D Cartesian geometry, but our finite element discretiza-
tion framework has a very natural extension to 2D axisymmetric problems, which
we discuss in [23]. Our method is built around the notion of general high-order
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polynomial basis function representations for the various Lagrangian state variables.
This leads to many novel features, including curvilinear zone geometries (also explored
in [40, 16]), the notion of strong mass conservation which is a pointwise generalization
of zonal mass conservation, high-order continuous velocities (e.g., biquadratic, bicu-
bic, biquartic), high-order discontinuous thermodynamic variables, the generalization
of the “corner force” concept to high-order cases which leads to total discrete energy
conservation by construction, a high-order treatment of the tensor artificial viscosity,
novel variants of the artificial viscosity coefficient to account for curvilinear zone ge-
ometry, and the generalization of the subzonal pressure method of [14] by treating
the equations of state as functions which vary inside of a zone. Furthermore, we show
that our general method exactly reduces to classical SGH under specific low-order
assumptions. As pointed out in [16], curvilinear meshes are essential for higher-order
accuracy. This is another motivation for our approach, which extends to arbitrary
order elements on unstructured 2D and 3D grids.

The remainder of this paper is organized as follows. In section 2 we review the
derivation of the continuum equations of Lagrangian hydrodynamics and introduce
some notation. In section 3 we consider an abstract finite dimensional variational
formulation of the Euler equations in a Lagrangian frame. The description and the
results in this section are fairly general and remain valid for a large variety of kinematic
and thermodynamic discretization spaces. In section 4 we present a specific finite
element numerical algorithm based on the general semidiscrete Lagrangian framework
which uses high-order finite element spaces defined on curvilinear zone geometries
obtained through a high-order mapping from a reference element. In section 5 we
prove equivalence of the resulting general finite element formulas to some classical
SGH methods under simplifying, low-order approximations. In section 6 we discuss
the details of the artificial viscosity terms we use in the general high-order methods
and introduce several novel concepts for treating the artificial viscosity coefficient in
this context. In section 7 we apply a generic time discretization process to the semi-
discrete equations and develop the fully discrete computational algorithm. Finally, in
section 8 we present an extensive series of numerical results from several verification
tests solved using the newly develop method and demonstrate its practical advantages
over a wide scope of problem types.

2. Conservation laws of Lagrangian hydrodynamics. Consider a continu-
ous medium, Ω(t), e.g., a fluid or elastic body which is deforming in time. We think
of the medium as composed of a continuum number of particles, {x(t)}, which occupy
different points in space for different values of t. The initial configuration at time
t = t0 will be denoted by Ω̃ ≡ Ω(t0) and its particles by {x̃}. In the Lagrangian
description of motion, the particle position x is expressed as a function of the initial
position x̃ and time:

(2.1) x = x(x̃, t) = Φ̃(x̃, t) , x̃ ∈ Ω̃ , t ≥ t0 .

This description corresponds to an observer moving with the medium and is
characterized by the use of the material derivative

(2.2)
dα

dt
(x, t) =

d

dt
[α(x(x̃, t), t)] or

dα

dt
=
∂α

∂t
+ v · ∇α .

Here α = α(x, t) is any quantity (scalar, vector, etc.) associated with the fluid, while
v is the particle velocity, i.e., the rate of change of the particle position relative to an
outside observer (or Eulerian reference frame):
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(2.3) v(x, t) =
dx

dt
≡ ∂Φ̃(x̃, t)

∂t
.

Note that in (2.2) and the rest of the paper we use the derivative and contraction
operators according to general tensor rules; e.g., (v · ∇v)j =

∑
i vi(∂ivj).

The conservation laws of Lagrangian hydrodynamics are a direct consequence of
the following result, known as the Reynolds transport theorem (see, e.g., [43, 36]),
which describes the rate of change of integrated quantities (mass, momentum, energy,
etc.):

(2.4)
d

dt

∫
U(t)

α =

∫
U(t)

dα

dt
+ α∇ · v .

Here U(t) = Φ̃(Ũ , t) is an arbitrary control volume (a set of particles), which deforms

in time starting from an original configuration Ũ ⊆ Ω̃.
The Reynolds transport theorem can be derived using a change of variables and

the identity

(2.5)
d|J̃ |
dt

= |J̃ | ∇ · v ,

where J̃ = ∇x̃ x = ∇x̃Φ̃ is the Jacobian of the Lagrangian transformation (2.1) and

|J̃ | is its determinant.
Setting α = 1 in (2.4) gives the so-called geometric conservation law (GCL)

(2.6)
d|U(t)|
dt

=

∫
U(t)

∇ · v ,

where |U(t)| denotes the volume of U(t).

2.1. Mass conservation. Let ρ be the density (mass per volume) of the fluid.
A fundamental postulate of Lagrangian hydrodynamics is that the mass in any volume
U(t) does not change in time:

(2.7)
d

dt

∫
U(t)

ρ = 0 .

Using the Reynolds transport theorem (2.4), this becomes

(2.8)

∫
U(t)

dρ

dt
= −

∫
U(t)

ρ∇ · v , or
1

ρ

dρ

dt
= −∇ · v .

Equivalently, using a change of variables U(t) → Ũ via (2.1), the mass conservation
law (2.7) can also be expressed as

(2.9)
d

dt
(ρ|J̃ |) = 0 or ρ(x, t)|J̃(x̃, t)| = ρ(x̃, t0) ,

where x = Φ̃(x̃, t) and x̃ ∈ Ω̃, t are arbitrary. When used directly for discretization,
we refer to the above identity as the strong mass conservation principle to emphasize
that it is equivalent with exact mass conservation for any Lagrangian volume.

Note that the Reynolds transport theorem (2.4) and (2.8) imply

(2.10)
d

dt

∫
U(t)

ρα =

∫
U(t)

ρ
dα

dt
,

which can also be derived directly.
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2.2. Momentum conservation. Let σ be the deformation stress tensor. In the
absence of external body forces, the conservation of momentum reads

(2.11)
d

dt

∫
U(t)

ρ v =

∫
∂U(t)

n · σ ,

where ∂U(t) denotes the boundary of the control volume U(t) with unit normal n.
Using (2.10) and the divergence theorem we get

(2.12)

∫
U(t)

ρ
dv

dt
=

∫
U(t)

∇ · σ or ρ
dv

dt
= ∇ · σ .

2.3. Energy conservation. Let e denote the internal energy per unit mass.
Then, the total internal and kinetic energies in U(t) are given by

(2.13) IE(t) =

∫
U(t)

ρ e and KE(t) =
1

2

∫
U(t)

ρ |v|2 ,

respectively, and the total energy is E(t) = KE(t) + IE(t). In the absence of a heat
flux, the conservation of total energy can be expressed as

(2.14)
d

dt

∫
U(t)

ρ

(
e+

1

2
|v|2
)

=

∫
∂U(t)

n · σ · v .

Simplifying, using (2.10), the pointwise momentum conservation (2.12), along with
the fact that ∇ · (σ · v) = (∇ · σ) · v + σ : ∇v, we get

(2.15)

∫
U(t)

ρ
de

dt
=

∫
U(t)

σ : ∇v , or ρ
de

dt
= σ : ∇v .

2.4. Equation of state. In gas dynamics, the stress tensor is isotropic and has
the form σ = −p I. Here p is the thermodynamic pressure, which can be expressed
as a function of the density and the internal energy through a constitutive relation
p = EOS(ρ, e). This function, known as the equation of state, is determined by
experiments, and though analytical forms are available in simple cases, in practice it
is typically given as tabulated data. In the (simplest) case of a polytropic ideal gas
with a constant adiabatic index γ > 1, the equation of state has the form

(2.16) p = (γ − 1)ρ e .

2.5. The Euler equations in differential form. Combining (2.12), (2.8),
(2.15) and (2.16) we can write the system of Euler equations of gas dynamics in a
Lagrangian reference frame [29]:

momentum conservation: ρ
dv

dt
= ∇ · σ ,(2.17)

mass conservation:
1

ρ

dρ

dt
= −∇ · v ,(2.18)

energy conservation: ρ
de

dt
= σ : ∇v ,(2.19)

equation of motion:
dx

dt
= v ,(2.20)

equation of state: σ = −EOS(ρ, e)I .(2.21)
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We use a general stress tensor σ in the above formulation in order to accommodate
the inclusion of anisotropic tensor artificial viscosity stresses. Specifically, in section
6 we will replace (2.21) with σ = −pI + σa, where σa will generally depend on all
other variables.

The boundary conditions for the Euler equations typically have the form v ·n = g,
enforcing symmetry planes for g = 0 or providing a velocity drive for g �= 0.

3. Abstract semidiscrete Lagrangian variational formulation. In this sec-
tion we consider a generic finite dimensional weak variational formulation of the Euler
equations in a Lagrangian frame. A semidiscrete method for (2.17)–(2.21) is concerned
only with the spatial approximation of the continuum equations and begins with a dis-
cretization of the particle space. A specific finite element numerical algorithm based
on this framework is presented in section 4. We keep the description in this section
general in order to allow for alternative discrete space constructions, such as those
with nonnodal bases [19].

