
 

LAWRENCE

NAT I ONA L

LABORATORY

LIVERMORE Fourth order finite difference 
methods for the wave equation 
with mesh refinement interfaces 
 

Siyang Wang and N. Anders Petersson  

Submitted to SIAM journal on Scientific Computing 

 

August 29, 2018 

LLNL-JRNL-757334 



October 1, 2007 

Disclaimer 
This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor 
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement 
purposes. 

 

 



FOURTH ORDER FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION1

WITH MESH REFINEMENT INTERFACES2

SIYANG WANG ⇤ AND N. ANDERS PETERSSON †3

Abstract. We analyze two types of summation-by-parts finite di↵erence operators for solving the two-dimensional wave4
equation on a grid with a mesh refinement interface. The first type uses ghost points, while the second type does not use any5
ghost points. A previously unexplored relation between the two types of summation-by-parts operators is investigated. By6
combining them we develop a new fourth order accurate finite di↵erence discretization for the wave equation with hanging7
nodes on the mesh refinement interface. Compared to previous approaches using ghost points, the proposed method leads8
to a smaller system of linear equations that needs to be solved for the ghost point values. An attractive feature of the9
proposed method is that the explicit time step does not need to be reduced relative to the corresponding periodic problem.10
Numerical experiments, both for smoothly varying and discontinuous material properties, demonstrate that the proposed11
method converges to fourth order accuracy. A detailed comparison of the accuracy and the time-step restriction of the12
simultaneous-approximation-term penalty method is also presented.13

Key words. Wave equation, Finite di↵erence methods, Summation-by-parts, Ghost point, Non-conforming, Mesh14
refinement15

AMS subject classifications. 65M06, 65M1216

1. Introduction. Based on the pioneering work by Kreiss and Oliger [8], it is by now well known17

that high order accurate (� 4) numerical methods solve hyperbolic partial di↵erential equations (PDE)18

more e�ciently than low order methods. While Taylor series expansion can easily be used to construct19

high order finite di↵erence stencils for the interior of the computational domain, it can be more chal-20

lenging to find stable boundary closures. In this paper we use finite di↵erence operators that satisfy21

the summation-by-parts (SBP) property, first introduced by Kreiss and Scherer [9], to solve the two-22

dimensional wave equation with variable coe�cients on a grid with a non-conforming mesh refinement23

interface.24

An SBP operator is constructed such that the energy estimate of the continuous PDE can be carried25

out discretely for the finite di↵erence approximation, with summation-by-parts replacing the integration-26

by-parts principle. As a consequence, a discrete energy estimate can be obtained to ensure that the27

discretization is energy stable. When deriving a continuous energy estimate, the boundary terms resulting28

from the integration-by-parts formula are easily controlled through the boundary conditions. However,29

for the finite di↵erence approximation, special care is needed to make sure that boundary terms do not30

lead to unphysical growth of the numerical solution.31

When the material properties are discontinuous, one possible approach to ensure high order accuracy32

is to decompose the domain into multiple subdomains, such that the material is smooth within each33

subdomain. The governing equation is then discretized by SBP operators in each subdomain, and patched34

together by imposing interface conditions at the material discontinuity. For computational e�ciency it35

can be desirable to use di↵erent mesh sizes in the subdomains, leading to mesh refinement interfaces with36

hanging nodes.37

In the SBP finite di↵erence framework, there are two main approaches to impose boundary conditions.38

First, we can impose boundary conditions strongly by using ghost points [21]. In this case, the SBP39

operators also utilize the ghost points for di↵erence approximations. We call this the SBP-GP method.40

In the second approach, called SBP-SAT, boundary conditions are imposed weakly by adding penalty41

terms, also known as simultaneous-approximation-terms (SAT) [3], to the discretization. Thus, the SBP-42

SAT method bears similarities with the discontinuous Galerkin method [2, 5]. For the wave equation43

with non-conforming mesh refinement interfaces, a high order accurate SBP-SAT finite di↵erence method44

and a second order accurate SBP-GP method were previously developed in [25] and [16], respectively.45

In this paper, we present two ways of generalizing the SBP-GP method in [16] to fourth order46
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2 S. WANG AND N. A. PETERSSON

accuracy. The first approach is a direct generalization of the second order accurate technique, which47

uses ghost points from both subdomains for imposing the interface conditions. The second version is48

based on a previously unexplored relation between SBP operators with and without ghost points. This49

relation allows for an improved version of the fourth order SBP-GP method, where only ghost points50

from one side of the interface are used to impose the interface conditions. This approach reduces the51

computational cost of updating the solution at the ghost points and should also simplify the generalization52

to three-dimensional problems.53

Even though both the SBP-GP and SBP-SAT methods have been used to solve many kinds of PDEs,54

the relation between them has previously not been explored. An additional contribution of this paper55

is to connect the two approaches, provide insights into their similarities and di↵erences, and make a56

comparison in terms of their e�ciency.57

The remainder of the paper is organized as follows. In Section 2, we introduce the SBP methodology58

and present the close relation between the SBP operators with and without ghost points. In Section 3,59

we derive a discrete energy estimate for the wave equation in one space dimension with Dirichlet or60

Neumann boundary conditions. Both the SBP-GP and the SBP-SAT methods are analyzed in detail and61

their connections are discussed. In Section 4, we consider the wave equation in two space dimensions,62

and focus on the numerical treatment of grid refinement interfaces with the SBP-GP and SBP-SAT63

methods. Numerical experiments are conducted in Section 5, where we compare the SBP-GP and SBP-64

SAT methods in terms of their time-step stability condition and solution accuracy. Our findings are65

summarized in Section 6.66

2. SBP operators. We begin with preliminaries that will be used in the discussion of SBP finite67

di↵erence methods. Consider an interval ⌦ = [0, 1] and a uniform grid x = [x1, · · · , xn]T , where68

xj = (j � 1)h, j = 1, · · · , n.69

The domain boundaries are at the grid points j = 1 and j = n, and the grid size is h = 1/(n � 1). In70

addition, there is one ghost point at x0 = �h and one ghost point at xn+1 = 1 + h outside the physical71

domain ⌦.72

Let u = [u1, · · · , un] and v = [v1, · · · , vn] be grid functions on x. In the context of SBP identities,73

the values of the grid functions are arbitrary. However, in the discussion of truncation errors, we assume74

the grid functions are su�ciently smooth functions evaluated on the grid.75

The standard discrete L2 inner product is defined as76

(u,v)2 = h
nX

j=1

ujvj .77

For SBP operators, we need a weighted inner product78

(u,v)h = h
nX

j=1

wjujvj , wj � � > 0,79

for some constant �, where wj = 1 in the interior and wj 6= 1 at a few grid points near each boundary.80

The norm induced from the inner product (·, ·)h is called a diagonal SBP norm.81

The SBP methodology was introduced by Kreiss and Scherer in [9], where the first derivative SBP82

operator D ⇡ @/@x was also constructed. It satisfies the first derivative SBP identity83

(2.1) (u, Dv)h = �(Du,v)h � u1v1 + unvn.84

Because the weights of an SBP norm equal to one in the interior of the domain, central finite di↵erences85

with order of accuracy 2p can be used in the interior of the domain. To retain the SBP property, special86

one-sided boundary stencils must be employed for non-periodic problems at a few grid points near each87

boundary. Kreiss and Scherer also showed in [9] that the order of accuracy of the boundary stencil is88

lower than the interior stencil. With a diagonal norm and a 2pth order accurate interior stencil, the89
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Fig. 1: The structure of the SBP operator G(µ) on a grid with 30 grid points. Blue circles: standard
five-point di↵erence stencil. Red triangles: special boundary stencil. Black squares: ghost point. The
structure of eG(µ) is the same, but without the black squares.

