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Terrain Simplification Simplified: A General
Framework for View-Dependent Out-of-Core
Visualization

Peter Lindstrom and Valerio Pascucci

Abstract—This paper describes a general framework for out-of-core ren- - create smooth transitions in the geometry using geomorphing,
dering and management of massive terrain surfaces. The two key com- \while (4) simultaneously outputting a single generalized triangle

ponents of this framework are: view-dependent refinement of the terrain . . . _
mesh; and a simple scheme for organizing the terrain data to improve co- strip for the entire mesh that can be efficiently rendered. More

herence and reduce the number of paging events from external storage to OVer, all of these tasks can be performed without having to main-
main memory. Similar to several previously proposed methods for view- tain any state information, except of course for the output being

dependent refinement, we recursively subdivide a triangle mesh defined yenargted. That s, the traversal can be castin a purely functional
over regularly gridded data usinglongest-edge bisectiors part of this sin-

gle, per-frame refinement pass, we perform triangle stripping, view frustum form, which not only makes efficient implementations possible,
culling, and smooth blending of geometry using geomorphing. Meanwhile, but is also a feature that meshes well with the out-of-core com-
our refinement framework supports a large class of error metrics, is highly - nonent of our framework. Because no state information is as-
competitive in terms of rendering performance, and is surprisingly simple . . . .
to implement. sociated with the mesh vertex data, we can access this data in a
Independent of our refinement algorithm, we also describe several data read-only fashion. This improves CPU cache performance and
layout techniques for providing coherent access to the terrain data. By re- g|so allows the on-disk data to be efficienthemory mapped
ordering the data in a manner th_at is more consistent W|t_h our recursive \\ivh 011t the need for frequent write-back of dirty pages. As al-
access pattern, we show that visualization of gigabyte-size data sets can
be realized even on low-end, commodity PCs without the need for com- _ready alluded to, the_eXtemal memory co_mponent of our system
plicated and explicit data paging techniques. Rather, by virtue of dramatic  is based on associating the on-disk terrain database with a large
improvements in multilevel cache coherence, we rely on the built-in paging region of read-only Iogical address space, which may greatly ex-

mechanisms of the operating system to perform this task. The end result is d th t of physical Under Unix. thi b
a straightforward, simple-to-implement, pointerless indexing scheme that cee € amount or physical memory. Unaer Unix, this can be

dramatically improves the data locality and paging performance over con- done using thenmapsystem call, while Windows implemen-

ventional matrix-based layouts. tations would useMapViewOfFile . Instead of focusing on
explicit paging mechanisms, we leave this as an open issue and
I. INTRODUCTION instead discuss different schemes for rearranging the terrain data

, ' so that it can be accessed in a cache coherent manner. We will
View-dependent refinement and out-of-core data managg. e the orobl f coh t data | tsin th d part
" : . problem of coherent data layouts in the second par
ment are two critical components of large-scale, interactive ViF our paper
sualization of massive terrain surfaces. In recent years sev- ' ) ] o
eral effective yet quite complicated, often specialized, and manyBecause our method is stateless, we do not require maintain-
times incompatible methods have been proposed for these 1@ dependencies in the vertex hierarchy [2], nor do we make
tasks. Whereas large-scale terrain visualization was once s§¥plicit use of frame-to-frame coherence using mechanisms like
onymous with industrial flight simulation, a plethora of emerdriority queues [3, 5], active cuts [2, 3,5, 6], or multi-frame
ing uses, ranging anywhere from military and scientific appfimortized evaluation [6]. We do not mean to imply that such
cations to video games and hobby use, suggest that Simp|et@@hnlques are not useful, however making successful use of
implement yet powerful algorithms for terrain visualization arf€se concepts considerably complicates implementations, and
becoming increasingly valuable. In part to address this pro€ have seen no evidence that our top-down approach cannot
lem, we recently proposed a general framework for performirﬁ’&rform as well or even better than more complicated previously
highly interactive view-dependent rendering, as well as a trafiblished methods.
parent mechanism for improving multilevel cache performanceAnother feature of our framework is that its individual com-
and enabling efficient paging of gigabyte-size data sets [1]. ponents are modular—it is, for example, entirely possible to add,
this paper, we provide an extended overview and in-depth diemove, or even swap out components such as triangle strip-
cussion of these algorithms, while taking care to give enouging, culling, geomorphing, data indexing, etc., without having
detail to make end-to-end implementations of our algorithnis perform significant code surgery. In addition, adding any one
reasonably straightforward. of these components does not change the required on-disk data
We will first describe an algorithm for efficient view-structures. Rather, the per-vertex terrain data is limited to po-
dependent refinement. Using the common vertex hierarchy gition (or just elevation), a scalar error term, and a scalar term
duced by recursive edge/triangle bisection [2—4], we show thatatencode a bounding sphere. We anticipate that this modular-
is possible to (1) construct an adaptive mesh from scratch edghwill aid in quickly implementing the core feature set of our
frame, (2) perform fast, hierarchical view frustum culling, (3)efinement algorithm.

The authors are with the Lawrence Livermore National Laboratory, 7000 EastMany of th(_e details of our framework _V_Vere presente_d 'r_‘ [1]
Avenue, L-560, Livermore, CA 94551. E-maflpl, pascucg @IInl.gov. We here provide a more thorough exposition, but also significant



new material. The major contributions of this paper over oan easy task.
previously published research include: (1) An easy-to-integrateUsing the same space of meshes as in [2], Duchaineau et
technique for position-based geomorphing. The morphs ae [3] proposed several improvements over Lindstrom et al.’s
driven by the screen space projected error for a vertex, whigfethod in their ROAM algorithm. Instead of organizing the
ensures that the terrain geometry is determined entirely by thesh as an acyclic graph of its vertices, they suggest using a
camera view, and can be varied smoothly with the viewpoirinary tree over the set of triangles. Using this data structure,
(2) An extended discussion and derivation of alternative errorack prevention is made easier. Another significant contribu-
metrics for use in our framework. (3) Derivations of all indexion is the idea of maintaining two queues for split and merge
computations needed for hierarchical traversal. (4) A sectioperations, which allows incremental changes to the mesh to
devoted to a discussion of efficient off-line preparation of the obe made in order of importance, while also allowing the refine-
disk data. (5) Additional qualitative and quantitative results. Waent to be pre-empted whenever a given time budget is reached.
include experimental performance data and animations showlngfortunately, robustly implementing the dual-queue algorithm,
the quality of our geomorphs, and analyze and compare diffeiwt to mention the many other components of their method, has
ent error metrics. Finally, we have attempted to further clarifyroven difficult.
the steps in our algorithms to facilitate their implementation and Several other algorithms based on edge bisection have since
to make the transfer between abstract concepts and actual deglten published, with different strengths and weaknesses in
as straightforward as possible. terms of visual accuracy and memory and time complexity [4,
5,9-11]. These authors recognize the inherent complexity of
Il. PREVIOUS WORK doing input sensitive bottom-up simplification, and use sim-
In this section we discuss related work in large-scale terrgie heuristics for output sensitive top-down refinement. Ger-
visualization. We will focus particularly on algorithms for view-stner [11] and Pajarola [4] both discuss how to remove some of
dependent refinement of terrain, and schemes for out-of-cthie dependencies in the vertex hierarchy by implicitly coding
paging and memory coherent layout of multiresolution data. them into the object space errors, but do not extend this concept
to view-dependent metrics. Similar to [2], efficient rendering is
A. View-Dependent Refinement achieved in [4] by organizing the set of triangles into a single

Over the last several decades, there has been extensive i§ikeralized triangle strip that follows the Sierpinski space fill-
done in the area of terrain visualization and level of detail créd curve. We, too, use a single triangle strip in our refinement
ation and management. We will here limit our discussion to tffégorithm. Fottger [9] presents a memory-efficient solution to
more recent work on view-dependent simplification and refinf&/Tain rendering, requiring only two bytes of storage per vertex,
ment of terrain surfaces. but his approach relies heavily on a particular view-dependent

Gross et al. [7] were among the first to propose a meth@gtric that approximates Euclidean distances with the Manhat-
for adaptive mesh tessellation at near interactive rates. TH&R distance. We will revisit some of these methods briefly in
technique is based on a wavelet transform of the gridded d4B§ Sections below and contrast them with our own method.

from which large detail coefficients are chosen for selective re-
finement. A windowing technique is also described that af~
lows some regions of the mesh to be more refined than othersThe view-dependent level-of-detail algorithms discussed so
Lindstrom et al. [2] describe an algorithm for interactive, viewfar have the ability to adapt the terrain mesh at the granular-
dependent refinement of terrain. They represent the terrainitygsof individual vertices. Even though this allows fine-scale
a mesh with subdivision connectivity that is locally refined ushanges to the mesh to be made from one frame to the next,
ing recursiveedge bisectionThe algorithm conceptually worksthese changes, if geometrically large enough, can lead to tem-
bottom-up, by recursively merging triangles until a screen spagoeral artifacts known as “poppingGeomorphingor justmor-
error tolerance is exceeded. In actuality, the terrain is pandhing, is a common approach to counter such visually disturbing
tioned into a quadtree of large rectangular blocks of verticgshenomena, by interpolating the geometric transitions between
Taking advantage of frame-to-frame coherence, the active cutlifferent levels of detail smoothly over time. One downside of
this quadtree is visited and updated, after which individual vemorphing is that vertices may have to be introduced earlier than
tices within each block are considered for insertion or removattherwise necessary to allow a continuous transition while still
Due to this blocking of the terrain, special care must be takeatisfying an error tolerance. However, even without geomor-
to ensure that no cracks form between the blocks. Handlipging the error tolerance is not necessarily set to guarantee sub-
this problem in the context of asynchronous paging of blockspsxel accuracy, but is often specified to be just small enough to
non-trivial, and enforcing dependencies between vertices cardlieminate popping. If an error tolerance of several pixels is ac-
costly. ceptable, then geomorphing can substantially improve the tem-
Hoppe extended his work oprogressive meshe® allow poral quality with only a modest computational overhead.
view-dependent refinement of arbitrary meshes [6]. This tech-Morphing was first proposed for terrain surfaces by Ferguson
nigue was later specialized for terrain rendering [8]. The ruet al. [12]. Many view-dependent methods have since incorpo-
time performance reported by Hoppe places his method amaatged morphing. Cohen-Or et al. [13] proposed using transition
the fastest ones published to date. However, the memory zenes, based on the distance to each vertex, to blend the ge-
quirements of his method, while lower than in [6], are still corsmetry of Delaunay-triangulated terrain. Such a distance-based
siderable. In addition, fully implementing his algorithm is noapproach was also advocated by Pajarola [4]. Willis and co-

Geomorphing



workers described a similar technique that was used in the poperating system to perform this task.

ular IRIS Performer visual simulation toolkit [14]. Hoppe took For accessing large data sets, data layouts based on space fill-
a different approach by explicitly animating vertex splits anithg curves [28] are often used to guarantee good geometric lo-
edge collapses over time. Because of the inherent dependencadisy [29-31]. To this end, the most popular curve is the Hilbert
between vertices in the hierarchy, his time-based geomorghsve [32], which guarantees the best geometric locality proper-
imposed somewhat complicated restrictions on when a verties [33]. The pseudo-Hilbert scanning order [34,35] generalizes
could be removed. Duchaineau et al. [3] suggested using a sttiis scheme to rectilinear grids that have a different number of
ilar time-based morphing strategy for their ROAM algorithm. samples along each coordinate axis.

