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Abstract

We consider the two-dimensional Maxwell�s equations in domains external to perfectly conducting objects of com-

plex shape. The equations are discretized using a node-centered finite-difference scheme on a Cartesian grid and the

boundary condition are discretized to second order accuracy employing an embedded technique which does not suffer

from a ‘‘small-cell’’ time-step restriction in the explicit time-integration method. The computational domain is trun-

cated by a perfectly matched layer (PML). We derive estimates for both the error due to reflections at the outer bound-

ary of the PML, and due to discretizing the continuous PML equations. Using these estimates, we show how the

parameters of the PML can be chosen to make the discrete solution of the PML equations converge to the solution

of Maxwell�s equations on the unbounded domain, as the grid size goes to zero. Several numerical examples are given.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we study grid convergence properties of numerical solutions of the two-dimensional

Maxwell�s equations, when a perfectly matched layer (PML) is used to truncate an unbounded domain.

While there are many types of non-reflecting and absorbing boundary conditions, we here choose to use

PML because it is a simple and straightforward method, easily implemented for both two and three space

dimensions using either Cartesian or cylindrical/spherical coordinates. The PML technique, which first was
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proposed by Berenger [6], is based on modifying the partial differential equation (PDE) away from all phys-

ical boundaries such that

(a) waves of all frequencies and angles are transmitted from the interior into the layer without any reflec-

tions, and
(b) the PML damps waves so that they become insignificant before they reach the outer boundary of the

computational domain.

The PML equations are derived by Fourier transforming in time and modifying the Fourier-transformed

problem to satisfy conditions (a) and (b). New dependent variables are introduced to allow the modified

equations to be transformed back to the time variable. Traveling waves of all angles and frequencies are

damped by the PML, but the damping depends on the angle between the impinging wave and the PML

interface, and goes to zero for glancing waves. When the PML is truncated to a finite width, the exponen-
tially small remainder of the waves is reflected at the outer boundary. The integral of the damping coeffi-

cient r determines the error, which means that the error can be made small by increasing r, making the

PML wider, or both. In the presence of a physical boundary, the two-dimensional Maxwell�s equation

can also have evanecent modes that oscillate along the boundary, and decay exponentially away from it.

The decay rate of those modes is not altered by the PML, so the error due to evanecent modes can only

be reduced by making the PML wider.

To illustrate the basic ideas, we consider the Cauchy problem for the one-dimensional version of the

TMz equations in second order form
o2EðzÞ

ot2
¼ o2EðzÞ

ox2
; �1 < x < 1; t P 0. ð1Þ
We are interested in computing the solution in the half-plane x < 0 and introduce a PML in x > 0. In all

practical computations, the thickness of the PML must be limited and we here truncate the PML at
x = d > 0, where a homogeneous Dirichlet condition is imposed. The one-dimensional PML equations

are
o
2EðzÞ

ot2
¼ o

2EðzÞ

ox2
� rðxÞ oE

ðzÞ

ot
� o

ox
ðrðxÞuÞ;

ou
ot

¼ oEðzÞ

ox
� rðxÞu; �1 < x < d; t P 0;

EðzÞðd; tÞ ¼ 0;

ð2Þ
where u is an auxiliary PML variable and the coefficient r of the damping term satisfies
rðxÞ ¼
0; x < 0;

rmaxP ðxÞ; 0 6 x 6 d;

�

for some non-negative function P(x) 6 1. Here rmax > 0 is a constant. Note that we distinguish between

Maxwell�s equations and the PML equations by using calligraphic letters for the solution of the former

problem. Eq. (1) has traveling-wave solutions propagating to the right (increasing x) given by
EðzÞðx; tÞ ¼ Aeixðt�xÞ;
and the corresponding solution of the PML equations is
EðzÞðx; tÞ ¼ A �e
ixðtþx�2dÞþ

R x

0
rðsÞ ds�2

R d

0
rðsÞ ds þ e

ixðt�xÞ�
R x

0
rðsÞ ds

� �
.



B. Sjögreen, N.A. Petersson / Journal of Computational Physics 209 (2005) 19–46 21
Outside the PML (x < 0), the difference between the solutions is an exponentially small wave traveling to

the left,
e1ðx; tÞ ¼ : EðzÞðx; tÞ � EðzÞðx; tÞ ¼ Aeixðtþx�2dÞ�2
R d

0
rðsÞ ds

.

We call e1 the PML modeling error. This expression illustrates the well-known result that the error due to

solving the PML equations on a truncated computational domain is determined by the integral of r(x). For
two-dimensional traveling waves, the angle between the impinging wave and the PML modifies the expres-

sion, but the basic conclusion still holds. However, evanecent modes behave differently when the PML is

truncated.

To solve the continuous PML equations numerically, we discretize the problem and this process intro-

duces a discretization error. In the present paper we want to study how to choose r(x) so that both the
PML modeling error and the discretization error converge to zero as the grid size h ! 0. In the traveling

wave case, the PML modeling error is the same for all functions r(x) with the same value of
R d
0

rðsÞds, but
the discretization error is more sensitive to the particular choice of r(x). For a second order accurate

staggered discretization of the one-dimensional model problem, we show that the discretization error

satisfies
e2 6 Ch2ð1þ r3
maxÞec2t;
when the function P(x) and its two first derivatives are bounded independently of h. There are two

natural ways to make the PML modeling error go to zero as Oðh2Þ when h ! 0. Either we keep the

thickness of the PML constant and let rmax increase as jloghj, or we keep rmax constant and let the

thickness of the PML increase as jloghj. In both situations, the total error e1 + e2 will go to zero as

Oðh2j log hjÞ.
In two space dimensions, we consider the scattering problem where incoming waves are deflected by per-

fectly conducting objects of complex shape, see Fig. 1. Maxwell�s equations are discretized as a second order

PDE instead of first rewriting it as a first order system, and then applying the commonly used staggered

discretization. Discretizing the second order PDE allows us to use a node-centered finite-difference scheme

on a Cartesian grid. The boundaries of the perfectly conducting objects are allowed to cut through the grid

in an arbitrary fashion and we use the embedded boundary technique developed by Kreiss et al. [15–17]. In
Fig. 1. Sample domain outside three objects.
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this method, the boundary conditions are discretized to second order accuracy without imposing any

‘‘small-cell’’ time-step restrictions in the explicit time integration method. Inside the PML, we keep the sec-

ond order formulation of the primary dependent variable, but use a first order formulation for the auxiliary

PML variables.

Thanks to the large number of publications triggered by Berenger�s [6] original work on PML for Max-
well�s equations, the properties of the continuous PML equations are by now well understood. However,

there are significantly fewer investigations of the properties of numerical approximations of the PML equa-

tions. Most research is related to the Yee scheme of FDTD. Wu and Fang [21] considers a discontinuous

r(x) which jumps between zero outside the PML and a positive value inside the PML. That paper suggests a

modification of the r-value right at the interface to minimize numerical reflection. Juntunen et al. [13] min-

imize numerical reflections with respect to the values of r at the grid points inside the PML, but the PML

has a fixed number of grid points. The numerical errors from the PML discretized on a staggered grid were

studied in the frequency domain by Collino and Monk [7]. Here also optimization of r(x) on fixed grids was
made.

Asvadurov et al. [3] determines the discrete values of r at the grid points from an optimization problem,

making the values as close as possible to the pseudo-differential operator representation in [10]. The grid is

non-uniform, but grid convergence is not considered. Some analysis of numerical reflection properties is

also performed in [19].

