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FOURTH ORDER FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION
WITH MESH REFINEMENT INTERFACES

SIYANG WANG * AND N. ANDERS PETERSSON

Abstract. We analyze two types of summation-by-parts finite difference operators for solving the two-dimensional wave
equation on a grid with a mesh refinement interface. The first type uses ghost points, while the second type does not use any
ghost points. A previously unexplored relation between the two types of summation-by-parts operators is investigated. By
combining them we develop a new fourth order accurate finite difference discretization for the wave equation with hanging
nodes on the mesh refinement interface. Compared to previous approaches using ghost points, the proposed method leads
to a smaller system of linear equations that needs to be solved for the ghost point values. An attractive feature of the
proposed method is that the explicit time step does not need to be reduced relative to the corresponding periodic problem.
Numerical experiments, both for smoothly varying and discontinuous material properties, demonstrate that the proposed
method converges to fourth order accuracy. A detailed comparison of the accuracy and the time-step restriction of the
simultaneous-approximation-term penalty method is also presented.

Key words. Wave equation, Finite difference methods, Summation-by-parts, Ghost point, Non-conforming, Mesh
refinement

AMS subject classifications. 65M06, 656M12

1. Introduction. Based on the pioneering work by Kreiss and Oliger [8], it is by now well known
that high order accurate (> 4) numerical methods solve hyperbolic partial differential equations (PDE)
more efficiently than low order methods. While Taylor series expansion can easily be used to construct
high order finite difference stencils for the interior of the computational domain, it can be more chal-
lenging to find stable boundary closures. In this paper we use finite difference operators that satisfy
the summation-by-parts (SBP) property, first introduced by Kreiss and Scherer [9], to solve the two-
dimensional wave equation with variable coeflicients on a grid with a non-conforming mesh refinement
interface.

An SBP operator is constructed such that the energy estimate of the continuous PDE can be carried
out discretely for the finite difference approximation, with summation-by-parts replacing the integration-
by-parts principle. As a consequence, a discrete energy estimate can be obtained to ensure that the
discretization is energy stable. When deriving a continuous energy estimate, the boundary terms resulting
from the integration-by-parts formula are easily controlled through the boundary conditions. However,
for the finite difference approximation, special care is needed to make sure that boundary terms do not
lead to unphysical growth of the numerical solution.

When the material properties are discontinuous, one possible approach to ensure high order accuracy
is to decompose the domain into multiple subdomains, such that the material is smooth within each
subdomain. The governing equation is then discretized by SBP operators in each subdomain, and patched
together by imposing interface conditions at the material discontinuity. For computational efficiency it
can be desirable to use different mesh sizes in the subdomains, leading to mesh refinement interfaces with
hanging nodes.

In the SBP finite difference framework, there are two main approaches to impose boundary conditions.
First, we can impose boundary conditions strongly by using ghost points [21]. In this case, the SBP
operators also utilize the ghost points for difference approximations. We call this the SBP-GP method.
In the second approach, called SBP-SAT, boundary conditions are imposed weakly by adding penalty
terms, also known as simultaneous-approximation-terms (SAT) [3], to the discretization. Thus, the SBP-
SAT method bears similarities with the discontinuous Galerkin method [2, 5]. For the wave equation
with non-conforming mesh refinement interfaces, a high order accurate SBP-SAT finite difference method
and a second order accurate SBP-GP method were previously developed in [25] and [16], respectively.

In this paper, we present two ways of generalizing the SBP-GP method in [16] to fourth order
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2 S. WANG AND N. A. PETERSSON

accuracy. The first approach is a direct generalization of the second order accurate technique, which
uses ghost points from both subdomains for imposing the interface conditions. The second version is
based on a previously unexplored relation between SBP operators with and without ghost points. This
relation allows for an improved version of the fourth order SBP-GP method, where only ghost points
from one side of the interface are used to impose the interface conditions. This approach reduces the
computational cost of updating the solution at the ghost points and should also simplify the generalization
to three-dimensional problems.

Even though both the SBP-GP and SBP-SAT methods have been used to solve many kinds of PDEs,
the relation between them has previously not been explored. An additional contribution of this paper
is to connect the two approaches, provide insights into their similarities and differences, and make a
comparison in terms of their efficiency.

The remainder of the paper is organized as follows. In Section 2, we introduce the SBP methodology
and present the close relation between the SBP operators with and without ghost points. In Section 3,
we derive a discrete energy estimate for the wave equation in one space dimension with Dirichlet or
Neumann boundary conditions. Both the SBP-GP and the SBP-SAT methods are analyzed in detail and
their connections are discussed. In Section 4, we consider the wave equation in two space dimensions,
and focus on the numerical treatment of grid refinement interfaces with the SBP-GP and SBP-SAT
methods. Numerical experiments are conducted in Section 5, where we compare the SBP-GP and SBP-
SAT methods in terms of their time-step stability condition and solution accuracy. Our findings are
summarized in Section 6.

2. SBP operators. We begin with preliminaries that will be used in the discussion of SBP finite
difference methods. Consider an interval Q = [0,1] and a uniform grid = [z1,- -+ ,z,]7, where

The domain boundaries are at the grid points j = 1 and j = n, and the grid size is h = 1/(n —1). In
addition, there is one ghost point at g = —h and one ghost point at x,41 = 1 + h outside the physical
domain 2.

Let w = [ug,- -+ ,uy,] and v = [vy, -+ ,v,] be grid functions on x. In the context of SBP identities,
the values of the grid functions are arbitrary. However, in the discussion of truncation errors, we assume
the grid functions are sufficiently smooth functions evaluated on the grid.

The standard discrete L? inner product is defined as

n
(u,v)a =h Z U;jV;.
j=1
For SBP operators, we need a weighted inner product

n
(u,v), = thjuj’uj, wj > 4§ >0,
j=1

for some constant J, where w; = 1 in the interior and w; # 1 at a few grid points near each boundary.
The norm induced from the inner product (-, ) is called a diagonal SBP norm.

The SBP methodology was introduced by Kreiss and Scherer in [9], where the first derivative SBP
operator D ~ 9/0z was also constructed. It satisfies the first derivative SBP identity

(2.1) (u, Dv)p, = —(Du, v)p, — u1v1 + Upp.