A slightly simpler and in a sense more disciplined approachRecently Lawder [36] explored the use of different kinds of
than purely time- or distance-based morphing is to make diragtace filling curves to develop indexing schemes for data stor-
use of the given error metric to parameterize the morphs. In thige layout and fast retrieval in multi-dimensional databases.
way, the screen space error is used as the parameter that f@&diselli [37] uses the Z-order space filling curve to efficiently
into the interpolation. In the algorithm bydRger et al. [9], the navigate a quadtree data structure without using pointers. He
normalized error term that was used to make refinement dagses simple expressions for computing neighbor relations and
sions was also used as a parameter for morphing the geometearest common ancestors between nodes, allowing fast gener-
More recently, Cline and Egbert [15] proposed using a simation of adaptive edge bisection triangulations. The use of the
lar approach to morph a quadtree representation of the terr@rorder space filling curve for traversal of quadtrees [38] (also
For each quadtree patch, they determine a continuous, viealled Morton-order) has also proven useful in the speedup of
dependent level-of-detail parameter, and use its fractional parbtatrix operations, allowing better use of the memory cache hi-
interpolate between the two closest, discrete level-of-detail regrarchies [39-41].
resentations. Our approach to geomorphing is similar in spiritRecently Pascucci [42] introduced a simple address transfor-
to [9, 15], but we use the actual screen space error as the mampition that turns a single-resolution indexing scheme into a
parameter and blend the geometry when this error falls withimaultiresolution version, which is optimized for coarse-to-fine

user-specified range. breadth-first traversal. This technique has been proven effective
) for visualizing very large 3D rectilinear grids [43]. The down-
C. Out-of-Core Paging and Data Layout side of this scheme is the need to apply the address transforma-

External memory algorithms [16], also known as out-of-coriéon for each data access. Th_e data I_ayout schemes develo_ped
algorithms, address issues related to the hierarchical naturd"dfis paper are inspired by this technique, but have more strin-
the memory structure of modern computers (fast cache, mégnt performance requirements. In particular, to achieve high
memory, hard disk, etc.). Managing and making the best Jagrformance, we cannot afford to perform the full address trans-
of the memory structure is important when dealing with largf@rmation for each data access, and show how to speed the ad-
data structures that do not fit in the main memory of a sing€Ss computation up based on context. Another hierarchical
computer. New algorithmic techniques and analysis tools ha#ddress computation for gridded data was introduced by Gerst-
been developed to address this problem, e.g. for geometricPg! [11]. In this work the bintree hierarchy of triangles induced
gorithms [17—19] and scientific visualization [20, 21]. by the Sierpinski space filling curve is used to fairly efficiently

In most terrain visualization systems [2—4, 8, 22—26] the ekoMpute f[he verte>§ |nd|c_es.dur|n.g run-time trav_ersa_\l of f[he data.
ternal memory component is essential for handling real terragift€ locality of the index is inherited from the Sierpinski curve.
and GIS databases. Hoppe [8] addresses the problem of chpe gpphcaﬂon of this address to our case does not seem ap-
structing a progressive mesh of a large terrain using a bottoRfopriate becaus_e o_f the scattered set of unused addresses that
up scheme, by decomposing the terrain into square tiles that &@uIts from duplicating vertex addresses. _ .
merged after independent decimation, and which are then furln this paper, we present three different pointerless hierarchi-
ther simplified. Dliner et al. [27] address the issue of exterc@l data layouts that have shown to improve the cache and pag-
nal memory handling of large textures for terrain visualizatiof!9 efficiency by orders of magnitude over more naive layouts.
Reddy et al. [24] implemented a custom VRML browser SIOéA/e draw upon previous work on quadtree and space ﬁllmg_cur_ve
cialized for terrain visualization, where efficiency is gained b{youts, but leverage the fact that the data access pattern is given
combined use of multiresolution tiling, data caching, and prediey & top-down recursive traversal of the height field vertices. We
tive pre-fetching. The out-of-core component of the |arge_scél|é|| begln_by expla|'n|ng how this recursive traversal is used for
terrain system presented by Pajarola [4] is based on a dec&@Pstructing adaptive meshes at run-time.

osition of the domain into square tiles, which are stored in a
Satabase that supports fast 2D range queries. . VIEW-DEPENDENT REFINEMENT

Whereas the prevailing strategy for terrain paging has been ta'he goal of view-dependent level-of-detail algorithms is to
split the terrain up into large rectangular tiles of varying res@onstruct a mesh with a small number of triangles that for a
lution that are paged in on demand, and to optimize the sizegifen view is a good approximation of the original, full-detail
these tiles and the I/O path from disk to memory, our approastesh. This construction is done continuously at run-time, and
is instead to optimize the data layout to improve the memowhenever the viewpoint changes the mesh is updated to reflect
coherency—both in-core and out-of-core—for a given acceige change. To measure how well the coarse mesh approximates
pattern. This approach is in a sense orthogonal to the manter original, it is common to measure tbbject-spaceerror e
in which the data is paged in. For simplicity, we leave it to theetween the original mesh and its approximation, e.g. as the
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Fig. 2. Edge bisection hierarchy. The arrows correspond to parent-child rela-

Fig. 1. The split edge = {u;, v,.} and diamond’’ = {t,, ¢;} of a vertexo. tionships in the directed acyclic graph of mesh vertices.

és&ction scheme, an isosceles right triangle is refined by bisecting

vertical deviation between corresponding points, and to proj ; . . .
this error onto the screen, e.g. using perspective projection,I Ohypotenuse, thus creating two smaller right triangles (Fig. 1).

obtain a view-dependent measure of ep(r). Depending on ortthde vgrte>tq; mmertgd n th:,s refllﬂer?vsnttrsitenp,lwe C?" itrP:eI bi-
whether the mesh simplifiedbottom-up (fine-to-coarse) oe- sected edge theplit edgec, of v. The two triangles (or single

finedtop-down (coarse-to-fine), triangles are merged or split %angle in the case of split edges on the boundary) that share

ensure that the projected errors meet some tolerance or the nfesh © Ca”.Ed thej|am.ond_TU of v [3]: The. split edge and dia
. . mond are illustrated in Fig. 1. Starting with a coarse base mesh
meets a given triangle budget. . . ; . .
As is common in terrain visualization. we assume that the i typically two or four triangles), an adaptive, recursive refine-
! ont N visualization, w u 'Ment of the mesh is made (Fig. 2). The refinement criterion,
put to our refinement algorithm is a terrain surface represente

iforml led heiaht field. i ; | id L€ whether to split an edge by inserting a vertex, is generally
as a uniiormly sampled height Tield, 1.€. a rectanguiar grd gh ooy on \whether the vertex's diamond approximates the cor-
elevations. Formally the height field can be represented ag

. i 5 egponding part of the full-resolution mesh well enough. For
function z(x, y) over the 2D domair(z,y) € R®. To form \1'1 w-dependentefinement, this criterion also depends on fac-

a contmgous surfage, we use I!neqr mterpolatlon of the he'Qo s such as the position of the viewer relative to the vertex.
field, which results in a piece-wise linear triangle mesh. By se-

lecting only a subset of the points from the height field, a COB.I’SE‘IAS IS ewde_nt from F|g..2, the vertices mtrodgged n the subdi-
vision map directly to points on a regular, rectilinear grid. Thus

mesh is obtained. It is this selection in particular that we will b?. . ; ; .
: It is natural to use the edge bisection hierarchy as a multires-
concerned with below. : . S ) .
olution representation for approximating height fields and ter-

In th's. section, we presgnt a framework for performmg top: in surfaces. As in other methods based on edge bisection, the
down, view-dependent refinement of the terrain surface. \&a

) - imensions of the underlying grid are constraine@té + 1
show how a single procedure can be used to efficiently perfo tices in each direction, whereis the (even) number of re-
refinement of the connectivity, blend transitions in the geometﬁ}(I ment levels '
using geomorphing, cull the mesh against the view volume, an )

simultaneously build a single (generalized) triangle strip for the t Il‘ic;‘is;‘:‘ic())np—ossftlaertgﬁ pviirtfﬁ ;hm thr:ehm;/f rrese I?J ftiriﬁ;imﬁ gtn;
entire mesh. This procedure makes no use of frame-to-frafle - y 9 € highe SOlto s

coherence, but rather builds the mesh from scratch for eachri'l:ﬁ(—:urs'ver merging pairs of triangles that satisfy a simplifica-

dividual frame. We first describe our main approach to refingggszr'éix)qéi'tm?A'gﬁig%g:&iﬂ{?g?gim ?J:Lgs:rgizfég:]'cne
ment, and follow with details of how to implement each of it§ =~ piexity R N
components. his is because, as a result of processing the mesh from fine to

coarse resolution, the decisions as to where and when to simplify
it can be made using the most detailed and accurate information
available. In contrast, each refinement decision is necessarily
There are two important classes of meshes used for viebased upon a brief summary of a large amount of information,
dependent refinement: general, unstructured meshes (soams generally involves conservative error estimates. A signifi-
times called triangulated irregular networks, or TINS) [8,13,44zant disadvantage of simplification versus refinement, however,
46], and regular (or semi-regular) meshes with subdivision cas-that its computational complexity depends on the size of the
nectivity [1-5, 9, 11]. Whereas TINs have the potential to rejppghest resolution mesh, whereas the refinement complexity is
resent a surface with fewer triangles for a given error toleraniieear in the size of the approximating mesh. Therefore, run-
(see, for example, [5] for a quantitative analysis), the simplicityme simplification of very large data sets can be prohibitively
of regular subdivision hierarchies makes them more appropriatew.
for our purpose. The mesh produced by edge bisection can be represented as
In our refinement algorithm, we use a particular type of sub-directed acyclic grapi{DAG) [48] of its vertices. A directed
division based orlongest edge bisectiof2, 3, 9, 11]. The edge(s, j) from: to one of its childrer in the DAG corresponds
meshes produced by this subdivision scheme, also called #b a triangle bisection, in whicliis inserted on the hypotenuse
meshes [47], right-triangulated irregular networks [5], and rend connected té at the apex of the triangle (Fig. 2). Thus,
stricted quadtree triangulations [4], have the property that thaly non-leaf vertices not on the boundary of the mesh are con-
can be refined locally without having to maintain the entire mestected to four children in the DAG and have two parent vertices.
at the same resolution (see Fig. 3, for example). In the edge Boundary vertices have two children and one parent. For a given

A. Longest Edge Bisection



of i’s projected screen space erigr = p(¢;, pi,e), wheree;
is an object (or world) space error term fioande is the view-
point! That is,p; is constant for all viewpoints on the sphere’s
surface. For a fixed screen space error tolerandbe isocon-
: : tour for whichp; = 7 divides space into two halvesjs active
‘:?‘j: """"" """"" when the viewpoint is inside the spherg (> 7), and inac-
R g tive for viewpoints outside itd; < 7). Using these spherical
isosurfaces, Blow constructs a forest of nested sphere hierar-
chies, in which each parent sphere contains its child spheres.
The vertices associated with these spheres need not be related in
the refinement—as long as the viewpoint is outside a particular
Fig. 3. Example of adaptively refined mesh. In order to avoid cracks in tﬁphere' none of the vertices in the sphere’s subtree can be active,
mesh, the dotted edges must be added. which allows large groups of vertices to be eliminated quickly.
While theoretically simple, Blow's method has a nhumber of
) T drawbacks. First, to ensure the nestingaust be fixed up-front.
refinement\/ of a mesh, we say that a vertexasliveif itis in-  geconq the method is tied to a particular error metric; a met-
cluded mM. Furtherm_oreM is valid if it forms a continuous ric based on distance alone. A metric that varies with direction
surface without any T-junctions and cracks. Whether producggy, e vertex to the viewer, such as the one in [2], does not
by simplification or refinement, fak/ to be valid it must satisty yocessarily lead to isosurfaces that have good nesting proper-
the following property: ties. Third, without maintaining explicit dependencies between
jeEM=—icM e 1) vertices, or a_rtificially inflating the s_ph_eres wher_eve_r necessary,
Property 1 will generally not be satisfied, resulting in cracks in

where Ci is the set of children of in the DAG. That iS, for the mesh. Fina”y, every tree in the Sphere forest must be vis-
a vertex;j to be active, its parents (and by induction all of itdfed during refinement. Since this forest can be arbitrarily large,
ancestors) must be active. Fig. 3 illustrates this property, whéyéther clustering of the trees may be necessary.
the dotted edges must be added to form a valid mesh. Even whe@ur approach bears some resemblance to Blow’s, but avoids
the DAG traversal is top-down, ensuring this property is not #any of these shortcomings. We, too, use a nested DAG of
easy as it may seem, since it is possible to reaththe DAG spheres, but for a different purpose, and its structure is given by
without visiting both of its two parents. the relationship between vertices in the refinement. In the dis-
One solution to enforcing the validity of the mesh is to mairfussion below, it is unimportant how the error tersedp are
tain explicit dependencies between each child and its parerifgasured—we will discuss possible error metrics later in Sec-
whenever a vertex is activated, the chain of dependencies is 1 I1I-C. However, we require thai(e, p, e) increases mono-
lowed and all ancestor vertices are activated [2]. However, th@hically with e whenp ande are fixed. This is a reasonable
approach is inefficient both in terms of computation and stdiequirement; as increases, we would expect its projectipn
age. Our approach, instead, is to satisfy Property 1 by ensurfaga given viewpoint to increase as well (or at least remain the
that the error terms used in the refinement criterion are nesté@me). Using these definitions, a sufficient condition for satis-
thereby implicitly forcing all parent vertices to be activated witfying Property 1 is
their descendants.

p(€i7pi7e) 2 p(6j7pj7e) VJ S Cz
B. Refinement Criterion
The idea of using nested errors is not new. Pajarola [Z is is the view-dependent version of the saturation condition

and Gerstner [11] discuss nested object space errors, and r ptloneg_m [43]' To gugranteeﬁ this p;.Opeﬁy’ we could C?m'
to the nesting condition as “saturating” the errors. Howevefwte an adjusted projected error idyy taking the maximum o

neither describe how to guarantee that the errors after proj@tgndpj fo.r.all chlldrgnj. Hovyever, we need this relationship
tode transitive, meaning that it would have to hold not only for

tion to screen space remain nested, which as we shall see’ ! ) . o

quires that special care be taken in formulating the error metﬁc"?md its children, but also for all afs descendgnts: \ﬁsmng.
The ROAM algorithm [3] uses nested errors in both object aif®Y descendant of egch a_Ct'VG vertex atrun-time Is cle_arly im-
screen space to order triangles in a priority queue. Howev@F‘?‘Ct'Cal f_orla_rge_terralns, since the set of descendantg increases
their screen space metric applies only to a restricted class of Sﬁponentlally in size. Instead, we cqmpute a conservative bound
ject space metrics, and assumes that perspective projectiomgi by making use of our sphere hierarchy.