In most previous work, r is selected to be optimal on a given grid. One exception is the paper by Driscoll

and Fornberg [9], where a scheme for Maxwell�s equations with discontinuous coefficients is developed and

some grid convergence studies are presented. However, they do not consider solving the equations on an
unbounded domain, so they do not attempt to minimize the PML modeling error.

The original equations proposed by Berenger are only weakly hyperbolic which means that lower

order terms can make the problem ill-posed and allow solutions that grow exponentially in time. With

the modifications introduced in the so called UPML equations, a strongly hyperbolic system was

obtained that retained the non-reflective properties of the original PML equations [20]. Henceforth,

we refer to the UPML equations as the PML equations. A remaining minor difficulty with the PML

equations is that the zeroth order term can lead to algebraic growth in time, due to a Jordan block in

the matrix operating on that term. However, this growth can be avoided if the initial data are chosen
not to excite that component of the solution. A modifications of the zeroth order term which removes

the growth, but also disturbs the non-reflecting property of the PML, was presented by Abarbanel

et al. [1]. Another method to remove the Jordan block, which retains the non-reflecting property of

the PML, is to use a complex frequency shift parameter, see [5]. In the current work, we give all

PML variables homogeneous initial data and our numerical examples indicate that this is sufficient to

avoid the algebraic growth of the solution.

There are many other types of non-reflecting boundary conditions for the wave equation and for Max-

well�s equations. The most common approach is to use an exact formula for the far-field solution. In order
to obtain a local (in time and space) boundary condition, some kind of approximation of the exact solution

operator is introduced. Examples include the Padé technique by Engquist and Majda [10] as well as approx-

imations of an integral kernel, see [2]. In the approach developed by Higdon [12], perfect transmission of

outgoing waves can be guaranteed for a finite number of specified angles, and the accuracy of the approx-

imation improves as more and more angles are taken into account. A variation of this technique is also used

by Givoli and Neta [11].

The remainder of the paper is organized as follows. In Section 2 we derive the PML equations for the

TMz mode of Maxwell�s equations, both for Cartesian and cylindrical coordinates. The PML equations
are discretized in Section 3, and PML-modeling and discretization errors are discussed in Section 4.

Numerical experiments are presented in Section 5. Some conclusions and an outline of future work is given

in Section 6.
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2. Maxwell�s equations with PML

We consider the TMz problem for Maxwell�s equations, i.e., the two-dimensional case where the mag-

netic field lies in the (x, y)-plane, H ¼ HðxÞðx; y; tÞex þHðyÞðx; y; tÞey , and the electric field only has a com-

ponent perpendicular to that plane, E ¼ EðzÞðx; y; tÞez. By scaling the dependent variables and time,
Maxwell�s equations describing a homogeneous, lossless material without charges simplify to, cf. [4],
oHðxÞ

ot
¼ � oEðzÞ

oy
in X; t P 0; ð3Þ

oHðyÞ

ot
¼ oEðzÞ

ox
in X; t P 0; ð4Þ

oEðzÞ

ot
¼ oHðyÞ

ox
� oHðxÞ

oy
in X; t P 0; ð5Þ
subject to the constraint
oHðxÞ

ox
þ oHðyÞ

oy
¼ 0 in X; t P 0. ð6Þ
By cross-differentiation,
o2EðzÞ

ot2
¼ DEðzÞ in X; t P 0; ð7Þ
where D = o2/ox2 + o2/oy2. Initial data are given by
EðzÞðx; y; 0Þ ¼ f ðx; yÞ; oEðzÞ

ot
ðx; y; 0Þ ¼ gðx; yÞ ¼ :

oHðyÞ

ox
ðx; y; 0Þ � oHðxÞ

oy
ðx; y; 0Þ.
We are interested in the case where the domain X is external to perfectly electric conducting (PEC) objects,
see Fig. 1. The boundary of the PEC objects will be denoted Ci. The PEC boundary condition n · E = 0,

where n = n(x)ex + n(y)ey is the outward normal of the boundary, becomes
exnðyÞ � eynðxÞ
� �

EðzÞ ¼ 0 on Ci;
i.e.,
EðzÞ ¼ 0 on Ci. ð8Þ

We compute EðzÞ by solving the second order wave equation (7) subject to the boundary condition (8). The

magnetic field can then be integrated passively because once EðzÞ is known, Eqs. (3)–(4) reduce to ordinary

differential equations at each point of X. (Note that there can be other boundary conditions where the mag-

netic field can not be decoupled in this way.)

The solution of the original problem (posed on the unbounded domain X) is computed inside a bounded

sub-domain Xi. The PML is added outside of Xi, and the union of Xi and the PML layer defines the com-
putational domain Xc. In Fig. 1, we display an example of Xi with three objects, (O1, O2, and O3), sur-

rounded by a PML. The outer boundary of the PML will be denoted Co.

Basic properties and derivation of a PML can be found in [20]. Here we only give a brief introduction to

the underlying ideas. We begin by Fourier transforming the solution of the wave equation (7) in time,
EðzÞðx; y; tÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

dEðzÞ ðx; y;xÞeixt dx.
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In the absence of boundaries, the wave equation has plane traveling wave solutions,
dEðzÞ ðx; y;xÞ ¼ e�ixðk1xþk2yÞ.
Here k1 and k2 are real and satisfy k21 þ k22 ¼ 1. Hence, the vector (k1, k2) is the unit direction of the wave.

Let us consider the case where we want to compute the solution in the quarter-plane x < x0, y < y0. The

PML is introduced outside that quarter plane, that is, in x > x0 and y > y0. Let us look for a modification

of the wave equation such that it gets exponentially decaying solutions in the PML,
dEðzÞ ðx; y;xÞ ¼ e�k1� 1ðxÞ�k2� 2ðyÞe�ixðk1xþk2yÞ. ð9Þ

Here 1(x) is a real-valued function which is zero for x < x0 and increasing. The function 2(y) has the same

properties in the y-direction. The decaying solution (9) can be rewritten as
dEðzÞ ðx; y;xÞ ¼ e�ix k1 xþ�1ðxÞ
ix

� �
þk2 yþ�2ðyÞ

ix

� �� �
. ð10Þ
Hence, this can formally be seen as a plane wave solution of the wave equation in the transformed variables

ð~x; ~yÞ, where
~x ¼ xþ � 1ðxÞ
ix

; ~y ¼ y þ � 2ðyÞ
ix

.