Because the weights of an SBP norm equal to one in the interior of the domain, central finite differences
with order of accuracy 2p can be used in the interior of the domain. To retain the SBP property, special
one-sided boundary stencils must be employed for non-periodic problems at a few grid points near each
boundary. Kreiss and Scherer also showed in [9] that the order of accuracy of the boundary stencil is
lower than the interior stencil. With a diagonal norm and a 2p** order accurate interior stencil, the
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Fig. 1: The structure of the SBP operator G(u) on a grid with 30 grid points. Blue circles: standard
five-point difference stencil. Red triangles: special boundary stencil. Black squares: ghost point. The
structure of G(u) is the same, but without the black squares.

boundary stencil can be at most p'” order accurate. Despite this fact, we refer to the accuracy of an SBP
operator by its interior order of accuracy (2p).

For second derivative SBP operators, we focus our discussion on the case with variable coefficient
2 (w(x) Zu(z)), where the smooth function u(z) > 0 often represents a material property. In the
following we introduce two different types of second derivative SBP operators. The first type uses one
ghost point outside each boundary, while the second type does not use any ghost points. We proceed
by explaining the close relation between these two types of SBP operators. To make the presentation

concise, we exemplify the relation for the case of fourth order accurate SBP operators (2p = 4).

2.1. Second derivative SBP operators with one ghost point. A fourth order accurate SBP
operator G(p)u ~ %(p(m)a%u(:c)) with ghost points was derived by Sjogreen and Petersson [21]. This
operator uses a five-point difference stencil of fourth order accuracy in the interior of the domain. At
the first six grid points near each boundary, special one-sided stencils of second order accuracy are
constructed. Note that G(u) only uses the ghost point value at the boundary itself, as is illustrated in
Figure 1, where the structure of G(p) is shown when the operator is represented by a matrix of size
30 x 32 on a grid with 30 grid points.

The boundary stencil is constructed such that G(u) satisfies the second derivative SBP identity

(2.2) (u, G(p)v), = =S, (w, ) — usf11b] v + Up b v,

where the bilinear form S,(-,-) is symmetric and positive semi-definite. The boundary derivative

is a fourth order accurate approximation of V,(z1), and makes use of the ghost point value vg. Similarly,
brv = V,(x,) + O(h*) uses the ghost point value v, 1. We emphasize that the bilinear form S, does
not depend on any ghost point values. The SBP operator G (i) only uses the ghost point to approximate
the second derivative on the boundaries 1 and z,,.

The fourth order accurate SBP operator G(u) has been extensively used in the software package
SW4 [19] for the simulation of seismic wave propagation. Prior to SW4, a second order accurate ghost
point technique was developed in [15] and implemented in the WPP code [17].

2.2. Second derivative SBP operators without ghost points. The second type of second
derivative SBP operators, denoted by Gap(u), does not use any ghost points. This type of operators was
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4 S. WANG AND N. A. PETERSSON

constructed by Mattsson [10] for the cases of second, fourth and sixth order accuracy (2p = 2,4,6). In
the following discussion we focus on the fourth order case and define G(u) = G4(p).

In the interior of the domain, the operator G (1) uses the same five-point wide, fourth order accurate
stencil as the operator with ghost points, G(u). At the first six grid points near the boundaries, the two
operators are similar in that they both define second order accurate stencils that satisfies an SBP identity
of the same form as (2.2),

~ ~ ~T ~T
(2.3) (u, G(p)v)r, = —=Su(uw,v)p — uip1by v + up b, v.

Similar to (2.2), the bilinear form §M(~, -) is symmetric and positive semi-definite. The boundary derivative
operators b, and En are constructed with third order accuracy using stencils that do not use any ghost
points. The structure of G(u) is the same as shown in Figure 1, but without the two black squares
representing ghost points.

2.3. Relation between SBP operators with and without ghost points. When using the SBP
operator G(u) with ghost points, boundary conditions are imposed in a strong sense by using the ghost
point value as a degree of freedom. On the other hand, for the SBP operator @(u) without ghost points,
boundary conditions are usually imposed in a weak sense by using a penalty technique. Though these
two types of SBP operators are used in different ways, they are closely related to each other. In fact, an
SBP operator with ghost points can easily be modified into a new SBP operator that does not use any
ghost points, and vice versa. The new operators preserve the SBP property and the order of accuracy
of the original operators. In the following, we demonstrate this procedure on the fourth order accurate
version of G(u) [21] and G(w) [10]. It is only necessary to consider the left boundary, because the right
boundary can be treated in a similar way.

The boundary derivative associated with G(u) is in the form

(2.4) bl v = m(—31}0 — 1001 + 18vg — 6v3 + v4) = Vi (1) + O(hY).
We define

(2.5) blv =blv+ phidL, v,

where

(2.6) di v= %(—vo + 5v1 — 100y + 10v3 — 5vg + vs) = %(xl) + O(h)

is a first order accurate approximation of the fifth derivative at the boundary point x;. Therefore, both
the approximations (2.4) and (2.6) are exact at x; if V(x) is a polynomial of order at most four. As a
consequence, QlT'u is a fourth order accurate approximation of V,(z1) for any 8. Here and throughout
the paper, we use an underbar to indicate operators that have been modified by adding/removing ghost
point.

We note that the coefficient of vy in bT v is -1/4. To eliminate the dependence on vy in the approxi-
mation bl v, we choose 3 = —1/4 so that

blv = —2501 + 480y — 36w3 + 1604 — 3v5) = Vi (x1) + O(hY),

1
125
does not use the ghost point value vy. Instead, QlTv uses the value vs, which is not used by blTv.

To retain the SBP property (2.2), the operator G(u) must be changed accordingly. Because the
bilinear form S,(-,-) is unchanged by the above procedure, the only change in G(u) arises from the
approximation at the boundary point. The corresponding SBP operator without ghost point becomes

4

h 12
G(pv1 = G(p)vy — —md;, v = G(p)vy + —h*mdj v,
hw1 17
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 5
and
Q(IUJ)/U] :G(,LL)'UJ, j:273747"' ,Tl—l,

where we have used that wy = 17/48 is the weight of the SBP norm at the first grid point.

The new operator G(u) has similar properties as the original operator G(u). In particular, it satisfies
the SBP property, is fourth order accurate in the interior and second order accurate at the first six grid
points near the boundary, and the boundary derivative is approximated to fourth order accuracy. Even
though the SBP operator G (i) does not use ghost point, it is different from the SBP operator G(u) [10],
which uses a third order accurate approximation of the boundary derivative.

For the SBP operator G(u) that does not use ghost points, it is straightforward to reverse the above
derivation to obtain a new SBP operator that uses a ghost point outside the boundary. The boundary
derivative approximation associated with G(u) is

~ 1
(2.7) b?v = G—h(—llvl + 18vy — Yuz + 20y) = %(ml) + O(h®).

To add a ghost point, we write

(2.8) E?’u = E?’u + vh‘q’dLv,
where
1 d*v
(2.9) di,v= 77 (V0 = 4v1 + 60z — dvg + vg) = —— (21) + O(h).