3.1. Discrete kinematic and thermodynamic spaces. Let d ∈ {1, 2, 3} be
the space dimension. The semidiscrete Lagrangian discretization is determined by
two finite dimensional spaces on the initial domain Ω̃:

• a kinematic space V ⊂ [H1(Ω̃)]d with a basis {wi}NV

i=1,

• a thermodynamic space E ⊂ L2(Ω̃) with a basis {φi}NE

j=1.

We discretize the position {x(t)} using the expansion

(3.1) x(x̃, t) =
∑
i

xi(t)wi(x̃) = x(t)Tw(x̃) ,

where x(t) is an unknown time-dependent vector of size NV and w is a column vector
of all the basis functions {wi}NV

i=1. The vector x(t) represents the motion of the fluid
according to

(3.2) Ω(t) = {x(x̃, t) : x̃ ∈ Ω̃)} .

Note that we can define Lagrangian (moving) extensions of the kinematic and thermo-
dynamic basis functions on Ω(t) through the formulas wi(x, t) = wi(x̃) and φj(x, t) =
φj(x̃), where x is the position of particle x̃ at time t. Due to (2.2), these moving bases
are constant along particle trajectories and therefore have zero material derivatives

(3.3)
dwi

dt
= 0 and

dφj
dt

= 0 .

The corresponding moving spaces will be denoted by V(t) and E(t), respectively.

A mild restriction on the space V, expressing that we can represent exactly the
initial geometry, is the requirement that there is a coefficient vector x(t0), such that

x(x̃, t0) = x(t0)
Tw(x̃) = x̃ ∀x̃ ∈ Ω̃ .

This vector also provides the initial conditions for the unknown x(t).

The discrete velocity field corresponding to the motion (3.1) is given by

v(x̃, t) =
∑
i

dxi

dt
(t)wi(x̃) = v(t)Tw(x̃) , i.e., v =

dx

dt
,
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as in (2.3). Note that we can also think of the velocity as a function on Ω(t) with the
expansion v(x, t) =

∑
i
dxi

dt (t)wi(x, t) using the same coordinates, but in the moving
kinematic basis. We can also introduce the Jacobian of the discrete motion

J̃(x̃, t) = ∇x̃ x =
∑
i

xi(t)∇wi(x̃) .

Since both v and J̃ are defined as in the continuous case (by differentiating (3.1)), we
still have (2.5) as well as the GCL (2.6) on a semidiscrete level.

3.2. Semidiscrete conservation laws. Given an initial density field ρ0(x̃) =
ρ(x̃, t0), we use the strong mass conservation principle (2.9) to define the density for
all time,

(3.4) ρ(x̃, t) = ρ0(x̃)/|J̃(x̃, t)|,

which as stated previously implies that the mass in every Lagrangian volume is pre-
served exactly.

We formulate the discrete momentum conservation equation by applying a varia-
tional formulation to the continuous equation (2.17). Using a Galerkin approach (at
a given time t) we multiply (2.17) by a moving basis test function wj ∈ V(t) and
integrate over Ω(t):

(3.5)

∫
Ω(t)

ρ
dv

dt
· wj =

∫
Ω(t)

(∇ · σ) · wj .

Performing integration by parts on the right-hand side, we obtain

(3.6)

∫
Ω(t)

ρ
dv

dt
· wj = −

∫
Ω(t)

σ : ∇wj +

∫
∂Ω(t)

n · σ · wj ,

where n is the outward pointing unit normal vector of the surface ∂Ω(t). Assuming
the boundary integral term vanishes (which is the case, e.g., for boundary conditions
v · n = 0 and σ = −pI) and expanding the velocity in the moving basis gives us

(3.7)
∑
i

dvi

dt

∫
Ω(t)

ρwi · wj = −
∫
Ω(t)

σ : ∇wj .

In other words,

(3.8) MV

dv

dt
= −

∫
Ω(t)

σ : ∇w,

where MV is the kinematic mass matrix which is defined by the integral

(3.9) MV ≡
∫
Ω(t)

ρwwT .

An important feature of our approach is that this mass matrix is independent of time
due to (2.10) and (3.3):

(3.10)
dMV

dt
=

d

dt

∫
Ω(t)

ρwwT =

∫
Ω(t)

ρ
d

dt
(wwT) = 0 .



B614 V. A. DOBREV, TZ. V. KOLEV AND R. N. RIEBEN

The thermodynamic discretization starts with the expansion of the internal energy
in the basis {φj}:

e(x̃, t) =
∑
j

ej(t)φj(x̃) = e(t)Tφ(x̃) ,

where e(t) is an unknown time-dependent vector of size NE and φ(x̃) is a column
vector of all the basis functions {φj}NE

j=1. The internal energy can also be expressed
in the moving thermodynamic basis: e(x, t) =

∑
j ej(t)φj(x, t).

Consider a weak formulation of the energy conservation equation (2.19) obtained
by multiplying it by φi and integrating over the domain Ω(t):

(3.11)

∫
Ω(t)

(
ρ
de

dt

)
φi =

∫
Ω(t)

(σ : ∇v)φi.

Expressing the energy in the moving thermodynamic basis gives∑
j

dej
dt

∫
Ω(t)

ρφjφi =

∫
Ω(t)

(σ : ∇v)φi.

In other words,

(3.12) ME

de

dt
=

∫
Ω(t)

(σ : ∇v) φ,

where ME is the thermodynamic mass matrix which is defined by the integral

(3.13) ME ≡
∫
Ω(t)

ρφφT .

Analogous to the kinematic case, we can use the fact that the thermodynamic basis
functions have zero material derivatives to conclude that ME is independent of time.

We now introduce an NV × NE rectangular matrix F, which we call the force
matrix that connects the kinematic and thermodynamic spaces:

(3.14) Fij =

∫
Ω(t)

(σ : ∇wi)φj .

The stress tensor σ is defined using the equation of state and the above density and
internal energy fields:

σ(x, t) = −EOS(ρ(x, t), e(x, t))I .
By simply changing the above evaluation, our approach can handle general stresses,
including strength models and artificial viscosity terms; see section 6. Note, however,
that our methods do not require the inclusion of artificial stresses designed to resist
hourglass modes or other special deformations.

3.3. The Euler equations in semidiscrete form. Given the previous defini-
tions, we can summarize the general semidiscrete Lagrangian conservation laws in the
following simple form:

momentum conservation: MV

dv

dt
= −F · 1,(3.15)

energy conservation: ME

de

dt
= FT · v,(3.16)

equation of motion:
dx

dt
= v.(3.17)
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The vector 1 above is the representation of the constant one in the thermodynamic
basis {φi} (we assume that 1 ∈ E). Boundary conditions can be implemented by elim-
inating the corresponding rows and columns in MV (which will in general introduce
a difference between its blocks).

Theorem 3.1. The general semidiscrete Lagrangian method (3.15)–(3.17) has
the following conservation properties: exact total momentum conservation (in any
direction), exact GCL (2.6), exact mass conservation, and exact total energy conser-
vation.

Proof. The exact GCL and mass conservation were already discussed in the
beginning of this section.

Regarding the total energy conservation, note that the formulas for the total
internal and kinetic energies (2.13) can be expressed in the semidiscrete settings as

IE(t) = 1 ·ME · e , KE(t) =
1

2
v ·MV · v .

Therefore the rate of change of the total discrete energy is

dE

dt
=

d

dt

(
1

2
v ·MV · v + 1 ·ME · e

)
.

Using the fact that both the kinematic and thermodynamic mass matrices are sym-
metric and independent of time, as well as (3.15) and (3.16), we get

dE

dt
= v ·MV · dv

dt
+ 1 ·ME · de

dt
= −v · F · 1+ 1 · FT · v = 0 ,

i.e., the total energy remains constant in time.
Finally, let c = cTw ∈ V be a vector function which is constant in space and time,

and consider the change of the total momentum in the direction of c. By (2.10) and
(3.15), we have

d

dt

(
c ·
∫
Ω(t)

ρ v

)
= c ·MV

dv

dt
= −c ·F · 1 =

∫
Ω(t)

σ : ∇c = 0 .

Thus, the total momentum is also being conserved on a semidiscrete level (provided
that constant fields are representable in V).

Remark 3.1. Not all discretization methods preserve the GCL on a semidiscrete
level. For example, many schemes, such as [50, 47, 13, 14], approximate the velocity
divergence in the center of a zone Ωz through the rate of change of its volume

(3.18)
1

|Ωz(t)|
d|Ωz(t)|
dt

= ∇ · v .

Though (3.18) is equivalent to (2.6) on quadrilateral meshes, this is no longer the case
on general 3D grids (see section 5.1) or 2D axisymmetric grids (see [35, 23]).

4. Finite element Lagrangian discretization. In this section we describe
a finite element numerical algorithm based on the general semidiscrete Lagrangian
discretization method from section 3. The main feature of our approach is the use of
high-order kinematic and thermodynamic approximation spaces defined on curvilinear
meshes. More details about finite elements can be found in [18, 8, 9].
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Fig. 4.1. A zone Ωz(t) reconstructed from the evolution of only a few of its points (particles) in-
dicated by black circles. Shown are several choices corresponding to (left to right) Crouzeix–Raviart,
Q1, Q2 and Q3 finite elements. Note that the reconstruction with Crouzeix–Raviart elements is not
unique and that the zone boundaries are curved in the Q2 and Q3 cases.