used. In addition, their metric appears considerably more com.FirSt observe thap; is made up of two distinct components:

plicated to evaluate than the ones presented in this paper, wiiBhoPiect space error terey, and a view-dependent term that
in our case is important since we must compute the screen sg&tatesp: ande. Our approach is to separate the two and guar-

error for every potentially active vertex'm every Smgl.e frame. LIn the remainder of this paper, we assume that the generic screen space error
Perhaps the most closely related refinement algorithm to ouySs a function of the position of and the viewpoint. Some error metrics

is the one proposed by Blow [10]_ His method. like ours, i®ay measure error at points other than the vertex positions (e.g. over entire
’ ' triangles [3, 8]), and may depend on additional view information (e.g. gaze

. . tr
based On a nested sphere h'erarChy- Each spherells Centergﬁf on [3]). It should be straightforward to generalize our definitions to such
the positionp; of a mesh vertex, and represents the isocontougrror metrics.



antee a nesting for each term. Let

€ if 7is a leaf node
€ (2

max{é;, max{e¢;}} otherwise
JEC;

whereé; is the actual (not necessarily nested) geometric error
measured by the object space metric. Then clearly ¢;
for j € C;. Due to the monotonic relationship betwegnand
€;, we must have(e;, p;, e) > p(é;, pi, €), which ensures that
there is no loss in visual accuracy. We don’t necessarily have
plei, pi,e) > plej,pj,e) for j € C;, however, since an error
projected fromp; may be arbitrarily larger than an error pro-
jected fromp; (e.g. the viewpoint may be close g but far
{c TIE)Z (f 9 L P ffici Y h mb' Fig. 4. 2D analogue of the nested sphere hierarchy used for refinement and
rom p;). erefore, it Is not suificient to nESt_t eo .JeCt Spa}%w culling. The four triangles are associated with the vertices at their right-
errors alone, but we must also account for this spatial relatiamgle corners. Notice that the bounding spheres do not completely contain their
Sh|p between parent and child vertices. A naive approach Wogmesponding triangles on the bottom two levels in the DAG, but do contain
b P them on level 3 and above.

e to compute the projection ef not only fromp; but from the
position of each of its descendants, and thep]éte the largest

projection. That is, we would compute the projection from a set pyring pre-processing of the data set, we compugad r

of points P, where for each vertex, as described in further detail in Section V. In
addition to the vertex’s elevation (and (z,y) coordinates in
Fi={pi} U U Py the domain, if so desired), these are the only parameters needed
J€C: in our top-down refinement algorithm. We again point out that

For the same reason as above, this is impractical because'{fd'ave so far left the choice of object space and screen space
would have to visit all descendants finstead, we resort to a €'TOr metric entirely open. Given this general framework for

more easily expressed superset of points to project from, defifginement, we will now briefly discuss how to compute actual
by a ball B; D P; of radiusr; centered omp,: screen space errors for different error metrics.

B ={x:|x—pi|| <ri} C. Error Metrics

In this section, we consider possible object spagead
screen spacej error metrics. Typically, the screen space metric
{0 if 5 is a leaf node is defined in terms of a projection operator, i.e. the screen space
i

The radius; of B; is then

error equals the projection of the object space error, and it is of-
ten useful to treat the two metrics independently. Our framework
is general enough to accommodate virtually any combination of

ThenB; 2 B; for j € Cj, i.e. the ball hierarchy is nested. Ay, metrics, which will be illustrated in the following sections
2D example of this nesting is shown in Fig. 4. Finally, we defln[(;y a small set of examples

the maximum projected error as

max{||p; — p;|| +r;} otherwise
jeC;

. . C.1 Object Space Error Metrics
pi = plei, Bi, e) = max p(e;, x, e)
’ Perhaps the most common object space error measure for
Because; > ¢;, B; 2 B;, andp is monotonic, we must have height fields is the vertical distance between corresponding
pi > p; for j € C;. Consequently, ifi is active, then so is its points in the original and the approximating mesh. For simplic-
parent;, which is what we set out to show. ity, these errors are often computed at the height field vertices
To computep; at run-time, we need to perform a constrainednly [2, 9], but may be computed over triangles or even larger
optimization over the balB;. Because most projection oper+egions of influence associated with a vertex [3,8]. Our frame-
atorsp are such that they do not have isolated maxim®&%n work accommodates both of these approaches, since the position
except possibly at the viewpoin¥p is generally non-zero ev- or region over which the object space error is measured can al-
erywhere, and the maximum @f occurs on the boundary ofways be included in a vertex's bounding sphere by inflating it
B;. Nevertheless, finding this maximum may seem like an ewherever necessary.
pensive process. However, it is generally easy to find a simpleObject space errors can also be measured incrementally, be-
closed form expression for the maximum, and we will see taveen two consecutive levels of refinement [2], or as the max-
Section 11I-C how two different metrics can be expressed vempum error with respect to the highest resolution mesh [3, 8].
concisely. It is interesting to note that this approach to corithe incremental error for a vertex is a good indicator of how
puting conservative error bounds is similar to the strategy usedich the mesh wouldhangeby removing the vertex, which
by Lindstrom et al. [2], in which an optimization over nestedhay be a useful measure for estimating temporal artifacts due to
bounding boxes is done for coarse-grained simplification aftybpping” (see Section IlI-F). The maximum error, on the other
refinement of large blocks of vertices. hand, is a bound on how far the mesh would deviate from the



highest resolution surface if the vertex were removed. sphere and not a plane, so a more appropriate choke:i%.
Formally, we write the incremental and maximum vertical ei/e then compare against a user-specified screen space error

rors for a vertex in terms of the set of triangl€g; in the dia- tolerancer.

mond ofi (Fig. 1), i.e. the triangles that shars split edge. Let  In our refinement procedure, we need to find the maximum

zt(x;, y;) be the elevation of triangleat the point(z;, y;) inthe projectionp(e, B, e) over a set of point® (Section 11I-B). For

domain where vertexlies. Define the vertical error betweén Equation 6 the maximum projection occurs whére ||x — e||

andt as R is minimized. For viewpoints insidB, this term is zero, and we

0t = |2z — ze(i, ¥i)| activate the vertex. 1& ¢ B, then the minimum ig/ — r, and

. . our maximum screen space error becomes
The incremental error can then be written as

€
e @ ple, B,e) = max p(e,x,e) = A-— (7

€ = max{d; }

Zi —

Z1 + 2r
2

) ) ) _ _ Comparingp against- and rearranging and squaring some terms
That is, the incremental error is the vertical displacement from) avoid costly square roots), we obtain

i to the midpoint of its split edgév;, v, }. The maximum error

can similarly be written by consideringand all of its descen- active(i) < p(e;, B;,€) > T
dants: A G
, s = > T
emaT — gine s 5 d; —r;
& maX{eZ max max { J,t}} (5) i =T

A
whereD, ; is the set of all descendantsiakached via recursive = 6> di =i

bisection of triangle. Thus, the maximum error is the largest L2 2

vertical distance gbetweez'nand its descendants to the twogtri— = vatr) >d; ®)

angles ini’s diamond. Note that the measured errgfs and wherer = 2 is constant during each refinement. For spherical

émer are not necessarily nest@djthoughé?*** often is since it projection,x = 1 = 7 is the angular error threshold in radi-

accounts for distances to all descendants dfinally, because ans. The above expression involves only six additions and five

the bounding sphere from Equation 3 already contéins we multiplications, and is therefore very efficient to evaluate.

are ensured that the projection &f** is a conservative error  |n a strict mathematical sense, the derivation of Equation 8 is

bound. valid only if our assumptior ¢ B; holds. However, if we use
The choice between incremental and maximum errors is e convention that € B; = active(i), then Equation 8 can

thogonal to our refinement method, but should be made up-fregkrectly be used for all viewpoints, with one caveatz;|f= 0,

since the errors need to be computed and propagated congien its projection ought also be zero, regardless of where the

tently during pre-processing. We will later present results gfewpoint is, and the vertex arguably should be deactivated. Of

using both incremental and maximum errors. course, we could explicitly test for the special case- 0,e €

. o B; ifitis considered important.

C.2 lIsotropic Error Projection

Given an object space measure of empa view-dependent C.3 Anisotropic Error Projection

algorithm projects onto the screen, resulting in a screen space|f opject space errors are measured vertically, then errors
errorp(e). While perspective projection is most commonly usegiewed from above appear relatively smaller than errors viewed
to render the terrain, it involves prOblemS with Singularities aﬁﬂ)m the side. As a conseguence, vertices direcﬂy below the
can be somewhat computationally inefficient. Therefore it {fewer can often be eliminated. Lindstrom et al. [2] describe
common in view-dependent algorithms [2, 3, 8] to substitute th@ anisotropicmetric 7 that exploits this fact. While this metric
distance along the view direction with the Euclidean distance|eads 0n|y to margina”y fewer triang|e5’ we will here describe
how to incorporate it into our framework for illustrative pur-
poses. This metric fundamentally depends on the horizontal and
vertical components andb, respectively, ofi:

d=le—pl|

between the viewpoint and the vertex positiop. The most

simple metric of this form can be written as
P a? = (€x *pr>2 + (ey *py)z
‘ ‘ b = (e~ p2)?
P(6>P»e) = )‘— = )‘_ (6) Z Pz
le—pl ~d

and we can work withy'in two dimensions to simplify matters.

i.e. the projected error decreases with distance from the vigyging these conventions, the anisotropic screen space metric can
point. This is anisotropic error measure, in the sense that thgg \written as:

projected error is the same in every direction a fixed distance

d from the vertex. For the usual perspective projection onto a 3 )= )\e\/(ew —p2)? + (ey —py)?
plane,\ = W’ wherew is the number of pixels along the P& P, €) = e — p||2
field of view . Equation 6 is in actuality a projection onto a B ()\6 a

= (%) (3)

2Because refinement generally changes the mesh geometry, it is possible for
émaz tg increasefrom one level to the next as a result of inserting a vertex. = p(e,p, e) cos b (9)



(a) Isotropic projection. (b) Anisotropic projection.

Fig. 5. 2D geometric illustration of isotropic and anisotropic error projection. (a) The ramthe ballB = (p, r) where the projection of the object space error

€ iIs maximized is the point closest to the viewpoint. Equivalentlys the intersection between the ball boundary and a line segment from the viewpoittie

ball centerp. The dashed circle is an isocontqu(k, x, e) = 7 of the screen space error for fixedindx. That is, the erroe projected fromx is constant for all
viewpoints on the dashed circle. The shaded region indicates the set of viewpoints for which the vprieaetive. This set equals the Minkowski sum of the

ball B and the interior of the isocontour. (b) The maximum projection is found as the intersection between the ball boundary and a line segment fronirthe viewpo
to the point opposite the-axis where the ball meets tleaxis. The isocontours, indicated by dashed lines, for two error maxima are shown. As in (a), the shaded
activation region is expressed as the Minkowski sum of the ball and the isocontour.

wheref is the angle oé—p above the horizon. As the viewpoint  While the expression for this anisotropic metric is fairly sim-
approaches directly aboye 6 approache§ and the projected ple, experimental results observed by us and Hoppe [8] indicate
error vanishes. If on the other hand the viewpoint is at the samhat the reduction in mesh complexity over the isotropic metric
elevation a®, thend is zero ands equals the isotropic errgr.  is only a few percent (sse Section VI). This is mainly because
Fig. 5(b) shows the isocontours @fh 2D as being two abutting only a small fraction of vertices in a large height field are viewed
circles of radius%z/e. The 3D isocontours are tori formed byfrom above, while the remaining vertices stay active.

spinning the circles around their vertical axis of symmetry.