Let s1ðx;xÞ ¼ : d~x=dx ¼ 1þ r1ðxÞ
ix and s2ðy;xÞ ¼ : d~y=dy ¼ 1þ r2ðyÞ

ix , where r1ðxÞ ¼ � 0
1ðxÞ and r2ðyÞ ¼ � 0

2ðyÞ.
In terms of the original independent variables, the Fourier-transformed wave equation in the ð~x; ~yÞ variables
becomes
�x2dEðzÞ ¼ o
2dEðzÞ

o~x2
þ o

2dEðzÞ

o~y2
¼ 1

s1ðx;xÞ
o

ox
1

s1ðx;xÞ
o
dEðzÞ

ox

 !
þ 1

s2ðy;xÞ
o

oy
1

s2ðy;xÞ
o
dEðzÞ

oy

 !
. ð11Þ
Since s1 does not depend on y and s2 does not depend on x, we can rewrite (11) as
�s1ðx;xÞs2ðy;xÞx2dEðzÞ ¼ o

ox
s2ðy;xÞ
s1ðx;xÞ

o
dEðzÞ

ox

 !
þ o

oy
s1ðx;xÞ
s2ðy;xÞ

o
dEðzÞ

oy

 !
. ð12Þ
To transform back to the time domain, we introduce new dependent variables. There is some ambiguity

in defining these variables but the important properties are that (12) is satisfied on the Fourier-transformed

side, and that the resulting PDE becomes well-posed. We start by noting that the left-hand side of (12) can

easily be transformed back to the time domain, since
�s1ðx;xÞs2ðy;xÞx2dEðzÞ ¼ ðix þ r1ðxÞÞðix þ r2ðyÞÞdEðzÞ .
To be able to transform back the last fractional expression in the right-hand side of (12), we defineduðxÞ andcvðxÞ according to
ixduðxÞ ¼ � s1ðx;xÞ
s2ðy;xÞ

o
dEðzÞ

oy
; ixcvðxÞ ¼ � o

dEðzÞ

oy
. ð13Þ
We handle the other fractional expression in (12) in a corresponding way by introducing u(y) and v(y)

according to
ixduðyÞ ¼ s2ðy;xÞ
s1ðx;xÞ

o
dEðzÞ

ox
; ixcvðyÞ ¼ o

dEðzÞ

ox
.

We apply the inverse Fourier transform and obtain the PML system
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ouðxÞ

ot
¼ � oEðzÞ

oy
þ r1ðxÞvðxÞ � r2ðyÞuðxÞ;

ovðxÞ

ot
¼ � oEðzÞ

oy
;

ouðyÞ

ot
¼ oEðzÞ

ox
þ r2ðyÞvðyÞ � r1ðxÞuðyÞ;

ovðyÞ

ot
¼ oEðzÞ

ox
;

o2EðzÞ

ot2
¼ o

ox
ouðyÞ

ot
� o

oy
ouðxÞ

ot
� ðr1ðxÞ þ r2ðyÞÞ

oEðzÞ

ot
� r1ðxÞr2ðyÞEðzÞ.

ð14Þ
Substituting the time derivatives of u(x) and u(y) gives the modified wave equation
o2EðzÞ

ot2
¼ DEðzÞ þ o

ox
r2ðyÞvðyÞ � r1ðxÞuðyÞ
� �

� o

oy
r1ðxÞvðxÞ � r2ðyÞuðxÞ
� �

� ðr1ðxÞ þ r2ðyÞÞ
oEðzÞ

ot
� r1ðxÞr2ðyÞEðzÞ.
We note in passing that the original un-damped wave equation is recovered outside the PML, where r1 = 0

and r2 = 0.

To investigate the well-posedness of (14) it is convenient to write it as a first order system, by introducing
the variable w according to
ow
ot

¼ ouðyÞ

ox
� ouðxÞ

oy
� r1ðxÞw. ð15Þ
Then,
oEðzÞ

ot
¼ ouðyÞ

ox
� ouðxÞ

oy
� r1ðxÞw� r2ðyÞEðzÞ; ð16Þ
and the first four equations of (14) together with (15) and (16) can be written in the standard form
ow

ot
¼ Awx þ Bwy þ Cðx; yÞw. ð17Þ
One can show that the matrix
M ¼ j1Aþ j2B; j1 and j2 real; j2
1 þ j2

2 ¼ 1;
has real eigenvalues and a complete set of eigenvectors. The system (17) is therefore strongly hyperbolic,

see [14]. However, because of the lower order term Cw, the system (17) can have solutions that grow in

time.

In practical computations, the PML must be limited to a finite width d > 0, and boundary conditions

must be applied at the outer boundary of the PML. Here we will simply set a homogeneous Dirichlet

condition,
EðzÞðx; y; tÞ ¼ 0; ðx; yÞ 2 Co; t P 0. ð18Þ
We also consider the wave equation in cylindrical coordinates (r, h), where x = rcosh, y = r sinh. The der-

ivation of the cylindrical PML equations can be done in exactly the same way as in the Cartesian case by the
change of variables
~r ¼ r þ SðrÞ
ix

;
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see [18,8] for details. In this case, the PML will have a circular interface to the interior domain. We define

the interior as Xi ¼ fx2 þ y2 < r2i g, for some fixed radius ri > 0. Since we shall use a Cartesian grid, the com-

putational domain is rectangular with Xc = [�ri � d, ri + d] · [�ri � d, ri + d]. In this case, the thickness of

the PML varies between d and
ffiffiffi
2

p
d. The resulting cylindrical PML equations, when transformed back to

the time domain are
ovðxÞ

ot
¼� oEðzÞ

oy
� �rðrÞvðxÞ þ sðrÞ �sin2hvðxÞ þ sin h cos hvðyÞ

� �
;

ovðyÞ

ot
¼ oEðzÞ

ox
� �rðrÞvðyÞ þ sðrÞ �cos2hvðyÞ þ sin h cos hvðxÞ

� �
;

o
2EðzÞ

ot2
¼MEðzÞ þ o

ox
ðsðrÞððsin2h � cos2hÞvðyÞ þ 2 sin h cos hvðxÞÞÞ

þ o

oy
ðsðrÞððsin2h � cos2hÞvðxÞ � 2 sin h cos hvðyÞÞÞ � sðrÞ o

ot
EðzÞ � rðrÞ�rðrÞEðzÞ.

ð19Þ
Here we have used the definitions
�rðrÞ ¼
1
r

R r
ri

rðsÞds; r > ri;

0; r 6 ri;

�

and
sðrÞ ¼ rðrÞ � �rðrÞ.

One advantage of the cylindrical PML is that u(x) and u(y) are not required in (19), whereas they must be

computed in (14).

The PML/interior boundary is placed some distance outside of all perfectly conducting objects in the

domain. The PML/interior boundary is determined by the location where r changes from zero to a positive

value, and is hence implicit in the method. For simplicity, the systems (14) and (19) are solved in the entire
computational domain Xc with r = 0 in Xi. For the cylindrical PML, the PML/interior boundary is a circle

which contains all perfectly conducting objects in the domain, while in the Cartesian PML, it is a rectangle.

The cylindrical PML will therefore require a larger computational domain than the Cartesian PML when

the perfectly conducting objects have a large aspect ratio.
3. Numerical approximation

We use centered second order accurate differences in space to discretize the PML systems (14) and (19).