4.1. Particle motion and geometry reconstruction. We start with some
geometric considerations related to the choice of the finite element kinematic dis-
cretization space V and the definition of the deformed domain Ω(t).

A natural way to discretize the motion of the whole medium is to describe it
through the motion of only a finite number of particles. In practice, we decompose
the spatial domain Ω(t) at the initial time t = t0 into a set of nonoverlapping, discrete
volumes {Ωz(t0)} called zones (or elements) and associate particles with them; see
Figure 4.1. The union of these discrete zones forms the initial computational domain
Ω̃ which may, in general, be an approximation of the exact initial domain.

After evolving the particles in time, the zones Ωz(t) are reconstructed based on
the locations of the particles associated with them (vertices, edge midpoints, etc.),
thus defining the moved mesh Ω(t). Note that this reconstruction process introduces
a geometric error (which should vanish under refinement), since the computational
mesh will be only an approximation to the true geometry of the exact domain, even
if the particle trajectories are exact.

The presence of this built-in geometric error motivates the use of high-order ele-
ments, as the Q2 and Q3 elements shown in Figure 4.1, since such elements have more
degrees of freedom on the zone boundaries, allowing them to better represent smooth
deformations. High-order elements are also advantageous in representing initial cur-
vature (e.g., at boundaries and interfaces) as well as curvature naturally developing
in the flow, as illustrated with the exact solutions of two classical test problems in
Figure 4.2.

In section 3 we described a general functional reconstruction approach (3.2) based
on abstract particle locations represented by the expansion coefficients x(t). In the
rest of this section we detail a natural way to define a local reconstruction through
the FEM [18, 8, 9]. In the settings of section 3 this amounts to defining the basis for
the space V by local construction on each zone. Other reconstruction procedures are
also possible; see [40].

4.2. Finite element curvilinear zone reconstruction. The finite element
space construction begins with definitions on the reference element Ω̂z, e.g., the unit
square in 2D or the unit cube in 3D. Throughout the remainder of this paper, all
quantities which are defined with respect to the reference element coordinate system
will be accented with a “hat” symbol.

We consider a basis on the reference element {η̂(x̂)}Nv

i=1 which is nodal, i.e., there

is a set of points called nodes {p̂i}Nv

i=1 such that η̂i(p̂j) = δij , where δij is the Kronecker

delta symbol. The points {p̂i} represent the fixed particle locations on Ω̂z and η̂i is
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Fig. 4.2. An initial Cartesian mesh deformed according to the exact solutions of the Sedov
blast wave (left) and the Taylor–Green vortex (right). See section 8.

the (high-order) nodal basis function associated with particle i. Given the particle
locations {xz,i(t)} for a zone Ωz(t), we reconstruct the zone by defining the curvilinear
zone mapping

(4.1) Φz(x̂, t) =

Nv∑
i=1

xz,i(t) η̂i(x̂) ,

which is defined so that it maps the reference nodes {p̂i} to the particle locations of
the zone (see Figure 4.1):

Φz(p̂i, t) = xz,i(t), i = 1, . . . , Nv .

Based on this reconstruction, the volume occupied by Ωz(t) is the image of the refer-

ence zone Ω̂z under the map Φz :

Ωz(t) = {x = Φz(x̂, t) : x̂ ∈ Ω̂z} .
For the case of a traditional 2D Q1 zone geometry consisting of four vertices connected
by straight lines, the mapping Φz is bilinear. We propose to use high-order mappings
such as Q2 (biquadratic) which produce zones with curvilinear geometry.

The global FEM space V(t) (see section 3) is defined by identifying the particles
that share the same physical location, i.e., particles at common zone boundaries. With
any global particle p we associate d kinematic vector basis functions of the form

wi1 = (ηp, 0, 0), wi2 = (0, ηp, 0), wi3 = (0, 0, ηp) in three dimensions.

The scalar function ηp is nonzero only in zones Ωz that contain the particle p. Re-
stricted to Ωz it is defined as

(4.2) ηp(x, t)|Ωz = η̂j(x̂) with x = Φz(x̂, t) ,

where j is the local particle index for p in the zone Ωz . In this (nodal) FEM setting,
the global unknown vector x(t) consists of the coordinates of all particles. Here, we
defined V(t) directly using the particle trajectories, whereas in section 3 we defined it
through V = V(t0). Both approaches are identical. Indeed, the bases agree at t = t0
(by definition) and (4.2) implies that the material derivatives of wi are zero, which
coincides with the definition used in section 3. In particular,

(4.3) Φz(x̂, t) = Φ̃(Φz(x̂, t0), t) .
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4.3. Finite element mass conservation. The element Jacobian matrix is de-
fined as

(4.4) Jz = ∇x̂Φz

and generally varies inside the zone. The determinant of the Jacobian, |Jz| ≡ detJz ,
gives a measure of volume at a specific point, since the total volume of a Lagrangian
zone can be computed as

(4.5) |Ωz(t)| =
∫
̂Ωz

detJz(t) .

By differentiating (4.3), we get the following relation between the element Jaco-
bian and the Jacobian of the Lagrangian transformation from section 3:

(4.6) Jz(t) = Jz(t0) J̃(t) .

A fundamental postulate of the Lagrangian description of hydrodynamics is the
fact that the total mass contained within a discrete volume element Ωz does not
change in time. In other words, if we introduce the “zonal mass”

(4.7) mz ≡
∫
Ωz(t)

ρ, then
dmz

dt
= 0 .

In both SGH and CCH Lagrangian formulations, the zonal mass is a fundamental
quantity and is used to define the evolution of the density as the ratio of the zonal mass
to the current volume of the zone. In practice, this is known as “mass conservation
by fiat” and it means that the pointwise form of the mass conservation equation in
(2.18) is not explicitly discretized.

In contrast, we use our general framework to eliminate the density through the
strong mass conservation principle (3.4), which in this case takes the form

(4.8) ρ(t)| detJz(t)| = ρ(t0)| detJz(t0)| .
Note that the density defined by this equation is not a finite element (or polynomial)
function. This is illustrated in Figure 4.3.

The principle of strong mass conservation can be viewed as a generalization of
zonal mass conservation as well as the “subzonal mass” concept introduced in [13]. It
allows us to define density at any point in time and space as a function, which is a
critical component of our approach. An alternative approach is to define high-order
mass moments, e.g., by projecting the above density in a discontinuous finite element
space as in [22].

4.4. Finite element kinematics. The momentum conservation equation is dis-
cretized following the general framework of section 3 based on the finite element kine-
matic space from section 4.2.

The locality of the finite element basis implies that the global kinematic mass
matrix is sparse and can be computed through a standard finite element assembly
procedure from zonal mass matrices:

MV = Assemble(MV,z) .

The process of global assembly is analogous to the concept of “nodal accumulation”
that is used in a traditional SGH method, where a quantity at a node is defined to be
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Fig. 4.3. An initial square zone with ρ ≡ 1 (left) and the exact density distribution, given by
strong mass conservation, after deformation to a trapezoid zone (right).

the sum of contributions from all of the zones which share this node. For the general
high-order case, this means we now have shared degrees of freedom along mesh edges
and surfaces in addition to the mesh vertices.

Note that MV is symmetric positive definite and block-diagonal (with identical
blocks); see (5.2). It is also well-conditioned, which implies that simple conjugate gra-
dient iteration can be used to solve the momentum equation iteratively with optimal
efficiency.

Since the kinematic mass matrix is independent of time (see (3.10)), we compute
and store MV only in the beginning of the simulation. In practice, the local mass
matrices MV,z are computed by transforming the integrals to the reference element
and applying a quadrature rule.

4.5. Finite element thermodynamics. Since the kinematic degrees of free-
dom overlap between the zones, it is natural to understand the momentum conserva-
tion equation in a global (continuous) sense. In contrast, the equation of state is local,
underlining the local character of the density, pressure, and internal energy. There-
fore, we argue that the thermodynamic space E should be discontinuous to allow for
restriction of the internal energy conservation equation to the computational zones.

Specifically, to define E(t) we introduce a thermodynamic basis {φ̂i} on the ref-
erence element and define the global moving basis {φj} through the mapping Φz.
This is done zone-by-zone keeping the zonal degrees of freedom independent, which
produces a basis that is discontinuous across zone boundaries. For example, if j is a
global degree of freedom corresponding to a local index i in a zone Ωz, then φj is zero
outside of Ωz and

(4.9) φj(x, t)|Ωz = φ̂i(x̂) with x = Φz(x̂, t) .

Following the general framework of section 3 we use E(t) to discretize the energy
conservation equation, locally on each zone. As with the kinematic mass matrix, we
can consider the thermodynamic mass matrix as being assembled from the local mass
matrices on each individual zone

ME = Assemble(ME,z) .

However, due to the discontinuous nature of the thermodynamic basis, there is no
sharing of degrees of freedom across zone boundaries and so the “assembled” thermo-
dynamic mass matrix is block-diagonal with each block being a purely local matrix on
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each zone. Since these local matrices are small and independent of time, we compute
and store the inverses M−1

E,z at the beginning of the simulation. In practice, the lo-
cal mass matrices ME,z are computed by transforming the integrals to the reference
element and applying a quadrature rule.