We must now find the maximuni over all pointsx € B. It D- Run-Time Refinement
is relatively easy to show thatéf ¢ B, then Having derived a criterion for selective refinement, we now
_ € a+tr summarize the algorithm for top-down, recursive refinement and
ple, B,e) = I,{lggﬂ(evX»e) = )\d —rd+tr (10) on-the-fly triangle strip construction. Pseudo-code for these
steps is listed in Table I. (We will see later how to incorpo-
rate view culling and geomorphing into this basic framework.)
The refinement procedure builds a generalized triangle strip

The maximum occurs on the boundary®fat a point shown in
Fig. 5(b). A simple activation condition associated withcan
then be derived as follows:

V = (vo,v1,v2,...,v,) thatis represented as sequence of ver-

active(i) <= fl(e;, Bi,e) > T tex indices? A vertexv is appended to the strip using the pro-
€ a; +r; ceduretstrip-append. Line 5 is used to “turn corners” in the

= A di—rd; + 7y triangulation by effectively swapping the two most recent ver-

T o g tices, which results in a degenerate triangle that is discarded by
= ei(a; + 1) > X(di —77) the graphics system [50]. Swapping is done to ensure that the
ciai > r(d2 —12) — ey .parlty—whethera}vertex is on an even or odd re.f|ne.ment level—
9 9 5 o ) is alternating, which is necessary to form a valid triangle mesh.
= eja; > max{0, w(dj —r7) —€ri}” (1) 10 this end, the two-state variabperity (V) records the parity
assuming;; > 0 ande ¢ B;. As in the isotropic case, how- Of the last vertex iﬁ/._ Fig. 6 illustrates the sequence of triangles
ever, this expression can be used unconditionally, and by reusif@yersed during refinement.
subexpressions requires at most nine multiplications, seven aelx, OpenGLimplementation would make repeated callgbigertex  with
ditions, and one conditional branch. this sequence of vertices.



tstrip-append(V, v, p) submesh-refine(V, i, j,1)

1ifv#wv,1andv # v, then 1 refine < | > 1 and active(j)

2 if p # parity(V) then 2 if refine then

3 parity(V) < p 3 submesh-refine(V, j, ¢ (4,7),1 — 1)

4  else 4 tstrip-append(V, i, mod 2)

5 V— (Viup_1) 5 if refine then

6 V— (Vv 6  submesh-refine(V, j, ¢, (i,7),1 — 1)
submesh-refine(V, i, 5,1) TABLE Il

1 if I > 0 and active(s) then EFFICIENT IMPLEMENTATION OF submesh-refine. THE REFINEMENT

2 submesh-refine(V, j, ¢; (i, 7),1 — 1) CONDITION HAS BEEN MOVED UP ONE LEVEL TO AVOID DUPLICATION

3  tstrip-append(V, i, mod 2)
4 submesh-refine(V, j, ¢, (4,7),0 — 1)

mesh-refine(V, n) on line 1 is subsequently evaluated twice; once in each sub-

1V — (isw,isw) tree. Therefore, most per-vertex work, such as testing for re-
2 parity(V) < 0 finement, culling, morphing, etc., is unnecessarily duplicated.

3 for each (j, k) € ((is,ise), (ic,ine), (in,inw), (iw,isw)) Because evaluating the refinement condition constitutes a sig-
4 submesh-refine(V,i., j,n) nificant fraction of the overall refinement time, it is more effi-
5  tstrip-append(V, k, 1) cient to move it up one level in the recursion, thereby evaluating
TABLE | it only once, and then conditionally making the recursive calls

PSEUDO-CODE FOR RECURSIVE MESH REFINEMENT AND TRIaNGLE  (1able II). For the sake of clarity, however, we will stick to the
more concise way (Table 1) of writing our recursive functions
throughout the remainder of this paper.

Finally, the outermost procedummesh-refine starts with
nw n ne a base mesh of four triangles (Fig. 2(a)), and calls
submesh-refine once for each triangle. Here is the num-
ber of refinement levels,. the vertex at the center of the grid,
{iswsise,ine, inw } the four grid corners, anfl,,, ., is, i, } the
vertices introduced in the first refinement step (Fig. 6). The tri-
w \ p e angle strip is initialized with two copies of the same vertex to
allow the condition on line 1 itstrip-append to be evaluated.
\ The first vertexyy, is then discarded after the triangle strip has
been constructed.
" For applications that demand interactive visualization and the
sw s se highest possible frame rates, it is common to parallelize the oth-
erwise sequential, interleaved tasks of refinement and rendering
BE two asynchronous processes or threads [14,23]. In this model,
the render thread is periodically and asynchronously supplied
with a list of geometry to render by the refinement thread. This

The procedursubmesh-refine corresponds to the innermost display list” is then used, and potentially reused over several
recursive traversal of the mesh hierarchy, whe@nde, are the frames, until a newly refined mesh is obtained. Our terrain visu-
left and right child vertices of the DAG parepffor the current alization system allows this multi-threaded mode of rendering,
triangle (Fig. 7). The designations “left” and “right” child doin addition to the traditional sequential mode of processing.
not necessarily correspond to making left and right turns when
traversing the DAG. Instead, the sense of left and right alternafes
between consecutive levels. This is illustrated in Fig. 7, whereThe rendering performance of our terrain visualization system
we have labeled the left and right triangle children for a fewg substantially improved by culling mesh triangles that fall out-
levels in the binary triangle tree formed by the edge bisectiagide the view volume. Our view culling, which is done as part of
This hierarchy extends to DAG vertices by mapping diamondse recursive refinement, exploits the hierarchical nature of the
i.e. pairs of triangles, to their corresponding vertices (Fig. Igubdivision mesh, and culls large chunks of triangles high up in
Notice that if we always follow left branches, we end up in théthe mesh hierarchy whenever possible. Our approach is based
bottom left corner, whereas following right branches takes usda the culling algorithm outlined in [3], but is somewhat more
the bottom right corner. For now, this geometric definition ddfficient. In particular, we exploit the nested bounding sphere
¢; ande, is sufficient. We will discuss how to compute thesaierarchy to perform view culling, similar to [6, 51].
indices numerically from their DAG ancestargndj in Sec-  Note that the bounding sphere for a verteontains the ver-
tion IV. tices of all descendants &f Thus, if the bounding sphere is

Notice thatsubmesh-refine in Table | is always called re- not visible, then neithei nor its descendants will appear on
cursively with j as the new parent vertex, and the conditiothe screen. It is possible, however, for a piece of a triangle

STRIPPING

Fig. 6. Traversal of generalized triangle strip. The marked vertex is an exam
of a situation where swapping is needed in order to pivot around the vertex.

View Frustum Culling
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Fig. 7. Binary triangle tree formed by bisection. The arrows indicate the alternating triangle orientation on consecutive levels. Tlathbetsrespond to left
and right children in the tree, respectively.
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visible(s, z‘nsz‘(_ie) sition to our regular refinment procedure without view frustum
1 for eachview frustum plan€(ny, dy) culling. If on the other hand the sphere is entirely outside any
2 f ﬂmswiek then one of the six planes, the vertex and its descendants are culled,
3 §< Ny P+ dg, and the refinement recursion terminates. Thus, view culling is
4 if s > r; then done only for those spheres that straddle the planes of the view
5 return false volume.
6 if S_< T then Fig. 8 illustrates the advantage of performing view culling.
7 insidey, + true From this figure, it is also evident that the mesh resolution drops
8 return true rather sharply immediately outside the view volume. Still, some
submesh-refine-visible(V, i, j, 1, inside) features towards the left edge of the mesh ir_1 Fig. 8(b) remain,
1 if inside, Vk then as they are too close to the top-plane of the view frustum. .
_refi P i Note that because the bounding spheres are nested, the culling
2 submesh-refine(V, 1, j,1) e Hie _ _ X X
3 else ifl > 0 and active(i) and visible(i, inside) then condition is consistent among parents and children, i.e. a child
4 submesh-refine-visible(V, j, ci(i, j), 1 — 1, inside) is visible only if its parents are. As a consequence, view culling
5 tstrip-append(V, i, mod 2) does not intr.oduce any T-junctions or cracks in the mgsh—it
6  submesh-refine-visible(V, j, ¢, (i, j),1 — 1, inside) ~ @lways remains a continuous surface everywhere. This is a de-

sirable feature when the refinement and render stages are asyn-
chronous in that, regardless how much the refinement thread

falls behind, the render thread always has a continuous mesh

to display.

TABLE Ill
PSEUDO-CODE FOR VIEW FRUSTUM CULLING

that has: or one of its descendants as a vertex to be visibl'é', Geomorphing

even though none of these vertices are visible. By excludingUsing our adaptive refinement and view frustum culling al-
1, a coarser triangle thanwill be rendered. To guarantee thagorithms, we can generally maintain high frame rates at no per-
such false positives in the culling test never occur, the boundiogptible loss in geometric quality. For example, we typically
sphere for could be expanded wherever necessary to coitainachieve 60 or more frames per second usifig(ax 480 window
incident triangles. Alternatively, the radius of a separate bourahd a two-pixel tolerance. However, for screen resolutions in the
ing sphere for view culling purposes could be stored with eaofiega-pixel range, the tolerance becomes relatively so small that
vertex. In practice, however, the bounding sphere hierarchytlie resulting adaptive meshes can easily exceed 100,000 trian-
already loose enough that, at least in the domain, the incidglgs; too complex even for state-of-the-art graphics hardware to
triangles are contained above the second finest refinement leeelder at these display rates. Increasing the pixel tolerance mit-
(see Fig. 4). Therefore, we have chosen to use the existingigates this problem, but whenexceeds a few pixels temporal
erarchy for view culling, and have seen no visible artifacts aftifacts become apparent. This is because each vertex insertion
culling the mesh. results in an instantaneous change in the geometry on the order
The pseudo-code in Table Il summarizes our view cullingf 7 pixels, and a noticeable and quite disturbing “pop” can be
algorithm. The algorithm makes use of the six planes of tis¢en near the new vertex. This problem is exacerbated by using
view frustum. The parametetsi;, d;) for each implicit plane flat (per-triangle) shading, in which case the temporal discon-
equations = ny, - x + d;, = 0 are computed in object space cotinuity in geometry, and hence in surface normals, results in a
ordinates and are passed along in the refinement. We ensuredr@matic change in shading.
n is a unit length vector so thatis the signed distance to the A well-known solution to this problem is to usgomorph-
plane. As in [3], we maintain one flag for each planeside;,, ing [12] to smooth out the transitions in geometry over several
indicating whether the bounding sphere is completely on the iitames. This is generally done by defining the vertex position as
terior side of the plane with respect to the view volume. If thig parametric functiop(¢): Whenever a new vertex is inserted, it
is the case, then all descendants’ bounding spheres must &soitially placed on the current surface= 0), and is over time
be on the interior side, and no further culling tests against ttslowly moved to its final positiont(= 1). Conversely, removal
plane are necessary. If the sphere is on the interior side of all sfwisible vertices is done by reversing the morphing process.
planes (line 2 oubmesh-refine-visible), then we simply tran- ~ There are two main approaches to geomorphing—time-based
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(a) Without culling; 97,435 triangles. (b) With culling; 25,100 triangles. (c) View culling against rectangle.

Fig. 8. Examples of view frustum culling. The mesh is everywh@fecontinuous, whether culled or not. (a, b) The view frustum is shown in semi-transparent
violet, with the viewer looking across the terrain from the right. This view is the same as in Fig. 14. (c) The mesh resolution drops quickly outsidfrulsamm
(shown as a violet rectangle).

and position-based morphing—and they differ mainly in howherez; is the actual, measured elevationipndz; andz, are
the parametet is defined. In time-based morphing [3, 8]the elevations of the endpoints ©¢ split edge (Fig. 1). Thus,
the transition occurs over a fixed period of time or number @fhent = 0, 7 is at the midpoint of the split edge and the ge-
frames, and vertex positions are typically linearly interpolatesimetry is locally no different from whenis absent. Note that
over time. The time-based approach can be somewhat diffi-andz,. may be the elevations resulting from ongoing morphs
cult to implement, since it requires keeping track of morph stddr these two vertices, and we may sometimes have a cascading
and/or end times for each vertex, and adds additional constrasgguence of morphs. Thereforgandz, must be passed along
on vertex dependencies, e.g. one may have to wait for a morjphthe recursion. Fortunately, these vertices have already been
or even a cascade of morphs, to finish before a vertex canvigted and their elevations computed higher up in the recursion
removed [8]. by the time we reach

As its name suggests, position-based morphing [4, 9, 13, 15Using the definition fort above, we have for our isotropic
52] uses the position of the viewer instead of time to define theetric .
morph parametet for each vertex. For example,could be b= Ag=r — Tmin
a function of the distance between the viewpoint and the ver- Tmaz — Tmin

tex [13]. One advantage of the position-based approach is tirifs expression involves two divisions and a square root. We
both the connectivity and geometry of the adaptive mesh dgyn find a simpler (although different) expression by making use
pend only on the position of the viewer, i.e. the mesh always$ the activation condition in Equation 8. That is, we define a

looks the same from any given viewpoint. If in additiofe) range(d,in, dymas ) for the distancel from the viewpoint to the
varies smoothly with the viewpoind, then the mesh geometryyertex:

is a continuous function af. Yet another advantage is that, in

general, no state information is required to keep track of when dyin = €47 = Upinet+ T (13)
the morph was initiated. Tmaz