Since the wave propagation speed is the same in all directions, we discretize the equations on a uniform grid

xi = ih, yj = jh, where h > 0 is the constant grid size. Time is discretized on a uniform grid with tn = nk,

where k > 0 is the constant time-step. The approximation of a field u(xi, yj, tn) is denoted uni;j. The usual

finite difference operators are defined by
DðiÞ
þ ui;j ¼

uiþ1;j � ui;j
h

; DðiÞ
� ui;j ¼ DðiÞ

þ ui�1;j; DðiÞ
0 ui;j ¼

1

2
DðiÞ

þ þ DðiÞ
�

� �
ui;j.
The j-direction operators DðjÞ
0 , DðjÞ

þ , and DðjÞ
� are defined in a corresponding way. Differences in time are de-

noted DðtÞ
þ uni;j ¼ ðunþ1

i;j � uni;jÞ=k. The time integration is based on the technique developed in [15–17]. The sec-

ond order time derivative in the wave equation for E(z) is discretized using a time-centered second divided

difference, and the first order equations for u(x), v(x), u(y) and v(y) are discretized with a second order accurate

Adam-Bashforth method. For the Cartesian PML system (14), this leads to
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DðtÞ
þ vðxÞ

n

i;j ¼ � 3

2
DðjÞ

0 EðzÞn
i;j þ 1

2
DðjÞ

0 EðzÞn�1

i;j ;

DðtÞ
þ uðxÞ

n

i;j ¼ � 3

2
DðjÞ

0 EðzÞn
i;j þ r2ðyjÞu

ðxÞn
i;j � r1ðxiÞvðxÞ

n

i;j

� �
þ 1

2
DðjÞ

0 EðzÞn�1

i;j þ r2ðyjÞu
ðxÞn�1

i;j � r1ðxiÞvðxÞ
n�1

i;j

� �
;

DðtÞ
þ vðyÞ

n

i;j ¼ 3

2
DðiÞ

0 EðzÞn
i;j � 1

2
DðiÞ

0 EðzÞn�1

i;j ;

DðtÞ
þ uðyÞ

n

i;j ¼ 3

2
DðiÞ

0 EðzÞn
i;j � r1ðxiÞuðyÞ

n

i;j þ r2ðyjÞv
ðyÞn
i;j

� �
� 1

2
DðiÞ

0 EðzÞn�1

i;j � r1ðxiÞuðyÞ
n�1

i;j þ r2ðyjÞv
ðyÞn�1

i;j

� �
;

ð20Þ
coupled to
DðtÞ
þ DðtÞ

� EðzÞn
i;j ¼ DðiÞ

þ DðiÞ
� EðzÞn

i;j þ DðjÞ
þ DðjÞ

� EðzÞn
i;j þ DðiÞ

0 r2ðyjÞv
ðyÞn
i;j � r1ðxiÞuðyÞ

n

i;j

� �
� DðjÞ

0 r1ðxiÞvðxÞ
n

i;j � r2ðyjÞu
ðxÞn
i;j

� �
� r1ðxiÞ þ r2ðyjÞ
� �

DðtÞ
0 EðzÞn

i;j � r1ðxiÞr2ðyjÞE
ðzÞn
i;j þ ah3dn

i;j. ð21Þ
Note that an explicit expression for EðzÞnþ1

i;j can easily be found from the last equation. The expression dn
i;j is a

fourth order stabilizing term developed in the aforementioned papers by Kreiss, Petersson and Yström.

This term ensures stability when embedded boundaries are present. Away from all boundaries, it simplifies

to
dn
i;j ¼ D2

h

EðzÞn
i;j � EðzÞn�1

i;j

k

 !
; D2

hE
ðzÞn
i;j ¼ DðiÞ

þ DðiÞ
� þ DðjÞ

þ DðjÞ
�

� �2
EðzÞn
i;j .
When r = 0, the stability restriction for the time-step is
k 6 Ch; C � 1ffiffiffi
2

p .
Since r 6¼ 0 only introduces lower order damping terms, it does not change the time-step restriction as long

as r is independent of h and h is sufficiently small.

As initial conditions, we give E(z), oE(z)/ot, v(x) = 0, v(y) = 0, u(x) = 0 and u(y) = 0. To start the three level

time integration, the solution at time �k is computed using a truncated Taylor-series expansion in time.

A Dirichlet boundary condition is imposed for E(z) at the boundaries of the perfectly conducting objects.

These boundaries are allowed to intersect the Cartesian grid in an arbitrary fashion. The boundary condi-

tion is discretized using the embedded boundary technique described in [15]. This technique produces a sec-
ond order accurate solution where also the gradient of the solution is second order accurate, which is

important in the current application since the ODE�s for H depend on the curl of E(z). Another important

feature of this method is that the explicit time-step is determined by the CFL-condition away from the

boundaries and is independent of the size of small cells cut by the boundary, see [15] for details.

Note that the PML variables u(x), v(x), u(y), and v(y) do not need boundary conditions on the perfectly

conducting objects, since r1 = r2 = 0 in their vicinity.
4. Errors from the discretized PML equations

The error in the computed solution in the interior of the domain, e, comes from two sources,
e ¼ e1 þ e2.
The first component, e1, denotes the difference between the solution of the continuous wave equation on the

infinite domain and the solution of the continuous PML system on the truncated domain. The component
e2 is the error due to discretization of the continuous PML system on the truncated domain.
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To estimate the error committed by truncating the PML, we first consider the Cartesian PML equations

where the interior domain Xi is the half-plane x < 0, r2(y) = 0, and the PML is located in 0 6 x 6 d. After

Fourier transforming in time and in the y-direction,
dEðzÞ ðx; y;xÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1

gEðzÞ ðx; n;xÞeiny dn;
Eqs. (12) and (18) become (note that s2 ” 1 in this case)
�ðx2 � n2ÞgEðzÞ ¼ 1

s1ðx;xÞ
o

ox
1

s1ðx;xÞ
o
gEðzÞ

ox

 !
; x 6 d; ð22Þ

gEðzÞ ðd; n;xÞ ¼ 0. ð23Þ

We make the ansatz
gEðzÞ ðxÞ ¼ Aeik xþ�1

ix

� �
þ Be�ik xþ�1

ix

� �
;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � n2

p
, jxj P jnj. Note that B 6¼ 0 corresponds to an incident wave traveling from the interior

of the domain into the PML, while A 6¼ 0 is a spurious reflected wave traveling in the opposite direction.
The boundary condition (23) gives
A ¼ �Be�2ikde�2kx� 1ðdÞ.
Hence, in the interior domain (x < 0), the error from truncating the PML to a finite width d > 0 is given by
ee1ðx; n;xÞ ¼ Beikðx�2dÞe
�2 cos h

R d

0
r1ðsÞ ds; x < 0; jxj P jnj. ð24Þ
Here cosh = k/x, so h is the angle of the incident wave on the PML/interior interface. Hence, glancing

waves, where jcoshj � 0, get the smallest damping by the PML. Also note that the amplitude of the reflected

wave only depends on the integral of r1(x), but not on its specific shape.

For the wave equation on the half-plane x > �x0, there are also evanecent solutions. The corresponding

PML problem is (22) in the strip �x0 6 x 6 d, subject to the boundary conditions (23) and
gEðzÞ ð�x0; n;xÞ ¼ 1. ð25Þ

The solution of the half-plane problem without PML is
eEðxÞ ¼ e�jðxþx0Þ; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � x2

q
; jnj > jxj.
For the PML problem, we make the ansatz
gEðzÞ ðxÞ ¼ Aej xþ�1
ix

� �
þ Be�j xþ�1

ix

� �
;

where the boundary conditions determine A and B. In this case, the PML modeling error satisfies
ee1ðx; n;xÞ ¼ sinh jðxþ x0Þ
sinh j x0 þ d þ � 1ðdÞ

ix

� � e�j x0þdþ�1ðdÞ
ix

� �
; �x0 6 x 6 0; jnj > jxj. ð26Þ
Hence, for evanecent modes, the integral of r1(x) only changes the phase of the error, while the amplitude

of the error decays exponentially with the size of the computational domain (x0 + d).
For the cylindrical PML equations, we can calculate the errors due to truncating the PML for the case

when a plane wave of frequency x is scattered by a circular disc with radius a. We can write an outwardly

propagating traveling wave solution of Maxwell�s equations in terms of a series expansion,
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bEðzÞ
ðr; h;xÞ ¼