The boundary stencil (2.7) is exact for polynomials V() of order at most three and d4T+v = 0 for
such polynomials. Therefore, (2.8) is a third order accurate approximation of V,(z1) for any 7. By
choosing v = —1/3, we find that

~T 1 dv
bv= @(—21)0 — 3v1 + 6vg —v3) = %(3&'1) + O(h?’)

This stencil uses the ghost point vg but does not use vq. Thus it has the minimum stencil width for a
third order accurate approximation of a first derivative.
Correspondingly, the new SBP operator G(u) that uses a ghost point takes the form

3

~ 16
G(wvr = Gpyvr — Z}—muldLv = G(p)vy + —oh?

T
17 pdy v

and

Q(M)'U] = é(/,b)'l)_], j = 273747' N 1.

3. Boundary conditions. In this section, we briefly present the techniques of imposing boundary
conditions for the wave equation with the SBP operators G(u) and G(u), and highlight the relation
between the two approaches SBP-GP and SBP-SAT. Our model equation is

(3.1) pUn = (1(@)Us)e, @ € [0, 1],

with suitable initial conditions. We assume both p and p are sufficiently smooth. The forcing function is
omitted in the right-hand side of (3.1), as it has no influence on how boundary conditions are imposed.
We only consider the boundary condition on the left boundary x = 0, because the boundary condition
at x = 1 can be imposed in the same way. Consequently, terms corresponding to the boundary x = 1 are
omitted in the scheme.

This manuscript is for review purposes only.
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6 S. WANG AND N. A. PETERSSON

3.1. The Neumann boundary condition. We start by considering the homogeneous Neumann
boundary condition U,(0,¢) = 0. In the SBP-GP method, the semi-discretization of (3.1) is

(3.2) pure = G(u(z))u.
By using the SBP property (2.2), we obtain

(we, pup)n = (ug, G(p(z))u)p

_Su(ut7 u) - (ut)lulb{ua

which can be written
(3.3) (wt, pse)p + Sp(ur, u) = —(Ut)lﬂlbfu'

We note that the left-hand side of equation (3.3) is the rate of change in the discrete energy in time,

(3.4) %[(ut,put)h + Su(u,uw)] = —2(uy)1 1 b .

To obtain energy stability, one option is to impose the boundary condition so that the right-hand side of
(3.4) is non-positive. The key in the SBP-GP method is to use the ghost point as the additional degree of
freedom for the boundary condition. For the Neumann boundary condition U, (0,t¢) = 0, we approximate
it by setting b{u = 0 at every time step, which determines the solution ug on the ghost point xg. This
choice leads to energy conservation, with the energy estimate

(3.5) (o, pudn+ Sy, w)) = 0.

Next, we consider the semi-discretization of (3.1) by the SBP-SAT method

(3.6) puy = G(p)u + pn,

where p,, is the penalty term. By using the SBP identity (2.3), we obtain

(we, puge)n = (ue, G(p(w))u)n + (Ui, Pn)n

= _§/,1,(ut7 u) — (Uo)tuogfu + (U, Pn)hs

which can be written

d _ -
(3.7) %[(Un pug)n + Su(u, u)] = —Q(Uo)tuobf’u + 2(us, P )n-
Therefore, we need (ul)t,ulgfu = (ut, pn)n to obtain an energy estimate. An obvious choice of the the

penalty term is to take h~lw; ! ,uogfu as the first component of p,,, and 0 elsewhere. This choice leads
to an energy conserving discretization with the energy estimate

d
(3.8) %[(uta pue)p + Su(u, u)] = 0.
We note that the energy estimates (3.5) and (3.8) are in exactly the same form. However, bTu = 0 is
satisfied at every time step, but b] w = 0 does in general not hold.

3.2. The Dirichlet boundary condition. With the Dirichlet boundary condition U(0,t) = 0,
the semi-discretization in the SBP-GP method remains the same (3.2). From (3.4), by setting u; = 0
at every time step, an energy estimate is obtained. At first glance, it seems that the discrete energy is
modified by injection, and the ghost point value ug is not used. However, we can choose the ghost point
value ug at the current time step, such that u; = 0 is satisfied at the next time step. In this way, the
discrete energy is conserved (3.5), and the scheme is stable. We note that G(u) only uses ghost point

This manuscript is for review purposes only.
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 7

for the approximation on the boundary. As a consequence, it is not necessary to compute ug explicitly,
because u; is injected by the Dirichlet boundary condition in every time step and ug is never used.

Therefore, injection at a Dirichlet boundary leads to an energy stable discretization for the SBP
operator G(u). This is true also for the SBP operator G(u) without ghost point. In [4], energy stability
is proved from a different perspective by analyzing the property of the matrix representing the operator
G(p).

It is also possible to impose a Dirichlet boundary by the SAT method. The discretized equation is
in a more complicated form than the simple injection method, but the technique sheds light on how to
impose a grid interface condition, which is the main topic in the next section. Replacing the penalty
term in (3.6) by pg, an analogue of (3.7) is

d ~
(3.9) %[(uu pui)n + Sp(w, w)] = =2(ut)1pab] w + 2(ws, Pa)n-
It is not straightforward to choose pg such that the right-hand side of (3.9) is non-positive. However,
we can choose pg so that the right-hand side of (3.9) is part of the energy change. One option is to
require

~ T
(3.10) (up, pa)n = —u1p1 b uy — ()1

so that (3.9) becomes

d ~ ~ T

(3.11) %[(ut,put)h + Spu(u,u) + 2u1u1bfu + Eulmul] =0.

We obtain an energy estimate (3.11) if the quantity in the square bracket is non-negative.
In Lemma 2 of [22], it is proved that the following identity holds

(3.12) S, (w,w) = Sp(u,w) + hap, (bTu)?,

where both the bilinear forms S,(-, ) and §ﬁ(~, -) are symmetric and positive semi-definite, « is a constant
that depends on the order of accuracy of é(u) but not h, and p,, is the smallest value of p on the
first r, grid points. The constant r, depends on the order of accuracy of é(u) but not h. As an
example, the fourth order accurate SBP operator G(u) constructed in [10] satisfies (3.12) with T, =4
and o = 0.2505765857. Any « > 0.2505765857 can make gﬁ(-, -) indefinite.