boundary stencil can be at most pth order accurate. Despite this fact, we refer to the accuracy of an SBP90

operator by its interior order of accuracy (2p).91

For second derivative SBP operators, we focus our discussion on the case with variable coe�cient92
@
@x (µ(x)

@
@xu(x)), where the smooth function µ(x) > 0 often represents a material property. In the93

following we introduce two di↵erent types of second derivative SBP operators. The first type uses one94

ghost point outside each boundary, while the second type does not use any ghost points. We proceed95

by explaining the close relation between these two types of SBP operators. To make the presentation96

concise, we exemplify the relation for the case of fourth order accurate SBP operators (2p = 4).97

2.1. Second derivative SBP operators with one ghost point. A fourth order accurate SBP98

operator G(µ)u ⇡
@
@x (µ(x)

@
@xu(x)) with ghost points was derived by Sjögreen and Petersson [21]. This99

operator uses a five-point di↵erence stencil of fourth order accuracy in the interior of the domain. At100

the first six grid points near each boundary, special one-sided stencils of second order accuracy are101

constructed. Note that G(µ) only uses the ghost point value at the boundary itself, as is illustrated in102

Figure 1, where the structure of G(µ) is shown when the operator is represented by a matrix of size103

30⇥ 32 on a grid with 30 grid points.104

The boundary stencil is constructed such that G(µ) satisfies the second derivative SBP identity105

(2.2) (u, G(µ)v)h = �Sµ(u,v)� u1µ1b
T
1 v + unµnb

T
nv,106

where the bilinear form Sµ(·, ·) is symmetric and positive semi-definite. The boundary derivative107

bT1 v =
1

h

4X

j=0

�jvj108

is a fourth order accurate approximation of Vx(x1), and makes use of the ghost point value v0. Similarly,109

bTnv = Vx(xn) + O(h4) uses the ghost point value vn+1. We emphasize that the bilinear form Sµ does110

not depend on any ghost point values. The SBP operator G(µ) only uses the ghost point to approximate111

the second derivative on the boundaries x1 and xn.112

The fourth order accurate SBP operator G(µ) has been extensively used in the software package113

SW4 [19] for the simulation of seismic wave propagation. Prior to SW4, a second order accurate ghost114

point technique was developed in [15] and implemented in the WPP code [17].115

2.2. Second derivative SBP operators without ghost points. The second type of second116

derivative SBP operators, denoted by eG2p(µ), does not use any ghost points. This type of operators was117

This manuscript is for review purposes only.



4 S. WANG AND N. A. PETERSSON

constructed by Mattsson [10] for the cases of second, fourth and sixth order accuracy (2p = 2, 4, 6). In118

the following discussion we focus on the fourth order case and define eG(µ) = eG4(µ).119

In the interior of the domain, the operator eG(µ) uses the same five-point wide, fourth order accurate120

stencil as the operator with ghost points, G(µ). At the first six grid points near the boundaries, the two121

operators are similar in that they both define second order accurate stencils that satisfies an SBP identity122

of the same form as (2.2),123

(2.3) (u, eG(µ)v)h = �eSµ(u,v)h � u1µ1
eb
T

1 v + unµn
eb
T

nv.124

Similar to (2.2), the bilinear form eSµ(·, ·) is symmetric and positive semi-definite. The boundary derivative125

operators eb1 and ebn are constructed with third order accuracy using stencils that do not use any ghost126

points. The structure of eG(µ) is the same as shown in Figure 1, but without the two black squares127

representing ghost points.128

2.3. Relation between SBP operators with and without ghost points. When using the SBP129

operator G(µ) with ghost points, boundary conditions are imposed in a strong sense by using the ghost130

point value as a degree of freedom. On the other hand, for the SBP operator eG(µ) without ghost points,131

boundary conditions are usually imposed in a weak sense by using a penalty technique. Though these132

two types of SBP operators are used in di↵erent ways, they are closely related to each other. In fact, an133

SBP operator with ghost points can easily be modified into a new SBP operator that does not use any134

ghost points, and vice versa. The new operators preserve the SBP property and the order of accuracy135

of the original operators. In the following, we demonstrate this procedure on the fourth order accurate136

version of G(µ) [21] and eG(µ) [10]. It is only necessary to consider the left boundary, because the right137

boundary can be treated in a similar way.138

The boundary derivative associated with G(µ) is in the form139

(2.4) bT1 v =
1

12h
(�3v0 � 10v1 + 18v2 � 6v3 + v4) = Vx(x1) +O(h4).140

We define141

(2.5) bT1 v = bT1 v + �h4dT
5+v,142

where143

(2.6) dT
5+v =

1

h5
(�v0 + 5v1 � 10v2 + 10v3 � 5v4 + v5) =

d5V

dx5
(x1) +O(h)144

is a first order accurate approximation of the fifth derivative at the boundary point x1. Therefore, both145

the approximations (2.4) and (2.6) are exact at x1 if V (x) is a polynomial of order at most four. As a146

consequence, bT1 v is a fourth order accurate approximation of Vx(x1) for any �. Here and throughout147

the paper, we use an underbar to indicate operators that have been modified by adding/removing ghost148

point.149

We note that the coe�cient of v0 in bT1 v is -1/4. To eliminate the dependence on v0 in the approxi-150

mation bT1 v, we choose � = �1/4 so that151

bT1 v =
1

12h
(�25v1 + 48v2 � 36v3 + 16v4 � 3v5) = Vx(x1) +O(h4),152

does not use the ghost point value v0. Instead, b
T
1 v uses the value v5, which is not used by bT1 v.153

To retain the SBP property (2.2), the operator G(µ) must be changed accordingly. Because the154

bilinear form Sµ(·, ·) is unchanged by the above procedure, the only change in G(µ) arises from the155

approximation at the boundary point. The corresponding SBP operator without ghost point becomes156

G(µ)v1 = G(µ)v1 �
�h4

hw1
µ1d

T
5+v = G(µ)v1 +

12

17
h3µ1d

T
5+v,157

158
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 5

and159

G(µ)vj = G(µ)vj , j = 2, 3, 4, · · · , n� 1,160161

where we have used that w1 = 17/48 is the weight of the SBP norm at the first grid point.162

