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 SUNDIALS: Suite of Nonlinear and 
Differential/Algebraic Equation Solvers 
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 SUNDIALS Overview 
 ODE integration 

• CVODE 
• ARKode 

 DAE integration 
• IDA 

 Sensitivity Analysis 
 Nonlinear Systems 

• KINSOL 
• Fixed point solver 

 SUNDIALS: usage, applications, and availability 

Outline 
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SUite of Nonlinear and 
DIfferential-ALgebraic Solvers 

 Suite of time integrators and nonlinear solvers 

• ODE and DAE time integrators with forward and adjoint sensitivity 
capabilities, Newton-Krylov nonlinear solver 

• Written in C with interfaces to Fortran and Matlab 

• Designed to be incorporated into existing codes 

• Modular implementation: users can supply own data structures  

− Linear solvers / preconditioners 

− Vector structures – core data structure for all the codes 

− Supplied with serial and MPI parallel structures 

 Freely available, released under BSD license 

https://computation.llnl.gov/casc/sundials/main.html 
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LLNL has a strong history of nonlinear solver 
and time integration research 

SUNDIALS package evolved from innovation in methods and 
software 
 KINSOL: Newton solvers evolved from the first Newton-

Krylov method and code for PDEs 
 CVODE(S): ODE codes from odepack (> 200K downloads)  
 IDA(S): DAE codes from DASSL  

 
2009 
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 Variable order and variable step size Linear Multistep Methods 
 
 
 

 Adams-Moulton (nonstiff); K1 = 1, K2 = k, k = 1,…,12 
 Backward Differentiation Formulas [BDF] (stiff); K1 = k, K2 = 0, k = 1,…,5 
 Optional stability limit detection based on linear analysis only 
 The stiff solvers execute a predictor-corrector scheme: 

 
 

 
 
 

CVODE solves  

Explicit predictor to give yn(0)  

 

 

Implicit corrector with yn(0) as 
initial iterate 
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Convergence and errors are measured 
against user-specified tolerances 

 An absolute tolerance is specified for each solution component, ATOLi 

 A relative tolerance is specified for all solution components, RTOL  

 Norm calculations are weighted by: 

 

 

 Bound time integration error with: 
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Time steps are chosen to minimize the 
local truncation error 

 Time steps are chosen by: 
• Estimate the error: E(∆t ) = C(yn - yn(0)) 

− Accept step if ||E(∆t)||WRMS < 1 
− Reject step otherwise 

• Estimate error at the next step, ∆t’, as  
 
 

• Choose next step so that ||E(∆t’)|| WRMS < 1 
 Choose method order by: 

• Estimate error for next higher and lower orders 
• Choose the order that gives the largest time step meeting the 

error condition 
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Nonlinear systems at each time step will 
require nonlinear solves 

 Use predicted value as the initial iterate for the nonlinear solver 
 Nonstiff systems: Functional iteration 

 
 

 Stiff systems: Newton iteration 
 

ODE 

 

 

DAE 
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We are adding Runge-Kutta (RK) ODE time 
integrators to SUNDIALS via ARKode 

 RK methods are multistage: allow high order accuracy without long 
step history (enabling spatial adaptivity) 

 Additive RK methods apply a pair of explicit (ERK) and implicit 
(DIRK) methods to a split system, allowing accurate and stable 
approximations for multi-rate problems. 

 Can decompose the system into “fast” and “slow” components to be 
treated with DIRK and ERK solvers 

 ARKode provides 3rd to 5th order ARK, 2nd to 5th order DIRK and 2nd 
to 6th order ERK methods; also supports user-supplied methods. 

 Implicit RK methods require multiple nonlinear solves per time step 
 Applies advanced error estimators, adaptive time stepping, Newton 

and fixed-point iterative solvers 
 ARKode will be released with SUNDIALS later this year 

 
 

http://faculty.smu.edu/reynolds/arkode 
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ARKode solves  

 Variable step size additive Runge-Kutta Methods: 
 
 
 
 
 

 
 

 ERK methods use AI=0;  DIRK methods use AE=0, 
     , i = 1,…,s  are the inner stage solutions, 
       is the time-evolved solution, and 
       is the embedded solution (used for error estimation), 
 M may be the identity (ODEs) or a non-singular mass matrix (FEM). 
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 If              is invertible, we solve for    to obtain an ordinary differential 
equation (ODE), but this is not always the best approach 