Note that continuous finite element thermodynamic spaces can also be handled in
our framework, though this will introduce interaction between the energies in different
zones and will lead to a global matrix ME.

4.6. Finite element force matrix. As with the previously defined mass ma-
trices, the matrix F from (3.14) can be assembled from zonal contributions:

F = Assemble(Fz) , where (Fz)ij ≡
∫
Ωz(t)

(σ : ∇wi)φj .

This local rectangular matrix is the high-order generalization of the “corner force”
concept described in [13]. It represents the hydrodynamic force contributions from a
given zone to a given shared kinematic degree of freedom, as well as the work done
by the velocity gradient in the energy equation.

Evaluating Fz is a locally FLOP-intensive calculation that forms the computa-
tional kernel of our finite element discretization method. Specifically, we transform
each zone back to the reference element where we apply a quadrature rule with points
{q̂k} and weights {αk}:

(4.10) (Fz)ij ≈
∑
k

αkσ̂(q̂k) : J
−1
z (q̂k)∇̂ŵi(q̂k) φ̂j(q̂k)| detJz(q̂k)| .

Note that in general, the total stress σ is evaluated at each quadrature point. In the
absence of shear and artificial stresses (see section 6), the total stress is given by
σ = −pI and the pressure is therefore evaluated at each quadrature point through
the equation of state in the evaluation of (4.10). Furthermore, the density (in an
equation of state call, for example) is evaluated at each quadrature point using the
strong mass conservation principle of (4.8). The notion of sampling the density and
pressure as functions evaluated at zone quadrature points is a key component of our
high-order discretization approach and is essential for robust behavior. Indeed, it is
the reason we do not require any special hourglass filters or artificial stresses and is
directly analogous to the subzonal pressure method of [14].

Remark 4.1. The use of quadrature rules to approximate the integrals in the
evaluation of the zonal mass and corner force matrices introduces an additional error in
the numerical solution. In practice, we use tensor product Gauss–Legendre quadrature
on quadrilateral and hexahedral meshes.

4.7. Pairs of kinematic and thermodynamic spaces. Even though the gen-
eral framework of section 3 allows for arbitrary kinematic and thermodynamic spaces,
in practice we have found that V and E cannot be chosen independently. This is simi-
lar to the classical inf-sup condition for the Stokes problem, but the nonlinear nature
of the compressible hydrodynamics equations makes it difficult to formulate and ana-
lyze a precise compatibility requirement in our setting. (An inf-sup condition can be
derived for the acoustic limit of (2.17)–(2.21) but its usefulness for the nonlinear case
is questionable.) The particular choice we focus on in this paper is as follows:

• V = (Qk)
d, the Cartesian product of the space of continuous finite elements on

quadrilateral or hexahedral meshes of order k with reference basis functions
of the form η(x̂, ŷ) =

∑k
i=1

∑k
j=1 αij x̂

iŷj;
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• E = Q̂k−1, the companion space of discontinuous finite elements of order one
less than the kinematic space.

This choice has been optimal in our numerical experiments, and we refer to it (some-
what informally) as the Qk-Qk−1 pair. Analogous construction can be performed on
triangular and tetrahedral grids, in which case we denote the pair with Pk-Pk−1.

Another motivation for the above definition is that in the lowest-order case, k = 1,
we recover the pair Q1-Q0, which, e.g., in two dimensions corresponds to quadrilateral
zones with straight edges and piecewise constant thermodynamic variables. This is
precisely the choice in many SGH algorithms, and we explore the connection between
these schemes and our FEM further in the following section.

5. Relation to classical discretization schemes. Below we derive some clas-
sical discretization schemes from our general framework under additional discretiza-
tion assumptions.

5.1. The staggered grid method of Wilkins. In this section we show that by
using a piecewise bilinear kinematic approximation (Q1) and a single-point quadra-
ture rule with mass lumping, we can exactly recover the traditional staggered-grid
method of Wilkins [50] as well as a variant of the method described in [14] on general
quadrilateral grids.

The reference zone Ω̂z for quadrilateral grids is the unit square with vertices

X̂1 = (0, 0) , X̂2 = (1, 0) , X̂3 = (1, 1) , X̂4 = (0, 1)

and corresponding basis functions

η̂1(x̂, ŷ) = (1− x̂)(1− ŷ) , η̂2(x̂, ŷ) = x̂(1− ŷ) , η̂3(x̂, ŷ) = x̂ŷ , η̂4(x̂, ŷ) = (1− x̂)ŷ .

The Jacobian matrix for a bilinear mapping to a fixed zone Ωz with vertices {Xi =
(xi, yi)}4i=1 has the form

(5.1) Jz(x̂, ŷ) =

(
J1,1 J1,2
J2,1 J2,2

)
=

(
X2 −X1 + (X3 −X2 −X4 +X1)ŷ
X4 −X1 + (X3 −X2 −X4 +X1)x̂

)
,

and its inverse can be expressed in terms of its adjugate:

J−1
z =

1

detJz
J⊥
Z , where J⊥

z =

(
J2,2 −J1,2

−J2,1 J1,1

)
.

The zonal kinematic mass matrix is

(5.2) MV,z =

(
Mxx

V,z 0

0 Myy
V,z

)
, where (Mxx

V,z)ij = (Myy
V,z)ij =

∫
̂Ωz

ρη̂iη̂j | detJz | .

Note that the determinant of the Jacobian matrix (5.1) is a linear function on the
reference element. Therefore (4.5) implies that the application of a simple one-point
quadrature rule to the mass matrix integral results in

Mxx
V,z ≈ ρz

16
|Ωz |O ,

where O is a 4× 4 matrix of ones and ρz denotes the value of the density at the zone
center. By strong mass conservation (4.8), ρz |Ωz| is independent of time and equals
the zonal mass mz (4.7).
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If we now apply “mass lumping” to Mxx
V,z by summing its off-diagonal entries

to the diagonal, the global kinematic mass matrix MV will be diagonal with entries
corresponding to the so-called nodal masses

mn =
∑
Ωz�n

1

4
ρz|Ωz| .

In other words, we can approximate the mass associated with node n by simply
adding a quarter of the zone averaged mass of each zone which shares the node. This
is precisely the definition of the nodal mass that is used in the method of [50].

To compute the right-hand side of (3.8), we assume σ = −p I and define the
corner force vector fz at a vertex j (a rearrangement of the 8× 1 matrix −Fz)

(5.3) (fz)j = (fxz , f
y
z )

T
j =

∫
Ωz

p∇ηj =
∫
̂Ωz

p (J−1
z ∇η̂j) | detJz| .

Applying the same one-point quadrature rule to the above integral and substituting
the gradients of the bilinear basis functions

∇η̂1 = (ŷ − 1, x̂− 1) , ∇η̂2 = (1− ŷ,−x̂) , ∇η̂3 = (ŷ, x̂) , ∇η̂4 = (−ŷ, 1− x̂) ,

as well as the expressions for the term J⊥
z , we arrive at the values

fxz =
pz
2
(y2−y4, y3−y1, y4−y2, y1−y3) , fyz =

pz
2
(x4−x2, x1−x3, x2−x4, x3−x1).

Here pz denotes the value of the pressure field p evaluated at the center of the zone.
These “corner forces” contribute (by assembling) to the total force representing the
right-hand side of the momentum equation for a given node n


fn =

(∑
Ωz�n

f x
z ,

∑
Ωz�n

f y
z

)
,

which is precisely the formula for the so-called HEMP pressure gradient operator of
[50]. The HEMP formulas are derived using the control volume on the left in Figure
5.1 by noting that


fn = −1

2

∑
k

pk
nk .

We point out that this is also algebraically identical to the compatible hydro method
for calculating the pressure gradient as shown in [13]. Indeed, in the notation of
Figure 5.1, we have 
n1 = 
n21 − 
n14, etc., so by rearrangement of terms

−2
fn = p1(
n21 − 
n14) + p2(
n32 − 
n21) + p3(
n43 − 
n32) + p4(
n14 − 
n43)

= (p4 − p1)
n14 + (p3 − p4)
n43 + (p2 − p3)
n32 + (p1 − p2)
n21 .

The last formula coincides with that in [13] and corresponds to the subzonal control
volume on the right in Figure 5.1.

We remark that for constant pressure, the integrand of (5.3) is a bilinear function
and therefore a simple one-point quadrature is enough for the exact computation of
the corner forces. This is not the case in three dimensions, where the integrand is a
triquadratic function that requires an eight-point Gaussian rule for exact integration.
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Fig. 5.1. Schematic depiction of control volume differencing schemes used for computing the
node centered gradient of a cell-centered pressure. On the left is the so-called HEMP approach of
Wilkins; on the right is the compatible finite difference approach of Caramana et al. Both approaches
are algebraically identical for an arbitrary quadrilateral grid and can be derived from a general FEM
approach. All normal vectors are of size the length of the edge they are normal to.

5.2. The compatible hydro method of Caramana et al. In [10, 13, 14],
the authors introduce the notion of “corner forces,” which are used to compute work
terms for updating the internal energy of a zone in a manner which conserves total
energy algebraically. This is in contrast to so called pdV approach of [50], which
computes the change in zone energy by using the change in zone volume.