The new operator G(µ) has similar properties as the original operator G(µ). In particular, it satisfies163

the SBP property, is fourth order accurate in the interior and second order accurate at the first six grid164

points near the boundary, and the boundary derivative is approximated to fourth order accuracy. Even165

though the SBP operator G(µ) does not use ghost point, it is di↵erent from the SBP operator eG(µ) [10],166

which uses a third order accurate approximation of the boundary derivative.167

For the SBP operator eG(µ) that does not use ghost points, it is straightforward to reverse the above168

derivation to obtain a new SBP operator that uses a ghost point outside the boundary. The boundary169

derivative approximation associated with eG(µ) is170

(2.7) eb
T

1 v =
1

6h
(�11v1 + 18v2 � 9v3 + 2v4) =

dV

dx
(x1) +O(h3).171

To add a ghost point, we write172

(2.8) eb
T

1 v = eb
T

1 v + �h3dT
4+v,173

where174

(2.9) dT
4+v =

1

h4
(v0 � 4v1 + 6v2 � 4v3 + v4) =

d4V

dx4
(x1) +O(h).175

The boundary stencil (2.7) is exact for polynomials V (x) of order at most three and dT
4+v = 0 for176

such polynomials. Therefore, (2.8) is a third order accurate approximation of Vx(x1) for any �. By177

choosing � = �1/3, we find that178

eb
T

1 v =
1

6h
(�2v0 � 3v1 + 6v2 � v3) =

dV

dx
(x1) +O(h3).179

This stencil uses the ghost point v0 but does not use v4. Thus it has the minimum stencil width for a180

third order accurate approximation of a first derivative.181

Correspondingly, the new SBP operator eG(µ) that uses a ghost point takes the form182

eG(µ)v1 = eG(µ)v1 �
�h3

w1h
µ1d

T
4+v = eG(µ)v1 +

16

17
h2µ1d

T
4+v183

and184

eG(µ)vj = eG(µ)vj , j = 2, 3, 4, · · · , n� 1.185

3. Boundary conditions. In this section, we briefly present the techniques of imposing boundary186

conditions for the wave equation with the SBP operators G(µ) and eG(µ), and highlight the relation187

between the two approaches SBP-GP and SBP-SAT. Our model equation is188

(3.1) ⇢Utt = (µ(x)Ux)x, x 2 [0, 1],189

with suitable initial conditions. We assume both ⇢ and µ are su�ciently smooth. The forcing function is190

omitted in the right-hand side of (3.1), as it has no influence on how boundary conditions are imposed.191

We only consider the boundary condition on the left boundary x = 0, because the boundary condition192

at x = 1 can be imposed in the same way. Consequently, terms corresponding to the boundary x = 1 are193

omitted in the scheme.194

This manuscript is for review purposes only.



6 S. WANG AND N. A. PETERSSON

3.1. The Neumann boundary condition. We start by considering the homogeneous Neumann195

boundary condition Ux(0, t) = 0. In the SBP-GP method, the semi-discretization of (3.1) is196

(3.2) ⇢utt = G(µ(x))u.197

By using the SBP property (2.2), we obtain198

(ut, ⇢utt)h = (ut, G(µ(x))u)h

= �Sµ(ut,u)� (ut)1µ1b
T
1 u,

199

which can be written200

(3.3) (ut, ⇢utt)h + Sµ(ut,u) = �(ut)1µ1b
T
1 u.201

We note that the left-hand side of equation (3.3) is the rate of change in the discrete energy in time,202

(3.4)
d

dt
[(ut, ⇢ut)h + Sµ(u,u)] = �2(ut)1µ1b

T
1 u.203

To obtain energy stability, one option is to impose the boundary condition so that the right-hand side of204

(3.4) is non-positive. The key in the SBP-GP method is to use the ghost point as the additional degree of205

freedom for the boundary condition. For the Neumann boundary condition Ux(0, t) = 0, we approximate206

it by setting bT1 u = 0 at every time step, which determines the solution u0 on the ghost point x0. This207

choice leads to energy conservation, with the energy estimate208

(3.5)
d

dt
[(ut, ⇢ut)h + Sµ(u,u)] = 0.209

Next, we consider the semi-discretization of (3.1) by the SBP-SAT method210

(3.6) ⇢utt = eG(µ)u+ pn,211

where pn is the penalty term. By using the SBP identity (2.3), we obtain212

(ut, ⇢utt)h = (ut, eG(µ(x))u)h + (ut,pn)h

= �eSµ(ut,u)� (u0)tµ0
ebT1 u+ (ut,pn)h,

213

which can be written214

(3.7)
d

dt
[(ut, ⇢ut)h + eSµ(u,u)] = �2(u0)tµ0

ebT1 u+ 2(ut,pn)h.215

Therefore, we need (u1)tµ1
ebT1 u = (ut,pn)h to obtain an energy estimate. An obvious choice of the the216

penalty term is to take h�1w�1
1 µ0

ebT1 u as the first component of pn, and 0 elsewhere. This choice leads217

to an energy conserving discretization with the energy estimate218

(3.8)
d

dt
[(ut, ⇢ut)h + eSµ(u,u)] = 0.219

We note that the energy estimates (3.5) and (3.8) are in exactly the same form. However, bT1 u = 0 is220

satisfied at every time step, but ebT1 u = 0 does in general not hold.221

3.2. The Dirichlet boundary condition. With the Dirichlet boundary condition U(0, t) = 0,222

the semi-discretization in the SBP-GP method remains the same (3.2). From (3.4), by setting u1 = 0223

at every time step, an energy estimate is obtained. At first glance, it seems that the discrete energy is224

modified by injection, and the ghost point value u0 is not used. However, we can choose the ghost point225

value u0 at the current time step, such that u1 = 0 is satisfied at the next time step. In this way, the226

discrete energy is conserved (3.5), and the scheme is stable. We note that G(µ) only uses ghost point227
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 7

for the approximation on the boundary. As a consequence, it is not necessary to compute u0 explicitly,228

because u1 is injected by the Dirichlet boundary condition in every time step and u0 is never used.229

Therefore, injection at a Dirichlet boundary leads to an energy stable discretization for the SBP230

operator G(µ). This is true also for the SBP operator eG(µ) without ghost point. In [4], energy stability231

is proved from a di↵erent perspective by analyzing the property of the matrix representing the operator232
eG(µ).233

It is also possible to impose a Dirichlet boundary by the SAT method. The discretized equation is234

in a more complicated form than the simple injection method, but the technique sheds light on how to235

impose a grid interface condition, which is the main topic in the next section. Replacing the penalty236

term in (3.6) by pd, an analogue of (3.7) is237

(3.9)
d

dt
[(ut, ⇢ut)h + eSµ(u,u)] = �2(ut)1µ1

ebT1 u+ 2(ut,pd)h.238

It is not straightforward to choose pd such that the right-hand side of (3.9) is non-positive. However,239

we can choose pd so that the right-hand side of (3.9) is part of the energy change. One option is to240

require241

(3.10) (ut,pd)h = �u1µ1
ebT1 ut �

⌧

h
(ut)1µ1u1242

so that (3.9) becomes243

(3.11)
d

dt
[(ut, ⇢ut)h + eSµ(u,u) + 2u1µ1

ebT1 u+
⌧

h
u1µ1u1] = 0.244

We obtain an energy estimate (3.11) if the quantity in the square bracket is non-negative.245

In Lemma 2 of [22], it is proved that the following identity holds246

(3.12) eSµ(u,u) = eSeµ(u,u) + h↵µm(ebT1 u)
2,247

where both the bilinear forms eSµ(·, ·) and eSeµ(·, ·) are symmetric and positive semi-definite, ↵ is a constant248

that depends on the order of accuracy of eG(µ) but not h, and µm is the smallest value of µ on the249

first rµ grid points. The constant rµ depends on the order of accuracy of eG(µ) but not h. As an250

example, the fourth order accurate SBP operator eG(µ) constructed in [10] satisfies (3.12) with rµ = 4251

and ↵ = 0.2505765857. Any ↵ > 0.2505765857 can make eSeµ(·, ·) indefinite.252

By using Young’s inequality, when the penalty parameter ⌧ � µ1/(↵µm), equation (3.11) is indeed253

an energy estimate. The energy estimate (3.11) has more terms than the corresponding energy estimate254

by the SBP-GP method, but the extra terms vanish when the grid size goes to zero. We note that255

the penalty parameter ⌧ has a lower bound but no upper bound. Choosing ⌧ to be equal to the lower256

bound gives large numerical error in the solution [24]. However, an unnecessarily large ⌧ a↵ects the CFL257

condition negatively and requires a small time step [13]. In computation, we find the increase in ⌧ by258