X1
m¼�1

AmH ð2Þ
m ðjxjrÞeimh. ð27Þ
Here H ð2Þ
m are Hankel functions corresponding to outwardly propagating waves. In this expression, Am are

constants, determined from the boundary conditions. The coefficients in (27) representing the scattered field

in an unbounded domain are (see [18])
Am ¼ �im
JmðjxjaÞ
H ð2Þ

m ðjxjaÞ
. ð28Þ
Here Jm is the Bessel function of order m. The solution of the same scattering problem using the cylindrical

PML Eqs. (19) on a circular domain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 ro, with the PML occupying the space ri <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< ro,

can be represented as the following Bessel function expansion (see [18]),
dEðzÞ ðr; h;xÞ ¼
X1

m¼�1
BmðH ð2Þ

m ðjxj~rðrÞÞ þ RmH ð1Þ
m ðjxj~rðrÞÞÞeimh; ð29Þ
where the reflection coefficients are
Rm ¼ �H ð2Þ
m ðjxj~rðroÞÞ

H ð1Þ
m ðjxj~rðroÞÞ

;

and the expansion coefficients are
Bm ¼ �im
JmðjxjaÞ

H ð2Þ
m ðjxjaÞ þ RmH ð1Þ

m ðjxjaÞ
.

Here ~r is the transformed radial variable, defined by
~rðrÞ ¼ r þ 1
ix

R r
ri

rðsÞds; ri < r 6 ro;

r; r 6 ri.

�

In this case, the error due to truncating the PML to a finite width is obtained as the difference between the

solutions (27) and (29). Again we see that the error is determined by the integral of r(r), even though the

relation is more complicated than in the Cartesian case.

If the numerical approximation is stable, e2 goes to zero as h ! 0, while e1 goes to zero as the integral

over r gets larger (traveling modes) or as the size of the computational domain increases (evanecent modes),
independently of the discretization. For given mesh sizes h and k, we must therefore design the PML so that

e1 does not dominate e2. In the following discussion we assume that the computational domain is big en-

ough that the influence of evanecent modes can be neglected. If we know the smallest value of h and the

largest incident wave angle (that minimizes cosh), we can select the width of the layer, d, or scale r to make

the integral of r big enough. However, it is not possible to use the same r and d independently of the grid

size if we want a method where the error decreases as OðhpÞ when h ! 0. In particular, we are interested in

adjusting the properties of the PML so that e1 goes to zero at the same rate as e2 when h ! 0.

If we are using a pth order accurate discretization scheme, e2 is of the order OðhpÞ, and we also want
e1 ¼ OðhpÞ. Hence, in order for e1 to stay of the same order as e2, we must have
Z d

0

r1ðx0 þ sÞds P p
2 cos h

j log hj; ð30Þ
where we assumed that the PML layer is located at x0 6 x 6 x0 + d. To satisfy (30), the PML thickness d

and/or r must change with h. That means that there is no fixed PDE with which the PML system is con-

sistent, and we can not rely on standard results for approximation of PDEs to understand the convergence
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properties of the numerical approximation. One possibility, which we will explore below, is to make r pro-

portional to jloghj and let the layer thickness be fixed. Note that the largest possible r under the explicit

time-stepping constraint k/h < const. is r ¼ Oð1=hÞ. By using such a large r, one could even allow the thick-

ness of the PML to decrease as h ! 0 and still satisfy (30). However, scaling r in this way means that r
becomes poorly resolved on the grid as h ! 0, which in turn increases the discretization error e2. Our
numerical experiments will confirm this hypothesis and show that a r ¼ Oð1=hÞ results in numerical inac-

curacies, which reduce the convergence rate.

4.1. Discretization error for large r

We here investigate the convergence rate of the discretization error e2, when r is allowed to grow with h.

For simplicity, we limit our investigation to the one-dimensional case and study the system (2). The exact

plane wave solution is
EðzÞðx; tÞ ¼ A �e
ixðtþx�2dÞþ

R x

0
rðsÞ ds�2

R d

0
rðsÞ ds þ e

ixðt�xÞ�
R x

0
rðsÞ ds

� �
; ð31Þ

uðyÞðx; tÞ ¼ A �e
ixðtþx�2dÞþ

R x

0
rðsÞ ds�2

R d

0
rðsÞ ds � e

ixðt�xÞ�
R x

0
rðsÞ ds

� �
. ð32Þ
Here A is an arbitrary amplitude of the wave. Note that E(z) is bounded independently of r. In our com-

putations below, we have used an approximation which before time discretization corresponds to
d2EðzÞ
j ðtÞ
dt2

¼ DþD�E
ðzÞ
j � rj

dEðzÞ
j

dt
� D0ðrju

ðyÞ
j Þ; j ¼ . . . ;�2;�1; ð33Þ

duðyÞj ðtÞ
dt

¼ D0E
ðzÞ
j � rju

ðyÞ
j ; j ¼ . . . ;�2;�1. ð34Þ
We have been unable to find an energy estimate for the above node-centered discretization and will here

instead analyze the staggered approximation
dEðzÞ
j ðtÞ
dt

¼ Dþu
ðyÞ
j�1=2 � rjE

ðzÞ
j ; j ¼ . . . ;�2;�1;

duðyÞj�1=2ðtÞ
dt

¼ D�E
ðzÞ
j � rj�1=2u

ðyÞ
j�1=2; j ¼ . . . ;�1; 0;

EðzÞ
0 ðtÞ ¼ 0.

ð35Þ
The corresponding second order equation for EðzÞ
j is
d2EðzÞ
j ðtÞ
dt2

¼ DþD�E
ðzÞ
j � rj

dEðzÞ
j

dt
� Dþðrj�1=2u

ðyÞ
j�1=2Þ;
which shows that the node-centered and staggered schemes only differ in how o(ru(y))/ox is discretized. The

grid points are located at xj = d + jh, with j = . . ., �3, �2, �1, 0. The differences between the solution of the

continuous problem (2) and the semi-discrete approximation (35) are denoted ejðtÞ ¼ EðzÞðxj; tÞ � EðzÞ
j ðtÞ and

fj�1=2ðtÞ ¼ uðyÞðxj�1=2; tÞ � uðyÞj�1=2ðtÞ. Inserting these into (35) gives the error equation
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dfj�1=2ðtÞ
dt

¼ D�ej � rj�1=2fj�1=2 þ sHj�1=2; j ¼ . . . ;�1; 0;

dejðtÞ
dt

¼ Dþfj�1=2 � rjej þ sEj ; j ¼ . . . ;�2;�1;

e0ðtÞ ¼ 0;

ð36Þ
where the local truncation errors are
sHj�1=2 ¼ :� ouðyÞðxj�1=2; tÞ
ot

þ D�EðzÞðxj; tÞ � rj�1=2uðyÞðxj�1=2; tÞ ¼
h2

24
EðzÞ
xxxðxj�1=2 þ /1h; tÞ; ð37Þ

sEj ¼ :� oEðzÞðxj; tÞ
ot

þ DþuðyÞðxj�1=2; tÞ � rjEðzÞðxj; tÞ ¼
h2

24
uðyÞxxxðxj þ /2h; tÞ. ð38Þ
Taylor expansion of the divided differences were used to arrive at the final expressions. The third derivatives

in the right-hand side are evaluated at some intermediate points with 0 < /1, /2 < 1.