Because of its many desirable features, we have chosen to
. - A . dmazr = €+T =Vpmag€+T (24)
incorporate position-based morphing into our refinement algo- Tmin

rithm. We approach this problem by defining a range of pixel . . )
thresholdS 7o, Tmaz ), and use morphing whenever the screehNen, since andd are inversely proportiona = 7, when-
space errop, which is a function of the viewpoint, falls within 8V€7d = dmaz, aNdp = Tina, Whenevewd = dy,. Finally, we

this range. We show how this is done for the isotropic (distanci€fine as 2 P
based) error metric discussed in Section I1I-C.2. t= ﬁ (15)
Our goal is to compute the morph paramete®ne possible maz min
approach would be to defineas where we have squared the distances to avoid square roots. Thus

t, and by extension the vertex position, varies quadratically and
smoothly with the distance to the vertex.
Tmaz = Tmin Table IV summarizes our geomorphing algorithm for the
Then whenevet < 0, the vertex is inactive, while> 1 implies isotropic metric. Because all distances computed are nonneg-
that the vertex is active and fully morphed. Kok t < 1, we ative, we can compute their squares directly on lines 1, 2, and 4
set the elevation of vertexi to in morph. To further improve the performance, we can com-
2+ 2 putez directly instead of to avoid any redundant computations
) =tzi+ (1 -t)=—5— (12) whent = 0 andt = 1. Note that the triangle strip’ is no

t = p_Tmin
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morph(:) ating system by using themapsystem call: mmapassociates a

1d—|pi—e part of the logical address space of the computer with a specific
2 dmaz < Vmaz€i + Ti disk file. Using this mechanism the external memory part of our
3 if d < dynae then implementation consists simply of a call tomapto associate
4 diin < Vmin€i + 74 the memory address of an array with the terrain information (el-
5 ifd> dy, then evation values, precomputed errors, etc.) stored on disk. After
6 return M this step the array of terrain vertices is used as if it were allo-
7 else catgd in main memory,.whlle the operating system takes care of
8 return 1 paging the data from disk as needed.
9 else The main advantage of this approach is its simplicity. More-
10 return O over, since the paging mechanism is not specialized for one par-
ticular out-of-core algorithm, we can perform a fair comparison
submesh-morph(V, i, j,1, 21, za, 2r) among different data layout schemes. In this paper we study the
1if 1> 0and (t «— morph(i)) > 0 then performance potential intrinsic in different data layouts, without
2 zetzm+(1-1)z adding any specialized I/O layer with pre-fetching mechanisms
3 submesh-morph(V, j, ¢;(i, j), 1 — 1, 2, %52, 2) that might further improve the out-of-core performance of the
4 tStI‘ip—append—pOint(V, TiyYiy 2,y ! mod 2) terrain traversal_
5 submesh-morph(V. j, ¢ (i, j), 1 — 1,2, 5%, 2,) Given the framework described above, the external memory
TABLE IV processing problem can be reduced to a data layout problem.
PSEUDO-CODE FOR GEOMORPHING That is, we want to find a permutation of the set of mesh ver-

tices such that their layout on disk closely follows the order in
which they are typically accessed during refinement. We know
the structure of the terrain traversal algorithm, and we have a
longer a list of vertex indices. Rather, each vertéx the strip  mechanism that hides the need for data paging from the applica-
is specified directly by its morphed)z-coordinategz;, y;, z).  tion. Based on this, we need to determine: (1) a way of storing
Whereas the computations involved in performing geomorpiie raw data that minimizes paging events, and (2) an efficient
ing add to the refinement time, the improved temporal quality gfocedure for computing the index of the data element in the
the animation often allows a considerably larger pixel tolerang@en refinement order, so that no significant added cost is intro-
to be used, which results in far fewer triangles and an overdliced in the refinement process.
shorter refinement time. As observed by Hoppe [8] and others;The following two subsections describe a data layout scheme

errors as large as several pixels may go unnoticed if geomgiat satisfies requirements (1) and (2), and that has a particularly
phing is used to mask any temporal artifacts. As is evidenceglaightforward implementation.

by the accompanying video (see Section VI), a lower threshold
Tmin @S large as six pixels for@0 x 480 window can be used. A. Interleaved Quadtrees

The temporal quality of the morph generally depends on the . . . i :
length in time over which the morph takes place. If the morph On the basis of the edge bisection refinement algorithm, each

time is too short, then not enough temporal continuity is prb’-ertex (apart from the four corners of the grid) can be labeled
' white, if introduced at an even level of refinement, or black,

vided. If on the other hand the morph time is very long, theft’ ) . P
eitherr, ,;,, must be small, resulting inpa high-compl)éxitygr]nesa introduced at an odd level. Fig. 2 shows this classification

OF 7,nse MUSt be large, resulting in a highly inaccurate me r the first four levels of reflnement. _The top row of Fig. 9
and a large number of costly morph computations. We € hows how the sequence of white vertices forms a quadtree—

perimented with several choices of.., and .., and found the white quadtree@,,. Each white node is in fact the center

thatr,, ., = %Tmin generally provided a good tradeoff betweequ a square tile in a quadtree decomposition of the rectilinear

ality and complexity. We used this relationship for the 'de%rid' Interestingly the black vertices can also be considered as
quatty p1extty . I ! P v 3_rt of ablack quadtree@),. Fig. 9 shows as crossed circles the

sequences and results in Section VI. The morph time also fart X o .
pends on the speed at which the viewer is moving. For hi frtices that need to be added outside the rectilinear grid to form

flight speeds, the morph time is short. On the other hand, Somplete black quadtree. We will refer to these additional

perceived vertex speed due to viewer motion often outweig grtices a;thghost v?rttmtehs : -Lhte blaclgtquad't\:ete Is rotated 45
the vertex speed due to morphing, which tends to reduce rees with respect to tne white quadtree. No emattloe_s
effects of short morph times. not start at the root but at the first level of refinement. Adding a

virtual root node make®; one level taller thaid),,.
IV. DATA LAYOUT AND INDEXING Since the traversal of the DAG (see Section IlI-A) is per-
, i , formed top-down, starting form the root, good data locality can
This section addresses the problem of laying out the terrgjg 5chieved by storing the data from coarse to fine levels. Within
data on disk to achieve efficient out-of-core performance. In tag 1, |evel, the data should be stored so as to preserve neighbor-
spirit of our overall approach to terrain visualization, our go@loaq properties to the extent possible: vertices that are geomet-

is to have a very simple mechanism for performing out-0f-Cofg 5|y close should be stored close together in memory. For a
paging of the data, while maintaining high performance. In par-

ticular, we take advantage of the paging mechanism of the opetThe equivalent Windows function is callédapViewOfFile
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Fig. 11. lllustration of embedding the top two levels of the white quadtree in
the unused parts of the black quadtree.

Fig. 9. Top row: First three levels of the white quadtree. Bottom row: A
complete black quadtree is obtained by adding the crossed ghost vertices to it.

Fig. 12. Indices for the first few levels of the embedded quadtrees.

results in unwanted “holes” in the array. It is however possible
Fig. 10. Indices for the first few levels of the interleaved quadtrees. Ghd& reduce the amount of unused space. First observe that the
vertices are marked in green; the orange corner vertices are not part of eitggtal number of ghost vertices is roughly twice as Iarge as the
quadtree. number of white vertices. As a consequence, instead of using
two interleaved quadtrees, we can use the black quadtree only

quadtree, this can be achieved by using the order induced@§}f Store the white nodes in place of (a subset of) the ghost

the following formula that computes the indebp, k) of the k" nodes. We divide),, into four subtrees, rooted at the chil-
child of the parent nodg: dren ofr,. Fig. 11 shows the insertion of these subtrees into

the unused space 6¢J,. The use of a single quadtree also af-
c(p, k) =4p+k+m with £ =0,1,2,3 (16) fects the value of the constant. In this case we have, = 4

(this value is actually used for the white root) asid,, 0) = 5,
wherem is a constant dependent on the index of the root and théich impliesmn = —11. In addition, since the white quadtree
index distance between consecutive levels of resolution. Usifgs been split up into four independent subtrees, these relocated
this data layout, all the vertices on the same level of resolutishbtrees will not be reached from the white rogt(node 4 in
are stored together, starting with the coarsest level. The indgg. 12) using Equation 16. Therefore we cannot begin the re-
distance between two vertices on the same level depends oncisive refinement withr,,, but must unroll the recursion one
distance to their common ancestor in the quadtree, e.g. any ftavel and make eight instead of four callssobmesh-refine
siblings are stored in consecutive positions. For this indexifi@m mesh-refine.
scheme, we interleave the black and the white quadtree, with
rootsr, = 3 andr,, = 4. Sincer, is not used in practice, we C. Efficient Index Computation
can assign the first four indices (from O to 3) to the corners of theTg avoid any overhead in the refinement process, we need an
grid (Fig. 10). The first child of, is stored immediately after efficient method for computing the indices of the vertices visited

Ty, and we have in our top-down traversal of the terrain. For data stored in linear
order (standard row major matrix layout), computing the child
c(ry,0) =4-3+0+m=>5 indices in the DAG can be made easy by carrying along three
c(ry,0)=4-44+04+m=9 indices in the refinementv;, vy, v,.). These indices make up

the current triangle in the refinement, and their subscripts cor-
which both implym = —7. Fig. 10 shows the vertex indices folrespond to the left, apex, and right corner of the triangle (Fig. 7).
the first few levels of the interleaved quadtrees. The two child triangles of in the recursion can then be written
ast; = (vy, U, Ve) andt,. = (vg, vy, v,-). Herev,, corresponds
B. Embedded Quadtrees to the v<ertex at th)e midpoint( of the spli)t edfe, v, }, which can
Notice in Fig. 9 that the ghost vertices@h, are not used. Be- be computed simply as the index average= (v; + v,.)/2.
cause the data is eventually stored as a single linear array, thisor the indexing scheme based on the interleaved quadtrees,
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kl, kr

sw | se,ne|ne,nw|nw,sw|sw, se
se |nw,sw|sw, se | se ,ne|ne,nw
ne | se,ne|ne,nw|nw,sw|sw, se
nw |nw,sw|sw, se | se ,ne|ne,nw

Ky, k

N

Sle|o|3

TABLE V
TRANSITION TABLES USED TO DETERMINE THE LEFT(k;) AND RIGHT (k)
BRANCH TO BE USED INEQUATION 16 FOR QUADTREE PARENT BRANCH:g
AND GRAPH PARENT BRANCHE,.

Fig. 13. Quadtree branches taken during DAG traversal. For example, after Ky, k kg

going from answ-child p, in the white quadtree to a-child pg in the black ’ 0 1 2 3

quadtree, the twgraph childrenof p, are thesw andse quadtree childrerof 0 12123130101

pq. See Table V for all possible branch combinations. The dashed arcs in the ! ! ! !

figure show quadtree sibling relationships. k 1130(01]1,2)23
¢@121]11,2]23|30|01

3/130]0,1|1,2] 23
we make use of the parent-child relationship between vertices in TABLE VI

the quadtrees. Consider one refinement step as shown in Fig. 7.
The new white vertices; (left child) ande,. (right child) have

a commorgraph parentp, in the refinement DAG(in the fig-

ure). Moreover the graph parentgfis also theguadtree parent

pq Of ¢; ande,. (¢ in the figure). Based on this observation, the in-
dicesc; andc, can be computed from the index of their quadtreg/e can therefore focus only on rows 0 and 1. Now notice that

parentp, using Equation 16. The relative positionsigfandp,  if we shift row 1 two columns to the left, then rows 0 and 1 are
determine which two branches (the values of the inklemeed the same. That is

to be used to react andc, from p,. This relationship is il-

lustrated in Fig. 13 and summarized in Table V. To find what  k(kq, kg, b) = k(kq mod 2, kg, b)

branchk a given child node: corresponds to, we simply solve = k(O, (2(ky mod 2) + ky) mod 4, b)
Equation 16 fork:

SINGLE TRANSITION TABLE CORRESPONDING TOsw = n = 0,
se=e=1,ne=s=2,nw=w=3(CF. TABLE V).

We are now left with row 0 only, from which we immediately

k= (¢ —m) mod 4 (17) notice thatk; = (k; + 1) mod 4 andk, = (k; + 1) mod 4, i.e.
That is, the value of: can be determined from the lowest two k(kq, kg, b) = k(0, (2(kq mod 2) + ky) mod 4, b)
bits of the vertex index. We can then use Equation 16 and Ta- = (2(ky mod 2) + k, + b+ 1) mod 4
ble V to compute;; andc,. However, there is considerable re- = (2k, +k, +b+1) mod 4

dundancy in the transition tables, and by carefully numbering
the four branches in the two quadtrees it is possible to comp@®i&cek, = (p, — m) mod 4 andk, = (p, — m) mod 4, we
¢; ande, using simple arithmetic. We show how this is don@ave

below.