Here we show that our finite element force matrix corresponds precisely to the
corner force approach under the specific approximation choices used in section 5.1
along with the additional choice of a piecewise constant internal energy basis (a single
thermodynamic degree of freedom per zone). For each zone, our general high-order
semidiscrete energy conservation law reduces to the form

ME

de

dt
= FT · v �→ mz

dez
dt

= −fz · vz ,

where mz is the zonal mass, ez is the zone averaged value of the internal energy, and
fz is the collection of corner forces; cf. section 5.1. The total change in energy is
therefore given by the inner product −fz · vz = −∑n∈Ωz


fn · 
vn, which is equivalent
to the form used in [13].

In [14], subzonal Lagrangian “corner masses” are used to infer subzonal pres-
sure changes, which are then used to compute internal zone forces designed to resist
hourglass mode deformations and Lagrangian mesh instabilities. These corner masses
are defined in terms of four Lagrangian subvolumes associated with the four vertices
of a quadrilateral zone. As in the case of nodal masses for the method of Wilkins,
we can derive the subzonal corner masses if we apply a nine-point quadrature rule
(obtained by the Cartesian product of the

(
1
4 ,

1
2 ,

1
4

)
composite one-dimensional (1D)

trapezoidal rule) followed by mass lumping. Indeed, by linearity the value of the
determinant of the Jacobian in the center of a subvolume equals four times its area,
and the rest follows analogously to section 5.1 assuming that the density is constant
in each subvolume.

6. Artificial viscosity. To facilitate the case of shock wave propagation, we
now introduce a general tensor artificial viscosity to our semidiscrete equations. The
method of artificial viscosity, as originally introduced by Von Neumann and Richtmyer
[49], augments the discrete Euler equations with a diffusion term which is scaled by a
special mesh dependent, nonlinear coefficient μ. Improvements to this basic technique
include the use of a Van Leer type “monotonic limiter” and an additional linear term
due to Landshoff which act to keep the artificial diffusion length of the shock front
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to a minimum while preventing spurious Gibbs-like oscillations in the vicinity of the
shock. We introduce a tensor artificial viscosity by adding an artificial stress tensor
σa to the total stress tensor σ:

σ(x) = −p(x)I + σa(x).

We emphasize at this point that the artificial stress (as well as the total stress) is in
general a function of the spatial coordinates and therefore varies inside a zone.

6.1. Directional compression measure and artificial stress types. Tra-
ditionally, the tensor artificial stress is defined by one of the two expressions (see
[12, 44, 32])

σa,1 = μ∇v or σa,2 = με(v) ,

where μ is a scalar viscosity coefficient and ε(v) is the symmetrized velocity gradient

ε(v) ≡ 1

2
(∇v + v∇) .

The coefficient μ is usually defined in terms of some measure of compression (or
velocity jump), for example, the velocity divergence, or velocity derivative in a specific
“shock direction.” Here, we utilize the latter approach and consider the following
directional measure of compression: given a direction vector s, we set

(6.1) Δsv = lim
α→0

v(x + αs)− v(x)

α|s| · s|s| =
dv

ds
· s|s| =

s · ∇v · s
s · s =

s · ε(v) · s
s · s .

In other words, the measure of compression is defined by taking the scalar projection
(or scalar component) of the velocity v on the vector s and differentiating in the
direction of s (using the directional derivative). Note that at any given point x,
the symmetric tensor ε(v) is completely characterized by the values of Δsv over all
directions s. Let us consider a particle x and the line passing through x and parallel
to a direction s: L = {x+αs : α ∈ R}. From the point of view of an observer moving
with the particle x with velocity v(x) the particle x′ = x + αs ∈ L moves with a
relative velocity vr = v(x′)− v(x) whose component (or scalar projection) along s is
vr,s = (v(x′) − v(x)) · s/|s|. If this component has the sign of α, then the particle x′

is moving away from the particle x, and conversely, if vr,s has the sign of −α, then x′
is moving toward x. Thus, if Δsv(x) < 0, then there is a neighborhood of x along L
where all points are moving toward x; in other words, x is a point of compression in
the direction s. Similarly, if Δsv(x) > 0, then x is a point of expansion in direction s.

Introduce the spectral decomposition of ε(v), using tensor product notation,

(6.2) ε(v) =
∑
k

λksk ⊗ sk, si · sj = δij , λ1 ≤ · · · ≤ λd,

where λk and sk are the eigenvalues and eigenvectors, respectively, sorted from small-
est to largest eigenvalue. Note that Δskv = λk and the identity

(6.3) min
|s|=1

Δsv = min
|s|=1

s · ε(v) · s = s1 · ε(v) · s1 = λ1

holds, which means that the direction s1 minimizes Δsv over all unit directions s and
the measure of compression in direction s1 is given by λ1. Thus, s1 is a direction of
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Table 6.1

Summary of artificial stress types.

Artificial Stress Type Definition Symmetric

Type 1 σa = μs1∇v No
Type 2 σa = μs1 ε(v) Yes
Type 3 σa = μs1λ1s1 ⊗ s1 Yes
Type 4 σa =

∑
k μskλksk ⊗ sk Yes

maximal compression (or minimal expansion) and therefore it is a natural choice for
a shock direction.

Given a unit direction s let us consider the rank-one stress tensor σ = (μΔsv) s⊗s
for some μ ≥ 0. The surface force generated by this tensor on a surface with normal
vector n is given by n ·σ. Therefore this force will be zero when n is perpendicular to
s and equal to (μΔsv)s when n = s. In the latter case, the direction of this force is
such that it resists both compressive and expansive (in the direction s) motion. Thus,
σ is a purely 1D viscous stress. This observation combined with the natural choice of
s1 as a shock direction motivates the introduction of the following form of artificial
stress:

σa,3 = μλ1s1 ⊗ s1 .

A potential drawback of this form is that it takes into account only a single shock
direction and thus does not handle appropriately the interaction of multiple shocks.
Note that the symmetric artificial stress σa,2 can be written as

σa,2 = με(v) =
∑
k

μλksk ⊗ sk .

Both forms σa,2 and σa,3 can be naturally generalized as

σa,4 =
∑
k

μkλksk ⊗ sk ,

where μk are direction-dependent viscosity coefficients. We can express both σa,2 and
σa,3 in this form, but we can also make a different choice by setting μk = μsk , where
μs is a direction dependent viscosity coefficient, defined in section 6.2. The motivation
for this choice is that σa,4 will be very close to σa,3 at the front of a single shock wave
since in this case there is a single direction of strong compression. At the same time it
will handle the interaction of multiple shocks appropriately as it will take into account
the multiple directions of strong compression.

We summarize the introduced artificial viscosity types in Table 6.1. For types 1,
2, and 3 we use the directional viscosity coefficient μs in the “shock direction” s1:
μ = μs1 . Each form of the artificial stress satisfies the inequality

σa(x) : ∇v(x) ≥ 0 ∀x,
which is an essential property for ensuring a strictly dissipative artificial viscosity and
therefore positive entropy production. The above inequality follows from μs ≥ 0, the
symmetry of σa,2, σa,3, and σa,4 and the equalities

σa,1 : ∇v = μs1∇v : ∇v , σa,2 : ∇v = σa,2 : ε(v) = μs1ε(v) : ε(v) ,

σa,3 : ∇v = σa,3 : ε(v) = μs1λ
2
1 , σa,4 : ∇v = σa,4 : ε(v) =

∑
k

μskλ
2
k .
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Note that σa,1 is generally not symmetric (unless ∇× v = 0), which may potentially
lead to nonphysical behavior.

Finally, we remark that if we define the symmetric and positive semidefinite
tensors

M2 = μs1I =
∑
k

μs1sk ⊗ sk , M3 = μs1s1 ⊗ s1 , M4 =
∑
k

μsksk ⊗ sk ,

then the artificial viscosity stresses of types 2, 3, and 4 can be equivalently written as

σa,2 = M2 · ε(v) , σa,3 = M3 · ε(v) , σa,4 = M4 · ε(v) .
From this perspective, σa,3 and σa,4 can be considered generalizations of σa,2, where
the scalar viscosity coefficient is replaced by a matrix which is diagonal in the local
eigenvector basis for ε(v); cf. [33].

6.2. Directional viscosity coefficient. Following [32], we consider a general
viscosity coefficient of the form

(6.4) μs(x) ≡ ρ
{
q2

2
s|Δsv|+ q1ψ0ψ1scs

}
,

where q1 and q2 are linear and quadratic scaling coefficients, respectively; ρ is the
density and cs is the speed of sound, both evaluated at the point x; Δsv is the
directional measure of compression from section 6.1; s = s(x) is a directional length
scale defined in the direction of the vector s (see section 6.3) evaluated at the point
x; and ψ1 is a compression switch which forces the linear term to vanish at points in
expansion

ψ1 =

{
1, Δsv < 0,

0, Δsv ≥ 0,

and ψ0 is a vorticity switch that suppresses the linear term at points where vorticity
dominates the flow

ψ0 =
|∇ · v|
‖∇v‖ .

Remark 6.1. A drawback of the above definition of the viscosity coefficient μs is
the lack of a “limiter,” whose purpose is to make the artificial viscosity negligible in
regions where the solution is smooth (as in [12, 32], for example). The definition of
such a limiting procedure is not considered here.