 Else, the IVP is a differential algebraic equation (DAE) 

 

 A DAE has differentiation index i if i is the minimal number of 
analytical differentiations needed to extract an explicit ODE 

xF ∂∂ / x

Initial value problems (IVPs) come in the 
form of ODEs and DAEs 

 The general form of an IVP is given by 
 

00 )(
0),,(
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=
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IDA solves F(t, y, y’) = 0 

 C rewrite of DASPK [Brown, Hindmarsh, Petzold] 
 Variable order / variable coefficient form of BDF (no Adams) 
 Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 

DAEs 
 Optional routine solves for consistent values of y0 and y0’  

• Semi-explicit index-1 DAEs 
• differential components known, algebraic unknown OR  
• all of y0’ specified, y0 unknown 

 Nonlinear systems solved by Newton-Krylov method (no functional 
iteration) 
 

 Optional constraints: yi > 0, yi < 0, yi ≥ 0, yi ≤ 0 
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CVODE and IDA are equipped with a 
rootfinding capability 

 Finds roots of user-defined functions, gi(t,y) or gi(t,y, y’) 
 Important in applications where problem definition may change 

based on a function of the solution 
 Roots are found by looking at sign changes, so only roots of odd 

multiplicity are found 
 Checks each time interval for sign change 
 When sign changes are found, apply a modified secant method with 

a tight tolerance to identify root 
 If gi(t*,y) = 0 for some t* 

• gi(t*+δ,y) is computed for some small δ in direction of integration 
• Integration stops if any gi(t+δ,y) = 0 
• Ensures values of gi are nonzero at some past value of t, 

beyond which a search for roots is done 
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Sensitivity Analysis 

 Sensitivity Analysis (SA) is the study of how the variation in the output 
of a model (numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation in inputs. 

 Applications: 
• Model evaluation (most and/or least influential parameters), Model 

reduction, Data assimilation, Uncertainty quantification, 
Optimization (parameter estimation, design optimization, optimal 
control, …) 

 Approaches: 
• Forward sensitivity analysis – augment state system with sensitivity 

equations 
• Adjoint sensitivity analysis – solve a backward in time adjoint 

problem (user supplies the adjoint problem) 
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Adjoint Sensitivity Analysis 
Implementation 

 Solution of the forward problem is required for the adjoint problem  
need predictable and compact storage of solution values for the 
solution of the adjoint system 

 Cubic Hermite or variable-degree polynomial interpolation 
 Simulations are reproducible from each checkpoint 
 Force Jacobian evaluation at checkpoints to avoid storing it 
 Store solution and first derivative  
 Computational cost: 2 forward and 1 backward integrations 

t0 tf 
ck0 ck1 ck2         … 

Checkpointing 
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KINSOL solves F(u) = 0 

 C rewrite of Fortran NKSOL (Brown and Saad) 
 Inexact Newton solver: solves J ∆un = -F(un) approximately 
 Modified Newton option (with direct solves) – this freezes the 

Newton matrix over a number of iterations 
 Optional constraints: ui > 0, ui < 0, ui ≥ 0 or ui ≤ 0 
 Can scale equations and/or unknowns 
 Backtracking and line search options for robustness 
 Dynamic linear tolerance selection for use with iterative linear 

solvers 
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Fixed point and Picard iteration will be 
added to KINSOL in the next release 

 Define an iterative scheme to solve F(h) = h - G(h) = 0 as, 
 
 
 
 
 

 Picard iteration is a fixed point method formed from writing F as the 
difference of a linear, Lu, and a nonlinear, N(u), operator 
 
 
 

 Fixed point iteration has a global but linear convergence theory 
 Requires G to be a contraction 1,)()( <−≤− γγ yxyGxG
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KINSOL will have both Picard and fixed point iterations with acceleration 
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SUNDIALS provides many options for 
linear solvers 

 Iterative Krylov linear solvers 
• Result in inexact Newton solver 
• Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR 
• Only require matrix-vector products 

 
 