By using Young’s inequality, when the penalty parameter 7 > p1/(c ), equation (3.11) is indeed
an energy estimate. The energy estimate (3.11) has more terms than the corresponding energy estimate
by the SBP-GP method, but the extra terms vanish when the grid size goes to zero. We note that
the penalty parameter 7 has a lower bound but no upper bound. Choosing 7 to be equal to the lower
bound gives large numerical error in the solution [24]. However, an unnecessarily large 7 affects the CFL
condition negatively and requires a small time step [13]. In computation, we find the increase in 7 by
10% to 20% from the lower bound is adequate for accuracy and efficiency.

4. Grid refinement interface. We consider the wave equation in two space dimensions with a
discontinuous wave speed. To achieve high order accuracy with a finite difference method, it is impor-
tant that the difference stencil does not cross the discontinuity. A common strategy for discontinuous
parameters is to partition the domain into subdomains, and align the discontinuity with the subdomain
boundaries. The finite difference approximation is then carried out in each subdomain, and adjacent
subdomains are connected via interface conditions.

As an example, we consider the wave equation in a composite domain QfUQ¢, where O/ = [0,1]x [0, 1]
and Q°¢ = [0,1] x [-1,0]. The governing equation reads

pUt’;:V-usUf, (z,y) €, t >0,

(4.1)
pUf =V - uVU, (x,y) € Q% t >0,

This manuscript is for review purposes only.
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8 S. WANG AND N. A. PETERSSON

with suitable initial and boundary conditions. We assume that p is sufficiently smooth in Qf U Q°. We
also assume g/ and p¢ are sufficiently smooth in the domain Qf and Q°, respectively. However, on the
interface, uf may not equal ¢, in which case the solution is continuous, but its gradient is discontinuous.
The continuous interface conditions

Uf(2,0,t) = U%(x,0,¢),

) W (2,0)U] (2,0,) = (2, 0)U (,0.),

at y = 0 lead to a wellposed problem [12, 16].

Our focus is the numerical treatment of the interface conditions (4.2) when the grids are non-
conforming. In particular, we consider periodic boundary conditions in x. For the spatial discretization,
we use a Cartesian mesh with mesh size h in the fine domain ©/ and 2h in the coarse domain Q°¢. The
number of grid points in the z direction is n in Q°¢, and 2n — 1 in Q/. The mesh (z/,y/) in Q/ and
(z¢,y°) in Q° are defined as

(43) x;{:(z"fl)h, =122l :z:f:2(i.—1)h, =12
y:(]—l)h, 7=0,1,2,---,2n—1 y]C:Q(]_n)h7 j=1,2,---,n+1

respectively, where h = 1/(2n — 2).

If the wave speed in ¢ is twice as large as in Qf, then the mesh (4.3) is an ideal choice, because the
number of grid points per wavelength is constant in the entire domain. However, this leads to a mesh
refinement interface with hanging nodes along the interface y = 0. In the following, we discuss both the
SBP-GP and SBP-SAT method with energy conserving interpolation for the mesh refinement interface.

We begin with introducing notations of the SBP properties in two dimensions. Next, we present the
SBP-GP method to impose the interface conditions (4.2). A second order accurate method was originally
developed in [16], and ghost points from both subdomains are used for the interface conditions. Here, we
generalize the technique to fourth order accuracy. After that, we propose a new SBP-GP method that
only uses ghost points from the coarse domain, which reduces the computational work for computing
numerical solution on the ghost points. We end this section by a discussion of the SBP-SAT method,
and its relation with the SBP-GP method.

4.1. SBP properties in two space dimensions. The SBP identity (2.2) and (2.3) are in exactly
the same form. In the discussion of SBP properties in two space dimensions, we use the notations of SBP
operators with ghost point.

Let w and v be grid functions in Q7 p and g be grid functions in Q°. We define the two dimensional
scalar products

2n—22n—1 n—1 n
(u,v) = h* Z Z wjuijvij, (P q)an = (2h)? Z Zw]’pijQij~
=1 j=1 i=1 j=1

Note that we have excluded values on the boundary x = 1, because we do not solve them in the numerical
scheme. Instead, the numerical solution at x = 1 is set to be equal to the numerical solution at x = 0
because of the periodic boundary condition. We also define two scalar products for grid functions on the

interface
2n—2

n—1
<u].",vl">h - h Z ugvlra <praqr>2h - 2th5qzra
i=1 i=1

where the superscripts I' denotes grid functions on the interface.
We are now ready to state the SBP identity in two space dimensions in the fine domain Qf

(4.4) (u, Gw(ﬂ)v)h = —SI(’U,, v),

(uv Gy(u)v)h = _Sy(ua ’U) - <ur7vg>hv

where the subscripts z and y denote the spatial direction that the operator acts on. The bilinear forms
Sz(+,-) and Sy(-,-) are symmetric and positive semi-definite. There is no boundary term in (4.4) for

This manuscript is for review purposes only.
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G, (u) because of the periodic boundary condition. We have also omitted a boundary term at y = 1. The
last term in (4.5) corresponds to a boundary term on the interface, where

(v9)i = pibl v, i=1,2,---.,2n— 1.
To condense notation, we define
Gy(p) = Ga(p) + Gy(u), Sy = 5c+ 5y,
so that (4.4)-(4.5) can be written
(4.6) (u, G (o) = =S¢ (u,v) — (uF, v5 ),

The SBP identity for the operators in the coarse domain Q¢ can be written in a similar way

(4.7) (p, Ge(1)@)2n = =Sc(p, @) + (T, 4% )on,
where a boundary term at y = —1 is omitted.

4.2. The fourth order accurate SBP-GP method. In [16], a second order accurate SBP-
GP method was developed for the wave equation with mesh refinement interfaces. In this section, we

generalize the scheme to fourth order accuracy in both space and time.
Equation (4.1) is approximated by

(4.8) pfi =G, pew =Gelpe,

where the grid functions f and ¢ are approximated solutions of (4.1) in Qf and Q¢, respectively. At the
interface between Qf and Q°, discrete interface conditions must be imposed to ensure energy stability.
Because it is a mesh refinement interface, interpolation between the fine and coarse grids on the interface
are needed. We denote P an interpolation operator that interpolates a grid function on the interface from
the coarse domain to the fine domain, and R a restriction operator that restricts a grid function on the
interface from the fine domain to the coarse domain. The stability result is summarized in the theorem
below.