6.3. Directional length scale. Artificial viscosities require the definition of a
grid (mesh) dependent length scale. In many SGH formulations, this length scale is
a simple piecewise constant quantity which is computed as the square (cube) root of
the zone area (volume). More sophisticated treatments incorporate knowledge of the
shock velocity to determine the length scale or define the length scale as more than
just a single constant value in the zone (e.g., [12]). Choices made in defining this scale
can have significant consequences with regard to the “mesh imprinting” phenomenon
that is the bane of many Lagrangian methods.

To match the subzonal nature of our high-order approach we think of the length
scale as a function (i.e., a length scale field) defined at a spatial coordinate x in terms
of a direction vector s, relative to an initial length scale field 0(x̃) on the initial
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Fig. 6.1. Examples of the initial length scale field transformation from an initial zone (center)
to a Lagrangian zone via (6.5).

domain Ω̃. Specifically, we define s(x) in terms of the Jacobian J̃ of the mapping

Φ̃ : Ω̃ → Ω(t) from section 2. This allows us to (indirectly) introduce some smoothness
in s(x) by factoring out the effect of the Lagrangian motion.

Consider a circle centered at x̃ = Φ̃−1(x) with diameter 0(x̃). Transforming this
circle through the locally linearized mapping

ỹ �→ y = x+ (ỹ − x̃) · J̃(x̃)

we obtain an ellipse centered at x. One can think of the circle as (a neighborhood
in) the initial zone that has been deformed into the ellipse by the Lagrangian motion.
Therefore the local length scale s(x) is defined by measuring the size of the ellipse in
the direction s. This can be done in two different ways as illustrated by the red line
segments in Figure 6.1 corresponding to the formulas

(6.5) s(x) = 0
|J̃s|
|s| and s(x) = 0

|s|
|J̃−Ts| .

Our default choice is to use the first definition in (6.5). In practice, the Jacobian

matrix J̃ is computed zone by zone via the zone Jacobians Jz using (4.6):

J̃(t) = [Jz(t0)]
−1

Jz(t) .

Note that the use of the Jacobian of the mapping from the initial element in
the length scale definition is essential. If we used the mapping from the reference
element, or in other words if we used Jz(t) instead of 0J̃(t) = 0 [Jz(t0)]

−1 Jz(t) in
(6.5), the symmetry preservation properties of the solution degrade on general grids
as illustrated in Figure 6.2.

In practice, the initial length scale field 0(x̃) should be a smooth representation
of the local mesh size, e.g., the square root of the average zone area (our default
option for 2D meshes) or the choice described in section 8.3 specific for 1D problems
run on 2D meshes. We also divide 0 by the polynomial degree of the kinematic space
to provide a proper normalization in the high-order case.

7. Time integration and the fully discrete approximation. So far we have
focused exclusively on the spatial discretization, but in practice one needs to also
discretize the time derivatives in the nonlinear system of ODEs (3.15)–(3.17) obtained
after the spatial discretization of the Euler equations. In this section we consider a
general high-order temporal discretization method and demonstrate its impact on
the semidiscrete conservations laws. Specifically, let t ∈ {tn}Nt

n=0, and associate with
each moment in time, tn, the computational domain Ωn ≡ Ω(tn). We identify the
quantities of interest defined on Ωn with a superscript n.
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Fig. 6.2. Numerical results for the Noh implosion problem on a 24 × 24 distorted grid (cf.
section 8.4) using the first directional length scale in (6.5) defined through a mapping to initial

element Ωz(t0)← Ωz(t) (left), versus a mapping to the reference element Ω̂← Ωz(t) (right).

Let Y = (v; e;x) be the hydrodynamic state vector. Then the semidiscrete con-
servation equations of (3.15)–(3.17) can be written in the form

dY

dt
= F(Y, t) , where F(Y, t) =

⎛⎝Fv(v, e,x)
Fe(v, e,x)
Fx(v, e,x)

⎞⎠ =

⎛⎝−M−1
V F · 1

M−1
E FT · v

v

⎞⎠ .

Standard high-order time integration techniques (e.g., explicit Runge–Kutta methods)
can be applied to this system of nonlinear ODEs. However, these standard methods
may need modifications to ensure numerical stability of the scheme and to ensure
exact energy conservation. An example of this is given in the next section.

7.1. The RK2-average scheme. The midpoint Runge–Kutta second-order
scheme reads

Y n+ 1
2 = Y n +

Δt

2
F(Y n, tn) , Y n+1 = Y n +ΔtF(Y n+ 1

2 , tn+
1
2 ).

In practice, we have observed that the above scheme may be unstable even for simple
test problems. Therefore, we developed a modification of the scheme to improve its
stability and to ensure total energy conservation. Its two stages are given by

vn+ 1
2 = vn − (Δt/2)M−1

V Fn · 1, vn+1 = vn −ΔtM−1
V Fn+ 1

2 · 1,
en+

1
2 = en + (Δt/2)M−1

E (Fn)T · vn+ 1
2 , en+1 = en +ΔtM−1

E (Fn+ 1
2 )T · v̄n+ 1

2 ,

xn+ 1
2 = xn + (Δ, t/2)vn+ 1

2 , xn+1 = xn +Δt v̄n+ 1
2 ,

where Fk = F(Y k) and v̄n+ 1
2 = (vn + vn+1)/2.

Proposition 7.1. The RK2-average scheme described above conserves the dis-
crete total energy exactly.

Proof. The change in kinetic (KE) and internal (IE) energy can be expressed as

KEn+1 −KEn = (vn+1 − vn) ·MV · v̄n+ 1
2 = −Δt (Fn+ 1

2 · 1) · v̄n+ 1
2

IEn+1 − IEn = 1 ·ME · (en+1 − en) = Δt1 · (Fn+ 1
2 )T · v̄n+ 1

2 ) .

Therefore the discrete total energy is preserved: KEn+1 + IEn+1 = KEn+ IEn.
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7.2. Higher-order methods. We have also tested higher-order time discretiza-
tion methods like the strong stability preserving (SSP) RK3 scheme [28], and the clas-
sical RK4 scheme. In our experience, they do not have the instability issues observed
for the midpoint RK2 scheme (also observed for the SSP RK2 method, also known
as Heun’s method). A drawback of these schemes is that they do not preserve the
total energy exactly. However, since they give high-order temporal approximations
to the semidiscrete method, which preserves the total energy, the error in the total
energy is of higher order at least for smooth problems.

7.3. Automatic time-step control. To facilitate automatic time-step control,
we define a time-step estimate τn as the minimum (over all quadrature points used
in the evaluation of the local force matrices Fz) of the expression

τn = min
x

α

(
cs(x)

hmin(x)
+ αμ

μs(x)

ρ(x)h2min(x)

)−1

,

where hmin(x) is the minimal singular value of Jz(x̂) (divided by the kinematic space
degree for high-order methods) and α, αμ are given CFL constants, which typically
we define as α = 0.5 and αμ = 2.5. In multistage time-stepping methods, τn is taken
to be the minimum over all stages. With this definition of τn, we use the following
algorithm to control the time-step:

1. Given a time-step Δt and state Y n, evaluate the state Y n+1 and the corre-
sponding time-step estimate τn.

2. If Δt ≥ τn, set Δt = β1Δt and go to step 1.
3. If Δt ≤ γτn, set Δt = β2Δt.
4. Set n = n+ 1 and continue with the next time-step.

Here, β1, β2, and γ denote given constants. The default values we use are β1 = 0.85,
β2 = 1.02, and γ = 0.8.

8. Numerical results. We now present a series of numerical results using a set
of high-order methods corresponding to specific choices for the finite element spaces
describing the kinematic variables of position x and velocity v, and the thermodynamic
variable e. We designate each method using the notation Qk-Qk−1 (for quadrilateral
or hexahedral meshes) as described in section 4.7. Our goal in this section is not to
provide an exhaustive study of the effects of choices for basis function order or the type
of artificial viscosities from Table 6.1 (which we believe is the subject of a different
paper), but rather to demonstrate the general features that high-order curvilinear
methods have in the context of classical Lagrangian hydrodynamics benchmarks. For
all test cases considered, we solve the global linear system for momentum conservation
using a diagonally scaled conjugate gradient algorithm to a residual tolerance of 10−8,
and unless otherwise specified, we use an ideal gas equation of state with a constant
adiabatic index γ = 5/3. For the shock wave test problems, unless otherwise specified,
we use the type 2 artificial viscosity from Table 6.1 (our default choice) with the length
scale defined by the left side of (6.5), constant 0, and coefficients q1 = 1/2 and q2 = 2.
The results in this section have been computed with our high-order finite element
Lagrangian hydrocode BLAST [6], which is based on the parallel modular FEMs
library MFEM [41]. We also used the related OpenGL visualization tool GLVis [27]
to plot the computed curvilinear meshes and high-order fields.

8.1. 2D Taylo–Green vortex. The purpose of this example is to verify the
ability of our fully discrete methods to obtain high-order convergence in time and space
on a moving mesh with nontrivial deformation for the case of a smooth (shock-free)
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problem. Here we consider a simple, steady state solution to the 2D incompressible,
inviscid Navier–Stokes equations, given by the initial conditions

v =
{
sin(πx) cos(πy),− cos(πx) sin(πy)

}
, p =

ρ

4
(cos(2πx) + cos(2πy)) + 1 .