10% to 20% from the lower bound is adequate for accuracy and e�ciency.259

4. Grid refinement interface. We consider the wave equation in two space dimensions with a260

discontinuous wave speed. To achieve high order accuracy with a finite di↵erence method, it is impor-261

tant that the di↵erence stencil does not cross the discontinuity. A common strategy for discontinuous262

parameters is to partition the domain into subdomains, and align the discontinuity with the subdomain263

boundaries. The finite di↵erence approximation is then carried out in each subdomain, and adjacent264

subdomains are connected via interface conditions.265

As an example, we consider the wave equation in a composite domain ⌦f
[⌦c, where ⌦f = [0, 1]⇥[0, 1]266

and ⌦c = [0, 1]⇥ [�1, 0]. The governing equation reads267

⇢Uf
tt = r · µf

rUf , (x, y) 2 ⌦f , t � 0,

⇢U c
tt = r · µc

rU c, (x, y) 2 ⌦c, t � 0,
(4.1)268
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8 S. WANG AND N. A. PETERSSON

with suitable initial and boundary conditions. We assume that ⇢ is su�ciently smooth in ⌦f
[ ⌦c. We269

also assume µf and µc are su�ciently smooth in the domain ⌦f and ⌦c, respectively. However, on the270

interface, µf may not equal µc, in which case the solution is continuous, but its gradient is discontinuous.271

The continuous interface conditions272

Uf (x, 0, t) = U c(x, 0, t),

µf (x, 0)Uf
y (x, 0, t) = µc(x, 0)U c

y(x, 0, t),
(4.2)273

at y = 0 lead to a wellposed problem [12, 16].274

Our focus is the numerical treatment of the interface conditions (4.2) when the grids are non-275

conforming. In particular, we consider periodic boundary conditions in x. For the spatial discretization,276

we use a Cartesian mesh with mesh size h in the fine domain ⌦f and 2h in the coarse domain ⌦c. The277

number of grid points in the x direction is n in ⌦c, and 2n � 1 in ⌦f . The mesh (xf , yf ) in ⌦f and278

(xc, yc) in ⌦c are defined as279

(4.3)

(
xf
i = (i� 1)h, i = 1, 2, · · · , 2n� 1,

yfj = (j � 1)h, j = 0, 1, 2, · · · , 2n� 1
and

(
xc
i = 2(i� 1)h, i = 1, 2, · · · , n,

ycj = 2(j � n)h, j = 1, 2, · · · , n+ 1
280

respectively, where h = 1/(2n� 2).281

If the wave speed in ⌦c is twice as large as in ⌦f , then the mesh (4.3) is an ideal choice, because the282

number of grid points per wavelength is constant in the entire domain. However, this leads to a mesh283

refinement interface with hanging nodes along the interface y = 0. In the following, we discuss both the284

SBP-GP and SBP-SAT method with energy conserving interpolation for the mesh refinement interface.285

We begin with introducing notations of the SBP properties in two dimensions. Next, we present the286

SBP-GP method to impose the interface conditions (4.2). A second order accurate method was originally287

developed in [16], and ghost points from both subdomains are used for the interface conditions. Here, we288

generalize the technique to fourth order accuracy. After that, we propose a new SBP-GP method that289

only uses ghost points from the coarse domain, which reduces the computational work for computing290

numerical solution on the ghost points. We end this section by a discussion of the SBP-SAT method,291

and its relation with the SBP-GP method.292

4.1. SBP properties in two space dimensions. The SBP identity (2.2) and (2.3) are in exactly293

the same form. In the discussion of SBP properties in two space dimensions, we use the notations of SBP294

operators with ghost point.295

Let u and v be grid functions in ⌦f , p and q be grid functions in ⌦c. We define the two dimensional296

scalar products297

(u,v)h = h2
2n�2X

i=1

2n�1X

j=1

wjuijvij , (p, q)2h = (2h)2
n�1X

i=1

nX

j=1

wjpijqij .298

Note that we have excluded values on the boundary x = 1, because we do not solve them in the numerical299

scheme. Instead, the numerical solution at x = 1 is set to be equal to the numerical solution at x = 0300

because of the periodic boundary condition. We also define two scalar products for grid functions on the301

interface302

hu�,v�
ih = h

2n�2X

i=1

u�
i v

�
i , hp�, q�

i2h = 2h
n�1X

i=1

p�i q
�
i ,303

where the superscripts � denotes grid functions on the interface.304

We are now ready to state the SBP identity in two space dimensions in the fine domain ⌦f305

(u, Gx(µ)v)h = �Sx(u,v),(4.4)306

(u, Gy(µ)v)h = �Sy(u,v)� hu�,v�
rih,(4.5)307308

where the subscripts x and y denote the spatial direction that the operator acts on. The bilinear forms309

Sx(·, ·) and Sy(·, ·) are symmetric and positive semi-definite. There is no boundary term in (4.4) for310
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Gx(µ) because of the periodic boundary condition. We have also omitted a boundary term at y = 1. The311

last term in (4.5) corresponds to a boundary term on the interface, where312

(v�
r)i = µi,1b

T
1 vi,:, i = 1, 2, · · · , 2n� 1.313

To condense notation, we define314

Gf (µ) = Gx(µ) +Gy(µ), Sf = Sx + Sy,315

so that (4.4)-(4.5) can be written316

(4.6) (u, Gf (µ)v)h = �Sf (u,v)� hu�,v�
rih,317

The SBP identity for the operators in the coarse domain ⌦c can be written in a similar way318

(4.7) (p, Gc(µ)q)2h = �Sc(p, q) + hp�, q�
ri2h,319

where a boundary term at y = �1 is omitted.320

4.2. The fourth order accurate SBP-GP method. In [16], a second order accurate SBP-321

GP method was developed for the wave equation with mesh refinement interfaces. In this section, we322

generalize the scheme to fourth order accuracy in both space and time.323

Equation (4.1) is approximated by324

(4.8) ⇢f tt = Gf (µ)f , ⇢ctt = Gc(µ)c,325

where the grid functions f and c are approximated solutions of (4.1) in ⌦f and ⌦c, respectively. At the326

interface between ⌦f and ⌦c, discrete interface conditions must be imposed to ensure energy stability.327

Because it is a mesh refinement interface, interpolation between the fine and coarse grids on the interface328

are needed. We denote P an interpolation operator that interpolates a grid function on the interface from329

the coarse domain to the fine domain, and R a restriction operator that restricts a grid function on the330

interface from the fine domain to the coarse domain. The stability result is summarized in the theorem331

below.332

Theorem 4.1. With the discrete interface conditions333

f�
t = Pc�t ,(4.9)334

c�r = Rf�
r,(4.10)335336

where the interpolation and restriction operators satisfy337

(4.11) P = 2RT ,338

the scheme (4.8) is energy stable.339

Proof. Applying the SBP identity (4.4) and (4.5), we obtain340

(4.12) (f t, ⇢f tt)h = �Sf (f t,f)� hf�
t ,f

�
rih341

from the approximation in the fine domain ⌦f . Similarly, in ⌦c we have342

(4.13) (ct, ⇢ctt)2h = �Sc(ct, c) + hc�t , c
�
ri2h.343

With the discrete energy defined as344

E = (f t, ⇢f t)h + Sf (f ,f) + (ct, ⇢ct)2h + Sc(c, c),345346

we find that the sum of (4.12) and (4.13) can be written as the rate of energy change347