In order to make the transition tables as simple as possible, k(g Pg) = (2(pg —m) + (pg —m) + 1) mod 4
we have chosen to number the quadtree branches as follows: (qu +pg—3m+1)mod 4
sw=mn=0,s¢e =e=1,ne=s=2 nw=w= 3. (2pq+p9+m—|—1)mod4

That is, the order is counterclockwise in the white quadtree and 2 9 42 44
clockwise in the black quadtree. Because of this choice, Table V r(Pg;Pg) = (2pq +pg +m +2) mo
can be CO”E\pSEd toa Single table, Table VI, that can be used mﬁa”y, we arrive at the f0||owing expressions forande, :
both quadtrees. Let us focus on how to encode Table VI using
arithmetic. We will usek(k,, k4, b) to denote both; and k., c1(pgspg) = 4pq + ((2pg + pg +m + 1) mod 4) +m
with the convention thak is zero fork; and one fork,.. First cr(Pgsg) = 4pg + ((2pg + pg +m +2) mod 4) +m
observe that rows 0 and 2 are the same, as are rows 1 and 3, thus

These simple equations are used inghbmesh-refine proce-

k(kq, kqg,b) = k(kqy mod 2, kg, b) dure in Section IlI-D.
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D. Memory-Efficient Hierarchical Indexing Fig. 2(d) we have & x 3 grid and a3 x 2 grid of black ver-

One drawback of our quadtree-based indexing schemes is H,'Ca%s, each being the transpose of the other. If the vertex data

they use a non-contiguous address space. In the case of iHFe?—torehdl n e}ll;near 2|D atrray,. then W(ihcan traver{set the vebrt|cefs
leaved quadtrees, the unused ghost vertices result in a wast@ yach 1evel by simply Stepping over the appropriate number o

storage resources of roughly 66% of the input data. This ov F_rtlces in each dlre_ctlon. We can als_o find simple of_fse_t rules
head is reduced to 33% in the storage layout where the w reach the four children from any given vertex, as indicated

guadtree is embedded in the black quadtree. This overhead ﬁhe arrows in Fig. 2. Finally, in order to compute the error

be completely eliminated by using a data layout based on a hi €, We may need to identify the split edge associated with

archical version of thél-order space filling curve. Because thgaCh vertex (the remaining two vertex indices in the diamond

implementation of this scheme is not as straightforward as -k be derived similarly, if needed). For the refinement levels

guadtree-based schemes described above, we have deferreaqmeammg black vertices, this is easy; the split edges are always

derivation and discussion of thie-order layout to Appendix A oriented in the direction of the grid that has the smaller number
In Section VI we include empirical resuits of the performanc%f vertices. On white levels, the split edges alternate in orienta-
from one vertex to the next. Thus, we have a set of simple

achieved both with the quadtree-based schemes discussed W%r?e for t ing th " level and ing thei
and with the hierarchicdll-order space filling curve. rules for fraversing the Verlces on a level and accessing their

children, split edges, and diamonds.
V. DATA PREPROCESSING In Section IV we described several different data layouts.

_ ) ) ) These layouts do not necessarily lend themselves to the simple
Sections |Il and IV describe what information needs (0 B8, e| hy.jevel traversal just described. Rather, we know only
computed for each vertex and how to organize the informatiqf, ; 1 'traverse them recursively. Therefore, we have chosen to

These sections do not, however, provide much detail about iGom a)l preprocessing by first storing the height field in lin-
steps involved in preparing the data in this format. We here digs; 1o major order, and then as a final step rearranging the data
cuss possible representations of the data and explain a methog he given layout. In practice, this ends up being consider-
for preparing the data in an off-line preprocessing phase. 5y more efficient than performing repeated recursive traver-
sals until the information is fully propagated. This rearrange-
ment of the data is done using two parallel recursive traversals.

As discussed in Section IlI-B, in addition to the elevation That is, we simultaneously traverse the linear input array and the
of each vertex, we must store an error terrand a bounding reordered output array in refinement order, using the indexing
sphere radius. In order to avoid carrying they-coordinates rules from Section IV, and copy corresponding vertices to the
in the domain with us during the recursive refinement, we caatput array. We acknowledge that this requires roughly twice
optionally store the full positiop = (x, y, z) with each vertex. as much memory, and assumes that the processing can be done
In our visualization system, we have chosen to store all of tirecore. For extremely large terrains, it may be necessary to
fields as 32-bit floating point numbers. For fixed-length recordsemory map the output data, and to work only on small pieces
(p, €, 1), this means 20 bytes of storage per vertex. of the input data at a time.

e

A. Vertex Representation

B. Bottom-Up Propagation VI. RESULTS

Given a representation for the vertex records, we now turn ;g section, we present the results of running an implemen-

our attention to .hOW to computg the '”d'V'd“?' 'flelds of thest%ttion of our terrain visualization system on several computer ar-
records. In particular, we describe how 1o efﬁmently COMPUitectures. We used a two-processor 800 MHz Pentium 11l PC,
the error terme (Equation 2) and the bounding sphere rad'%lnning Red Hat Linux, with 900 MB of RAM and GeForce2

E(thuatl((j)n 3)- Ct:early, becadusedof their retc;L:irswe definition raphics. To push the out-of-core aspect of our system, we ar-
othe andr must be computed and propagabettom-upfrom tificially limited the memory configuration of this machine to

DAG children to their parents. To do this, one possible approagh i for some of our results. A two-processor 300 MHz

would be to traverse the DAG using the recursive refinemeﬁ 2000 SGI Octane with Solid Impact graphics and 900 MB
procedure from Section I_”'D’ and to propagate the_ COMPUIBH AM was also used to measure memory coherency, while we
values back up the recursion. Unfortunately, using this approggll, 5 48-processor 250 MHz R10000 SGI Onyx2 with 15.5 GB
only two children are visited at a time, and the information ISt RAM and InfiniteReality2 graphics to avoid being graphics

propagated to only one parent. (Recall that each vertex hasa% memory limited, and to allow the raw refinement speed to

to four chlldren and two parents in the DAG.) While making "%e measured. For all results, we used a data set over the Puget
peated recursive traversals would eventually guarantee tha nd area in Washington (see Fig. 14), which is made up of

the information is propagated up the DAG, this approach is "TB 385 x 16, 385 vertices at 10 meter horizontal and 0.1 meter

efficient. Instead, we describe a method that processes the In\f%'zr'tical resolutior?. Using our data structures, this data set oc-

cupies roughly 5 GB on disk. The guantitative results presented
Notice in Fig. 2 that we can relatively easily identify th b any d P

) . ) .here were collected during a 2,816-frame fly-over of this data
vertices that fall on any given refinement level. In the whit

. . . "€et. The window size was in all case#) x 480 pixels.
guadtree we always have a single square grid of dimensions

27_1 X 2??' whereas _m the black quadtrge we have two Overlapﬁhis data set can be downloaded frbttp://www.cc.gatech.edu/projects/
ping grids, each witl2™ x (2" + 1) vertices. For example, in large_models/ps.html.

mation level-by-level and visits each vertex only once.
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(a) T = 2 pixels; 79,382 triangles. (b) = = 2 pixels; 79,382 triangles. (c) 7 = 4 pixels; 25,100 triangles.
Fig. 14. View of Mount Rainier, Washington. (b, c) Edge bisection subdivision meshes for two different screen space error thresholds

A- \/ieW'Dependent Reﬁnement s maximum error: simplification (# triangles) incremental error: simplification (# triangles)

maximum error: refinement (% overhead) incremental error: refinement (% overhead)

We will first discuss the performance of our view-depende

refinement algorithm. We used the distance-based error me %
described in Section 11I-C.2 for the results presented here. ~ * -
evaluate the efficiency in mesh complexity for a given accura g 1 ‘ [ *5
we recorded for the 2,816-frame fly-over the number of rende £ *°| =N %
triangles obtained using both a bottom-up simplification of t| %3" i °3
terrain and our conservative top-down scheme. In the bottom 2 * J / 7/ %
scheme, the object space errors need not be inflated to gue 3 * 02
tee nesting, nor do the projected errors have to be inflated & ** %
measuring them over the nested bounding spheres. Insteac ® '] ; ® %
used the actual projected eri@i;, p;,e) < p(e;, B;, e) of the 51 /

0 T T T T T T 0

measured errat; for each vertex, and then performed a separ:
step to patch cracks by activating the ancestors of all active \
tices. Using this bottom-up approach, we obtain for any givgsy 15 wmesh complexity comparison between top-down refinement and the
metric and tolerance the minimal valid mesh posstblghich  optimal, bottom-up simplification scheme. The graph shows for two different
consequently serves as a good benchmark for evaluating ehigct space metrics the minimal number of triangles (shaded areas) and relative
refinement method. The results presented here are for megHgiiead (soid ines) g?it?r;f)'(gﬁmem' The data was gathered over 2, 816 views
that have been coarsened using view frustum culling, and differ
somewhat from the results presented in [1] where culling was
not used. _ the relative increase in number of triangles from using top-down
Fig. 15 shows for both the incremental(") and maximum refinement versus bottom-up simplification. Notice that, when
(em**) object space metrics the number of triangles producgsk overall triangle counts are high (frames 1024-2048), the rel-
during the fly-over by bottom-up simplification, as well as thative increase is on the order of 1-2% for both metrics. The
relative percentages of additional triangles produced by our c@fyerhead becomes large only when the triangle counts are low,
servative top-down refinement. We used a toleraneel pixel  suggesting that our refinement produces a small, roughly con-
and a coarsened version of the Puget Sound data downsamptgglt increase in number of triangles. However, because the
to 1025 x 1025 vertices (to make data collection tractable). Afarge peaks occur only at low triangle counts, the net increase
can be seen from the shaded regions, the maximum &r6r  in number of triangles remains low. Over the entire fly-over, the
consistently resulted in a small increase in mesh complexity ovgtal number of rendered triangles increased only by 1.63% and
usingé*™. This is not surprising sinc&™** > é¢ (Section lll- - 3.76% for the maximum and incremental errors, respectively.
C.1). However, as can be seen in the graph, the discrepamegse averages appear in the histograms in Fig. 16, which show
is often small, suggesting thét*“ can be used to approximatethe highly skewed distributions of the mesh complexity over-
the more compute-intensivé'*®. Because of its simplicity, we head for the two metrics. Becaus&® is already close to
chose to use the incremental error for the remaining resultspigsted, using simplification instead of refinement has less po-
this paper. tential for improvement than in the case of incremental errors.
The two curves in Fig. 15 show on the rightmost vertical axis For the same flight path as above, over the full-resolution data
6As noted earlier, it is possible that removing a vertex leads to a reductionﬁﬁ?’ we al§0 measured the mesh complexﬂy forthe ISOtI’(?pIC and
¢ (e.g. resulting in a mesh with a better fit), and thus possibly a reductipn irBNiSOtropic screen space error metrics, ugifig as the object

from above to below. Whether such a coarsening operation should be aIIowgPace metric. We found that the anisotropic metric on average
or not depends on the interpretation of the error metric. This choice, howe\ge ¢ 2 50 reducti . h lexit the isot .
clearly has an impact on what constitutes a “minimal mesh.” For consistency ﬁ&j 0 a .57 reduction in mesh complexity over the 1sotropic

simplicity, we have chosen to be conservative and not allow such operationsmetric, although at the expense of efficiency of evaluation. This

256 512 768 1024 1280 1536 1792 2048 2304 2560 2816
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number of views (%)
number of views (%)
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mesh complexity (% above minimum) mesh complexity (% above minimum)

(a) Incremental error. (b) Maximum error.
Fig. 16. Distribution and average (dashed line) of overhead in mesh complexity due to conservative refinement relative to the minimal mesh.

platform | 9€0- | multi- | view | time jrenderingrefinement g g significant decrease in performance. Conversely, the use
morphingthreading culling] _(s) | (Mtri's) | (Mtri/s) of view culling results in a relative speedup. We attribute this
31743 0939 1435 g9 _ peedup. Vi ,
155 GB SG v | 7550 0.595 1.466 result to caching behavior—as the triangle strip grows, an in-
' v v | 4763 0944 1399  creasing humber of cache misses are made, which slows down
v v v 1‘%'% (l)'ggg g'ggg the method that did not use culling. Meanwhile, when a large
' ' ' fraction of triangles are culled, the overhead of making recur-
900 MB PC v | 4389 0980  1.860 . _ ' . .
v v | 3862 1113 1777  sive function calls dominates, as evidenced by the sharp drop in
v v v 3898 1103 1519  performance near frame #512.
TABLE VII
FLIGHT TIME AND AVERAGE PERFORMANCE FOR2816+RAME FLY-OVER In order to show the qualitative performance of our geo-
(SEE ALSOFIG. 17). THE RENDERING PERFORMANCE IS MEASURED AS  morphs, we have prepared a number of MPEG animations
THE NUMBER OF RENDERED TRIANGLES OVER THE FRAME TIMEIN that can be downloadeded frohttp://www.cc.gatech.edu/
MULTIPLES OF THE MONITOR FRAME TIME), WHICH INCLUDES THE ~lindstro/papers/tvcg2002/. These animations indicate that
REFINEMENT TIME IN SINGLE-THREADED MODE. by using geomorphing the screen space error tolerance can be

increased considerably without any appreciable loss in rendered
guality. Objectionable temporal artifact like geometric popping
and shading discontinuities are virtually eliminated by smoothly
behavior, which was also observed by Hoppe [8], leads usrtmrphing the geometry. Without geomorphing, popping arti-
conclude that the simple isotropic metric is to be favored.  facts can be visually disturbing if the tolerance is larger than
We next evaluate the performance increase due to the uséi pixels. Using geomorphing, the lower error tolerangg,
culling and multi-threading (one thread each for rendering afén be doubled or even tripled before the smooth motion caused
refinement). These results, which are summarized in Table Y the geomorphs can even be detected.
and plotted in Fig. 17, demonstrate a clear advantage of using
both culling and multi-threading. We were able to sustain up to Table VIl and Fig. 17(b) show some quantitative results of us-
40,000 rendered triangles at 60 frames per second on the $glgeomorphing. Using,,.. = 57min and a variety of choices
Onyx2 during the fly-over. When the number of rendered trier r,,;,, we found that roughly 20-25% of the vertices were
angles exceeded 40,000, however, the frame rate slowed brieflgrphing at any one time. As expected, the additional work
We generally obtained even higher frame rates on the PC (owequired to continuously morph the mesh geometry results in a
72 Hz on average), but the rates were more varied. In both caskep in the refinement performance. However, as our animations
we synchronized our rendering rate with the monitor display radbow, the increase in acceptable tolerance due to improvements
(60 Hz on the SGI, 75 Hz on the PC), which in many cases ri@-temporal quality more than offsets the comparatively small
sulted in significant idle time. This idle time is part of the overalhcrease in refinement time.
frame time used to measure the rendering speed in Table VII.