We consider the case when the exact solution is the plane wave given by (31), (32) and insert that solution

into the truncation error. After a lengthy but straightforward calculation we obtain
EðzÞ
xxxðx; tÞ ¼ ððr00 þ ðix þ rÞ3ÞuðyÞðx; tÞ þ 3ðix þ rÞr0EðzÞðx; tÞÞ; ð39Þ

uðyÞxxxðx; tÞ ¼ ððr00 þ ðix þ rÞ3ÞEðzÞðx; tÞ þ 3ðix þ rÞr0uðyÞðx; tÞÞ. ð40Þ

If the method is stable, the local truncation errors determine the convergence rate. One subtle point is that

stability must hold also when r depends on h. We will estimate the error of the staggered scheme (35) using

a weighted 2-norm, which allows us to take the norm of functions which are bounded but do not go to zero

at �1. Let a(x) > 0 and define
kuk2a ¼ h
X0
j¼�1

aðxjÞuj�uj
satisfying
X0
j¼�1

aðxjÞ < 1
and a 0(x)/a(x) bounded. We also require that a(x) = 1 for x > �L, where L � 1 is a constant. The scalar

product corresponding to the norm is
ðu; vÞa ¼
X0
j¼�1

aðxjÞuj�vjh.
For staggered grid functions, we use the convention that uj�1/2 is used instead of uj. An example of a weight

function satisfying these criteria is
aðxÞ ¼
1; x P �L;

exþL; x < �L.

�

Lemma 1. Let e0 = 0, assume that a 0(x) > 0, a00(x) > 0, and that
a0ðxÞ=aðxÞ < c1
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for some constant c1. Furthermore, let the grid size satisfy h < 1/(2c1). Then,
ðf ;D�eÞa þ ðDþf ; eÞa 6
3c1
2

ðkek2a þ kf k2aÞ.
Proof. The following calculations are straightforward:
ðf ;D�eÞa þ ðDþf ; eÞa ¼
X0
j¼�1

ajfj�1=2ðej � ej�1Þ þ
X0
j¼�1

ajejðfjþ1=2 � fj�1=2Þ

¼ �
X0
j¼�1

ðaj � aj�1Þej�1fj�1=2 ¼ �
X0
j¼�1

ðaj � aj�1Þ
h
ffiffiffiffiffiffiffiffiffiffiffiffi
ajaj�1

p h
ffiffiffiffiffiffiffiffi
aj�1

p
ej�1

ffiffiffiffi
aj

p
fj�1=2

6 max
j

ðaj � aj�1Þ
h
ffiffiffiffiffiffiffiffiffiffiffiffi
ajaj�1

p kekakf ka 6 max
j

ðaj � aj�1Þ
h
ffiffiffiffiffiffiffiffiffiffiffiffi
ajaj�1

p
1

2
ðkek2a þ kf k2aÞ. ð41Þ
It remains to estimate
ðaj � aj�1Þffiffiffiffiffiffiffiffiffiffiffiffi
ajaj�1

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ

aðx� hÞ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx� hÞ

aðxÞ

s
.

We first prove
1� hc1 6
aðx� hÞ

aðxÞ 6 1.
The upper limit is obvious, since the function is increasing. The lower limit follows from
aðxÞ � aðx� hÞ ¼
Z x

x�h
a0ðsÞds 6 ha0ðxÞ 6 h

a0ðxÞ
aðxÞ aðxÞ 6 hc1aðxÞ;
where a00(x) > 0 is needed to estimate the integral. Dividing by a(x) (which is positive) gives
1� hc1 6
aðx� hÞ

aðxÞ

and since 1� hc1 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hc1

p
, the same lower bound can be used for the square root of a(x � h)/a(x). We

obtain the estimate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ

aðx� hÞ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðx� hÞ

aðxÞ

s
6

1

1� hc1
� 1þ hc1 6 1þ 2hc1 � 1þ hc1 ¼ 3hc1; ð42Þ
where we used that 1/(1 � x) < 1 + 2x for x < 1/2. Using (42) in (41) gives the desired result and concludes

the proof of the lemma. h

We can now prove

Theorem 1. Assume that r(x) = P(x)rmax P 0, where P(x) and its first two derivatives are bounded

independently of h, but rmax is allowed to grow as h ! 0. Then,
keðtÞka þ kf ðtÞka 6 Ch2ð1þ r3
maxÞec2t.
Here C and c2 are constants independent of h and rmax.

Proof. Lemma 1 is used to obtain the following norm estimate for (36):



B. Sjögreen, N.A. Petersson / Journal of Computational Physics 209 (2005) 19–46 33
1

2

d

dt
ðkeðtÞk2a þ kf ðtÞk2aÞ ¼ ðf ;D�eÞa þ ðDþf ; eÞa � ðf ; rf Þa � ðe; reÞa þ ðf ; sH Þa þ ðe; sEÞa

6
3c1
2

kek2a þ kf k2a
� �

þ ðf ; sH Þa þ ðe; sEÞa

6
3c1 þ 1

2
kf k2a þ kek2a
� �

þ 1

2
ksHk2a þ ksEk2a
� �

.

The assumption r(x) P 0 was used to remove the terms (f, rf)a and (e, re)a from the estimate. Gronwall�s
Lemma gives (after taking the square root)
keðtÞka þ kf ðtÞka 6 Cec2t max
0<s<t

ðksH ðsÞka þ ksEðsÞkaÞ;
where we have assumed that the errors are initially zero. Here C and c2 are constants independent of h and

t. The error in the solution is thus bounded by the size of the truncation error. Assuming that all derivatives

of P(x) up to second order are bounded in (40), we obtain
ksHka þ ksEka 6 Ch2ð1þ r3
maxÞ
with C independent of h. C depends on P(x) and its first two derivatives, C also depends on x and the wave

amplitude. We used that u(y) and E(z) given by (31), (32) are bounded. This concludes the proof of the

theorem. h

The theorem tells us that we can let rmax increase as jloghj, and still maintain almost second order accu-

rate convergence. A faster increase of rmax could lead to slower convergence or divergence.

As was mentioned above, we have not been successful in finding a similar norm estimate for the node-

centered scheme (34), (33). However, the truncation error for that approximation is
sEj ¼ h2

12
ððr000 þ 6ðix þ rÞ2r0ÞuðyÞ þ ð3ðr0Þ2 þ 4ðix þ rÞr00 þ ðix þ rÞ4ÞEðzÞÞ;
and a corresponding expression for sH. Hence, if the method is stable, the corresponding requirement for

P(x) is that it must have three continuous derivatives, bounded independently of h. The convergence rate is

in that case determined by h2r4
max. For this reason, we use a r with three continuous derivatives in the

numerical examples below. In Section 5, we shall demonstrate the close to second order convergence rate

obtained when rmax increases as jloghj.
5. Numerical examples

The discussion in the previous sections will here be illustrated by numerical experiments. In the first

example, we study the effect from a single PML. The domain is of size �2 < x < d, �2 < y < 2. Periodic

boundary conditions are used in the y-direction. The PML is only acting in the x-direction, and is located

at 0 < x < d, where d is the layer width. The problem setup is depicted in Fig. 2. The incident plane wave

EðzÞ ¼ sinðpð
ffiffiffi
2

p
t � x� yÞÞ is imposed as a Dirichlet boundary condition on the left boundary. This wave

travels into the PML interface at an angle h = p/4. As absorbing function, we use
r1ðxÞ ¼ P 7ðx=dwÞrmax;
where P7(s) is the piecewise polynomial
P 7ðsÞ ¼
0; s 6 0;

c7
R s
0
q3ð1� qÞ3 dq; 0 < s < 1;

1; s P 1.