• Require preconditioner for the Newton matrix, M 
 Two options require serial environments and some pre-defined 

structure to the data 
• Direct dense  
• Direct band 

 Jacobian information (matrix or matrix-vector product) can be 
supplied by the user or estimated with finite difference quotients 
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Our next release of SUNDIALS will include 
interfaces to sparse direct solvers 

 Requires serial vector kernel now – only for transfer of RHS 
information for Jacobian systems 

 Will generalize to more generic vector interface in the future 
 Matrix information is passed via new SUNDIALS sparse_matrix 

structure which utilizes a compressed sparse column format 
 First release of this capability will support 

• SuperLU_MT (multi-threaded version of SuperLU) 
• KLU (serial)  

 Also considering PARDISO (threaded) for future releases 
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Preconditioning is essential for large 
problems as Krylov methods can stagnate 

 Preconditioner P must approximate Newton matrix, yet be 
reasonably efficient to evaluate and solve. 

 Typical P (for time-dep. ODE problem) is 
 The user must supply two routines for treatment of P: 

• Setup: evaluate and preprocess P (infrequently) 
• Solve: solve systems Px=b (frequently) 

 User can save and reuse approximation to J, as directed by the 
solver 

 Band and block-banded preconditioners are supplied for use with 
the supplied vector structure 

 SUNDIALS offers hooks for user-supplied preconditioning 
• Can use hypre or PETSc or … 

JJJI ≈− ~,~γ
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The SUNDIALS vector module is generic 

 Data vector structures can be user-supplied 
 The generic NVECTOR module defines: 

• A content structure (void *) 
• An ops structure – pointers to actual vector operations supplied by 

a vector definition 
 Each implementation of NVECTOR defines: 

• Content structure specifying the actual vector data and any 
information needed to make new vectors (problem or grid data) 

• Implemented vector operations 
• Routines to clone vectors 

 Note that all parallel communication resides in reduction operations: 
dot products, norms, mins, etc. 
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SUNDIALS provides serial and parallel 
NVECTOR implementations 

 Use is optional 
 Vectors are laid out as an array of doubles (or floats) 
 Appropriate lengths (local, global) are specified 
 Operations are fast since stride is always 1 
 All operations provided for both serial and MPI parallel cases 
 Can serve as templates for creating a user-supplied vector 
 OpenMP and pThreads vector kernels in next release.  Preliminary 

performance tests indicate that 10K length required to see benefit 
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SUNDIALS provides Fortran interfaces 

 CVODE, IDA, and KINSOL 
 Cross-language calls go in both directions: 
 Fortran user code  interfaces  CVODE/KINSOL/IDA 

 
 Fortran main  interfaces to solver routines 
 Solver routines  interface to user’s problem-defining routine and 

preconditioning routines 
 

 For portability, all user routines have fixed names 
 Examples are provided 

 



24 

SUNDIALS provides Matlab interfaces 

 CVODES, KINSOL, and IDAS 
 The core of each interface is a single MEX file which interfaces to 

solver-specific user-callable functions 
 Guiding design philosophy: make interfaces equally familiar to both 

SUNDIALS and Matlab users 
• all user-provided functions are Matlab m-files 
• all user-callable functions have the same names as the 

corresponding C functions  
• unlike the Matlab ODE solvers, we provide the more flexible 

SUNDIALS approach in which the 'Solve' function only returns the 
solution at the next requested output time. 

 Includes complete documentation (including through the Matlab help 
system) and several examples 
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SUNDIALS code usage is similar across 
the suite 

For CVODE with parallel vector implementation and GMRES solver: 
   

 #include “cvode.h” 
 #include “cvode_spgmr.h” 
 #include “nvector_parallel.h” 
 
 y = N_VNew_Parallel(comm, local_n, NEQ); 
 cvmem = CVodeCreate(CV_BDF,CV_NEWTON); 
 flag = CVodeSet*(…); 
 flag = CVodeInit(cvmem,rhs,t0,y,…); 
 flag = CVSpgmr(cvmem,…); 
 flag = CVSpilsSet*(cvmem, …); 
 for(tout = …) { 
    flag = CVode(cvmem, …,y,…);  } 
 
 NV_Destroy(y); 
 CVodeFree(&cvmem); 
 