(4.14)
1

2

d

dt
E = �hf�

t ,f
�
rih + hc�t , c

�
ri2h.348
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10 S. WANG AND N. A. PETERSSON

To obtain an energy estimate, we need the two terms on the right-hand side of (4.14) to cancel349

identically through the interface condition (4.2). By (4.11), we have350

(4.15) hPq,vih = hq,Rvi2h,351

for any grid functions v and q on the interface of ⌦f and ⌦c, respectively. We write the right-hand side352

of (4.14) as353

� hf�
t ,f

�
rih + hc�t , c

�
ri2h354

=� hf�
t � Pc�t ,f

�
rih � hPc�t ,f

�
rih + hc�t , c

�
ri2h355

=� hf�
t � Pc�t ,f

�
rih � hc�t ,Rf�

ri2h + hc�t , c
�
ri2h356

=� hf�
t � Pc�t ,f

�
rih + hc�t , c

�
r �Rf�

ri2h.357358

The above quantity equals to zero if the numerical solution satisfies the interface conditions (4.9)-(4.10).359

This completes the proof.360

Remark 4.2. The relation (4.11) and (4.15) are equivalent only in two space dimensions. We also361

note that relation (4.15) is essential for energy stability. In the case when the boundary condition is362

non-periodic in x, boundary modifications must be performed for the projection and restriction operator363

so that (4.11) is satisfied [1, 7, 11].364

From the perspective of accuracy, it is desirable to match the order of accuracy of the interpolation365

and restriction operators to the SBP operators. For the interpolation operator P in (4.9), it is natural366

to enforce367

(4.16) f�
2i�1 = c�i , i = 1, 2, · · · , n� 1368

on the grid points that coincide, and use a fourth order interpolation for the hanging nodes369

(4.17) f�
2i = �

1

16
c�i�1 +

9

16
c�i +

9

16
c�i+1 �

1

16
c�i+2, i = 1, 2, · · · , n� 1.370

With the stencils of P shown in (4.16)-(4.17), the stencil of R is completely determined by the condition371

(4.15). The restriction operator R in (4.10) can be written372

(4.18) (c�r)i = �
1

32
(f�

r)2i�4 +
9

32
(f�

r)2i�2 +
1

2
(f�

r)2i�1 +
9

32
(f�

r)2i �
1

32
(f�

r)2i+2,373

where i = 1, 2, · · · , n � 1. We note that in (4.17) and (4.18), some grid points outside the x-boundary374

are used by the interpolation and restriction operators. We do not consider them to be unknown ghost375

point values, because they can be set by the periodic boundary conditions.376

In (4.18), ghost point values fi,0 and cj,n+1 for i = 1, 2, · · · , 2n� 2 and j = 1, 2, · · · , n� 1 are used.377

The number of unknown ghost point values is 3n� 3. We observe from (4.16)-(4.18) that the number of378

linear equations is also 3n� 3. Therefore, the number of unknowns equals the number of equations.379

To obtain the unknown ghost point values from (4.16)-(4.18), it necessities to consider a fully discrete380

version of the discretization (4.8), and impose the conditions (4.16)-(4.17) at a di↵erent time level than381

(4.18). Since we have a fourth order accurate spatial discretization, we match the accuracy in time by382

using a fourth order accurate predictor-corrector time stepping scheme. The fully discrete scheme consists383

of the predictor step384

⇢
f⇤

� 2fk + fk�1

�2t
= Gf (µ)f

k,

⇢
c⇤ � 2ck + ck�1

�2t
= Gc(µ)c

k,

(4.19)385

and the corrector step386

fk+1 = f⇤ +
�4t
12⇢

Gf (µ)v
f ,

ck+1 = c⇤ +
�4t
12⇢

Gc(µ)v
c,

(4.20)387
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where388

vf =
f⇤

� 2fk + fk�1

�2t
and vc =

c⇤ � 2ck + ck�1

�2t
.389

The superscript denotes the time level, and �t is the time step.390

Assuming that the numerical solutions fk�1, ck�1, fk and ck are known on all grid points, the391

numerical solution at t = tk+1 can be computed as follows.392

1 Compute by (4.19) the predictor f⇤ and c⇤ on all points except the ghost points in ⌦f and ⌦c,393

respectively.394

2 Impose (4.18) for the predictor f⇤, c⇤, and (4.16)-(4.17) for the corrector fk+1, ck+1. Together395

with (4.20), this gives a system of 3n� 3 linear equations. By solving the system, we obtain f⇤,396

c⇤ on all ghost points.397

3 Compute by (4.20) the corrector fk+1, ck+1 on all points except the ghost points in ⌦f and ⌦c,398

respectively.399

4 Impose (4.18) for the corrector solution fk+1, cn+1, and (4.16)-(4.17) for the solution f⇤⇤, c⇤⇤,400

where401

⇢
f⇤⇤

� 2fk+1 + fk

�2t
= Gf (µ)f

k+1,

⇢
c⇤⇤ � 2ck+1 + ck

�2t
= Gc(µ)c

k+1.

(4.21)402

By solving the system of 3n� 3 linear equations, we obtain fk+1, ck+1 on all ghost points.403

Remark 4.3. With the above procedure to obtain the ghost point values, the fully discrete energy is404

conserved [16, 21].405

In each time step, we need to solve two di↵erent systems of 3n� 3 linear equations. The coe�cients406

in the linear equations are time independent. As a consequence, it is very e�cient to LU-factorize the407

system before the time stepping scheme, and use backward substitution to compute the solutions on the408

ghost points at each time step. However, for real-world problems, computations are performed on many409

processors on a parallel machine. It is then not straightforward to perform an LU-factorization in an410

e�cient way. In [16], an iterative block Jacobi relaxation method is used, and works well in large-scale411

problems.412

4.3. An improved SBP-GP method. In the fourth order accurate SBP-GP method presented in413

Section 4.2, n� 1 ghost points from the coarse domain ⌦c and 2n� 2 ghost points from the fine domain414

⌦f are used to impose interface conditions. As a consequence, we need to solve two systems of linear415

equations whose coe�cients are independent of time. In this section, we present an improved SBP-GP416

method, where only n�1 ghost points from ⌦c are used for interface conditions. This reduces the number417

of linear equations to n� 1.418

The key in the improved method is to combine SBP operator with ghost point and SBP operator419

without ghost point. More precisely, in ⌦c we use the SBP operator with ghost point, and n � 1 ghost420

points are used in the spatial discretization. The semi-discretized equation in ⌦c is the same as in the421

original SBP-GP method422

(4.22) ⇢ctt = Gc(µ)c.423

In ⌦f , for the grid points on the interface, we obtain the discretized equation from the first interface424

condition (4.9) by di↵erentiating twice in time425

⇢f�
tt = ⇢Pc�tt = ⇢P

✓
1

⇢
Gc(µ)c

�

◆
.426

For all the other grid points in ⌦f , we use the SBP operator without ghost point427

⇢f⌦
tt = Gx(µ)f

⌦ +Gy(µ)f
⌦,428
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(a) (b)

Fig. 2: A mesh refinement interface with ghost points denoted by filled circles. (a) ghost points from
both domains. (b) ghost points from the coarse domain.