We can extend this incompressible solution to the compressible case with an ideal
gas equation of state and constant adiabatic index γ = 5/3 by using a manufactured
solution, meaning that we assume these initial conditions are steady state solutions
to the Euler equations, then we solve for the resulting source terms and use these
to drive the time-dependent simulation. The flow is incompressible (∇ · v = 0) so
the density field is constant in space and time and we use ρ ≡ 1. It is easy to check
that ρdv

dt = −∇p so the external body force is zero. In the energy equation, using
e = p/((γ − 1)ρ), we compute

esrc = ρ
de

dt
+ p∇ · v =

de

dt
=

3π

8
(cos(3πx) cos(πy)− cos(πx) cos(3πy)).

This procedure allows us to run the time-dependent problem to some point in time,
then perform normed error analysis on the final computational mesh using the exact
solutions for v and p. The computational domain is a unit box with wall boundary
conditions on all surfaces (v · n = 0). Note that for this manufactured solution all
fields are steady state, i.e., they are independent of time; however, they do vary along
particle trajectories and with respect to the computational mesh as it moves. We run
the problem to t = 0.75. Since this problem is smooth we run without any artificial
viscosity and do normed error analysis on the solution at the final time and compute
convergence rates using a variety of high-order methods.

In Figure 8.1 we show plots of the (curvilinear) mesh and velocity field magnitude
at times t = 0 and t = 0.75 using three different mesh-method combinations. The first
case we consider is aQ2-Q1 method on an initially structured quadrilateral mesh using
the energy conserving second-order RK2-average time integration method presented
in section 7; the second case is a P3-P2 method on a triangular mesh (obtained by
subdividing each zone of the previous quadrilateral mesh along its diagonal) using a
third-order strong stability preserving time integration method (RK3SSP) [28]; and
the final case is a Q4-Q3 method on an initially unstructured quadrilateral mesh using
a fourth-order time integration method (RK4). Note the degree to which each mesh
is distorted as well as the curvilinear element boundaries in each case and compare
to the exact motion of Figure 4.2. In Figure 8.2 we plot error convergence (using the
L2 norm) of the velocity field at the final time t = 0.75 for each case considered on a
sequence of four successively refined meshes. Note that for each case we observe the
expected (high-order) convergence rates of second-, third-, and fourth-order, even on
the highly deformed curvilinear mesh.

8.2. 2D single material, single-mode Rayleigh–Taylor instability. The
purpose of this example is to demonstrate the ability of high-order curvilinear methods
to better resolve complex flow features and achieve greater robustness in a moving
Lagrangian mesh when compared to low-order methods on a refined mesh (with the
same number of degrees of freedom). Here we consider a variation of the classic
Rayleigh–Taylor instability problem [2] which consists of a heavy fluid resting on top of
a light fluid in a gravitational field supported by a counterbalancing pressure gradient.
The problem domain considered is (x, y) ∈ [0, L/2]× [−L,L] with symmetry planes
at x = 0 and x = L/2, where L = 1. Initially, we have dp

dy = ρg with p(x, L) = 4 and
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Fig. 8.1. Initial (t = 0, top row) and final (t = 0.75, bottom row) curvilinear mesh and
velocity field magnitudes for the 2D Taylor–Green vortex problem using three different combinations
of meshes and high-order methods: Q2-Q1 (left), P3-P2 (middle), and Q4-Q3 (right).

Fig. 8.2. Error convergence in velocity field using the L2 norm for the 2D Taylor–Green vortex
problem using three different combinations of meshes and high-order methods.

the “gravitational” constant g = −1. For this problem, a purely Lagrangian method
precludes the use of a two-material state separated by a contact discontinuity since
the flow will form a “slide” surface with discontinuous velocities at the interface. We
therefore consider the case of a single material with an initial smooth density gradient
in the vertical (or y) direction given by

ρ(y) =
ρ1 + ρ2

2
+
ρ2 − ρ1
π

arctan(βy),

where ρ1 = 1, which represents the “light” material, ρ2 = 2, which represents the
“heavy” material, and the smoothing parameter β = 20. To set up the hydrodynamic
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Fig. 8.3. Snapshots in time corresponding to t = 3.0, t = 4.0, t = 4.5, and t = 5.0 for
the single-material, single-mode Rayleigh–Taylor instability problem using a sequence of high-order
methods with the same number of degrees of freedom.

instability across the initial density gradient, we apply an initial divergence-free ve-
locity perturbation to the whole problem given by

v = v0 exp(−2πy2)
{
2y sin(2πx), cos(2πx)

}
with v0 = 0.02 .

As with the previous problem, this problem is smooth and we therefore run without
any artificial viscosity.

In Figure 8.3 we show plots of the (curvilinear) mesh and density field at different
snapshots in time corresponding to t = 3.0, t = 4.0, t = 4.5, and t = 5.0 for the
case of four different high-order curvilinear methods: Q1-Q0 (analogous to traditional
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SGH), Q2-Q1, Q4-Q3 and Q8-Q7. In each case, the total number of kinematic and
thermodynamic degrees of freedom is held constant. This is achieved by derefining the
mesh one level for every doubling of the spatial order of the method used. Note that as
time increases and the problem develops more vorticity, the low-order methods begin
to lock up and are no longer able to resolve the flow as the mesh begins to tangle.
As the order of the method is increased, the problem is able to run further in time
and resolve more of the flow features while maintaining robustness in the Lagrangian
mesh.

8.3. 1D Sod shock tube. We now transition to shock wave problems which re-
quire the use of artificial viscosity for shock capturing. The purpose of this example is
to verify the ability of our high-order methods to propagate shocks, rarefaction waves,
and contact discontinuities in one dimension. We consider a simple 1D Riemann prob-
lem, the Sod shock tube, on the domain x ∈ [0, 1] consisting of two materials with
different initial states denoted L (left) and R (right), separated by a contact discon-
tinuity at x = 0.5. Results on this benchmark using a Q2-Q1 method have been
reported in [22]; here we compare the same problem using a Q8-Q7 method with an
identical number of degrees of freedom and use artificial viscosity type 4 from Table
6.1.

In Figure 8.4 we show scatter plots of the velocity, density, internal energy, and
pressure versus the x-coordinate at the final time of t = 0.2 and compare it to the
analytic solution using both a Q8-Q7 method on a 1D 50-zone mesh (consisting of 50
zones in the x direction and a single zone in the y direction with y ∈ [0, 0.1]) and a

Fig. 8.4. Results for the Sod shock tube on a 200-zone mesh using a Q2-Q1 method and a 50-
zone mesh using a Q8-Q7 method: velocity (top left), density (top right), internal energy (bottom
left) and pressure (bottom right).
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Fig. 8.5. Results for the Sod shock tube on a 200-zone mesh using a Q2-Q1 method and a
50-zone mesh using a Q8-Q7 method, zoomed in around the shock front illustrating the high-order
continuous velocity (left) and discontinuous density (right). The zone boundaries around the shock
are designated with color-coded vertical lines.

Q2-Q1 method on a twice-refined version of the same mesh. For this 1D problem, the
initial length scale 0 is defined using the zone size in the x direction divided by the
order of the kinematic space, so that 0 ≡ 1/400 for both Q2-Q1 and Q8-Q7 methods.
For each plot, the fields are sampled using the underlying high-order finite element
basis function representation with 25 plot points per zone (5 in the x-direction) for
the Q2-Q1 method and 400 plot points per zone (20 in the x-direction) for the Q8-Q7

method. The sampling of the solutions at the subzone level is essential to resolve the
high-order data that is present in the solution. In both cases we capture the material
contact discontinuity without any diffusion (since we are using a discontinuous internal
energy basis), and in both cases we observe the “wall heating” phenomenon in the
internal energy and its subsequent effect on the density at the contact. Furthermore,
we can conclude for both cases that the ability to resolve the rarefaction wave is
evidence that our artificial viscosity is not excessively damping the solution in smooth
regions. Note that the low-order method on the fine mesh yields essentially the same
result as the high-order method on the coarse mesh.

In Figure 8.5 we show plots of the velocity and density zoomed in around the shock
front. In addition, we designate with color-coded vertical lines the zone boundary
around the shock for the Q8-Q7 method and the corresponding four refined zones for
the Q2-Q1 method. Here we can more clearly see the high-order, subzonal variation
in both the continuous velocity and piecewise discontinuous density. For the Q8-Q7

method, the shock is entirely resolved in a single zone. Note that even though we are
using an eighth-order polynomial basis for the velocity and a seventh-order polynomial
basis for the internal energy for Q8-Q7 method, we do not observe spurious oscillations
at the shock front.