THEOREM 4.1. With the discrete interface conditions
r
(49) ft = ,PCE,
r r
(4.10) b = RfL,
where the interpolation and restriction operators satisfy
(4.11) P =2RT,

the scheme (4.8) is energy stable.
Proof. Applying the SBP identity (4.4) and (4.5), we obtain

(4.12) (FospFi)n = =Ss(F, ) = (£ Fo)n
from the approximation in the fine domain Q. Similarly, in Q¢ we have
(4.13) (ct, pert)on = —Se(er, ) + <Ctr7cg>2h-

With the discrete energy defined as

E= (ftvpft)h + Sf(.fa f) + (Ctvpct)Qh + 50(07 C)a
we find that the sum of (4.12) and (4.13) can be written as the rate of energy change
1d
2dt

(4.14) E=—(f{, fo)n+(cl,c9)an.
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10 S. WANG AND N. A. PETERSSON

To obtain an energy estimate, we need the two terms on the right-hand side of (4.14) to cancel
identically through the interface condition (4.2). By (4.11), we have

(4.15) (Pq,v)n, = (q, Rv)ap,

for any grid functions v and q on the interface of Qf and Q°, respectively. We write the right-hand side
of (4.14) as

<.ft afv>h + <Ct acv>2h
< Pctafv> <Pct,fv>h+<ct,crv> h
—(ff —Pct fo)n — (cf REfG)2n + (cf €5 )an

- <ft Pctafv>h+<ctvcv R.fv>2h

The above quantity equals to zero if the numerical solution satisfies the interface conditions (4.9)-(4.10).
This completes the proof. 0

Remark 4.2. The relation (4.11) and (4.15) are equivalent only in two space dimensions. We also
note that relation (4.15) is essential for energy stability. In the case when the boundary condition is
non-periodic in x, boundary modifications must be performed for the projection and restriction operator
so that (4.11) is satisfied [1, 7, 11].

From the perspective of accuracy, it is desirable to match the order of accuracy of the interpolation
and restriction operators to the SBP operators. For the interpolation operator P in (4.9), it is natural
to enforce
(4.16) faii=c, i=12-- n-1
on the grid points that coincide, and use a fourth order interpolation for the hanging nodes

1 9 9 1
(4.17) fQFz =716 5 1t 72 16 { 16 {+1 160£+2a
With the stencils of P shown in (4.16)-(4.17), the stencil of R is completely determined by the condition
(4.15). The restriction operator R in (4.10) can be written

i=1,2,--,n—1.

(4.18) (cv)i=— (fv)m 1t 35 (fv)Zz 2+ 5 (fv)m 1+ 55 (fv) %(fg)zwzy

where 7 = 1,2,--- ,n — 1. We note that in (4.17) and (4.18), some grid points outside the x-boundary
are used by the interpolation and restriction operators. We do not consider them to be unknown ghost
point values, because they can be set by the periodic boundary conditions.

In (4.18), ghost point values f; o and ¢jpn4q for i =1,2,--- ,2n —2and j =1,2,--- ,n — 1 are used.
The number of unknown ghost point values is 3n — 3. We observe from (4.16)-(4.18) that the number of
linear equations is also 3n — 3. Therefore, the number of unknowns equals the number of equations.

To obtain the unknown ghost point values from (4.16)-(4.18), it necessities to consider a fully discrete
version of the discretization (4.8), and impose the conditions (4.16)-(4.17) at a different time level than
(4.18). Since we have a fourth order accurate spatial discretization, we match the accuracy in time by
using a fourth order accurate predictor-corrector time stepping scheme. The fully discrete scheme consists
of the predictor step

* _ 9 k + k—1
oL f52 LA A
(4.19) ¢
c* —2ck + k1
5152 = GC(H)Ck7

and the corrector step
54
FE =+ oG,

(4.20) 7
k+1 __ c* + 57tG ( )’UC
c = 12p ¢ nv-,
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 11

where

,vf: f*_2fk+fk—1 and v — c*—2c’“—|—ck_1-
o7 of
The superscript denotes the time level, and §; is the time step.
Assuming that the numerical solutions f¥~1 k=1 f* and c* are known on all grid points, the
numerical solution at ¢ = t**! can be computed as follows.
1 Compute by (4.19) the predictor f* and c* on all points except the ghost points in Qf and Q°,
respectively.
2 Impose (4.18) for the predictor f*, c¢*, and (4.16)-(4.17) for the corrector f&+1 ck+1. Together
with (4.20), this gives a system of 3n — 3 linear equations. By solving the system, we obtain f*,
c* on all ghost points.
3 Compute by (4.20) the corrector f¥*1, ck+1 on all points except the ghost points in Qf and Q¢

respectively.
4 Impose (4.18) for the corrector solution f¥+1 ¢”t1 and (4.16)-(4.17) for the solution f** c**,
where
f** _ 2fk-+1 4 fk:
52 = Gf(/j‘)fk_'_l»
(4.21) t
C** _ 26k+1 + Ck,
IS Gt
¢

By solving the system of 3n — 3 linear equations, we obtain f*+1, ¢*+1 on all ghost points.

Remark 4.3. With the above procedure to obtain the ghost point values, the fully discrete energy is
conserved [16, 21].

In each time step, we need to solve two different systems of 3n — 3 linear equations. The coefficients
in the linear equations are time independent. As a consequence, it is very efficient to LU-factorize the
system before the time stepping scheme, and use backward substitution to compute the solutions on the
ghost points at each time step. However, for real-world problems, computations are performed on many
processors on a parallel machine. It is then not straightforward to perform an LU-factorization in an
efficient way. In [16], an iterative block Jacobi relaxation method is used, and works well in large-scale
problems.

4.3. An improved SBP-GP method. In the fourth order accurate SBP-GP method presented in
Section 4.2, n — 1 ghost points from the coarse domain ¢ and 2n — 2 ghost points from the fine domain
Qf are used to impose interface conditions. As a consequence, we need to solve two systems of linear
equations whose coefficients are independent of time. In this section, we present an improved SBP-GP
method, where only n— 1 ghost points from 2¢ are used for interface conditions. This reduces the number
of linear equations to n — 1.

The key in the improved method is to combine SBP operator with ghost point and SBP operator
without ghost point. More precisely, in 2¢ we use the SBP operator with ghost point, and n — 1 ghost
points are used in the spatial discretization. The semi-discretized equation in €2¢ is the same as in the
original SBP-GP method

(4.22) peu = Ge(p)e.

In QF, for the grid points on the interface, we obtain the discretized equation from the first interface
condition (4.9) by differentiating twice in time

1
pfi, = pPci, = pP (chwcF) :
For all the other grid points in Qf, we use the SBP operator without ghost point

pfit = Ga() £ + Gy () £,
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(@) (b)

Fig. 2: A mesh refinement interface with ghost points denoted by filled circles. (a) ghost points from
both domains. (b) ghost points from the coarse domain.

where the superscript €2 denotes all grid points not on the interface. The complete semi-discretized
equation in Q/ can be written as

G () fF + ﬂ(,u)fr + 7, on the interface,

(4.23) pfu = Lnf = {Gx(ﬂ)fﬂ + @(M)fﬂ, in the interior,

where

n=oP (360 ) = (Gl s + Gy 7).

