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Introduction

Pure Lagrange methods are often preffered for hydrodynamic calculations, be-
cause they provide a natural form of mesh adaptivity and easy coupling to other
physics. The disadvantage is lack of robustness - extreme mesh distortion may
cause tangling or too small CFL time steps. This motivates the use of ALEmeth-
ods - they consist of a Lagrange phase, followed by mesh relaxation, solution
remap and multi-material interface reconstruction. Our main goal is to extend
the LLNL’s Lagrangian High Order FE BLAST code to a full ALE code. We pro-
pose some methods and parallel implementations for the mesh relaxation and
solution remap phases. We explore their accuracy and conservation of mass,
kinetic energy and momentum.

Lagrange phase

The Lagrange method is based on taking the Euler equations of compressible
hydrodynamics and making the computational mesh move with the material
velocity. The formation of shocks is handled by adding artificial viscosity
terms. The resulting equations are:

Equation of motion:
dx(x0, t)

dt
= v(x, t)

Mass conservation:
dρ(x, t)

dt
= −ρ(x, t)∇ · v(x, t)

Momentum conservation: ρ(x, t)
dv(x, t)

dt
= ∇ · σ(x, t)

Energy conservation: ρ(x, t)
de(x, t)

dt
= σ(x, t) : ∇v(x, t)

where σ = −pI+σa is the total stress tensor that includes the artificial stress σa.
Different finite element discretizations can be derived depending on the choice
of shock-tracking method, viscosity terms and FE spaces. One alternative to the
LLNL’s Lagrangian High Order FE BLAST code is the Texas A&M’s Entropy
Viscosity FE Method (J.-L. Guermond, B. Popov, V. Tomov). That method tracks
the shock positions by observations on the system’s entropy production.
Example: A Riemann problem with 4 initial states immediately leading to
strong compression in the middle of the mesh, motivating the need for some
form of mesh relaxation:

Initial condition, final solution and mesh deformation at time 0.2 (Entropy Viscosity Method)

Mesh Relaxation

The goal of this step is to increase the CFL timestep and to avoid mesh tangling.
We have developed a parallel method that implements the relaxation scheme:

xn+1 = xn +M−1 (f − Lxn)

• xn are the nodes of the high-order mesh after n relaxation steps.

• L is a topological operator, with Lii = 1 and
∑

j Lij = 1. Furthermore, if
J is the set of indices corresponding to the interior nodes and B is the set
of indices for the boundary nodes, then we have LBJ = 0 and LBB = I

meaning our boundary nodes do not move.

• f is a vector containing −LJBxB as J indices and xB as B indices.

• M is a preconditioner for L.

The choice of high-order mesh Laplacian L determines the smoothing proper-
ties. Our parallel implementation works with the following options:

• L1 - the matrix is formed by the FE space sparsity pattern, equal weights.
Example: Q2 mesh relaxed by L1, 5 steps, 10 mpi tasks:

• L2 - the matrix is formed by the high-order stiffness matrix on the refer-
ence element. Example: 3D Q3 mesh relaxed by L2, 3 steps, 6 mpi tasks:

Future work:
- local mesh optimization - smoothing in specific parts of the domain.
- solution-dependent mesh smoothing - algorithm making use of information
about shock positions and material boundaries.

- parallel versions of other mesh smoothers.

Advection Remap

We’re discretizing the advection equation:

dρ(x, t)

dτ
= u(x, τ) · ∇ρ(x, τ)

where τ is the ”pseudo-time” in which the old (perturbed) mesh transitions to
the new (relaxed) mesh, u is the mesh’s pseudo-velocity, x corresponds to the
mesh’s configuration at time τ and ρ is a scalar function we want to remap. We
choose a continuous FE space V ⊂ H1 and its moving basis {ψi} and define:

Mij =

∫
Ω(τ)

ψjψj , Aij =

∫
Ω(τ)

ψju · ∇ψi, ρ(x, t) = ρTψ(x, τ), m = Mρ

We compare two alternative semi-discrete matrix-vector forms:

- function - based formulation:
∂ρ

∂τ
= −M−1ATρ

- moment - based formulation:
∂m

∂τ
= AM−1m

The velocity field is remapped by a function - basedmomentum remapmethod:

∂v

∂τ
= −M−1

ρ AT
ρ v

Density on initial mesh, function and moment remaps for ρ = sin(πx) sin(πy)

Remap of velocity field v = (π/2 + arctan(20(x − 0.5)), π/2 + arctan(20(y − 0.5)))

Errors between original and remapped fields:

h, # steps L∞(ρ) L1(ρ) L2(ρ) mass kin. energy momentum (x, y)

1/8, 5 7.7e−3 1.5e−3 2.0e−3 2.2e−7 2.5e−6 (3.49e−7, 3.49e−7)
1/16, 10 2.2e−3 3.3e−4 4.6e−4 1.4e−8 8.7e−7 (2.21e−8, 2.21e−8)
1/32, 20 6.5e−4 7.9e−5 1.1e−4 8.9e−10 7.8e−8 (1.40e−9, 1.40e−9)
1/64, 40 1.8e−4 2.1e−5 3.2e−5 5.1e−11 6.9e−9 (7.9e−11, 8.0e−11)
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