8.4. 2D Sedov explosion and Noh implosion on a nonuniform mesh.
The purpose of these examples is to demonstrate the benefits of our high-order
artificial viscosity formulation in maintaining symmetry for shock wave propagation
over irregular meshes. Here we consider the standard shock hydrodynamic bench-
marks of the Sedov explosion [46] and the Noh implosion [42] test problems in planar
x-y geometry on a nonstandard Cartesian mesh of the domain (x, y) ∈ [−L,L] ×
[−L,L] with 16 × 16 zones in the quadrant (x, y) ∈ [0, L] × [−L, 0], 32 × 32 zones
in the quadrant (x, y) ∈ [−L, 0] × [0, L], 16 × 32 zones in the quadrant (x, y) ∈
[−L, 0]× [−L, 0], and 32×16 zones in the quadrant (x, y) ∈ [0, L]× [0, L]. Maintaining
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Fig. 8.6. Density field and curvilinear mesh (left) and scatter plot of density vs. radius colored
by quadrant (right) for the Sedov problem on a Cartesian grid with different mesh spacing in different
quadrants using a Q2-Q1 method.

radial symmetry for these test problems on such a mesh with a Lagrangian method
is a nontrivial task.

The Sedov problem consists of an ideal gas (γ = 1.4) with a delta function source
of internal energy deposited at the origin such that the total energy Etot = 1. The
sudden release of the energy creates an expanding shock wave, converting the initial
internal energy into kinetic energy. The delta function energy source is approximated
by setting the internal energy e to zero in all degrees of freedom except at the origin
where the value is chosen so that the total internal energy is 1. In Figure 8.6 we show
plots of the density field and curvilinear mesh (L = 1.2) at the final time of t = 1.0
as well as scatter plots of density versus radius sampled at 25 points per zone for the
case of a Q2-Q1 method. Note that even though the shock wave is crossing regions of
the mesh with disparate resolutions and aspect ratios, its radial nature is preserved.

The Noh problem consists of an ideal gas with γ = 5/3, initial density ρ0 = 1,
and initial energy e0 = 0. The value of each velocity degree of freedom is initialized to
a radial vector pointing toward the origin, v = −
r/‖
r‖. The initial velocity generates
a stagnation shock wave that propagates radially outward and produces a peak post-
shock density of ρ = 16. In Figure 8.7 we show plots of the density field and curvilinear
mesh (L = 1.0) at the final time of t = 0.6 as well as scatter plots of density versus
radius sampled at 25 points per zone for the case of a Q2-Q1 method. As before, note
that the stagnation shock front remains largely radial.

8.5. 2D multimaterial shock triple point interaction. The purpose of this
example is to demonstrate that the results from section 8.2 carry over to multi-material
shock driven problems as well. Here we consider a three-state, two-material, 2D
Riemann problem which generates vorticity (see [26] for detailed description). For
a Lagrangian method, there is a limit to how long this problem can be run due
to the generation of vorticity. Here we demonstrate the advantage that high-order
curvilinear methods can provide in this context. In this example we use the type 4
artificial viscosity from Table 6.1 and the coefficients q1 = 1/4 and q2 = 2/3. We note
that this problem will also run with our default choices; we make the modifications
here to demonstrate that even with lower amounts of artificial viscosity, the high-order
methods are still capable of robust performance.

In Figure 8.8 we show plots of the (curvilinear) mesh and density field (log scale)
at time t = 3.3 for the case of three different high-order curvilinear methods: Q2-Q1,
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Fig. 8.7. Density field and curvilinear mesh (left) and scatter plot of density vs. radius colored
by quadrant (right) for the Sedov problem on a Cartesian grid with different mesh spacing in different
quadrants using a Q2-Q1 method.

Q4-Q3, and Q8-Q7. As in previous examples, the total number of kinematic and
thermodynamic degrees of freedom is held constant by de-refining the mesh one level
for every doubling of the spatial order of the method used. Note that for each case, the
shock locations are essentially identical, but the total amount of “roll-up” at the triple
point increases as the order of the spatial approximation increases. Note also that
since these are purely Lagrangian calculations, the material interfaces are preserved
in contrast to ALE calculations of this problem (e.g., in [26]) which either diffuse the
interface or require interface reconstruction.

8.6. 3D multimaterial spherical implosion. The purpose of this example is
to demonstrate the benefits of high-order curvilinear methods with respect to symme-
try preservation in 3D problems. Maintaining spherical symmetry on 3D unstructured
meshes remains a major challenge for most Lagrangian (or ALE) schemes. Here we
consider a simple 1D multimaterial implosion problem on an unstructured 3D mesh.
The problem consists of a low-density material with ρ1 = 0.05 in the radial range
r ∈ [0, 1] surrounded by a shell of high density material ρ2 = 1.0 in the radial range
r ∈ [1.0, 1.2]. Each material is at an initial pressure of p = 0.1 and uses an ideal
gas equation of state with γ = 5/3. This problem was originally proposed by [26] for
cylindrical symmetry. Here we make a simple modification for spherical symmetry;
instead of applying a time-dependent pressure source to the outermost radial surface
of the problem, we apply a constant velocity source of v = −5
r/‖
r‖.

The outer surface drives a spherical shock wave inward. Ideally, the interface
between the high- and low-density materials should remain perfectly spherical for all
time due to the spherical symmetry of the velocity drive. However, the discretization
errors of the initial geometry of this surface and subsequent error introduced by the
numerical algorithm will be amplified over time since the interface is subject to both
Richtmyer–Meshkov and Rayleigh–Taylor instabilities. In Figure 8.9 we show plots of
the mesh and density on a log scale at three snapshots in time using a Q1-Q0 method.
In Figure 8.10 and Figure 8.11 we show the same plots using high-order Q2-Q1 and
Q4-Q3 methods on curvilinear meshes that are de-refined so that each of the three
cases has an identical number of kinematic and thermodynamic degrees of freedom.
Note the curved initial geometry for the two high-order cases. (All high-order position
degrees of freedom are mapped to spherical surfaces in the outer high-density shell.)
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Fig. 8.8. Density field (log scale) and curvilinear mesh for the 2D multimaterial shock triple-
point problem at time t = 3.3 using Q2-Q1 (top), Q4-Q3 (middle), and Q8-Q7 (bottom) methods
with the same number of degrees of freedom.

Fig. 8.9. Snapshots of mesh and density (log scale) at times t = 0, t = 0.08 and t = 0.15 for
the 3D multimaterial spherical implosion problem using a Q1-Q0 method.

Fig. 8.10. Snapshots of mesh and density (log scale) at times t = 0, t = 0.08 and t = 0.15 for
the 3D multimaterial spherical implosion problem using a Q2-Q1 method.
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Fig. 8.11. Snapshots of mesh and density (log scale) at times t = 0, t = 0.08 and t = 0.15 for
the 3D multimaterial spherical implosion problem using a Q4-Q3 method.

Fig. 8.12. Average interface radius vs. time (left) and percent symmetry error vs. time (right)
for the 3D multimaterial spherical implosion problem using a sequence of high-order methods with
a fixed number of degrees of freedom for each case.

Fig. 8.13. Plots of interface radius (reflected into a full sphere for visual clarity) using a fixed
color scale for the 3D multimaterial spherical implosion problem at time t = 0.15 using a Q1-Q0

method (left), a Q2-Q1 method (center), and a Q4-Q3 method (right).

Note also the 3D subzonal resolution of the inwardly moving shock at t = 0.8 for the
Q4-Q3 case.

In Figure 8.12 we plot the average radius of the entire material interface (surface)
sampled at 9 points per face for the Q1-Q0 method, 25 points per face for the Q2-Q1

method, and 81 points per face for the Q4-Q3 method (resulting in the same total
number of interface sample points for each case) and compare this to a reference 1D
result (obtained from a high resolution 1D Lagrangian SGH calculation). Note that all
three methods achieve essentially identical results in the average radius. In Figure 8.12
we also plot the normalized standard deviation of this radial surface which indicates
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the symmetry error over time. When computing spatial errors using a traditional
SGH code, the error is usually only considered at the mesh vertices (i.e., 4 points per
face). Here we are sampling the symmetry error at 9 points per face for the Q1-Q0

method to emphasize the “faceting” error that is introduced by approximating the
spherical surface using bilinear face patches. As indicated in Figure 8.12, the Q2-Q1

and Q4-Q3 methods are much better at approximating the initial spherical geometry
and at preserving the time evolved symmetry of the interface for a fixed number
of degrees of freedom. This is demonstrated further in Figure 8.13, where we show
surface plots of the calculated radius at the final time of t = 0.15 for all three cases.

9. Conclusions. In this paper we presented a high-order curvilinear FEM for
solving the equations of compressible hydrodynamics in a Lagrangian frame. This
approach is general with respect to the choice of kinematic and thermodynamic bases
and can be considered a high-order generalization of classical methods. We demon-
strated via numerical examples a number of practical benefits, including the ability
to more accurately capture the geometry of the flow and maintain robustness with
respect to mesh motion using curvilinear zones; significant improvements in symme-
try preservation for symmetric flows; the elimination of the need for ad hoc hourglass
filters; and sharper resolution of a shock front for a given mesh resolution including
the ability to represent a shock within a single zone. Our approach capitalizes on sev-
eral new tools in the context of computational hydrodynamics, such as the functional
point of view regarding the approximation of field variables and mesh geometry, the
concept of strong mass conservation, the artificial viscosity length scale defined with
respect to the initial mesh, and the use of curvilinear zones to more accurately model
initial and time evolving geometries. We plan to extend our general finite element
discretization framework, and these tools in particular, to also address problems with
axial symmetry, and elastic-plastic deformation models, as well as the remesh and
remap steps in the overall ALE framework.
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