We see two differences when comparing (4.23) with (4.8): the SBP operator G (1) is replaced by Gy (u),
and there is a penalty-type term n for the grid points on the interface. A modified interface condition
leads to energy stability.

THEOREM 4.4. The scheme (4.22)-(4.23) is energy stable with the interface condition
(4.24) RS Fo)n — hwi(F7,mn) = (ef, &g )an,

if the projection and restriction operators satisfy (4.11). The value wy is the weight of the SBP operator
G(u) on the first grid point.

Proof. With the discrete energy
E = (.ftap.ft)h +&(.fa .f) + (Ct7pct)2h + Sc(ca C)a

the energy change in time is

1d
5%]3 = _<ffvig>h +(cf, e )an + hwi ((F, )n.

With the interface condition (4.24) and the requirement on the interpolation and restriction operators
(4.11), the right-hand side of (4.25) vanishes, which proves energy stability. d

(4.25)

This manuscript is for review purposes only.
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When combined with the fourth order accurate predictor-corrector time integration, the fully discrete
scheme can be written as the predictor step

*_9 k + k—1
pf f ! = Lo f*.
(4.26) 0
c* —2ck + k1 &
62 = G(-(,U,)C ’
t
and the corrector step
54
.fk+1 - f* =+ ithfa
(4.27) ?f
= Ethc(,u)'vc,
where
g fr-2fk 4 pRt . C*—2cF 4 k1
v = and v°=
52 52 ’
t t

and the superscript denotes the time level.
Assuming that the solution f*¥—1, ¢k=1 f* and c¥ are known on all grid points, the solution at
t = t**1 can be computed as follows.

1 Impose (4.24) for f*¥ and cF. This gives a system of n — 1 linear equations. By solving the
system, we obtain ¢* on the ghost points.

2 Compute the predictor f* and ¢* by (4.26) for all grid points excluding the ghost points.

3 Impose (4.24) for the predictor f*, ¢*. This gives a system of n — 1 linear equations, with the
same coeflicient matrix as the system in Step 1. By solving the system, we obtain ¢* on the
ghost points.

4 Compute the corrector f¥+1 and ¢*+1 by (4.27) for all grid points excluding the ghost points.

We note that after Step 4, c¥t1 on the ghost points are not known yet, but will be computed in
Step 1 in the next time loop. Step 1 is needed even in the first time loop, when all numerical solutions
are given by the initial data. This is to make sure that the ghost point values are compatible with the
algorithm to guarantee energy conservation.

The improved method presented in this section is used in numerical experiments in Section 5. The
system of n — 1 linear equations is LU-factorized before the time loop, and backward substitution is used
to solve the system in every time step.

4.4. The SBP-SAT method. With stable SBP-SAT schemes for both the Neumann problem in
Section 3.1 and the Dirichlet problem in Section 3.2, it is straightforward to derive the penalty terms for
the interface conditions (4.2). The semi-discretization can be written

(4.28) pfi = Ga()f + Gy(1) f + py,

(4.29) pew = Gz (p)e + éy (e + pe,

where

(430) (ft’pf)h = _%<(f€)t7 .fr - Pcr>h - %<f£7 fr - Pcr>h + %((fr)ta fg - ch>ha
and

(@3 (eopeon = {(eh)ee” ~ RN — 2o (e e~ R ) — (D), ~ RID)on

In both (4.30) and (4.31), the first two terms penalize continuity of the solution, and the third term
penalizes continuity of the flux.
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Energy stability is proved in [25] for the special case when p is constant. Following the same approach,
we find that the scheme (4.28)-(4.31) is energy stable when the penalty parameters satisfy

f N2 c \2
(4.32) _— %TC > max <2((m—,1) (1.,) ) |

0. )i 2(p8,) o

wherei=1,--- ,2n—2and j=1,--- ,n— 1.

In the numerical experiments in Section 5, we observe that the scheme with the penalty terms (4.30)
and (4.31) leads to a suboptimal convergence rate. To recover the desired rate, we find one remedy is to
use four penalty terms in the same way as in [23]. More precisely, we may replace

LT =P

by
T T
LT ST =P+ LT PRET — P,

in (4.30), and replace

Te , T T r
—(c;,c — R
2h< 1 f >2h
by

Te , T T r Te , T r r

—(c;,c — R —(c; ,RPc — R

4h< t f >2h+4h< t f >2h
in (4.31). The motivation of using the four penalty terms in [23] was to stabilize the scheme when
using boundary modified interpolation operators. In our case, we do not need to stabilize the scheme,
as the interpolation operators are not boundary modified. But the four penalty terms do improve the
convergence rate to the desired order.

A second remedy to obtain the optimal convergence rate is to use more accurate interpolation and

restriction operators, which is also tested in Section 5.

5. Numerical experiments. In this section, we conduct numerical experiments to compare the
SBP-GP method and the SBP-SAT method in terms of computational efficiency. Our first focus is CFL
condition, which is an important factor in solving large-scale problems. We numerically test the effect
of different boundary and interface techniques on the CFL condition. We then compare L? error and
convergence rate of the SBP-GP method and the SBP-SAT method with the same spatial and temporal
discretizations. The convergence rate is computed by

os(0n) /s (2)

where ey, is the L? error on a grid «, and e, is the L? error on a grid with grid size half of « in each
subdomain and spatial direction.

5.1. Time-stepping stability restrictions. We consider the scalar wave equation in one space
dimension

(5.1) Ut = Ugy + I
in the domain x € [—7/2,7/2], and choose a manufactured solution
u = cos(x + 2t),
which is also used to obtain initial and boundary data, and the forcing function F.

We discretize equation (5.1) by using the fourth order accurate SBP operator, and use a predictor-
corrector time stepping method [21] for the time integration.
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 15

In general, we do not have a closed form expression for the CFL condition. Instead, we can estimate
the CFL condition by considering periodic boundary conditions and Fourier methods. More precisely,
the Fourier transform of the fourth order accurate central finite difference stencil is

~ 4 . Jwh 1 . swh
Q= ﬁsm 2(1+381n 2),

where w is the wave number and h is the grid size [6, pp. 9]. In [21], it is proved that for the predictor-
corrector time stepping method, the time step constraint by the CFL condition is

6tS&7
Jr

where & is the spectral radius of the spatial discretization matrix. Taking x = max,, |Q| = 16/(3h2), we
find that the estimated CFL condition is d; < 1.5h, which is used as a reference when comparing CFL
conditions in the following numerical tests.