where the superscript ⌦ denotes all grid points not on the interface. The complete semi-discretized429

equation in ⌦f can be written as430

(4.23) ⇢f tt := Lhf =

(
Gx(µ)f

� +Gy(µ)f
� + ⌘, on the interface,

Gx(µ)f
⌦ +Gy(µ)f

⌦, in the interior,
431

where432

⌘ = ⇢P

✓
1

⇢
Gc(µ)c

�

◆
� (Gx(µ)f

� +Gy(µ)f
�).433

We see two di↵erences when comparing (4.23) with (4.8): the SBP operator Gy(µ) is replaced by Gy(µ),434

and there is a penalty-type term ⌘ for the grid points on the interface. A modified interface condition435

leads to energy stability.436

Theorem 4.4. The scheme (4.22)-(4.23) is energy stable with the interface condition437

R(hf�
t ,f

�
rih � hw1h(f

�
t ,⌘ih) = hc�t , c

�
ri2h,(4.24)438

439

if the projection and restriction operators satisfy (4.11). The value w1 is the weight of the SBP operator440

G(µ) on the first grid point.441

Proof. With the discrete energy442

E = (f t, ⇢f t)h + Sf (f ,f) + (ct, ⇢ct)2h + Sc(c, c),443
444

the energy change in time is445

1

2

d

dt
E = �hf�

t ,f
�
rih + hc�t , c

�
ri2h + hw1h(f

�
t ,⌘ih.(4.25)446

447

With the interface condition (4.24) and the requirement on the interpolation and restriction operators448

(4.11), the right-hand side of (4.25) vanishes, which proves energy stability.449
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When combined with the fourth order accurate predictor-corrector time integration, the fully discrete450

scheme can be written as the predictor step451

⇢
f⇤

� 2fk + fk�1

�2t
= Lhf

k,

⇢
c⇤ � 2ck + ck�1

�2t
= Gc(µ)c

k,

(4.26)452

and the corrector step453

fk+1 = f⇤ +
�4t
12⇢

Lhv
f ,

ck+1 = c⇤ +
�4t
12⇢

Gc(µ)v
c,

(4.27)454

where455

vf =
f⇤

� 2fk + fk�1

�2t
and vc =

c⇤ � 2ck + ck�1

�2t
,456

and the superscript denotes the time level.457

Assuming that the solution fk�1, ck�1, fk and ck are known on all grid points, the solution at458

t = tk+1 can be computed as follows.459

1 Impose (4.24) for fk and ck. This gives a system of n � 1 linear equations. By solving the460

system, we obtain ck on the ghost points.461

2 Compute the predictor f⇤ and c⇤ by (4.26) for all grid points excluding the ghost points.462

3 Impose (4.24) for the predictor f⇤, c⇤. This gives a system of n � 1 linear equations, with the463

same coe�cient matrix as the system in Step 1. By solving the system, we obtain c⇤ on the464

ghost points.465

4 Compute the corrector fk+1 and ck+1 by (4.27) for all grid points excluding the ghost points.466

We note that after Step 4, ck+1 on the ghost points are not known yet, but will be computed in467

Step 1 in the next time loop. Step 1 is needed even in the first time loop, when all numerical solutions468

are given by the initial data. This is to make sure that the ghost point values are compatible with the469

algorithm to guarantee energy conservation.470

The improved method presented in this section is used in numerical experiments in Section 5. The471

system of n� 1 linear equations is LU-factorized before the time loop, and backward substitution is used472

to solve the system in every time step.473

4.4. The SBP-SAT method. With stable SBP-SAT schemes for both the Neumann problem in474

Section 3.1 and the Dirichlet problem in Section 3.2, it is straightforward to derive the penalty terms for475

the interface conditions (4.2). The semi-discretization can be written476

⇢f tt = Gx(µ)f + eGy(µ)f + pf ,(4.28)477

⇢ctt = Gx(µ)c+ eGy(µ)c+ pc,(4.29)478479

where480

(4.30) (f t,pf )h = �
1

2
h(f�

r)t,f
�
� Pc�ih �

⌧f
h
hf�

t ,f
�
� Pc�ih +

1

2
h(f�)t,f

�
r � Pc�rih,481

and482

(4.31) (ct,pc)2h =
1

2
h(c�r)t, c

�
�Rf�

i2h �
⌧c
2h

hc�t , c
�
�Rf�

i2h �
1

2
h(c�)t, c

�
r �Rf�

ri2h.483

In both (4.30) and (4.31), the first two terms penalize continuity of the solution, and the third term484

penalizes continuity of the flux.485
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Energy stability is proved in [25] for the special case when µ is constant. Following the same approach,486

we find that the scheme (4.28)-(4.31) is energy stable when the penalty parameters satisfy487

(4.32) ⌧f =
1

2
⌧c � max

i,j

 
(µf

i,1)
2

2(µf
m)i↵

,
(µc

j,n)
2

2(µc
m)j↵

!
,488

where i = 1, · · · , 2n� 2 and j = 1, · · · , n� 1.489

In the numerical experiments in Section 5, we observe that the scheme with the penalty terms (4.30)490

and (4.31) leads to a suboptimal convergence rate. To recover the desired rate, we find one remedy is to491

use four penalty terms in the same way as in [23]. More precisely, we may replace492

⌧f
h
hf�

t ,f
�
� Pc�ih493

by494
⌧f
2h

hf�
t ,f

�
� Pc�ih +

⌧f
2h

hf�
t ,PRf�

� Pc�ih495

in (4.30), and replace496
⌧c
2h

hc�t , c
�
�Rf�

i2h497

by498
⌧c
4h

hc�t , c
�
�Rf�

i2h +
⌧c
4h

hc�t ,RPc� �Rf�
i2h499

in (4.31). The motivation of using the four penalty terms in [23] was to stabilize the scheme when500

using boundary modified interpolation operators. In our case, we do not need to stabilize the scheme,501

as the interpolation operators are not boundary modified. But the four penalty terms do improve the502

convergence rate to the desired order.503

A second remedy to obtain the optimal convergence rate is to use more accurate interpolation and504

restriction operators, which is also tested in Section 5.505

5. Numerical experiments. In this section, we conduct numerical experiments to compare the506

SBP-GP method and the SBP-SAT method in terms of computational e�ciency. Our first focus is CFL507

condition, which is an important factor in solving large-scale problems. We numerically test the e↵ect508

of di↵erent boundary and interface techniques on the CFL condition. We then compare L2 error and509

convergence rate of the SBP-GP method and the SBP-SAT method with the same spatial and temporal510

discretizations. The convergence rate is computed by511

log

✓
eh
e2h

◆�
log

✓
1

2

◆
,512

where e2h is the L2 error on a grid x, and eh is the L2 error on a grid with grid size half of x in each513

subdomain and spatial direction.514

5.1. Time-stepping stability restrictions. We consider the scalar wave equation in one space515

dimension516

(5.1) utt = uxx + F,517

in the domain x 2 [�⇡/2,⇡/2], and choose a manufactured solution518

u = cos(x+ 2t),519

which is also used to obtain initial and boundary data, and the forcing function F .520