8><>:
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Fig. 2. The first test problem.
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The constant c7 normalizes the integral so that P7(s) becomes continuous at s = 1. The transition width is in

this example dw = 1/2. This r is a function that increases from 0 to rmax over a transition zone of length 1/2,
and then stays at the constant value rmax. There are three continuous derivatives at the break points x = 0

and x = 1/2. Here rmax is a constant which represents the strength of the PML. A grid convergence study

for the case d = 2 is shown in Fig. 3. We show the time evolution of the error, i.e., the difference in max-

imum norm between the computed solution and the exact solution on an infinite domain, evaluated on

[�2, 0] · [�2, 2]. The initial data is zero everywhere, which explains why the error initially is of the order

Oð1Þ. To avoid unnecessary transients, the Dirichlet forcing is smoothly turned on at the left boundary,

and at time t = 2 it is fully developed. Since the frequency and wave number of the exact solution are

known, formula (24) can be used to estimate the PML modeling error to be e1 � 2 · 10�9. In Fig. 3 we
see that the total error is dominated by the numerical discretization error, e2, and we observe a second order
Fig. 3. Error vs. time for PML thickness d = 2 and constant rmax = 8.0 on a sequence of refined grids.
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accurate behavior using the present range of grid sizes. The coarsest grid has 105 · 105 points, which cor-

responds to h = 0.0385. All computations in this section have the same coarsest h. The refinements are ob-

tained by successive factor of 2 reductions of h.

Results from the same computation, but with d = 1/2, are shown in Fig. 4. Here the estimated e1 error

level is 6 · 10�2, which explains why the total error stays constant when the grid is refined. The coarsest grid
has 66 · 105 grid points, which corresponds to the same grid size as in the previous example. The number of

points is smaller in the x-direction, because the smaller d makes the computational domain shorter.

The results in Figs. 3 and 4 are not surprising. The difference scheme converges and reproduces the prop-

erties of the PML system of PDEs. Next we will let rmax and/or the width of the layer vary with h. In Fig. 5

we show the behavior of the total error in the computed solution when
rmax ¼ 5.6569j log hj � 2.1357
and the layer width d = 1/2. The expression for rmax is selected so that rmax = 8 on the coarsest grid, and so

that (24) gives second order accurate convergence of e1 for the angle of incidence p/4. The grids in Fig. 5 are

the same as in Fig. 4, and rmax are equal on the coarsest grid in both figures. Note that the error decreases

as Oðh2Þ in Fig. 5.

According to the heuristic discussion above, second order error convergence could be obtained by fixing

rmax, and instead use an expanding layer. In Fig. 6, we show a numerical experiment with a logarithmically

expanding PML. The above computation is repeated, but now with rmax = 8, and the layer width

d = d0jloghj + d1. The constants d0 and d1 are chosen so that d = 1/2 on the coarsest grid and so that e1
according to formula (24) decreases as Oðh2Þ. Conclusion: this also works, but is more expensive since

the computational domain gets larger as h ! 0.

We proceed by making a numerical experiment to show what happens if r is chosen too large. We solve

the same problem as above, but with a fixed number of grid points in the PML. Having a fixed number of

grid points means that d decreases as OðhÞ when the grid is refined. It is therefore necessary to increase rmax

as jloghj/h in order to make the modeling error e1 go to zero. The results in Fig. 7 were obtained using 10

grid points in the PML, the transition width dw = d, and setting rmax = 0.2316jloghj/h. As before, the total

error was evaluated in �2 6 x 6 0, �2 6 y 6 2. This corresponds to rmax = 20 on the coarsest grid
Fig. 4. Error vs. time with PML thickness d = 1/2 and constant rmax = 8.0 for a sequence of refined grids.



Fig. 5. Error vs. time with PML thickness d = 1/2 for a sequence of refined grids with logarithmically increasing rmax.

Fig. 6. Error vs. time for a sequence of refined grids with logarithmically increasing PML thickness and constant rmax = 8.0.
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(105 · 63 grid points). The value rmax = 20 was chosen because it gave the smallest error when several dif-

ferent rmax values were tried on the coarse grid. Note that the smallest error in Fig. 7 is obtained on the

coarsest grid and the error increases as the grid is refined. Also note that this r(x) corresponds to a P(x)
where P 0ðxÞ ¼ Oð1=hÞ and P 00ðxÞ ¼ Oð1=h2Þ, which violates the assumptions of Theorem 1. However, the er-

ror increases slower than the rate given by the bound in Theorem 1. Of course, the theorem only provides

an upper bound on the growth and there is no guarantee that the bound is sharp. Furthermore, the norm in

Theorem 1 is taken over the entire computational domain, but the total error is only evaluated in the inte-

rior of the domain (not including the PML).



Fig. 7. Error vs. time for a sequence of refined grids with fixed number of points in the PML and rmax increasing as logh/h. Note that

the error increases as the grid is refined.
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For evanescent waves, the function r no longer acts as a damping; the only way to reduce the modeling

error is to make the PML wider. To show this, we solve the same problem as before, but modify the bound-

ary condition on the left side such that the exact solution becomes
EðzÞðx; y; tÞ ¼ sinðxt � pyÞe�ðxþ2Þ=2; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1=4

p
. ð43Þ
Fig. 8 shows the error norm as function of time for rmax = 8 and d = 2 for three different grids. In Fig. 9 we

show the same error for rmax = 16. It is clear that we have reached the modeling error on the finest grids

used in both figures, and that the modeling error does not get smaller by making rmax larger. In Fig. 10, we

instead make the PML wider by using d = 4. Note that the grid sizes are the same as before, but the number
of grid points in the x-direction increases since the domain is bigger. Here the error has been reduced con-

siderably. For external problems, another way of reducing evanescent modes is to place the PML boundary

further away from all physical boundaries, since evanescent waves decay exponentially away from those

boundaries.

5.1. Scattering from a circular cylinder

We here consider a standard test problem: scattering from a circular cylinder due to an incident plane
wave. We solve the equations for the scattered field by subtracting out the incident plane wave from the

equations. The incident wave only affects the computation through the boundary forcing on the cylinder.

We will consider both the PML in Cartesian coordinates (14) as well as the cylindrical PML (19).

In our example, the incident wave is E
ðzÞ
inc ¼ cosðxðt � xÞÞ, where x = 5. The scatterer is a circular cylinder

of radius 0.5 (i.e., a = 0.5 in (28)) represented as an embedded boundary in a uniform Cartesian grid. The

problem setup is outlined in Fig. 11. For the Cartesian PML, the interior domain is �3 < x < 3, �3 < y < 3,

and a PML of thickness d is added, making the total domain �3 � d < x < 3 + d, �3 � d < y < 3 + d. For

the cylindrical PML, we use a circular PML/interior interface with radius 3, but the total computational
domain is rectangular. Therefore, the solution formula (29) is not directly applicable, but since the circular



Fig. 8. Error vs. time for the evanecent mode (43) with rmax = 8 and PML thickness d = 2.

Fig. 9. Error vs. time for the evanecent mode (43) with rmax = 16 and PML thickness d = 2.
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domain with ro = 3 + d is included in our computational domain, applying (29) with ro = 3 + d and ri = 3

should overestimate the error e1.