First, we consider the Neumann boundary condition at = +7/2, and use the SBP-GP and the
SBP-SAT method to solve the equation (5.1) until ¢ = 200. For the SBP-GP method with the fourth
order SBP operator derived in [21], we find that the scheme is stable when d; < 1.44h. In other words,
the time step needs to be reduced by about 4% when comparing with the reference CFL condition. For
the SBP-SAT method with the fourth order SBP operator derived in [14], the scheme is stable up to the
reference CFL condition é; < 1.5h.

Next, we consider the equation with the Dirichlet boundary condition at x = +7/2. To test the
injection method and the SAT method, we use the fourth order accurate SBP operator without ghost
point [14]. When using the injection method to impose the Dirichlet boundary condition, the scheme is
stable with §; < 1.5h. However, when using the SAT method to weakly impose the Dirichlet boundary
condition and choosing the penalty parameter 20% larger than its stability-limiting value, the scheme is
stable with d; < 1.16h. This amounts to a reduction in time step by 23%. If we decrease the penalty
parameter so that it is only 0.1% larger than its stability-limiting value, then the scheme is stable with
0y < 1.25h, i.e. the time step needs to be reduced by 17% comparing with the injection method.

In conclusion, for the Neumann boundary condition, both the SBP-GP and the SBP-SAT method
can be used with a time step comparable to that given by the reference CFL condition. This is not
surprising, given the similarity in the methods and in the discrete energy. For the Dirichlet boundary
condition, we need to reduce the time step by 23% in the SAT method. If we instead inject the Dirichlet
data, then the scheme is stable with the time step given by the reference CFL condition derived from
Fourier analysis for the periodic boundary problem.

(5.2)

5.2. Discontinuous material properties. We now investigate the SBP-GP and SBP-SAT method
for the wave equation with a mesh refinement interface. The model problem is

(5.3) pug =V - (uVu) + f

in a two dimensional domain = [0,4x] x [—4m, 4], where p(x,y) > 0, u(z,y) > 0, and the wave speed
is ¢ = \/p. Equation (5.3) is augmented with Dirichlet boundary conditions at y = £4m, and periodic
boundary conditions at x = 0 and = = 4.

The domain € is divided into two subdomains ©; = [0,47] x [—4m,0] and Qs = [0,47] x [0,47] with
an interface I' at y = 0. The material parameter p is a smooth function in each subdomain, but may
be discontinuous across the interface. In particular, we consider two cases: p is piecewise constant in
Section 5.2, and p is a smooth function in Section 5.3. In each case, we test the fourth order accurate
SBP-GP method and the SBP-SAT method, in terms of CFL condition and convergence rate.

When p is piecewise constant, an analytical solution can be constructed by Snell’s law. We choose a
unit density p = 1 and denote the piecewise constant y as

_ M1, (%y) S Qla
/“L(l'vy) -
H2, (xay) € QQa
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4z

Fig. 3: The exact solution at time ¢ = 0 (left) and ¢ = 11 (right). The solution is continuous at the
material interface x = 0 but the normal derivative is discontinuous due to the material discontinuity.

where py # po.

Let an incoming plane wave u; travel in §2; and impinge on the interface I'. The resulting field
consists of the incoming wave uy, as well as a reflected field ug and a transmitted field up. With the
ansatz

ur = cos(z +y — \/2u1t),
up = Rcos(—x +y + /2u1t),
up = T cos(x + ky + /2u1t),

where k = \/2p1 /2 — 1, the two parameters R and T are determined by the interface conditions

ur +uRr = ur,
0 (s + ug) 0
—(u UR) = Mo W
221 G I R H2 o T,

yielding R = (11 — pok)/(p1 + pok) and T =1+ R.

In the following experiments, we choose p; = 1 and ps = 0.25. As a consequence, the wave speed
iscp = 11in Q4 and ¢z = 0.5 in 5. To keep the number of grid points per wavelength the same in two
subdomains, we use a coarse grid with grid spacing 2h in 4, and a fine grid with grid spacing h in .
We let the wave propagate from ¢ = 0 until ¢ = 11. The exact solution at these two time points are
shown in Figure 3.

5.2.1. CFL condition. To derive an estimated CFL condition, we perform a Fourier analysis in
each subdomain ; and €. Assuming periodicity in both spatial directions, the spectral radius of the
spatial discretization in 2; and s is the same x = 4/(3h?). By using (5.2), we find that the estimated
CFL condition is

1 2V3 3

5.4 0 < —————= = —=h =~ 2.12h.
(54) TVRVIGR) V2
We note that the restriction on time step is the same in both subdomains. The factor 1/v/2 in (5.4),

which is not present in (5.2), comes from (5.3) having two space dimensions.
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2h L? error (rate)

1.57x107!  1.6439x1073

7.85x1072  1.0076x10~% (4.02)
3.93x1072  6.2738x107° (4.01)
1.96x1072  3.9193x10~7 (4.00)
9.81x107%  2.4344x107% (4.01)

Table 1: L? errors (convergence rates) of the fourth order SBP-GP method for piecewise constant .

2h L? error (rate) SAT3 L2 error (rate) SAT4 L? error (rate) INT6

1.57x107!  3.0832x1073 2.1104x1073 2.1022x1073
7.85x1072  3.4792x107% (3.15)  1.1042x107* (4.26)  1.1014x10~* (4.25)
3.93x1072  4.4189x1075 (2.98)  6.6902x1076 (4.04)  6.6815x1076 (4.04)
1.96x1072  5.6079x1076 (2.98)  4.0374x1077 (4.05)  4.0346x1077 (4.05)
(2.99) (4.03) (4.03)

9.81x10~3 7.0745%x10~7 (2.99 2.4659x 1078 (4.03 2.4651x10~8 (4.03

Table 2: L? errors (convergence rates) of the fourth order SBP-SAT method for piecewise constant p.

For the SBP-GP method, we have found numerically that the method is stable when the time step
0¢ < 2.09h. However, for the SBP-SAT method, the stability limit appears to be ¢; < 1.18h, which
represents approximately 45% reduction in time step. This indicates that the non-periodic boundary
condition and the non-conforming grid interface do not affect time step restriction of the SBP-GP method,
but the time step in the SBP-SAT method must be reduced significantly.

5.2.2. Convergence rate. We now perform a convergence study for the SBP-GP method and the
SBP-SAT method. We choose the time step §; = h so that both methods are stable. The L? errors in the
numerical solution with the SBP-GP method are shown in Table 1. Though the dominating truncation
error is O(h?) at grid points near boundaries, the numerical solution converges to fourth order, i.e. two
orders are gained in convergence rate [24].