We discretize equation (5.1) by using the fourth order accurate SBP operator, and use a predictor-521

corrector time stepping method [21] for the time integration.522
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In general, we do not have a closed form expression for the CFL condition. Instead, we can estimate523

the CFL condition by considering periodic boundary conditions and Fourier methods. More precisely,524

the Fourier transform of the fourth order accurate central finite di↵erence stencil is525

bQ = �
4

h2
sin2

!h

2

✓
1 +

1

3
sin2

!h

2

◆
,526

where ! is the wave number and h is the grid size [6, pp. 9]. In [21], it is proved that for the predictor-527

corrector time stepping method, the time step constraint by the CFL condition is528

(5.2) �t 
2
p
3

p

,529

where  is the spectral radius of the spatial discretization matrix. Taking  = max! | bQ| = 16/(3h2), we530

find that the estimated CFL condition is �t  1.5h, which is used as a reference when comparing CFL531

conditions in the following numerical tests.532

First, we consider the Neumann boundary condition at x = ±⇡/2, and use the SBP-GP and the533

SBP-SAT method to solve the equation (5.1) until t = 200. For the SBP-GP method with the fourth534

order SBP operator derived in [21], we find that the scheme is stable when �t  1.44h. In other words,535

the time step needs to be reduced by about 4% when comparing with the reference CFL condition. For536

the SBP-SAT method with the fourth order SBP operator derived in [14], the scheme is stable up to the537

reference CFL condition �t  1.5h.538

Next, we consider the equation with the Dirichlet boundary condition at x = ±⇡/2. To test the539

injection method and the SAT method, we use the fourth order accurate SBP operator without ghost540

point [14]. When using the injection method to impose the Dirichlet boundary condition, the scheme is541

stable with �t  1.5h. However, when using the SAT method to weakly impose the Dirichlet boundary542

condition and choosing the penalty parameter 20% larger than its stability-limiting value, the scheme is543

stable with �t  1.16h. This amounts to a reduction in time step by 23%. If we decrease the penalty544

parameter so that it is only 0.1% larger than its stability-limiting value, then the scheme is stable with545

�t  1.25h, i.e. the time step needs to be reduced by 17% comparing with the injection method.546

In conclusion, for the Neumann boundary condition, both the SBP-GP and the SBP-SAT method547

can be used with a time step comparable to that given by the reference CFL condition. This is not548

surprising, given the similarity in the methods and in the discrete energy. For the Dirichlet boundary549

condition, we need to reduce the time step by 23% in the SAT method. If we instead inject the Dirichlet550

data, then the scheme is stable with the time step given by the reference CFL condition derived from551

Fourier analysis for the periodic boundary problem.552

5.2. Discontinuous material properties. We now investigate the SBP-GP and SBP-SAT method553

for the wave equation with a mesh refinement interface. The model problem is554

(5.3) ⇢utt = r · (µru) + f555

in a two dimensional domain ⌦ = [0, 4⇡]⇥ [�4⇡, 4⇡], where ⇢(x, y) > 0, µ(x, y) > 0, and the wave speed556

is c =
p
µ. Equation (5.3) is augmented with Dirichlet boundary conditions at y = ±4⇡, and periodic557

boundary conditions at x = 0 and x = 4⇡.558

The domain ⌦ is divided into two subdomains ⌦1 = [0, 4⇡]⇥ [�4⇡, 0] and ⌦2 = [0, 4⇡]⇥ [0, 4⇡] with559

an interface � at y = 0. The material parameter µ is a smooth function in each subdomain, but may560

be discontinuous across the interface. In particular, we consider two cases: µ is piecewise constant in561

Section 5.2, and µ is a smooth function in Section 5.3. In each case, we test the fourth order accurate562

SBP-GP method and the SBP-SAT method, in terms of CFL condition and convergence rate.563

When µ is piecewise constant, an analytical solution can be constructed by Snell’s law. We choose a564

unit density ⇢ = 1 and denote the piecewise constant µ as565

µ(x, y) =

(
µ1, (x, y) 2 ⌦1,

µ2, (x, y) 2 ⌦2,
566
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16 S. WANG AND N. A. PETERSSON

Fig. 3: The exact solution at time t = 0 (left) and t = 11 (right). The solution is continuous at the
material interface x = 0 but the normal derivative is discontinuous due to the material discontinuity.

where µ1 6= µ2.567

Let an incoming plane wave uI travel in ⌦1 and impinge on the interface �. The resulting field568

consists of the incoming wave uI , as well as a reflected field uR and a transmitted field uT . With the569

ansatz570

uI = cos(x+ y �
p
2µ1t),

uR = R cos(�x+ y +
p

2µ1t),

uT = T cos(x+ ky +
p

2µ1t),

571

where k =
p
2µ1/µ2 � 1, the two parameters R and T are determined by the interface conditions572

uI + uR = uT ,

µ1
@

@x
(uI + uR) = µ2

@

@x
uT ,

573

yielding R = (µ1 � µ2k)/(µ1 + µ2k) and T = 1 +R.574

In the following experiments, we choose µ1 = 1 and µ2 = 0.25. As a consequence, the wave speed575

is c1 = 1 in ⌦1 and c2 = 0.5 in ⌦2. To keep the number of grid points per wavelength the same in two576

subdomains, we use a coarse grid with grid spacing 2h in ⌦1, and a fine grid with grid spacing h in ⌦2.577

We let the wave propagate from t = 0 until t = 11. The exact solution at these two time points are578

shown in Figure 3.579

5.2.1. CFL condition. To derive an estimated CFL condition, we perform a Fourier analysis in580

each subdomain ⌦1 and ⌦2. Assuming periodicity in both spatial directions, the spectral radius of the581

spatial discretization in ⌦1 and ⌦2 is the same  = 4/(3h2). By using (5.2), we find that the estimated582

CFL condition is583

(5.4) �t 
1
p
2

2
p
3p

4/(3h2)
=

3
p
2
h ⇡ 2.12h.584

We note that the restriction on time step is the same in both subdomains. The factor 1/
p
2 in (5.4),585

which is not present in (5.2), comes from (5.3) having two space dimensions.586
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2h L2 error (rate)

1.57⇥10�1 1.6439⇥10�3

7.85⇥10�2 1.0076⇥10�4 (4.02)
3.93⇥10�2 6.2738⇥10�6 (4.01)
1.96⇥10�2 3.9193⇥10�7 (4.00)
9.81⇥10�3 2.4344⇥10�8 (4.01)

Table 1: L2 errors (convergence rates) of the fourth order SBP-GP method for piecewise constant µ.

2h L2 error (rate) SAT3 L2 error (rate) SAT4 L2 error (rate) INT6

1.57⇥10�1 3.0832⇥10�3 2.1104⇥10�3 2.1022⇥10�3

7.85⇥10�2 3.4792⇥10�4 (3.15) 1.1042⇥10�4 (4.26) 1.1014⇥10�4 (4.25)
3.93⇥10�2 4.4189⇥10�5 (2.98) 6.6902⇥10�6 (4.04) 6.6815⇥10�6 (4.04)
1.96⇥10�2 5.6079⇥10�6 (2.98) 4.0374⇥10�7 (4.05) 4.0346⇥10�7 (4.05)
9.81⇥10�3 7.0745⇥10�7 (2.99) 2.4659⇥10�8 (4.03) 2.4651⇥10�8 (4.03)

Table 2: L2 errors (convergence rates) of the fourth order SBP-SAT method for piecewise constant µ.