Fig. 17(b) highlights the refinement performance, with and Finally, we evaluated the efficiency of using a single trian-
without culling, measured in number of rendered triangles dite strip. We found that the ratio of triangle strip vertices
vided by the wall clock refinement time. For low triangle count$p the number of non-degenerate triangles averaged 1.56 ver-
the refinement runs faster when view culling is disabled, as dices/triangle with virtually no variance. This number should be
pected. Notice, however, that as the mesh complexity increasempared to 3 vertices/triangle for a list of independent trian-
towards the middle of the graph, the lack of view culling leadsles.
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(a) Frame time (thin lines) and number of rendered triangles (thick lines). (b) Refinement performance over time.

Fig. 17. In-core rendering and refinement performance on SGI Onyx2 over several thousand frames of the Puget Sound fly-over. The curves coreespond to th
use of single-threading—uwith and without culling—and multi-threading with culling—with and without geomorphing. The hierarchical indeximg\wabaised

in all four runs. (a) Using multi-threading a steady 60 Hz is maintained during nearly the entire fly-over. The number of triangles for the thre¢hstheseds

culling coincide, therefore the graph for only one of them is shown. Similarly, the frame rates with and without geomorphing were roughly the Same. (b)
vertical axis corresponds to the number of non-degenerate triangles in the triangle strip divided by the (wall clock) refinement/culling/ggdamaphi

—A—block —O— linear —C— N —— embedded quadtrees data being paged in. Clearly, the hierarchical indexing schemes
(quadtree-based arid-order) greatly outperformed the linear
and block-based schemes, and often lead to drastically improved

le7

166 A\ paging speeds (Fig. 20). Perhaps surprisingly, the block-based
\A\ scheme, which is often used for terrains, performs the worst of
les . them all. This is because the refined mesh rarely consists of

O\O\ \ groups of many vertices at the highest resolution. Instead, a
le4 handful of vertices are needed from each block, requiring virtu-

o ally the entire terrain to be paged in during each refinement pass.

A more reasonable block-based indexing scheme would be to

subsample the data and create a multiresolution pyramid, allow-

=
@
w

total number of page faults

1le2 ing more coherent access to different resolutions of data. How-
L 2 4 8 ever, such an indexing scheme uses multiple indices for each
screen space error tolerance (pixels) vertex, which would arguably make for an unfair comparison

, with our other indexing schemes.
Fig. 18. Total number of page faults vs. screen space error toleranoce

900 MB SGl.
We also investigated the paging behavior over time. Results

for the SGI Octane are shown in Fig. 19(a), while the PC results

B. Data Layout are shown (on a log-log scale) in Fig. 19(b). These graphs show

I this section, we compare the memory performance of folJ]2! th?{;e 'ts aﬁs'gn";:‘.:int hit at Sfiartu'z’ when no data is mem-
different indexing schemes: the single quadtree scheme fr [ resicent, atter which pages often stay in usef memory or can
Section IV-B, where the “white” tree is embedded in the “blac e reclaimed quickly from the operating system’s cache. These

tree; thell-order indexing scheme; a blocking scheme based Bt?isults also indicate that the hierarchical indexing schemes con-

32 x 32 tiles from the highest resolution data; and a St(,dea?bstently result in one to two orders of magnitude improvement

matrix layout in row major form. For all these methods, w' paging performance over the non-hierarchical layouts.

stored the field$p, ¢, r), which together occupy 20 bytes, with

each vertex (see Section |||) Our focus here is not on the StOl’-Fina”y, we measured the raw in-core refinement speed of all
age efficiency of the vertex records—it is entirely possible {adexing schemes. Due to better cache locality, the quadtree
compress or even eliminate some fields in this record (see S&gheme, while involving a few more operations, is still twice as
tion VII-B). Rather, we assume fixed-length records and focggst as the linear scheme, and is also twice as fast as the more
on how efficient the different indexing schemes are at accessgimplexII-order scheme. This suggests that the linear scheme
them. is inferior in all aspects to quadtree-based indexing, with the ex-

Fig. 18 shows for the Puget Sound fly-over the total number oéption of memory overhead. We plan to investigate alternative
page faults for varying values of the error toleranceSmaller indexing schemes that have the same desirable properties as the
values ofr result in larger meshes being rendered and mogeiadtree scheme, but with higher memory efficiency.
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Fig. 19. Cumulative number of page faults over time on two different platforms.

(a) Frame #1000. (b) Frame #1180. (c) Frame #1360. (d) Frame #1540.

(e) Frame #1720. (f) Frame #1900. (g) Frame #2080. (h) Frame #2260.

Fig. 20. Frames taken every three seconds from two multi-threaded fly-over sequences using linear, row major indexing (top half of each franeeahdspdd
indexing (bottom half). The flight paths for the two sequences are the same. The improved cache performance of the quadtree-based schemeeesiés in mor
being paged in more quickly.

VIlI. DISCUSSION tion the terrain up into smaller square blocks, while propagating
. . . . . the error and radius information between blocks during prepro-
Atthis .p0|nt, we would I'ke. to d!scqss ongoing research arl:gessing to ensure that no cracks between them are created.
other topics relevant to our visualization algorithms, as well as o . )
directions for future work. Ano;her con_stralnt in our currer_1t system is that the input data
be a single grid sampled at a uniform resolution. In many ap-
plications, multiple, possibly nested data sets at varying resolu-
tion need to be georeferenced and integrated into a single data
The height fields representable by edge bisection are necti-[23,24]. Using our current approach, we would need to re-
sarily restricted to be of dimensioR% + 1 squared. For height sample all data sets to a common highest resolution, which is
fields that do not fit these dimensions, we currently expand thémpractical. Instead, we suggest partitioning the terrain both
to the next larger square power of two. Because we store the fipatially and in resolution using a meta-hierarchy of blocks,
zyz-coordinates of each vertex, we can preserve the areal ex@ith as a quadtree, to organize the data. Our algorithms would
of the height field by clamping the coordinates of the verticégen be used in their current form within each block in the meta-
that fall outside the input region and initializing their errors an@ierarchy.
radii to zero. Perhaps a better solution to this problem is to parti-Not all height fields are represented as regular grids. In fact,

A. General Terrain Data



20

more general representations, such as TINs, exist for a good itgits of § and using any remaining bits for a lossy, conservative
son; the amount of spatial complexity often varies over a sw@ncoding ofe andr, i.e. the least significant bits that are not
face. While our adaptive refinement capitalizes on this fact, teacoded are all assumed to be ones. To encode the bounding
source data is still stored as a uniform grid. In addition, bephere radius, we note that is highly correlated on any given
cause the mesh is made up of a fixed pattern of right isostevel, and is bounded below by the smallest radius needed for
les triangles, preserving sharp geometric features, such as ridgsting circles in 2D. Thus, we can encode the excess of the
lines, and image features, such as roads and rivers, is diffictdidii using small per-level lookup tables.

As demonstrated in [47], there is no need for the refinementFor efficiency reasons, we must avoid having to uncompress
to insert vertices at edge midpoints. Using our current datse vertex information every time a vertex is touched. There-
structures, which store thez-coordinates with each vertex, wefore, we advocate using a fast caching mechanism, similar to
could perform a data-dependent triangulation that still has tthee low-level caches used in modern CPUs, to reuse previously
same subdivision connectivity. The key research problem liesiincompressed vertices. The size of this cache should be cho-
how to efficiently and optimally construct a good triangulatiosen to be roughly proportional to the size of the largest adaptive

with subdivision connectivity. mesh.
) Whereas the compression scheme described above reduces
B. Compression the storage requirements by a factor of ten, the largest poten-

Based on the data structures discussed in Section V, we L for compression comes from using variable-length coding,
quire twenty bytes of storage per vertex. Using the quadtré@ich would allow large regions of the height field to be com-
layouts from Section 1V, this number effectively increases dyfessed using only a few bits. For example, large subtrees of
one or two thirds. While our memory and disk footprints are ngfhused ghost vertices (Section IV-A) could be eliminated this
nearly as large as some competing methods, e.g. [8], storage/é&¥y- Similarly, for composite_ data §ets thaF vary in rgsolution,
ficiency is still a concern. If space is at a premium, it is possibfid for data sets that do not fit the size requirements imposed by
to compress the per-vertex information considerably. Withofiterarchical bisection, large unused portions of the vertex data
going into great detail, we here sketch a possible scheme ¢guld virtually be eliminated using variable-length compression.
encoding each vertex using only 16 bits (assuming the original
height field can be represented using 16 bits). VIl SUMMARY

As already mentioned, they-coordinates of each vertex can We have presented algorithms for two important components
be computed on-the-fly. Thus we are concerned only with large-scale terrain rendering: a method for efficient view-
encoding(z,e,r). Because most height fields are relativeldependent refinement; and an indexing scheme for organizing
smooth, we expect the elevation to be highly correlated at #ike data in a memory-friendly manner. The refinement and ren-
scales. Thatis, we can use the existing hierarchy as a linear plering components of our algorithm have been shown to be very
dictor for z by using the midpoint of the associated split edge a&dficient, and in spite of their simplicity compete with the state
the estimate. We would then store only the signed differénceof the art in terrain visualization. Indeed, the core components
from the estimate. This is in a sense similar to a linear wavelstour view-dependent refinement and hierarchical indexing can
transform of the data. We would expect the magnitudé oh be implemented in as little as a few dozen lines of C code.
average to be much smaller thapand therefore require fewerAn implementation of our algorithms can be downloaded from
bits to store. http://www.cc.gatech.edu/~lindstro/software/soar/.

Note that for any reasonable object space metric, we have  We have already discussed some possible directions for fu-
|0], i.e. the error ought to be at least as large as the deviatiome work, but briefly mention a few additional ideas. Whereas
between the mesh before and after removing the vertex. Alsiog majority of recent work on terrain visualization has been
we know thate decreases monotonically with each refinemenh view-dependent geometric approximation, perhaps an even
level. Based on these facts, a variant of zerotree coding [53] cabre important component is texturing and texture level-of-
be used to progressively eliminate redundant bits. That is, if wletail management. Few techniques currently exist for transpar-
know thate; for vertex: is smaller than some threshold, tHéy}  ently caching and loading textures. To our knowledge, the only
must also be smaller, as arpand|d;| for all descendantg of general approach to scalable texture caching is the SGI-specific
1. In particular, if the most significant bit (or bits) ef is zero, extension foclip mapping[54]. Having a general paging mech-
then we do not have to encode this bit (bits) for eitheor |§;| anism such as memory mapping for hierarchical textures would
on the remaining levels. Thus, agrows smaller level by level, be tremendously useful. Even in the case of explicit texture pag-
progressively fewer bits are needed to represeand 0, and ing, we see a lot of room for improvement. A related problem
more bits become available for encodingNote that wherd| is is how to perform efficient high-quality shading, which is of-
large, we already expect the vertex to be active, and representig implemented by pre-shading the geometry and storing the
e andr less accurately may in this case be acceptable. The ordgult in a high-resolution texture. Achieving high-quality dy-
caveat here is that the number of significant bits used to encadenic lighting is still a largely unresolved problem. Another
e ando for a particular vertex must be independent of how wigsue related to view-dependent methods, and in particular those
reached the vertex. Thus, both DAG parents of a vertex mtisht incorporate geomorphing, is how to efficiently render the
agree on how many bits to use for their common child. continuously changing mesh. Current graphics hardware is not