26 

Set/Get routines also customization of 
solver parameters and output information 

Some CVODE optional inputs 
Set calls 

cvmem = CVodeCreate(…); 
flag = CVodeSet*(cvmem,…); 
flag = CVodeInit(cvmem,…); 

flag = CVSpgmr(cvmem,…);  
flag =  
  CVSpilsSet*(cvmem, …); 
flag =  
  CVSpilsSetPreconditioner( 
  cvmem,PrecondSet,PSolve); 

Optional Input Function Name Default 
User data CVodeSetUserData NULL 
Max. int. order CvodeSetMaxOrd 5 (BDF) 
Enable stability 
limit detection 

CVodeSetStabLimDet FALSE 

Initial step size CVodeSetInitStep Est. 
Min. step size CVodeSetMinStep 0.0 
Max. step size CVodeSetMaxStep infinity 
Precond. Fcns CVSpilsSet 

Preconditioner 
NULL,  
NULL 

Ratio between 
lin. & nonlin. tols 

CVSpilsSetEpsLin 0.05 

Max. Krylov 
subspace size 

CVSpilsSetMaxl 5 
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Example food web problem for KINSOL 

A food web population model, with predator-prey interaction and diffusion 
on the unit square in 2D. The dependent variable vector is the following: 
 
 
and the PDE's are as follows for i = 1, …, ns: 
 
 
where 
 
 
The number of species is ns = 2 * np, with the first np being prey and the 
last np being predators. The coefficients a(i,j), b(i), d(i) are: 

𝑐 = (𝑐1, 𝑐2, ..., 𝑐𝑛𝑛) 

a(i,i) = -AA, all i;  a(i,j) = -GG, i <= np , j >  np;  a(i,j) =  EE, i >  np,  j <= np 
b(i) = BB(1 + αxy), i <= np;  b(i) = - BB(1 + αxy), i >  np 
d(i) = DPREY, i <= np;  d(i) = DPRED, i > np 

Solved on unit square 
with ∇c•n = 0 B.C. and 
constant initial iterate 
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Example food web problem for KINSOL 

#include <kinsol/kinsol.h> 
#include <kinsol/kinsol_spgmr.h> 
#include <nvector/nvector_parallel.h> 
#include <sundials/sundials_dense.h> 
#include <sundials/sundials_types.h> 
#include <sundials/sundials_math.h> 
#include <mpi.h> 
 
#define NPEX        2             
#define NPEY        2             
#define MXSUB     10 
#define MYSUB     10   
 
#define MX          (NPEX*MXSUB) 
#define MY          (NPEY*MYSUB)  
 
#define NEQ    (NUM_SPECIES*MX*MY) 

/* Type : UserData contains preconditioner 
blocks, pivot arrays, and problem param */ 
 
typedef struct { 
  realtype **P[MXSUB][MYSUB]; 
  long int *pivot[MXSUB][MYSUB]; 
  realtype **acoef, *bcoef; 
  N_Vector rates; 
  realtype *cox, *coy; 
  realtype ax, ay, dx, dy; 
  realtype uround, sqruround; 
  int mx, my, ns, np; 
  realtype cext[NUM_SPECIES * 
        (MXSUB+2)*(MYSUB+2)]; 
  int my_pe, isubx, isuby, nsmxsub, 
        nsmxsub2; 
  MPI_Comm comm; 
} *UserData; 
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Example food web problem for KINSOL 

/* Functions Called by the KINSol 
Solver */ 
 
static int funcprpr(N_Vector cc, 
N_Vector fval, void *user_data); 
 
static int Precondbd(N_Vector cc, 
N_Vector cscale, N_Vector fval, 
N_Vector fscale, void *user_data, 
N_Vector vtemp1, N_Vector vtemp2); 
 
static int PSolvebd(N_Vector cc, 
N_Vector cscale, N_Vector fval, 
N_Vector fscale, N_Vector vv,  
void *user_data, N_Vector vtemp); 
 

/* Private Helper Functions */ 
 
AllocUserData 
InitUserData 
FreeUserData 
SetInitialProfiles 
PrintHeader 
PrintOutput 
PrintFinalStats 
WebRate 
DotProd 
Bsend 
BRecvPost 
BRecvWait 
ccomm 
fcalcprpr 
check_flag 