For the SBP-GP method, we have found numerically that the method is stable when the time step587

�t  2.09h. However, for the SBP-SAT method, the stability limit appears to be �t  1.18h, which588

represents approximately 45% reduction in time step. This indicates that the non-periodic boundary589

condition and the non-conforming grid interface do not a↵ect time step restriction of the SBP-GP method,590

but the time step in the SBP-SAT method must be reduced significantly.591

5.2.2. Convergence rate. We now perform a convergence study for the SBP-GP method and the592

SBP-SAT method. We choose the time step �t = h so that both methods are stable. The L2 errors in the593

numerical solution with the SBP-GP method are shown in Table 1. Though the dominating truncation594

error is O(h2) at grid points near boundaries, the numerical solution converges to fourth order, i.e. two595

orders are gained in convergence rate [24].596

For the SBP-SAT method with three penalty terms (4.28)-(4.31), the L2 errors labeled as SAT3597

in Table 2 only converge at a rate of three. Because the dominating truncation error is O(h2) at grid598

points close to boundaries, we gain only one order of accuracy in the numerical solution. This suboptimal599

convergence behavior has also been observed in other settings [24].600

The proof of the suboptimal convergence behavior is out of scope of this paper. Instead, we present601

two simple remedies to obtain a fourth order convergence rate. First, we note that for the sixth order602

SBP-SAT method, energy stability requires four penalty terms when the grid interface is non-conforming603

[23]. When using the same type of penalty terms in the fourth order method, we obtain a fourth order604

convergence, as shown in the third column of Table 2 labeled as SAT4. Alternatively, we can use three605

penalty terms but employ a sixth order interpolation and restriction at the non-conforming interface,606

which also leads to a fourth order convergence, see the fourth column of Table 2 labeled as INT6. In607

both approaches, the dominating truncation error is still O(h2) at grid points close to boundaries.608

We find that the L2 errors of the SBP-GP method is almost identical to that of the SBP-SAT method609

(SAT4 and INT6) with the same mesh.610

5.3. Smooth material parameters. In this section, we test the two methods when the material611

parameters are smooth functions in the whole domain ⌦. More precisely, we use material parameters612

⇢ = � cos(x) cos(y) + 3,

µ = cos(x) cos(y) + 2.
613
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2h L2 error (rate)

1.57⇥10�1 2.7076⇥10�4

7.85⇥10�2 1.6000⇥10�5 (4.08)
3.93⇥10�2 9.7412⇥10�7 (4.04)
1.96⇥10�2 6.0183⇥10�8 (4.02)
9.81⇥10�3 3.7426⇥10�9 (4.01)

Table 3: L2 errors (convergence rates) of the SBP-GP method for smooth µ.

2h L2 error (rate) SAT3 L2 error (rate) SAT4 L2 error (rate) INT6

1.57⇥10�1 3.8636⇥10�3 1.8502⇥10�3 1.8503⇥10�3

7.85⇥10�2 4.3496⇥10�4 (3.15) 9.4729⇥10�5 (4.29) 9.4736⇥10�5 (4.29)
3.93⇥10�2 5.3152⇥10�5 (3.03) 3.7040⇥10�6 (4.68) 3.7043⇥10�6 (4.68)
1.96⇥10�2 6.6271⇥10�6 (3.00) 2.0778⇥10�7 (4.16) 2.0779⇥10�7 (4.16)
9.81⇥10�3 8.2783⇥10�7 (3.00) 1.3372⇥10�8 (3.96) 1.3372⇥10�8 (3.96)

Table 4: L2 errors (convergence rates) of the fourth order SBP-SAT method for smooth µ.

The forcing function and initial conditions are chosen so that the manufactured solution is614

u(x, y, t) = sin(x+ 2) cos(y + 1) sin(t+ 3).615

We use the same grid as in Section 5.2 with grid size 2h in ⌦1 and h in ⌦2. The parameters ⇢min = 2616

and µmax = 3 take the extreme values at the same grid point. Therefore, a Fourier analysis to the617

corresponding periodic problem gives a time step restriction618

�t 
1
p
2

2
p
3p

16/(3h2)
p

µmax/⇢min

=

p
3

2
h ⇡ 0.86h.619

Numerically, we have found that the SBP-GP method is stable when �t  0.86h. This shows again that620

the non–periodicity and interface coupling do not a↵ect the CFL condition in the SBP-GP method. The621

SBP-SAT method is stable with �t  0.77h, which means that the time step needs to be reduced by622

approximately 10%.623

To test convergence, we choose the time step �t = 0.7h so that both the SBP-GP method and SBP-624

SAT method are stable. The L2 errors at t = 11 are shown in Table 3 for the SBP-GP method. We625

observe a fourth order convergence rate.626

Similar to the case with piecewise constant material property, the standard SBP-SAT method only627

converges to third order accuracy, see the second column of Table 4 labeled as SAT3. We have tested the628

SBP-SAT method with four penalty terms, or with a sixth order interpolation and restriction operator.629

Both methods lead to a fourth order convergence rate, see the third and fourth column in Table 4.630

However, the L2 error is about three times large as the L2 error of the SBP-GP method with the same631

mesh size.632

6. Conclusion. We have analyzed two di↵erent types of SBP finite di↵erence operators for solving633

the wave equation with variable coe�cients; operators with ghost points, G(µ), and operators without634

ghost points, eG(µ). The close relation between the two operators has been analyzed and we have presented635

a way of adding or removing the ghost point dependence in the operators. Traditionally, the two operators636

have been used within di↵erent approaches for imposing the boundary conditions. Based on their relation,637

we have in this paper devised a scheme that combines both operators for satisfying the interface conditions638

at a non-conforming grid refinement interface.639
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We first used the SBP operator with ghost points to derive a fourth order accurate SBP-GP method640

for the wave equation with a grid refinement interface. This method uses ghost points from both sides641

of the refinement interface to enforce the interface conditions. Accuracy and stability of the method642

are ensured by using a fourth order accurate interpolation stencil and a compatible restriction stencil.643

Secondly, we presented an improved method, where only ghost points from the coarse side are used to644

impose the interface conditions. This is achieved by combining the operator G(µ) in the coarse grid and645

the operator eG(µ) in the fine grid. Compared to the first SBP-GP method, the improved method leads646

to a smaller system of linear equations for the ghost points. In addition, we have made improvements to647

the traditional fourth order SBP-SAT method, which only exhibits a third order convergence rate for the648

wave equation with a grid refinement interface. Two remedies have been presented and both result in a649

fourth order convergence rate.650

We have conducted numerical experiments to verify that the proposed methods converge with fourth651

order accuracy, both for smooth and discontinuous material properties. We have also found numerically652

that the proposed SBP-GP method is stable under a CFL time-step condition that is very close to the von653

Neumann limit for the corresponding periodic problem. Being able to use a large time step is essential654

for solving practical large-scale wave propagation problems, because the computational complexity grows655

linearly with the number of time steps. We have found that the SBP-SAT method requires a smaller656

time step for stability, probably due to the penalization of the interface coupling conditions. In the case657

of smooth material properties, the SBP-SAT method was also found to yield to a slightly larger solution658

error compared to the SBP-GP method, for the same grid sizes and time step.659

One disadvantage of the SBP-GP method is that a system of linear equations must be solved to obtain660

the numerical solutions at the ghost points. However, previous work has demonstrated that the system661

can be solved very e�ciently by an iterative method [18, 20]. Furthermore, the proposed method only662

uses ghost points on one side of the interface and therefore leads to a linear system with fewer unknowns663

and a more regular structure than previously. In future work we plan to implement the proposed method664

for the elastic wave equation in three space dimensions on a distributed memory machine and evaluate665

its e�ciency.666
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