To ensure that the height field is represented losslessly @atimized for “immediate mode” rendering of dynamic meshes,
the given 16-bit precision), we suggest encoding all significaatd thus hybrid methods may be neeed that cache larger, static



pieces of the mesh for more efficient rendering. Finally, we env]
vision that our algorithms for 2D height fields can be general-

ized to higher dimensions. For example, we intend to invesfiy
gate how to extend our framework to view-dependent rendering

of 3D scalar fields using techniques such as progressive isocon-

touring.
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APPENDIX

I. II-ORDER SPACE FILLING CURVE DATA LAYOUT.
In this appendix we construct an alternative data layout baged
on thelIl-order space-filing curve (a variation of the Z-orde
Peano curve [28]). Contrary to the quadtree indexing schemes
(b) (© (d)

in Section IV, this data layout does not require extraneous ghost @
I 0,

vertices, and th.erefore. does not suffer from the 33% Storaﬁ& 22. TI-order curve with boundary (solid black lines) aligned with the ver-
overhead associated with those schemes. Unfortunately, the ¢gd of a rectilinear grid (dashed gray lines). Each new level inltreder
in storage efficiency comes at the expense of a more complirve corresponds to two levels of edge bisection refinement of the grid. The
cated implementation. Our approach is based upon, and refist bisection |ntrod_uces the whlte vertices V\_/hlle_the second blsec'_uon intro-
h ilv on the related hierarchical Z-order indexina scheme uces the black vertices (see Fig. 2). The vertices in the top row and in the right

ea}w y O . . ) _g - Tumn constitute the added boundary that allows a gri@®f+ 1) x (2 +1)
scribed in [42, 43], which applies neatly to grid dimensions @krtices to be covered exactly.
2".” We here derive an extension of this scheme to grids with
2™ + 1 vertices by treating the extra row and column as a spe-
cial boundary case. For background information and a Moge-e5-66-67-68-69-70-71-80 64— 68— 66— 69— 65— 70— 67— 71— 80
detailed exposition, we refer the reader to [42, 43]. FOr the Saje 7 25— 26— 37-38-41-42-79 42— 21— 44— 22— 50— 25— 52— 26— 79
of completeness, we here provide only the details necessary JOr), ., ), ds 3o 4o_ds_ 78  10-d3— & —d5—12-o1— 6 —53—75
i i - | | | | | | | | | | | | | | | | | |
|mplem(_ant!ng thd,I ordcfr S(iheme. ) . . 17-18-29-30-33-34-45-46-77 40— 20— 46— 23— 48— 24—54—27-78

We will first derive a “flat” index for a single-resolution grld'l|6—l|9—2|8—3|l—3|2—3‘|5—4|4—4|7—7|6 L U B N

Then, in Section A-B, we describe how to extend it to a hierar- = = & 1 T 1 1 | T

chical layout, such that all vertices on a given level have indicgs ¢ ™5 ~10753 379779875 347177367 18798-29-60=30-77

|
smaller than the vertices on the next finer refinement level. |~ 7~ 8~11752785-56=89=74 8 =35= 4 =37~ 14-50= 7 ~61~74
1—-2-13-14-49-50—-61-62—-73 32—-16—38—19—-56—-28—-62—31—-76
| | | | | | | | | | | | | | | | | |
A. Local Index 0-3-12-15-48-51-60-63-72 0 —33— 9 —39— 3 —57— 15— 63— 72
Fig. 21 shows the recursive construction of th@rder space (a) (b)

filling curve. The basidl pattern involving four vertices is Fig. 23. Indices of the vertices oftex 9 grid. (a) BasidI-order with boundary.
shown in Fig. 21(a). One level of resolution is built by repladb) Hierarchical version of the same index.

ing each vertex on the previous level witlllashape reduced

in scale by a factor of two. The space filling curve built over

n levels defines a total order on the vertices @f'ax 2" grid. two new black vertices (second bisection). The refinement of
Fig. 21(c) shows this total order for a grid ®f 8 vertices. boundary vertices, on the other hand, results in the creation of a
single black vertex. At the end of this construction, each vertex
v of the grid is associated with a unique indein the range
0<i<(22n 27ty = (2" +1)2 -1,

Fig. 23(a) shows the index of all the vertices inax 9
— grid. During the hierarchical traversal, this index is com-
puted by making simple bitwise modifications to the indices
from the immediately coarser level. We use a function
index-append(i, k,1) = i + 2'k, k € {1,2, 3}, which sets one
or two bits ofi. Herek corresponds to one of the three “chil-

@ (b) © dren” in the pi-order refinement, that is above= 1), above-
Fig. 21. Recursive construction of tié-order space filling curve. (a) BaSiC_right (k = 2), or right of (¢ = 3) 7. As in Section IV we assume
level formed by a simplé&I pattern. (b) Second level. Each vertex in the basi . . . .
level is replaced by & pattern scaled by 1/2. (c) Third level. Each vertex of th at the vertices at the finest refinement resolution are on level
second level is replaced bylapattern scaled by 1/4. I = 1, while coarser levels have increasingly higher valuek of
We focus first on the refinement of a single square in the inte-

To make direct use of this data layout we need to align it t@or of the grid. Fig. 24(a) shows this configuration. The coarse
a grid of size(2" + 1) x (2™ + 1). Moreover, the hierarchy of vertices of the square are represented by the indiges, iz,
the longest edge bisection refinement must be matched with @mslis. The grid of nine vertices obtained after the refinement
recursive structure of the space filling curve. Fig. 22 shows tiserepresented by the indicgs, . . ., js. First of all the indices
recursive construction of this data layout fop & 9 grid (n = of the four corners do not changg; « o, jo < i1, jo < i3,

3). The vertices of the base mesh (a) are traversed in clockwjse<— i2. The indicesj;, j3 andjs are computed fromi, as
order, starting from the bottom left corner. In each refinemefailows:
every interior (i.e. non-boundary) vertex is replaced witH a

pattern that includes one new white vertex (first bisection) and

j1 < index-append(ig, 1,1 — 2)

_ 7We_ favor thell layout over the Z Ia}yout _becaus:e the hie_ra_rchiﬁmr_der jg — index-append(io, 3,1 — 2)
index is a better match with the order in which vertices are visited during mesh )
refinement. j4 < index-append(ig, 2,1 — 2)
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A A A N

B’ ! D’

(@) (b) c c (41
Fig. 24. One step of refinement of theorder curve in the interior of the grid B B > |
(no boundary vertices are present). The shaded regions correspond to the s ‘ !
area. (a) Vertices before refinement. (b) Vertices after refinement. Note thac EREEEEEEE ‘
i9 = jo, i1 = j2, 12 = jg, andiz = je.

A’
B’/

Similarly, j5 andj; are computed frony, andis as follows: D’ A

Js < index-append(i1, 3,1 — 2) Fig. 25. Relationship between edge bisection and the quadtree refinement. Each
i index- ndi-.1.1 — 2 triangle (labeled A-D, A-D’) is associated with its smallest enclosing square
Jr de appe d(l?” )4 ) (shaded gray regions) in the quadtree hierarchy. Bisecting triangles of types

Exceptions to these rules are the boundary cases, i.e. Wh%/ ' does not induce quadtree refinement. Bisecting triangles of type A-D
. L. . . ' induces a quadtree refinement and selection of two out of four square tiles.

eitheri; is on the top row o is in the rightmost column. In

these cases we need to revise the last two rules by treating the

top row and the rightmost column as independent 1D versi

ops
of theIIl-order curve. Therefore we have: Igor non-boundary cases we also have:

js +— index-append(iy, 1, (I — 2)/2) js « shift-right(2*" + js,1 — 1)
j7 « index-append(is, 1, (I — 2)/2) j% « shift-right(2?" + jz,1 — 1)

The first rule is used wheiy > 227, while the second rule is

used wheniz; > 22", Notice that vertex, is never used to Whenjs > 22" we are on the top row and we need to apply the
compute the index of any child in the hierarchy. Hence, we onflgllowing modified boundary rule:

pass alondy, i; andis in the refinement procedure.

-3 2n i _ri n :_ 92n
B. Hierarchical Index Js < 27" + shift-right(2" + j5 — 2°",1/2)

To complete our construction we need to turn ilerder Similarly j; > 22" implies that we are on the right boundary,

with boundary into its hierarchical equivalent, where all the el%’nd therefore we need to apply the following modified rule:
ments introduced on a level have index lower than any element '

introduced on a finer level. For vertices within a single level,
we maintain the same relative order as the origihahdex. To

build this hierarchical index we use the technique introduced
in [42,43]. Here we usshift-right(i, j) = |i/27 | to denote the C. Run-Time Refinement

value ofi after a bitwise shift to the right by bits. Given the
index: of an element in a set of Siﬁ, we can compute the The rules introduced in the two previous subsections are used

jE 22" 4 9" 4 shift-right(j; — 227, 1/2)

corresponding hierarchical indéx as follows: to compute the indices of the vertices in a recursive quadtree
. - b traversal. We match this quadtree refinement with the different
@« shift-right(2” +i,m + 1) classes of triangles that can be constructed in the edge bisec-

wherem is the number of trailing (rightmost) zeros in the binaryion refinement. Fig. 25 shows the eight types of triangles that
representation of. In our casek = 2n for the interior vertices, aré generated by the edge bisection refinement. They are la-
andk = n on the boundaries. During the hierarchical traversBeled A-D on even levels of refinement an-B' on odd lev-

we need to compute this index for each vertex visited. More €ls. Each triangle is also associated with its smallest enclosing
specifically we need to apply this procedure in the block of tiggluare in the corresponding quadtree. The triangles of type A
first 227 vertices, as well as locally in the top row and locally?” have the same bounding square as their children. Therefore
in the right column. For the first block @ vertices, we can their edge bisection refinement does not induce any quadtree re-
apply the procedure as is, with= 2n. Since we need to com- finement. On the other hand, the triangles of type A-D have a

pute this hierarchical index only for the newly created verticeBounding square that is larger than those of their children. Their
we know in advance the number of trailing zerosi.ofor the €dge bisection refinement induces a subdivision of the bound-

childrenj;, ji, andsj; we have: ing square into four squares. Two of them must be selected as
. . o bounding squares of the two children.
e sh!ft—r!ght(Q +inl=1) Let ¢ denote the type (one of A-D,’AD’) of the current tri-
ja < shift-right(22™ + js,1 — 1) angle, and let; andt, be the triangle types of the left and right
Ji « shift-right(22" + j,, 1) children oft¢. In our refinement procedure we computandt,
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tle e le e Ttk Finally Table IX shows the pseudo-code for the refinement
"l [oJ1]3]0[1]3 without the boundary cases, which are handled by two equiva-
0/|3|/0|3[0[2/3[3[4]|6 lent procedures. As soon as andis are both less tha@?”,
1121317 13/4al6l4a]5]7 these special case functions call the routines in Table IX, which
2111 2151457111214 process the vast majority of triangles in the mesh.
3/]0|1(1|1/2|4|0|1|3
TABLE VIII

LOOKUP TABLES USED IN PtORDER REFINEMENT

submesh-refine-odd(V, i*, ig, i1, i3, t,1)
1 if active(i*) then
2 j* « shift-right(2?" + iy, 1 — 1)
3 submesh-refine-even(V, j*,ig, i1, 3, t;,1 — 1)
4  tstrip-append(V,*, 1l mod 2)
5  submesh-refine-even(V, j*, ig, i1, i3, t,-, I — 1)

submesh-refine-even(V, i*, g, i1, i3, t, )
1 if I > 0 and active(i*) then
2 jo — ’io
3  j1 <« index-append(ig, 1,1 — 2)
4 Jaeia
5  j3 « index-append(ig, 3,1 — 2)
6  j4 < index-append(ig, 2,1 — 2)
7  js « index-append(iy, 3,1 — 2)
8  Jje i3
9  j; <« index-append(is, 1,1 — 2)
10  j* « shift-right(2®" + j.,,l — 1)
11 submesh-refine-odd(V, 5%, ji, s Ji, 1 1,5 tis L — 1)
12 tstrip-append(V,i*, [ mod 2) '
13 submesh-refine-odd(V, j*, jr, o5 Jre > Jress trs L — 1)

TABLE IX
PSEUDO-CODE FOR MESH REFINEMENT USINAI-ORDER INDEXING.

from ¢ using the following transition tables:

Ltla (o] [t [a]t]
A[D|A|[A]D]A
B|C D | [B|C|D
c|/g (]| [C[B]|C
DA B | [D[A|B

We encode the types A, B, C, and D as the numbers 0, 1, 2,
and 3, respectively. Since the other triangle types-D4) occur

on alternate levels, there is no possibility of confusion if we use
the same numbers to represent them. With this choice of codes,
the two transition tables are the same, and are summarized as a
single table in Table VIII. In practice this transition table does
not need to be stored sinteandt,. can be computed quickly as
follows:

t;=(3—t)mod 4

t, = (4—t) mod 4
We implement the refinement using two procedures: one for
the even levels (triangles A-D) and one for the odd levels (tri-

angles E—H). Based on the triangle typge make use of three
small lookup tables,, l; i, andr, ;, (Table VIII).