30 

Example food web problem for KINSOL 

int main(int argc, char *argv[]) 
{ 
/* Get processor number and total 
number of pe's */ 
MPI_Init(&argc, &argv); 
comm = MPI_COMM_WORLD; 
MPI_Comm_size(comm, &npes); 
MPI_Comm_rank(comm, &my_pe); 
 
/* Set local vector length */ 
local_N = 
NUM_SPECIES*MXSUB*MYSUB; 
 
/* Allocate and init. user data*/ 
data = AllocUserData(); 
InitUserData(my_pe, comm, data); 
/* Set global strategy flag */ 
globalstrategy = KIN_NONE; 

/* Allocate and initialize vectors */ 
cc = N_VNew_Parallel(comm, local_N, NEQ); 
sc = N_VNew_Parallel(comm, local_N, NEQ); 
data->rates = N_VNew_Parallel(comm, 
local_N, NEQ); 
constraints = N_VNew_Parallel(comm, 
local_N, NEQ); 
N_VConst(ZERO, constraints); 
   
SetInitialProfiles(cc, sc); 
fnormtol=FTOL; scsteptol=STOL; 
 
/* Call KINCreate/KINInit to initialize KINSOL:  
A pointer to KINSOL problem memory is 
returned and stored in kmem. */ 
kmem = KINCreate(); 
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Example food web problem for KINSOL 

/* Vector cc passed as template vector. 
*/ 
flag = KINInit(kmem, funcprpr, cc); 
   
flag = KINSetNumMaxIters(kmem, 250); 
flag = KINSetUserData(kmem, data); 
flag = KINSetConstraints(kmem, 
constraints); 
flag = KINSetFuncNormTol(kmem, 
fnormtol); 
flag = KINSetScaledStepTol(kmem, 
scsteptol); 
 
 /* We no longer need the constraints 
vector since KINSetConstraints creates a 
private copy for KINSOL to use. */ 
N_VDestroy_Parallel(constraints); 

  
/* Call KINSpgmr to specify the linear 
solver KINSPGMR with preconditioner 
routines Precondbd and PSolvebd, and 
the pointer to the user data block. */ 
 
maxl = 20; maxlrst = 2; 
 
flag = KINSpgmr(kmem, maxl); 
flag = KINSpilsSetMaxRestarts(kmem, 
maxlrst); 
flag = 
KINSpilsSetPreconditioner(kmem, 
Precondbd, PSolvebd); 
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Example food web problem for KINSOL 

/* Call KINSol and print output profile */ 
flag = KINSol(kmem,   /* KINSol memory*/ 
       cc,  /* initial guess input; sol’n output*/ 
       globalstrategy, /* nonlinear strategy*/ 
       sc, /* scaling vector for variable cc */ 
       sc); /* scaling vector for function vals*/ 
   
/* Print final statistics and free memory */   
if (my_pe == 0) PrintFinalStats(kmem); 
 
N_VDestroy_Parallel(cc); 
N_VDestroy_Parallel(sc); 
KINFree(&kmem); 
FreeUserData(data); 
 
MPI_Finalize(); 
return(0); 
} 
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SUNDIALS has been used worldwide in applications 
from research and industry 

 Power grid modeling (RTE France, ISU) 

 Simulation of clutches and power train parts 
(LuK GmbH & Co.) 

 Electrical and heat generation within battery cells 
(CD-adapco) 

 3D parallel fusion (SMU, U. York, LLNL) 
 Implicit hydrodynamics in core collapse 

supernova (Stony Brook) 
 Dislocation dynamics (LLNL) 
 Sensitivity analysis of chemically reacting flows 

(Sandia) 

 Large-scale subsurface flows (CO Mines, LLNL) 

 Optimization in simulation of energy-producing 
algae (NREL) 

 Micromagnetic simulations (U. Southampton) 
 
 

Magnetic reconnection 

Core collapse 
supernova 

Dislocation dynamics 

Subsurface flow 

More than 3,500 
downloads each year 
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Availability 

Web site: 
Individual codes download  
SUNDIALS suite download 
User manuals 
User group email list 

 

 

The SUNDIALS Team:  
Alan Hindmarsh, Radu Serban,  
Dan Reynolds,  Carol Woodward,  
and Eddy Banks 

Open source BSD license 
https://computation.llnl.gov/casc/sundials 

Publications 
https://computation.llnl.gov/casc/sundials/
documentation/documentation.html 
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