A computed solution is displayed in Fig. 12. Initially all fields are zero, and the scatter field is smoothly

turned on by giving the boundary data
EðzÞ ¼ �ð1� e�5t3ÞEðzÞ
inc on Ci
on the cylinder boundary. The scattering object is perfectly conducting, so the total field on the physical

boundary is zero. Since we solve for the scattered field, the boundary condition on the perfectly conducting



Fig. 10. Error vs. time for the evanecent mode (43) with rmax = 8 and PML thickness d = 4.

Fig. 11. Second test problem. Cylindrical PML (left) and Cartesian PML (right).
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cylinder is EðzÞ ¼ �E
ðzÞ
inc, which is satisfied to machine precision for tP 2. A time periodic solution is ob-

tained after a transient phase.

In Fig. 13, we display the norm of the error as a function of time for the cylindrical PML system (19), for

grids of increasing refinement. Here we use r(r) = P7((r � 3)/dw)rmax, with dw = 1/2, rmax = 10, and d = 1.

An expression for the function �rðrÞ was found by integrating P7 analytically. The error is calculated as
the difference between the computed solution, and the exact solution of the problem on the infinite domain,

evaluated through the Bessel function expansion (27) with the coefficients (28). The error is measured in

maximum norm over the interior domain, 0.5 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< ri ¼ 3. According to the solution formulae

(27) and (29), the maximum norm of the e1 component of the error is less than 10�6. Fig. 14 shows the same



Fig. 12. Computed scattered field including PML (left), corresponding total field excluding PML (right).
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computation as Fig. 13, but using the Cartesian PML equations. At the right boundary, the PML has

r1(x) = rmaxP7((x � 3)/dw), with dw = 1/2 and rmax = 10. The left, lower and upper boundaries are treated
in a corresponding way. The convergences shown in Fig. 13 (cylindrical PML) and in Fig. 14 (Cartesian

PML) are both second order accurate, since on all grids the total error is larger than the estimated e1 level.

Thus the discretization error dominates.

In contrast, the convergences shown in Fig. 15 (cylindrical PML) and Fig. 16 (Cartesian PML) were ob-

tained using rmax = 3, thus increasing the error due to truncating the PML to e1 � 3.48 · 10�2. This change

is large enough to let e1 dominate the discretization error e2 on the finer grids and the effect is clearly seen.

We next study grid convergence when rmax = c1jloghj + c2. In this example, c1 and c2 are chosen such

that rmax is 3 on the coarsest grid and that (30) is satisfied for angles up to p/4. A careful measurement
of the results in Figs. 17 and 18 verify that second order convergence is obtained for both the cylindrical

and the Cartesian PML equations.

The Jordan box in the source term could cause a polynomial increase in the solution, which would be

visible as an increasing error for long time integrations. We have not seen any such behavior for the scat-

tering examples solved here. Possible reasons could be that the initial data does not trigger these modes, or

that the growth is very small. Fig. 19 shows the effect from long time integration. The scattering problem

was solved with the same parameters as used for Fig. 14, but here to time 1000. On the finest grid this cor-

responds to roughly 200000 time-steps. After the initial transient, the error stays at a constant level. Final-
ly, we show in Fig. 20 the effect from making the computational domain smaller. We use the same example

as shown in Fig. 14, but with an interior domain �0.7 < x < 0.7, �0.7 < y < 0.7. The PML has thickness 1

as previously. The total computational domain is �1.7 < x < 1.7, �1.7 < y < 1.7. The cylinder has radius

0.5, as before. The number of grid points is smaller, keeping h at approximately the same size as in the pre-

vious examples. The error is not greatly affected by the domain size. The errors from truncating the domain

should be larger for this example, but Fig. 20 shows that the error is still dominated by the discretization



Fig. 13. Error norm vs. time, cylindrical scatter. Cylindrical PML, rmax = 10, d = 1.

Fig. 14. Error norm vs. time, cylindrical scatter. Cartesian PML, rmax = 10, d = 1.
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error, e2. The discretization error is largest near the cylinder, and since it is measured in the maximum

norm, it should be more or less the same for any domain size, when h is unchanged.

5.2. Capabilities of the embedded boundary method

In this section we show a few examples of scattering from various objects. The purpose of these compu-

tations is to demonstrate the capabilities of the embedded boundary method.



Fig. 15. Error norm vs. time, cylindrical scatter. Cylindrical PML, rmax = 3, d = 1.

Fig. 16. Error norm vs. time, cylindrical scatter. Cartesian PML, rmax = 3, d = 1.
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The method was implemented for parallel computing using the MPI library. Operations related to

boundary conditions on the embedded boundary are local, so that parallelization is just as straightforward

as for an explicit finite difference algorithm. The arrays are distributed uniformly with an equal number of

grid points in each processor. The grid points inside the objects are not used, and therefore the load balance

is not perfect. Nevertheless, the method works well and considerable speed-up can be achieved.



Fig. 17. Error norm vs. time, cylindrical scatter. Cylindrical PML, rmax increases logarithmically with h, d = 1.

Fig. 18. Error norm vs. time, cylindrical scatter. Cartesian PML, rmax increases logarithmically with h, d = 1.
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In Fig. 21 we show scattering from an unidentified object, defined as a periodic spline curve, obtained by

interpolation through a few specified points. Contour lines of the total E(z) field is plotted on

[�3, 3] · [�3, 3]. The total computational domain was [�4, 4] · [�4, 4] with the PML occupying

�4 < x < �3, 3 < x < 4, �4 < y < �3, and 3 < y < 4. The incident plane wave with x = 15 is tilted at an an-

gle of 25.8 degrees. The computational grid had 209 · 209 points and the solution is shown at time 25.



Fig. 19. Error norm vs. time, cylindrical scatter. Cartesian PML, rmax = 10, d = 1. Long time integration.

Fig. 20. Error norm vs. time, cylindrical scatter. Cartesian PML, rmax = 10, d = 1. Small domain.
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With the embedded grid technique, it is straightforward to place more than one object in the computa-

tional domain. An example of this is the scattering from three cylinders, shown in Fig. 22, where contour

lines of the total E(z) field are presented. Here the incoming wave has zero angle of incidence. Except for this

and the geometry, all computational parameters were the same as for the computation in Fig. 21.



Fig. 21. E (z) contour lines, unidentified object.

Fig. 22. E (z) contour lines, multiple cylinders.
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6. Conclusions

We have presented a second order accurate scheme for the two-dimensional Maxwell�s equations in do-

mains external to perfectly conducting objects of complex shape. The equations are discretized using a

node-centered finite-difference scheme on a Cartesian grid and the boundary condition are discretized to
second order accuracy employing an embedded technique which does not suffer from a ‘‘small-cell’’
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time-step restriction in the explicit time-integration method. The computational domain is truncated by a

PML. We have derived estimates for both the error due to reflections at the outer boundary of the PML,

and due to discretizing the continuous PML equations. Using these estimates, we have shown how the

parameters of the PML can be chosen to make the discrete solution of the PML equations converge to

the solution of Maxwell�s equations on the unbounded domain, as the grid size goes to zero.
We are interested in extending the method to treat discontinuous wave propagation speeds, where the

discontinuity extends into the PML. We also plan to extend the method to the three-dimensional Maxwell�s
equations in external domains.
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