For the SBP-SAT method with three penalty terms (4.28)-(4.31), the L? errors labeled as SAT3
in Table 2 only converge at a rate of three. Because the dominating truncation error is O(h?) at grid
points close to boundaries, we gain only one order of accuracy in the numerical solution. This suboptimal
convergence behavior has also been observed in other settings [24].

The proof of the suboptimal convergence behavior is out of scope of this paper. Instead, we present
two simple remedies to obtain a fourth order convergence rate. First, we note that for the sixth order
SBP-SAT method, energy stability requires four penalty terms when the grid interface is non-conforming
[23]. When using the same type of penalty terms in the fourth order method, we obtain a fourth order
convergence, as shown in the third column of Table 2 labeled as SAT4. Alternatively, we can use three
penalty terms but employ a sixth order interpolation and restriction at the non-conforming interface,
which also leads to a fourth order convergence, see the fourth column of Table 2 labeled as INT6. In
both approaches, the dominating truncation error is still O(h?) at grid points close to boundaries.

We find that the L? errors of the SBP-GP method is almost identical to that of the SBP-SAT method
(SAT4 and INT6) with the same mesh.

5.3. Smooth material parameters. In this section, we test the two methods when the material
parameters are smooth functions in the whole domain 2. More precisely, we use material parameters

p = —cos(x) cos(y) + 3,
= cos(x) cos(y) + 2.
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2h L? error (rate)

1.57x107!  2.7076x10~*

7.85x107%  1.6000x107° (4.08)
3.93x1072  9.7412x1077 (4.04)
1.96x1072  6.0183x107% (4.02)
9.81x1073  3.7426x107° (4.01)

Table 3: L? errors (convergence rates) of the SBP-GP method for smooth p.

2h L? error (rate) SAT3 L2 error (rate) SAT4 L? error (rate) INT6

1.57x107!  3.8636x1073 1.8502x1073 1.8503x 1073

7.85x1072  4.3496x10~* (3.15)  9.4720x107° (4.29)  9.4736x10~° (4.29)

3.93x10"2  5.3152x107° (3.03)  3.7040x107° (4.68)  3.7043x10~5 (4.68)
(3.00) ) (4.16)
(3.00) ) (3.96)

1.96x1072  6.6271x1075 (3.00 2.0778x1077 (4.16 2.0779x1077 (4.16
9.81x107%  8.2783x10~7 (3.00 1.3372x1078 (3.96 1.3372x1078 (3.96

A~ N N N

Table 4: L? errors (convergence rates) of the fourth order SBP-SAT method for smooth p.

The forcing function and initial conditions are chosen so that the manufactured solution is
u(z,y,t) = sin(z 4+ 2) cos(y + 1) sin(t + 3).

We use the same grid as in Section 5.2 with grid size 2h in 7 and h in 5. The parameters ppi, = 2
and pmax = 3 take the extreme values at the same grid point. Therefore, a Fourier analysis to the
corresponding periodic problem gives a time step restriction

1 2v3 _ V34 ~ 0.86h.

o= V2 \/16/(302)\/fiman/ P 2

Numerically, we have found that the SBP-GP method is stable when §; < 0.86h. This shows again that
the non—periodicity and interface coupling do not affect the CFL condition in the SBP-GP method. The
SBP-SAT method is stable with §; < 0.77h, which means that the time step needs to be reduced by
approximately 10%.

To test convergence, we choose the time step d; = 0.7h so that both the SBP-GP method and SBP-
SAT method are stable. The L? errors at t = 11 are shown in Table 3 for the SBP-GP method. We
observe a fourth order convergence rate.

Similar to the case with piecewise constant material property, the standard SBP-SAT method only
converges to third order accuracy, see the second column of Table 4 labeled as SAT3. We have tested the
SBP-SAT method with four penalty terms, or with a sixth order interpolation and restriction operator.
Both methods lead to a fourth order convergence rate, see the third and fourth column in Table 4.
However, the L? error is about three times large as the L? error of the SBP-GP method with the same
mesh size.

6. Conclusion. We have analyzed two different types of SBP finite difference operators for solving
the wave equation with variable coefficients; operators with ghost points, G(u), and operators without
ghost points, é(u) The close relation between the two operators has been analyzed and we have presented
a way of adding or removing the ghost point dependence in the operators. Traditionally, the two operators
have been used within different approaches for imposing the boundary conditions. Based on their relation,
we have in this paper devised a scheme that combines both operators for satisfying the interface conditions

at a non-conforming grid refinement interface.

This manuscript is for review purposes only.



640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

667
668
669
670
671
672

673

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 19

We first used the SBP operator with ghost points to derive a fourth order accurate SBP-GP method
for the wave equation with a grid refinement interface. This method uses ghost points from both sides
of the refinement interface to enforce the interface conditions. Accuracy and stability of the method
are ensured by using a fourth order accurate interpolation stencil and a compatible restriction stencil.
Secondly, we presented an improved method, where only ghost points from the coarse side are used to
impose the interface conditions. This is achieved by combining the operator G(u) in the coarse grid and
the operator é(u) in the fine grid. Compared to the first SBP-GP method, the improved method leads
to a smaller system of linear equations for the ghost points. In addition, we have made improvements to
the traditional fourth order SBP-SAT method, which only exhibits a third order convergence rate for the
wave equation with a grid refinement interface. Two remedies have been presented and both result in a
fourth order convergence rate.

We have conducted numerical experiments to verify that the proposed methods converge with fourth
order accuracy, both for smooth and discontinuous material properties. We have also found numerically
that the proposed SBP-GP method is stable under a CFL time-step condition that is very close to the von
Neumann limit for the corresponding periodic problem. Being able to use a large time step is essential
for solving practical large-scale wave propagation problems, because the computational complexity grows
linearly with the number of time steps. We have found that the SBP-SAT method requires a smaller
time step for stability, probably due to the penalization of the interface coupling conditions. In the case
of smooth material properties, the SBP-SAT method was also found to yield to a slightly larger solution
error compared to the SBP-GP method, for the same grid sizes and time step.

One disadvantage of the SBP-GP method is that a system of linear equations must be solved to obtain
the numerical solutions at the ghost points. However, previous work has demonstrated that the system
can be solved very efficiently by an iterative method [18, 20]. Furthermore, the proposed method only
uses ghost points on one side of the interface and therefore leads to a linear system with fewer unknowns
and a more regular structure than previously. In future work we plan to implement the proposed method
for the elastic wave equation in three space dimensions on a distributed memory machine and evaluate
its efficiency.
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